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Given <img>. Q: What’s in the 
image? Answer in emojis. 
A: 🍏🍌🍇🍐🍑🍈🍒.

Scene Understanding

Visual Q&A

Given <img1> and 
<img2> Q: what 
did the robot pick 
up? A: The 
multi-grain chips.

Given <img1> Q: 
what days might I 
most commonly go 
to this building?
A: Sunday.

TBD

TBD
TBD

Task and Motion Planning

Given <emb> Q: How 
to grasp blue block?
A: First grasp yellow 
block and place it on 
the table, then grasp 
the blue block.

Given <img> Task: Sort 
colors into corners.
Step 1. Push the green 
star to the bottom left.
Step 2. Push the green 
circle to the green star.

Tabletop Manipulation

Mobile Manipulation

Visual Q&A, Captioning …

Human: Bring me the rice chips from the 
drawer.  Robot: 1. Go to the drawers, 2. Open 
top drawer. I see <img>. 3. Pick the green rice 
chip bag from the drawer and place it on the 
counter.

                                                                                               A: First, grasp yellow block and … 

Given  <emb>  …  <img> Q: How to grasp blue block? A: First, grasp yellow block

Large Language Model (PaLM)

?

Control

PaLM-E: An Embodied Multimodal Language Model

… …

ViT

Language Only Tasks
Here is a Haiku about
embodied language models: 
Embodied language
models are the future of
natural language

Describe the 
following <img>: 
A dog jumping 
over a hurdle at a 
dog show.

… …

Q: Miami Beach borders which ocean? A: Atlantic. 
Q: What is 372 x 18? A: 6696. 
Language models trained on robot sensor data can 
be used to guide a robot’s actions.

PROMPT:
 Q: How can embodied language 
models benefit robots?  A:
PREDICTION:
 Embodied language models can 
benefit robots by allowing them to 
learn language in a more natural 
way. 

PROMPT:
 Language models which understand 
robot sensor data can
PREDICTION:
 be used to generate natural 
language descriptions of the 
robot's environment.

Figure 1: PaLM-E is a single general-purpose multimodal language model for embodied reasoning tasks, visual-language tasks,
and language tasks. PaLM-E transfers knowledge from visual-language domains into embodied reasoning – from robot planning in
environments with complex dynamics and physical constraints, to answering questions about the observable world. PaLM-E operates on
multimodal sentences, i.e. sequences of tokens where inputs from arbitrary modalities (e.g. images, neural 3D representations, or states, in
green and blue) are inserted alongside text tokens (in orange) as input to an LLM, trained end-to-end.

Abstract
Large language models excel at a wide range of
complex tasks. However, enabling general infer-
ence in the real world, e.g. for robotics problems,
raises the challenge of grounding. We propose
embodied language models to directly incorpo-
rate real-world continuous sensor modalities into
language models and thereby establish the link
between words and percepts. Input to our embod-
ied language model are multimodal sentences that
interleave visual, continuous state estimation, and
textual input encodings. We train these encodings
end-to-end, in conjunction with a pre-trained large
language model, for multiple embodied tasks in-
cluding sequential robotic manipulation planning,
visual question answering, and captioning. Our
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evaluations show that PaLM-E, a single large em-
bodied multimodal model, can address a variety
of embodied reasoning tasks, from a variety of
observation modalities, on multiple embodiments,
and further, exhibits positive transfer: the model
benefits from diverse joint training across internet-
scale language, vision, and visual-language do-
mains. Our largest model with 562B parameters,
in addition to being trained on robotics tasks, is
a visual-language generalist with state-of-the-art
performance on OK-VQA, and retains generalist
language capabilities with increasing scale.

