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Abstract
Inspired by applications in pricing and con-
tract design, we study the maximization of one-
sided Lipschitz functions, which only provide the
(weaker) guarantee that they do not grow too
quickly in one direction. We show that it is pos-
sible to learn a maximizer for such a function
while incurring O(log log T ) total regret (with
a universal constant independent of the number
of discontinuities / complexity of the function).
This regret bound is asymptotically optimal in T
due to a lower bound of Kleinberg and Leighton.
By applying this algorithm, we show that one can
sell digital goods to multiple buyers and learn the
optimal linear contract in the principal-agent set-
ting while incurring at most O(log log T ) regret.

1. Introduction
Traditionally, the fields of online learning and optimiza-
tion have primarily been concerned with optimizing con-
tinuous, well-behaved functions (e.g., Lipschitz continuous
functions, or even bounded convex functions). However,
many practical problems (especially those stemming from
economics) involve optimizing a function with asymmetric
discontinuities.

For example, consider the problem of setting a price x for
selling a single item to a buyer with an (unknown) fixed
value p for the item. The goal of the seller is to maximize
their revenue as a function of x (by setting multiple differ-
ent prices over time, and observing their revenue in each
case). This function is not continuous in x: as x exceeds
p, their revenue sharply drops from p down to 0. How-
ever, this function is not entirely pathological either – we
still have the nice property that increasing the price x by
some amount δ increases our revenue by at most δ. In other
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words, the function we wish to optimize is “Lipschitz con-
tinuous in one direction” (however, note that decreasing the
price x by a small amount δ might cause the revenue to in-
crease dramatically).

Formally, if a function f : [0, 1] → R has the property
that f(x + δ) ≤ f(x) + Lδ for all x ∈ [0, 1] and δ ≥ 0,
we say it is L-right-Lipschitz continuous. In the scenario
above, the revenue function f(x) representing the revenue
at a price x is a particularly simple example of a (1-)right-
Lipschitz continuous function, being piece-wise linear with
two pieces. More complex one-sided Lipschitz continuous
functions arise in other economics contexts; see Section
1.1 for two motivating examples related to setting prices
for digital goods and learning linear contracts, where the
relevant functions can have arbitrarily many points of dis-
continuity.

In this paper, we study one of the simplest and most fun-
damental questions related to (online) optimization of such
functions: how to design low-regret (compared to always
querying the optimal point) algorithms for optimizing a sin-
gle one-sided Lipschitz continuous function f from deter-
minstic, noise-free feedback. Specfically, we consider the
following game that takes place over T rounds. In each
round t, our algorithm can choose an input x(t) and learns
the value of f(x(t)). The goal of the algorithm is to max-
imize the total sum

∑T
t=1 f(x

(t)) (with the intent that the
algorithm eventually learns the maximizer of f ). The re-
gret of the algorithm over these T rounds is given by the
difference T (max f) −

(∑T
t=1 f(x

(t))
)

, where (max f)

is the maximum value of f .

Our primary contribution is the construction of an efficient
algorithm for this problem with an asymptotically optimal
regret bound. In particular, we show it is possible to opti-
mize any L-left(/right)-Lipschitz continuous function from
[0, 1] to [0, L] while incurring at most O(L log log T ) re-
gret:

Theorem 1.1 (Restatement of Corollary 3.2 and Theorem
5.1). There exists a deterministic and efficient online al-
gorithm (Algorithm 2) for maximizing an L-left-Lipschitz
continuous function mapping [0, 1]→ [0, L] over T rounds
that incurs at most O(L log log T ) regret. Moreover, any
learning algorithm must incur at least Ω(L log log T ) for
this problem.
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The lower bound of Ω(L log log T ) can be shown by con-
sidering the selling a single item problem mentioned above,
and in fact quickly follows from a similar lower bound
proven by (Kleinberg & Leighton, 2003). However, match-
ing this regret bound is technically challenging and requires
synthesizing several different ideas from the analysis of on-
line algorithms. In particular, note that the naive strategy of
simply querying every point along an equally spaced grid
achieves a regret of at best O(L

√
T ).