1. Introduction
Large language models (LLMs) demonstrate strong reason-
ing capabilities across various domains, including dialogue
(Glaese et al., 2022; Thoppilan et al., 2022), step-by-step
reasoning (Wei et al., 2022; Kojima et al., 2022), math prob-
lem solving (Lewkowycz et al., 2022; Polu et al., 2022), and
code writing (Chen et al., 2021a). However, a limitation of
such models for inference in the real world is the issue of
grounding: while training LLMs on massive textual data

1



PaLM-E: An Embodied Multimodal Language Model

may lead to representations that relate to our physical world,
connectingthose representationsto real-world visual and
physical sensor modalities is essential to solving a wider
range ofgroundedreal-world problems in computer vision
and robotics (Tellex et al., 2020). Previous work (Ahn et al.,
2022) interfaces the output of LLMs with learned robotic
policies and affordance functions to make decisions, but
is limited in that the LLM itself is only provided with tex-
tual input, which is insuf�cient for many tasks where the
spatial layout of the scene is important. Further, in our
experiments we show that current state-of-the-artvisual-
language models trained on typical vision-language tasks
such as visual-question-answering (VQA) cannot directly
solve robotic reasoning tasks.

In this paper we propose embodied language models, which
directly incorporate continuous inputs from sensor modali-
ties of an embodied agent and thereby enable the language
modelitself to make more grounded inferences for sequen-
tial decision making in the real world. Inputs such as images
and state estimates are embedded into the same latent embed-
ding as language tokens and processed by the self-attention
layers of a Transformer-based LLM in the same way as text.
We start from a pre-trained LLM in which we inject the
continuous inputs through an encoder. These encoders are
trained end-to-end to output sequential decisions in terms of
natural text that can be interpreted by the embodied agent
by conditioning low-level policies or give an answer to an
embodied question. We evaluate the approach in a vari-
ety of settings, comparing different input representations
(e.g. standard vs. object-centric ViT encodings for visual
input), freezing vs. �netuning the language model while
training the encoders, and investigating whether co-training
on multiple tasks enables transfer.

The approach enables a broad set of capabilities, as we
demonstrate on three robotic manipulation domains (two
of which are closed-loop in the real-world) and a set of
standard visual-language tasks such as VQA and image
captioning, while simultaneously retaining the strong pure-
language abilities of PaLM. Our results indicate that multi-
task training improves performance compared to training
models on individual tasks. We show that thistransfer
across tasks can lead to high data-ef�ciency for robotics
tasks, e.g. signi�cantly increasing learning success from
handfuls of training examples, and even demonstrating one-
shot or zero-shot generalization to novel combinations of
objects or unseen objects.

We scale PaLM-E up to 562B parameters, integrating the
540B PaLM (Chowdhery et al., 2022) LLM and the 22B
Vision Transformer (ViT) (Dehghani et al., 2023) into, to
our knowledge, the largest vision-language model currently
reported. PaLM-E-562B achieves state-of-the-art perfor-
mance on the OK-VQA (Marino et al., 2019) benchmark,

without relying on task-speci�c �netuning. Although not
the focus of our experimentation, we also �nd (Fig. 6) that
PaLM-E-562B exhibits a wide array of capabilities includ-
ing zero-shot multimodal chain-of-thought reasoning, few-
shot prompting, and multi-image reasoning, despite being
trained on only single-image examples.

To summarize our main contributions, we (1) propose the
methodological idea to train a generalist vision, language,
and robotics model that addresses robotics tasks through
vision-language modeling. We also (2) demonstrate the
novel scienti�c result of demonstratingpositive transfer
across both vision and language into robotics tasks, which
is enabled by the methodological idea mentioned prior. In
studying how to best train such models, we (3) introduce
novel architectural ideas such as neural scene representa-
tions and entity-labeling multimodal tokens. In addition to
our focus on PaLM-E as an embodied reasoner we (4) show
that PaLM-E is also a quantitatively competent vision and
language generalist, and (5) demonstrate that scaling the
language model size enables multimodal �netuning with
less catastrophic forgetting.

2. Related Work
General vision-language modeling. Building on suc-
cesses in large language (Brown et al., 2020; Devlin et al.,
2018) and vision (Dosovitskiy et al., 2020) models, recent
years have seen a growing interest in large vision-language
models (VLMs) (Li et al., 2019; Lu et al., 2019; Hao et al.,
2022; Gan et al., 2022). Unlike their predecessors, VLMs
are capable of simultaneously understanding both images
and text, and can be applied to tasks such as visual question
answering (Zhou et al., 2020; Zellers et al., 2021b), cap-
tioning (Hu et al., 2022), optical character recognition (Li
et al., 2021), and object detection (Chen et al., 2021b). The
methods by which images are integrated varies. For exam-
ple, Alayrac et al. (2022) introduces cross-attention layers
to fuse images into a pretrained language model. In con-
trast, PaLM-E represents images and text as “multimodal
sentences” where both image and text tokens are input to
the self-attention layers of the language model. This also
allows it to process multiple images in a �exible way within
any part of a sentence. More closely related to our work
is Frozen (Tsimpoukelli et al., 2021) where vision encoder
parameters are optimized via backpropagation through a
frozen LLM (Lu et al., 2021). Inspired by this work, we
investigate the design in a broader scope by introducing
alternative input modalities (e.g. neural scene representa-
tions), and our proposed approach empirically outperforms
Frozen by more than45%on the VQAv2 benchmark. More
importantly we demonstrate that PaLM-E is applicable not
only to perceptual but also embodied tasks.

Actions-output models.Prior works focus on combining
vision and language inputs in an embodied setting with the
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goal of direct action prediction (Guhur et al., 2022; Shridhar
et al., 2022b;a; Zhang & Chai, 2021; Silva et al., 2021; Jang
et al., 2022; Nair et al., 2022; Lynch et al., 2022; Brohan
et al., 2022). Among these methods, VIMA (Jiang et al.,
2022) explores multimodal prompts similar to PaLM-E. The
role of language is perhaps most aptly described as task
speci�cation in these works. In contrast, PaLM-E generates
high-level instructions as text; in doing so, the model is
able to naturally condition upon its own predictions and di-
rectly leverage the world knowledge embedded in its param-
eters. This enables not only embodied reasoning but also
question answering, as demonstrated in our experiments.
Among works that output actions, perhaps most similar is
the approach proposed in Gato (Reed et al., 2022) which,
like PaLM-E, is a generalist multi-embodiment agent. In
contrast to Gato, we demonstrate positive transfer across
different tasks where the model bene�ts from diverse joint
training across multiple domains.

LLMs in embodied task planning. There have been sev-
eral methods proposed to leverage LLMs in embodied do-
mains. While many works focus on understanding natural
languagegoals(Lynch & Sermanet, 2020; Shridhar et al.,
2022a; Nair et al., 2022; Lynch et al., 2022), fewer con-
sider natural language as a representation forplanning–
the focus of this work. LLMs contain vast amounts of in-
ternalized knowledge about the world (Bommasani et al.,
2021), but without grounding, generated plans may be im-
possible to execute. One line of research has employed
prompting to elicit a sequence of instructions directly from
an LLM either by leveraging semantic similarity between an
LLM's generation and an eligible set of instructions (Huang
et al., 2022b), incorporating affordance functions (Ahn et al.,
2022), visual feedback (Huang et al., 2022c), generating
world models (Nottingham et al., 2023; Zellers et al., 2021a),
planning over graphs and maps (Shah et al., 2022; Huang
et al., 2022a), visual explanations (Wang et al., 2023), pro-
gram generation (Liang et al., 2022; Singh et al., 2022), or
injecting information into the prompt (Zeng et al., 2022). In
contrast, PaLM-E is trained to generate plans directly with-
out relying on auxiliary models for grounding. This in turn
enables direct integration of the rich semantic knowledge
stored in pretrained LLMs into the planning process.

With few exceptions, the parameters of the LLMs employed
in many of these works are employed as-is without further
training. In LID (Li et al., 2022), this constraint is relaxed
and LLM parameters are �netuned to produce a planning net-
work for generating high-level instructions.(SL)3 (Sharma
et al., 2021) tackles the more challenging task of simulta-
neously �netuning two LLMs: a planning network, which
produces high-level instructions, and a low-level policy net-
work, which selects actions. With PaLM-E, our interests
are distinct and complementary: we investigate a generalist,
multi-embodiment model, across multiple modalities.

3. Background on Large Language Models

Decoder-only LLMs. Decoder-only large language models
(LLMs) are generative models trained to predict the proba-
bility p(w1:L ) of a piece of textw1:L = ( w1; : : : ; wL ) that
is represented as a sequence of tokenswi 2 W . Typical
neural architectures realize this by factorizing into

p(w1:L ) =
LY

l =1

pLM (wl jw1:l � 1); (1)

wherepLM is a large transformer network.