At a high level, our algorithm maintains a collection of
candidate intervals (possibly containing the maximizer of
f ). Our algorithm strives to reduce the maximum width
among all intervals by taking the widest interval and mak-
ing queries to divide it further. The crux of the analysis in-
volves noticing that to efficiently divide an interval without
incurring too much regret, we should essentially switch be-
tween running one of two different optimization algorithms
based on which “regime” the interval fits into: in one case
we should run a standard (bisection-based) binary search,
but in the second case we should run an asymmetric binary
search (influenced by the asymmetric binary search proce-
dure of (Kleinberg & Leighton, 2003)) where we bias our
queries towards one end of the interval. In order to recon-
cile the different rates at which these two algorithms shrink
intervals, the analysis of our algorithm hinges on a single
potential function that both algorithms are charged against.

Organization. The remainder of this paper is organized
as follows. In the remainder of this section we discuss
(the previously mentioned) two motivating applications for
learning to optimize one-sided Lipschitz functions, and
provide a brief survey of existing work on learning one-
sided Lipschitz functions and loss functions with discon-
tinuities. Then, after setting up the problem in Section 2,
we begin by presenting the Ω(L log log T ) lower bound in
Section 3. In Section 4, we present two learning algorithms
for very specific subcases of this problem (where either f is
a single spike, or we know the maximum value of f ahead
of time) whose ideas play an important role in our analysis
of the main algorithm. Finally, in Section 5, we present our
O(L log log T ) regret algorithm along with a sketch of its
proof.

1.1. Applications

We discuss two motivating examples in more detail below
(where the associated one-sided Lipschitz function can be
far more complex), one from mechanism design and one
from contract design:

Example 1: Selling digital goods to multiple buyers.
Consider the generalization of the problem above where in-
stead of selling a single item to a single buyer, the seller is
selling copies of some digital good (i.e., one where they
can produce arbitrarily many copies at no cost) to an audi-

ence of n buyers (see e.g. (Goldberg et al., 2001)). Each
buyer i has a threshold value pi (where they will buy the
item at prices below pi and not otherwise). The seller must
set a single price x for the item. Upon doing this, they re-
ceive an average revenue per buyer of f(x) = (x · #{i |
pi ≥ x})/n. Of course, the seller may not know these pi
(or even the value of n) in advance, but instead may have
the opportunity to set different prices over time and observe
the values of f(x), hoping to maximize f(x) in an online
fashion. Similar to the original example, this function f is
1-left-Lipschitz continuous, however the function itself is
considerably more complex (containing n discontinuities
instead of just one).

Example 2: Learning the optimal linear contract. In
the classical hidden-action principal-agent problem (Holm-
ström, 1979; Grossman & Hart, 1983), an agent must
choose one of n different actions, each of which has some
cost to the agent and results in a distribution over out-
comes with differing utilities for the principal. The princi-
pal would like to incentivize the agent to choose an action
which is beneficial to the principal – however, the princi-
pal cannot directly observe the action chosen by the agent,
only the eventual outcome.

Payment mechanisms the principal can use to incentivize
the agent are known as contracts and are the main focus
of the area of contract theory. One particularly significant
subclass of contracts, notable for their simplicity and ro-
bustness (see e.g. (Carroll, 2015; Dütting et al., 2019)) are
linear contracts. In a linear contract, the principal promises
to transfer an α fraction (for some α ∈ [0, 1]) of their re-
ceived utility to the agent. The agent chooses their action
in response to this contract and the principal receives some
expected net utility U(α) in response.

Existing papers in the contract theory literature (e.g.
(Dütting et al., 2019)) point out that directly optimizing
U(α) (and in fact, finding the optimal non-linear contract)
can often be done efficiently, but this assumes knowledge
of all of the agent’s actions, their costs, and their likeli-
hoods of inducing certain outcomes – information which
the principal may not possess. Instead, the principal may
wish to learn the optimal linear contract over time (by of-
fering different linear contracts α and seeing how they per-
form on average). We can show (see Appendix A) that
U(α) is a left-Lipschitz continuous function, and there-
fore this learning problem fits directly into our framework.
We additionally briefly remark that the problem of learn-
ing the optimal linear contract in more complex princi-
pal agent settings, such as those with combinatorial action
spaces (Dütting et al., 2021) or multiple types of agent (Gu-
ruganesh et al., 2021) also result in a right-Lipschitz con-
tinuous utility function for the principal, and hence also lie
within our framework. In these applications the number of

2



Optimal No-Regret Learning for One-Sided Lipschitz Functions

spikes can be exponential in the input size.

1.2. Related Work

The most important predecessor to our work is (Kleinberg
& Leighton, 2003), which considers the problem of sell-
ing a single indivisible good. As discussed above their ap-
proach for deterministic, noise-free feedback does not work
for our more complex setting, and a number of additional
ideas are required for our O(log log T ) bound. We do rely
on this work by showing how we inherit their Ω(log log T )
lower bound. A main new insight from our work is that
the complexity of the function (in particular the number of
discontinuities) does not enter the regret bound.

There is a very broad literature that studies the applica-
tion of learning to problems in pricing and mechanism de-
sign and some of this literature also contends with the one-
sided asymmetry of the functions that arise. (Cesa-Bianchi
et al., 2017) study a bandit setting that models (among other
things) setting reserve prices in repeated auctions, and one
of their regret benchmarks involves competing with the best
one-sided Lipschitz function (extending previous work on
Lipschitz bandits, e.g. (Slivkins, 2014)) . Another rel-
evant line of work is the recent literature on (noise-free)
contextual pricing (Cohen et al., 2016; Lobel et al., 2017;
Paes Leme & Schneider, 2018; Mao et al., 2018; Liu et al.,
2021), which considers the problem of repeatedly sell-
ing heterogeneous goods with multidimensional features
(where the value of the buyer for a single good is given by
some fixed, unknown linear function of the feature vector
of that good); this work also requires adapting the asym-
metric binary search algorithm of (Kleinberg & Leighton,
2003) to a more complex setting. Of these papers, perhaps
the most similar to our setting is the work of (Emamjomeh-
Zadeh et al., 2021), which studies a variant of contextual
pricing where the seller must pick one of several products
and set a price. For the pricing problem in Example 1, it is
possible to apply the results of (Emamjomeh-Zadeh et al.,
2021) to obtain an O(n log log T ) regret algorithm for n
buyers; note that our result removes the dependence on n
entirely. To the best of our knowledge, there has been no
prior work directly focused on the main topic of this paper
(learning to maximize a fixed one-sided Lipschitz continu-
ous function).

Over the past few years, contract theory has received a
surge of attention from an algorithmic point of view (Alon
et al., 2021; Castiglioni et al., 2021; 2022; Dütting et al.,
2019; 2020; 2021; 2023; Guruganesh et al., 2021). The ma-
jority of these papers make the assumption that the princi-
pal already knows all the relevant details of the underlying
problem. (Ho et al., 2014) study an adaptive-discretization
style algorithm for learning the best (non-linear) contract
under stochastic feedback. More recently, (Zhu et al.,

2022) prove tight bounds on the regret possible in the set-
ting of Ho et al., and exhibit a separation between the prob-
lem of learning linear contracts (where in their setting it
is possible to achieve O(T 2/3) regret) and the problem
of learning general contracts (where the regret must scale
as Ω(T 1−ε), with ε → 0 as the number of outcomes in-
creases). We note here that both papers imply very little
about what is possible in the noise-free setting, and the al-
gorithms we present are very different in techniques from
the algorithms present in these works (e.g., the optimal
O(T 2/3) regret algorithm for learning linear contracts in
a stochastic setting simply involves running UCB over an
appropriately chosen subset of equally spaced linear con-
tracts).

2. Preliminaries
Our main object of study is one-dimensional functions that
are only Lipschitz continuous in one direction.

Definition 2.1 (One-Sided Lipschitz Functions). A one-
dimensional function f is L-left-Lipschitz continuous if for
all x, y ∈ dom(f) where x ≤ y:

f(x)− f(y) ≤ L · (y − x)

Similarly, f is L-right-Lipschitz continuous if for all x, y ∈
dom(f) where x ≤ y:

f(y)− f(x) ≤ L · (y − x)