Pre�x-decoder-only LLMs. Since the LLM is auto-
regressive, a pre-trained model can be conditioned on a
pre�x w1:n without the necessity to change the architecture

p(wn +1: L jw1:n ) =
LY

l = n +1

pLM (wl jw1:l � 1): (2)

The pre�x or promptw1:n provides the context based on
which the LLM continues to predict the subsequent tokens
wn +1: L . This is often used for inference to steer the predic-
tions of the model. For example, the prompt can contain a
description of the task the LLM should solve or examples
of desired text completions for similar tasks.

Token embedding space.The tokenswi are elements of a
�xed vocabularyW which is a discrete, �nite set correspond-
ing to (sub)words in natural language. Internally, the LLM
embedswi into a word token embedding spaceX � Rk via
 : W ! X , i.e. pLM (wl jx1:l � 1) with x i =  (wi ) 2 Rk .
The mapping is typically represented as a large embed-
ding matrix of sizek � jWj and trained end-to-end. In our
case,jWj = 256 000(Chowdhery et al., 2022).

4. Methodology: An Embodied Multimodal
Language Model

The main architectural idea of PaLM-E is to inject continu-
ous, embodied observations such as images, state estimates,
or other sensor modalities into the language embedding
space of a pre-trained language model. This is realized by
encoding the continuous observations into a sequence of
vectors with the same dimension as the embedding space of
the language tokens. The continuous information is hence
injected into the language model in an analogous way to
language tokens. PaLM-E is a decoder-only LLM that gen-
erates textual completions autoregressively given a pre�x or
prompt. We call our model PaLM-E, since we use PaLM
(Chowdhery et al., 2022) as the pre-trained language model,
and make itEmbodied.

The inputsto PaLM-E consist of text and (multiple) con-
tinuous observations. The multimodal tokens correspond-
ing to these observations are interleaved with the text
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to form multimodal sentences. An example of such
a multimodal sentence isQ: What happened between
<img 1> and <img 2>? where<img i> represents an em-
bedding of an image. Theoutputof PaLM-E is text gen-
erated auto-regressively by the model, which could be an
answer to a question, or a sequence of decisions produced by
PaLM-E in textual form that should be executed by a robot.
When PaLM-E is tasked with producing decisions or plans,
we assume that there exists a low-level policy or planner that
can translate these decisions into low-level actions. Prior
work has discussed a variety of ways to train such low-level
policies (Lynch & Sermanet, 2020; Brohan et al., 2022), and
we use these prior methods directly without modi�cation.
In the following, we describe our approach more formally.

Multimodal sentences: injection of continuous observa-
tions. Multimodal information such as image observations
can be injected into the LLM by skipping the discrete token
level and directly mapping the continuous observations into
the language embedding spaceX . To this end, we train an
encoder� : O ! X q that maps a (continuous) observation
spaceO (refer to Sec. 4.1 for details) into asequenceof
q-many vectors inX . These vectors are then interleaved
with normal embedded text tokens to form the pre�x for the
LLM. This means that each vectorx i in the pre�x is formed
from either the word token embedder or an encoder� i :

x i =

(
 (wi ) if i is a text token, or
� j (Oj ) i if i corresponds to observationOj :

(3)

Note that a single observationOj is usually encoded into
multiple embedding vectors. It is possible to interleave
different encoders� i at different locations in the pre�x
to combine, e.g., information from different observation
spaces. Injecting the continuous information this way into
the LLM reuses its existing positional encodings. In contrast
to other VLM approaches (e.g, (Chen et al., 2022)), the
observation embeddings are not inserted at �xed positions,
but instead placed dynamically within the surrounding text.

Embodying the output: PaLM-E in a robot control loop.
PaLM-E is a generative model producing text based on
multimodal sentences as input. In order to connect the
output of the model to an embodiment, we distinguish two
cases. If the task can be accomplished by outputting text
only as, e.g., in embodied question answering or scene
description tasks, then the output of the model is directly
considered to be the solution for the task.

Alternatively, if PaLM-E is used to solve an embodied plan-
ning or control task, it generates text that conditions low-
level commands. In particular, we assume to have access to
policies that can perform low-level skills from some (small)
vocabulary, and a successful plan from PaLM-E must con-
sist of a sequence of such skills. Note that PaLM-E must
determine on its own which skills are available based on

the training data and the prompt, and no other mechanism
is used to constrain or �lter its outputs. Although these
policies are language conditioned, they are not capable of
solving long-horizon tasks or taking in complex instructions.
PaLM-E is hence integrated into a control-loop, where its
predicted decisions are executed through the low-level poli-
cies by a robot, leading to new observations based on which
PaLM-E is able to replan if necessary. In this sense, PaLM-
E can be understood as a high-level policy that sequences
and controls the low-level policies.

4.1. Input & Scene Representations for Different
Sensor Modalities

In this section, we describe the individual modalities that we
incorporate into PaLM-E, and how we set up their encoders.
We propose different architectural choices for each encoder
� : O ! X to map the corresponding modality into the
language embedding space. We investigate state estimation
vectors, Vision Transformers (ViTs) (Dosovitskiy et al.,
2020; Chen et al., 2022; Ryoo et al., 2021) for 2D image
features, and the 3D-aware Object Scene Representation
Transformer (OSRT) (Sajjadi et al., 2022a). In addition to
encoders that represent the input scene globally, we consider
object-centric representations that factor observations into
tokens that represent individual objects in the scene.

State estimation vectors.State vectors, e.g. from a robot
or a state estimate for objects, are perhaps the simplest to
input into PaLM-E. Lets 2 RS be a vector describing the
state of the objects in a scene. For example,s could contain
the pose, size, color etc. of those objects. Then, the MLP
� statemapss into the language embedding space.

Vision Transformer (ViT). ViT ~� ViT (Dosovitskiy et al.,
2020) is a transformer architecture mapping an imageI
into a number of token embeddings~x1:m = ~� ViT (I ) 2
Rm � ~k . We consider several variants, including the 4 billion
parameter model from Chen et al. (2022), which we refer to
as ViT-4B, and a similar 22 billion parameter model, ViT-
22B (Dehghani et al., 2023), both of which have been pre-
trained on image classi�cation. We further investigate the
ViT token learner architecture (ViT + TL) (Ryoo et al., 2021)
which is trained end-to-end from scratch. Note that the
dimensionality~k of the ViT embeddings is not necessarily
the same as that of the language model. We therefore project
each embedding intox i = � ViT (I ) i =  ( ~� ViT (I ) i ) with  
being a learned af�ne transformation.

Object-centric representations.Unlike language, visual
input is not pre-structured into meaningful entities and rela-
tionships: while ViT may capture semantics, the structure of
the representation resembles a static grid rather than a col-
lection of object instances. This poses a challenge both for
interfacing with LLMs which have been pre-trained on sym-
bols, and for solving embodied reasoning which requires
interaction with physical objects. We therefore also explore
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structured encoders that aim to separate visual inputs into
distinct objects before injecting them into the LLM. Given
ground-truth object instance masksM j , we can decompose
ViT's representation intox j

1:m = � ViT (M j � I ) for objectj .

Object Scene Representation Transformer (OSRT).An
alternative that does not require ground-truth segmentations
is OSRT (Sajjadi et al., 2022a): rather than relying on ex-
ternal knowledge about objects, they are discovered in an
unsupervised way through inductive biases in the architec-
ture (Locatello et al., 2020). Based on SRT (Sajjadi et al.,
2022b), OSRT learns 3D-centric neural scene representa-
tions through a novel view synthesis task. Its scene repre-
sentations consist of object slotsoj = �� OSRT(I 1:v ) j 2 R�k .
We project each of these slots intox j

1:m =  ( �� OSRT(I 1:v ) j )
with an MLP . Note that individual objects are always tok-
enized intomultipleembeddings each, i.e. : R�k ! Rm � k

for OSRT maps intom-many embeddings.

Entity referrals. For embodied planning tasks, PaLM-E
must be able to reference objects in its generated plan. In
many cases, including the majority of our experiments,
objects in a scene can be identi�ed in natural language
by some of their unique properties. However, there
also exist settings where objects are not easily identi�-
able by language in few words, e.g. if there are multi-
ple blocks on a table of the same color at different loca-
tions. For object-centric representations such as OSRT,
we label the multimodal tokens corresponding to an object
in the input prompt as follows:Object 1 is <obj 1>.
: : : Object j is <obj j >. This enables PaLM-E to ref-
erence objects via special tokens of the formobj j in its
generated output sentences. In this case, we assume that the
low-level policies operate on these tokens as well.