Intuitively, right-Lipschitz functions cannot increase too
quickly if you start at a point and move to the right (i.e.
increase x); left-Lipschitz functions, move to the left. By
applying linear transformations, we can easily manipulate
the direction, domain, range, and Lipschitz constant of a
function. To manipulate direction, if f(x) with domain
[Dℓ, Dr] is L-right-Lipschitz continuous, then g(x) ≜
f(Dℓ + Dr − x) has the same domain and range and is
L-left-Lipschitz continuous. To manipulate the domain: if
f(x) has domain [Dℓ, Dr] and is L-left-Lipschitz contin-
uous (resp. L-right-Lipschitz continuous), then g(x) ≜
f(Dℓ + x · (Dr − Dℓ)) has the same range and domain
[0, 1] and is L(Dr − Dℓ)-left-Lipschitz continuous (resp.
L(Dr − Dℓ)-right-Lipschitz continuous). To manipulate
range, if f(x) is L-left-Lipschitz continuous (resp. L-right-
Lipschitz continuous) with range [Rℓ, Rr], then g(x) ≜
R · f(x)−Rℓ

Rr−Rℓ
has the same domain and range [0, R] and

is LR
Rr−Rℓ

-left-Lipschitz continuous (resp. LR
Rr−Rℓ

-right-
Lipschitz continuous).

By using the first two transformations, we can focus our
attention on L-left-Lipschitz functions with domain [0, 1].
However, the final transformation scales the range and
Lipschitz constant by the same factor and hence pre-
serves their ratio. The regret of our algorithm scales
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with the larger of the Lipschitz constant and the range
size (after normalizing the domain size), so we round
up the size of the smaller quantity and assume they are
equal for the remainder of the paper (it is free to pre-
tend that the range or Lipschitz constant is larger than
its actual value). Putting everything together, we can
transform any f(x) with domain [Dℓ, Dr], range [Rℓ, Rr],
and left-Lipschitz constant L (or right-Lipschitz constant
L) into a g(x) with domain [0, 1], range [0, 1] and left-
Lipschitz constant 1. Since regret is an additive no-
tion of error and we needed to scale the range/Lipschitz
constant by min

{
(Rr −Rℓ)

−1, (L(Dr −Dℓ))
−1

}
, the

regret on the original function gets scaled up by
max {(Rr −Rℓ), L(Dr −Dℓ)}. With that factor in mind,
we can now focus on the following problem.

In the LEFTLIPSCHITZMAXIMIZATION problem, we are
given a 1-left-Lipschitz function f : [0, 1]→ [0, 1] and the
number of rounds T . In each round t, an (online) algorithm
chooses an x(t) ∈ [0, 1] and then is told f(x) ∈ [0, 1].
The goal is minimize the total regret, defined to be the dif-
ference between the value of the points that the algorithm
chose and the value of playing the single best point repeat-
edly:

R(ALG, f) ≜
T∑

t=1

(
(max f)− f(x(t))

)
Remark 2.2. It is a standard trick to remove an online al-
gorithm’s dependence on knowing T by guessing T and
gradually increasing the guess (resetting the algorithm in
the process) when it is violated. For an algorithm with
O(log log T ) dependence on T , the appropriate guess scal-
ing is T = 2ˆ2ˆ2ˆi, where for each incorrect guess we
increment i. This makes our final guess incur regret within
a factor two of the correct guess. Furthermore, the sum
of regret from all guesses (incorrect or correct) telescopes,
incurring another factor two.

An online algorithm playing this game learns the function’s
value at points of its choosing, which restricts the func-
tion’s value at other points due to its left-Lipschitz continu-
ity. Not only do we know that f cannot increase too quickly
as we move to the left, we also know that f cannot decrease
too quickly as we move to the right.

Suppose then that we know the value of f at two points
ℓ, r ∈ [0, 1] with ℓ < r. Then for any x ∈ [ℓ, r], we can
deduce the following from left-Lipschitz continuity:

f(r) + (r − x) ≥ f(x) ≥ f(ℓ)− (x− ℓ).

In other words, the value of f is sandwiched between
[f(ℓ) − ℓ] − x and [f(r) + r] − x. This restricts f to a
parallelogram-shaped region of space. It will be useful for
our algorithm to work with such parallelograms, so we de-
fine some additional notation for them.

( ℓ, d)

( r, u)

h

w

h

w

w

w

Figure 1. Anatomy of = PARALLELOGRAM(ℓ, r, d, u). The
function f restricted to ( ℓ, r] must remain inside the parallelo-
gram. One possible consistent f is depicted as a red curve.

Our analysis above assumed we knew the exact values
of f(ℓ) and f(r), but actually it suffices to have a lower
bound on f(ℓ) and an upper bound on f(r). Suppose we
had bounds d ≤ f(ℓ) and f(r) ≤ u (short for “down”
and “up”). Then for x ∈ [ℓ, r] we know that f(x) ∈
[d − ℓ − x, u + r − x]. This leads to the following defi-
nition.

Definition 2.3. PARALLELOGRAM(ℓ, r, d, u) represents
the interval (ℓ, r]1 along with the guarantees d ≤ f(ℓ)
and f(r) ≤ u (and less importantly ℓ ≤ r). We use
the symbol to represent such a parallelogram, and we
can index such a variable using ℓ, r, d, u to refer to its
ℓ, r, d, u values respectively. The “width” of parallelogram

is w ≜ r − ℓ and the “height” is h ≜ u − d.

In our algorithm, d will be the value of some point we
have queried previously whereas u will be the value of the
best point we have queried previously, so we will know that
d ≤ u and hence heights h will be nonnegative.

Figure 1 depicts such a parallelogram and one possible
function consistent with its guarantees.

Our additional definitions of width and height help us char-
acterize how large a parallelogram is. Width equals the
size of the underlying interval ( ℓ, r] and also bounds how
much better the best value f attains in this interval can

1We use half-closed intervals so that all intervals under con-
sideration are disjoint, but this is just to help the proof avoid un-
necessary edge cases.
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0 p 1

Figure 2. Revenue function fp induced by the IDENTICALBUY-
ERSPOSTEDPRICE problem. The function is piece-wise linear,
with the first piece having a slope of one and then falling at p to
the second piece, which has a slope of zero. As a result, this func-
tion is 1-right-Lipschitz for any value of p.

be compared to the previously best seen point (which has
value u). On the other hand, height quantifies how risky
it is to make queries in this interval. Intuitively, wherever
we choose to query in this interval, we risk the function
value being h lower than the previously best seen point,
incurring at least that much regret.

3. An Ω(log log T ) Lower Bound
Kleinberg and Leighton studied an IDENTICALBUYER-
SPOSTEDPRICE problem, which is as follows (some nota-
tion changed from the original paper to match our general
problem) (Kleinberg & Leighton, 2003). We have an in-
finite supply of identical goods, and face a sequence of T
identical buyers that have the same valuation p ∈ [0, 1] for
these goods. We know T but not p. In each round t our
(online) algorithm can choose a price x(t) ∈ [0, 1]. If our
price is lower than the valuation (x(t) ≤ p), then we sell the
item for x(t) revenue. Otherwise, we do not sell the item
and generate zero revenue. The goal is to minimize the to-
tal regret, defined to be the difference between the revenue
the algorithm generated and the revenue from repeatedly
picking p.

One convenient way for us to view this problem is to define
a function that expresses how much revenue we generate
when we choose a price x.

fp(x) =

{
x if x ≤ p

0 otherwise

This function is plotted in Figure 2. Observe that this func-
tion is 1-right-Lipschitz and always outputs a point in [0, 1].
In other words, we can use an algorithm for LEFTLIPS-
CHITZMAXIMIZATION to solve this problem. The reduc-
tion is as follows. The secret function is g(x) ≜ fp(1−x).

Whenever our LEFTLIPSCHITZMAXIMIZATION algorithm
queries point x(t), we choose the price 1− x(t). If the item
sells, then we report a function value of (1 − x(t)). If the
item does not sell, then we report a function value of zero.
Theorem 3.1 (c.f. Theorems 1.1, 2.1, 2.2 from (Kleinberg
& Leighton, 2003)). There is a deterministic algorithm
that solves the IDENTICALBUYERSPOSTEDPRICE prob-
lem with at most O(log log T ) regret. When p is uniformly
sampled from [0, 1], any (i.e. possibly randomized) algo-
rithm that solves the IDENTICALBUYERSPOSTEDPRICE
problem incurs at least Ω(log log T ) regret.

By the reduction argument above, this immediately implies
a lower bound for our problem.
Corollary 3.2. There is a distribution over L-left-
Lipschitz functions such that any algorithm that solves the
LEFTLIPSCHITZMAXIMIZATION problem incurs at least
Ω(log log T ) regret.