4.2. Model Training

PaLM-E is trained on a dataset of the formD =��
I i

1:u i
; wi

1:L i
; ni

�	 N

i =1
, where each examplei consists of

ui -many continuous observationsI i
j , a textwi

1:L i
, and an

index ni . Despite being a decoder-only model, the text
consists of a pre�x part up to indexni that is formed from
multimodal sentences, and the prediction target, which only
contains text tokens. The loss function is therefore a cross-
entropy loss averaged over the individual non-pre�x tokens
wi

n i +1: L i
. To form the multimodal sentences within the

model, we have special tokens in the text that get replaced
by the embedding vectors of the encoders at the locations
in the text of those tokens. We base PaLM-E on the pre-
trained 8B, 62B, and 540B parameter variants of PaLM as
the decoder-only LLM into which we inject the continuous
observations through the input encoders. Those encoders
are either pre-trained or trained from scratch, see Sec. 4.1.
We refer to an 8B LLM combined with a 4B ViT as PaLM-
E-12B, similarly a 62B LLM + 22B ViT as PaLM-E-84B,
and 540B LLM + 22B ViT as PaLM-E-562B.

Variation with Model freezing. Most of our architectures
consist of three parts, an encoder~� , a projector , and the
LLM pLM . When training PaLM-E, one way is to update
the parameters of all these components. However, LLMs
show impressive reasoning capabilities if supplied with a
suitable prompt (Wei et al., 2022). Therefore, we investigate
whether it is possible tofreezethe LLM and to just train the
input encoders, and if so, how different-modality encoders
compare. In this case, the encoder has to produce embed-
ding vectors such that the frozen LLM is grounded on the
observations, and also propagate information to the LLM
about the capabilities of an embodiment. Training such en-
codings can be understood as a form of input-conditioned
soft-prompting (Tsimpoukelli et al., 2021), in relation to nor-
mal soft prompts (Lester et al., 2021). In experiments with
� OSRT, we also freeze the slot representation, i.e. we only
update the small projector which serves as the interface
between OSRT and the LLM.

Co-training across tasks.In our experiments, we investi-
gate the effects of co-training our models on a variety of
diverse data. The “full mixture”, see App. D, consists pri-
marily of a diverse set of internet-scale vision-and-language
data, from a variety of tasks. The sampling frequencies are
set such that only 8.9% of the full mixture is embodied data,
and there are several tasks for each embodiment.

5. Experiments
Our experiments consider diverse robotic (mobile) manip-
ulation tasks across three different robot embodiments, in
simulation and with two different real robots. We refer to
https://palm-e.github.io for videos showing the
capabilities of PaLM-E on those tasks. Although not the
focus of our work, we evaluate PaLM-E also on general
vision-language tasks such as visual-question-answering
(VQA), image captioning, and established language tasks.

We split our experimental investigation into two broad cate-
gories. First, we compare the different input representations
from Sec. 4.1 with respect to performance, generalization,
and data-ef�ciency. The second thread of experiments fo-
cuses on one architecture, the main PaLM-E version, con-
sisting of a pre-trained ViT and PaLM LLM that takes in raw
images as the continuous inputs. Here we show that a single
model, trained on a mixture of many datasets, across diverse
tasks, and across robot embodiments, can simultaneously
achieve high performance on all of those tasks. Crucially,
we investigate whether co-training on these datasets enables
transfer(Fig. 2): despite different tasks and embodiments,
the performance on the individual tasks increases by training
on the mixture of tasks. We study the in�uence on perfor-
mance, generalization, and data ef�ciency with respect to
co-training strategies and model parameter size. Finally, we
consider if freezing the LLM and just training the ViT that
injects vision into the LLM is a viable path.
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Figure 2: Overview oftransferlearning demonstrated by PaLM-
E: across three different robotics domains, using PaLM and ViT
pretraining together with the full mixture of robotics and general
visual-language data provides a signi�cant performance increase
compared to only training on the respective in-domain data. See
Tab. 1, Fig. 3, Tab. 2, Tab. 4 for additional data in each domain.