If we hope to match this lower bound for our problem, it
will be instructive to discuss how Kleinberg and Leighton
produced a matching upper bound for their problem. The
key idea is as follows (again, some notation changed from
the original paper to match). At the beginning of a phase,
the algorithm has narrowed down the price p to somewhere
in the range [ℓ, r] of width w ≜ r − ℓ. The algorithm di-
vides this interval into 1/w equally-sized subintervals of
width w2: [ℓ, ℓ + w2], [ℓ + w2, ℓ + 2w2], ..., [r − w2, r].
It does so by querying the breakpoints from left-to-right
(i.e. ℓ + w2, ℓ + 2w2, ...) and stops immediately when the
item does not sell. There are at most 1/w prices that sell
the item, each incurring at most w regret, for a total of O(1)
regret. There is at most one price that does not sell the item,
incurring at most O(1) regret. Since each phase refines the
width from w to w2, we only need log log T phases before
we reach width 1/T . When the width is 1/T , we can safely
expend all remaining queries and incur at most O(1) addi-
tional regret.

This strategy will be useful when considering parallelo-
grams that have more height than width. For such par-
allelograms, any query risks incurring a large amount of
regret, akin to not selling the item. To mitigate this risk,
we will also make multiple queries; note that our queries
will need to be right-to-left instead of left-to-right since we
flipped the domain to interchange right-Lipschitz with left-
Lipschitz.

4. Algorithmic Warmup
In this section, we give two more technical ideas that will
go into our final algorithm. Similar to how considering
the IDENTICALBUYERSPOSTEDPRICE problem in Sec-
tion 3 gave us intuition about how to handle tall parallel-
ograms, we will be considering other restricted versions of
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0 p 1

Figure 3. A spike function f hides a small spike of size 1/
√
T but

is otherwise zero everywhere. It is 1-left-Lipschitz.

the LEFTLIPSCHITZMAXIMIZATION problem to build fur-
ther intuition.

4.1. Binary Search

The first warmup exercise is to consider a function f which
is zero except for a small spike of size 1/

√
T . This function

is depicted in Figure 3. In particular, this spike makes the
maximum value of f equal to 1/

√
T , so we must find a

point on it if we want to do better than Θ(
√
T ) regret. Since

querying a point on this spike is a prerequisite to achieving
low regret, let us consider just the regret incurred in the
process of finding a point on the spike.

First off, observe that KL search does not quite work for
this situation because the hidden spike is not guaranteed to
begin at the boundary of the search space (we reversed left
and right, so specifically the boundary x = 1). One conse-
quence of this is that if we have made several queries that
all returned zero function value, the set of possible max-
imizers looks like a disjoint union of intervals and not a
single contiguous interval.

Our queries need to roughly look like a 1/
√
T -net before

we expect to find a nonzero function value and hence the
hidden spike. One possible query pattern that avoids ov-
erengineering to the spike’s width being 1/

√
T is to per-

form a binary search that does not discard either half. This
search process might proceed as follows. We initially know
that the spike is somewhere in the range [0, 1] and first
query 1/2. If we do not find the spike, we break our orig-
inal range into two ranges [0, 1/2] and [1/2, 1]. We next
query 1/4 and 3/4, further refining the ranges into [0, 1/4],
[1/4, 1/2], [1/2, 3/4], and [3/4, 1]. If we divide this search
into phases, with a single phase refining all ranges into two
equal subranges, then in O(log T ) phases our ranges will
be small enough to guarantee we have found the spike. The
key question is: how much regret does this incur? In par-
ticular, does it incur less than O(log log T ) regret?

Algorithm 1 Sweep Using Maximum Value Hint
1: Initalize x← 1.
2: loop
3: Query f(x).
4: Update x← x− [(max f)− f(x)].
5: end loop

In fact, if we are careful with our argument, we can ar-
rive at a O(1) regret bound. In the phases up to phase
log

[
1/
√
T
]
, we have queried exactly a 1/

√
T -net, so we

have made a total of
√
T queries. Each query found a value

of (at least) zero and incurred (at most) 1/
√
T regret. This

adds up to total regret O(1).

Contrast this with the following more naive analysis at-
tempt. In the first phase, we query one point, 1/2, and try
to bound how much regret it could incur only using knowl-
edge we have after the first phase. Since the ranges after
this phase are [0, 1/2] and [1/2, 1], it is plausible that the
function actually has a spike of size 1/2 and we incurred
1/2 regret, for a total of 1/2 regret in the first phase. Re-
peating this reasoning for the second phase, we query two
more points, have four intervals, risk a spike of size 1/4,
and we risked incurring 2 · 1/4 = 1/2 total regret in this
phase. If we continue like this, each phase will result in
constant regret; we have a logarithmic number of phases
producing a bound of O(log T ) overall regret. This is too
much for our O(log log T ) goal!

The upshot is that we must be careful not to be too eager
when determining how much regret a particular query in-
curs. The difference between these two analyses was that
the precise one used the final value of the function max-
imizer, while the loose one used a bound we had on the
value of the function maximizer that only took into account
the queries/results we had made so far. In our final algo-
rithm, our analysis will sometimes need to only pay for
the difference between the best seen point so far and the
queried point, making additional payments as the best point
seen so far improves.

4.2. Maximum Value Hint

The second warmup exercise is to suppose our algorithm is
told the maximium value of f , (max f), but not where it is.
It turns out this hint is quite powerful, since it lets us cut a
log log factor from the regret:

Theorem 4.1. There is an online algorithm that solves the
LEFTLIPSCHITZMAXIMIZATION when additionally told
(max f) with at most O(1) regret.

We defer the full proof to Appendix B, but the algorithm
that does so is Algorithm 1. The main proof idea is that we
know the maximizer is in the region [0, x], and this region

6
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shrinks by exactly the amount of regret we incur.

Remark 4.2. Although our algorithm here is tailored to
knowing the maximum value precisely, there is a more gen-
eral idea to be found. If we ever query a point and it is lower
than the value of the best point we have seen so far, we
can immediately eliminate a region to its left. The size of
this region is equal to the amount that our point was below
the best point we have seen so far. This will let us charge
the immediately incurred regret to elimination of feasible
region. There is some additional regret incurred, namely
the difference between the actual maximum value and the
value of the best point seen so far, but this will fall under
the binary search technique from Subsection 4.1.

5. A Hybrid Algorithm
In this section, we explain how to synthesize the technical
ideas from Sections 3 and 4 to prove our main theorem.
Theorem 5.1. There is an online algorithm that solves
the LEFTLIPSCHITZMAXIMIZATION problem with at most
O(log log T ) regret.

We plan to show that Algorithm 2 incurs at most
O(log log T ) regret for 1-left-Lipschitz functions.

Since Algorithm 2 is complicated, here is a quick summary
of what it is doing. Initially, query endpoints f(0) and f(1)
to constuct a starting parallelogram. This is added to a set
of parallelograms that tracks all intervals that might have
a maximizer. The algorithm then repeatedly removes the
widest parallelogram from this set and either performs a
binary search step or a KL search step on it, depending on
whether it is wider (binary search) or taller (KL search).
During this entire process, the algorithm also tracks the
best point seen and where it occurred. When it sees a new
best point, the algorithm also needs to adjust all parallelo-
grams in its set by increasing their height and decreasing
their width.

We prove the regret bound for our algorithm using a poten-
tial argument. In each iteration i of the algorithm’s while
loop, the algorithm modifies one or more parallelograms
from S. We define a potential function ϕ on S and will
show that from round-to-round, this potential function on
the state of S is monotone nonincreasing and the total re-
gret that the algorithm incurs can be charged to the total
drop in potential.

Our function ϕ is defined on parallelograms, and the poten-
tial of S is just the sum of potentials of all parallelograms
it contains. We steal some notation from our algorithm,
namely that the width of parallelogram is w ≜ r − ℓ

and its height is h ≜ u − d. With these definitions, the
potential of one parallelogram is:

ϕ( ) ≜ ϕbinary( ) + ϕKL( )

ϕbinary( ) ≜ w

ϕKL( ) ≜ − h log log
[
min

(
2 h/ w + 2, (2T + 2)2

)]
Our potential function is the sum of two potential sub-
functions, ϕbinary and ϕKL. The former function is non-
negative and will be used to execute the ideas from Sec-
tion 4. The latter is nonpositive (our logs are base two, so
log log 2 = 0) and will be used to execute the ideas from
Section 3.