As baselines, we consider the state-of-the art visual language
model PaLI (Chen et al., 2022), which has not been trained
on embodiment robot data, as well as the SayCan algorithm
(Ahn et al., 2022), supplied with oracle affordances.

5.1. Robot Environments / Tasks

Our three robot environments (Fig. 1) include a Task and
Motion Planning (TAMP) domain where a robot has to
manipulate (grasp and stack) objects, a table-top pushing
environment, and a mobile manipulation domain. In each
domain, PaLM-E is trained on expert data from that do-
main. In many cases, this is a sparse amount of data per task.
The TAMP tasks involve large combinatorics over possible
plans, and many decision sequences are infeasible. PaLM-E
has to generate plans that consist of multiple steps, with
complicated decision boundaries. The multi-object tabletop
pushing environment is taken from the publicly available
Language-Table dataset (Lynch et al., 2022) and is chal-
lenging since it includes several objects, large cardinality
of language, and complex pushing dynamics. For both the
TAMP and Language-Table environment, PaLM-E has to
reason about the poses of the objects. It is not suf�cient to
know which objects are on the table or knowing their rough
relationships, the more �ne-grained details about the scene
geometry are important for solving the tasks. Finally, we
consider a mobile manipulation domain similar to SayCan
(Ahn et al., 2022), where a robot has to solve a variety of
tasks in a kitchen environment, including �nding objects
in drawers, picking them, and bringing them to a human.
For all domains we consider both planning and VQA tasks
in those environments. For the mobile manipulation and
Language-Table environments, PaLM-E is integrated into
the control loop to execute the plans in the real world, and
has to adjust the plan in presence of external disturbances
or failures of the low-level control policies.

5.2. TAMP Environment

Tab. 8 (appendix) shows planning success rates and VQA
performance for the TAMP environment. The LLM is frozen
here (for pre-trained LLM). For the results reported in Tab. 8,
the input representations are trained on a dataset containing
96,000 training scenes of solely the TAMP environment,
i.e. no other data is part of the mixture. When 3-5 objects
are in the scene, as in the training set, most input represen-
tations perform similarly well. However, when increasing
the number of objects, it turns out that using a pre-trained
LLM improves performance considerably, especially with
entity referrals. Furthermore, a 62B LLM shows better out-
of-distribution generalization compared to the 8B variant,
while a non-pretrained LLM shows no out-of-distribution
generalization. The SayCan baseline (Ahn et al., 2022) uti-
lizes oracle affordance functions and has dif�culties solving
this environment, since affordance functions only constrain
what is possible right now, but are not informative enough
for the LLM to construct long-horizon plans in TAMP en-
vironments. Additionally, the short-horizon skills (Tab. 8,
�rst row) are not suf�cient to solve these tasks.

Tab. 1 shows results for 3-5 objects when training on 1%
of the dataset, which corresponds to only 320 examples for
each of the two planning tasks. Here we see that there are
signi�cant differences between the input representations, es-
pecially for the planning tasks. First, pre-training the LLM
is bene�cial in the low data regime for state inputs. Second,
both ViT variants (ViT+TL, ViT-4B) do not perform well
in solving the planning tasks for this little data. However,
if we co-train on all other robot environments as well as
general vision-language datasets (ViT-4B generalist), then
the performance of the ViT-4B more than doubles. This
shows a signi�cant transfer effect between different robot
embodiments and tasks. Finally, using OSRT as the input
representation leads to the best performance here, demon-
strating the strengths of 3D-aware object representations.
We also observe another instance of transfer here: when
we remove the TAMP VQA data and only train on the 640
planning tasks examples, there is a (slight) drop in perfor-
mance. The state-of-the art vision-language model PaLI
(Chen et al., 2022) that was not trained on robot data is
not able to solve the tasks. We only evaluated it onq2 (ob-
jects left/right/center on the table) andq3 (vertical object
relations), since those most resemble typical VQA tasks.

5.3. Language-Table Environment

Tab. 2 reports success rates on long-horizon tasks from the
Language-Table environment (Lynch et al., 2022).PaLM-E
is integrated into a control loop that takes as input the long-
horizon task and the current image, and outputs an instruc-
tion for the low-level policy. We see that joint training on
internet-scale vision and language results in a more effec-
tive model for robot planning, particularly in the few-shot
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