We abuse notation slightly and allow these functions to ac-
cept the entire set of parallelograms S as input:

ϕ(S) ≜
∑
∈S

ϕ( )

ϕbinary(S) ≜
∑
∈S

ϕbinary( )

ϕKL(S) ≜
∑
∈S

ϕKL( )

Theorem 5.1 follows directly from combining the follow-
ing three technical theorems.

Theorem 5.2. When evaluated on the state of S be-
fore/after iterations of Algorithm 2’s while loop on line 9,
both ϕbinary(S) and ϕKL(s) are monotone nonincreasing,
so ϕ(S) is as well.

Theorem 5.3. The initial potential satisfies ϕ(S) ≤ O(1)
and the final potential satisfies ϕ(S) ≥ −O(log log T ).

Theorem 5.4. The total regret of Algorithm 2 is at most a
constant times the total drop in the potential function ϕ(S)
plus a constant.

Theorems 5.2 and 5.3 together inform us that the sum of all
drops of the potential function is O(1) + O(log log T ) =
O(log log T ) in magnitude. Theorem 5.4 lets us charge our
regret to these potential drops, meaning our regret is also
O(log log T ) as desired.

Due to space constraints, the proofs of these three technical
theorems can be found in Appendix C. In their place, we
include some quick proof sketches here.

Proof Sketch of Theorem 5.2. The monotonicity of
ϕbinary(S), the sum of widths of parallelograms, is due
to our algorithm only dividing up parallelogram intervals
into smaller parallelogram intervals. The monotonicity
of ϕKL is due to each iteration of the main while loop of
our algorithm producing a “final” parallelogram (on one
of lines 21, 26, 39) that has at least as much height as the
original parallelogram .

Proof Sketch of Theorem 5.3. The initial potential is
bounded above because ϕbinary is at most the total width,
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Algorithm 2 Hybrid Binary and KL Search
1: Query f(0) and f(1).
2: if f(0) < f(1) then
3: Initialize our search set S ← {PARALLELOGRAM(ℓ = 0, r = 1, d = f(0), u = f(1))}.
4: Initialize our best f -value found so far b← f(1) and where it was found x← 1.
5: else
6: Initialize our search set S ← {PARALLELOGRAM(ℓ = 0, r = 1− (f(0)− f(1)), d = f(0), u = f(0))}.
7: Initialize our best f -value found so far b← f(0) and where it was found: x← 0.
8: end if
9: while S contains a with w > 1

T do
10: Let be some parallelogram in S of maximum width; remove from S.
11: if w ≥ h then {binary search case, see Subsection 4.1 for intuition}
12: We make at most q̂ ← 1 query to subdivide ( ℓ, r].
13: else {KL case, see Section 3 for intuition}
14: We make at most q̂ ← ⌊2 h/ w + 4 + w/ h⌋ queries to subdivide ( ℓ, r].
15: end if
16: Our queries will be at least δq ≜ w

q̂+1 apart.
17: We use mi to denote the ith middle point that we query and i to denote the ith parallelogram we add to S; the

first query point is m1 ← r − δq and the first parallelogram is 1 ← PARALLELOGRAM(ℓ = m1, r = r, d =
null, u = b) {We fill in the d-value later.}

18: for i = 1, 2, ..., q̂ do
19: Query f(mi).
20: if f(mi) + (mi − ℓ) < b then {entire remaining interval ( ℓ,mi] cannot beat b}
21: Update i

d ← min{f(mi), d} and insert the final i into S and break out of the enclosing for loop.
22: end if
23: Update i

d ← f(mi) and insert i into S.
24: if f(mi) ≤ b then {the interval (mi − (b− f(mi)),mi] cannot beat b}
25: The next query point is mi+1 ← mi − (b− f(mi))− δq .
26: If the next query point is not inside our original interval (i.e. mi+1 ≤ ℓ), we add the final

PARALLELOGRAM(ℓ = ℓ, r = mi − (b − f(mi), d = d, u = b) to S and break out of the enclosing
for loop.

27: Otherwise, the next parallelogram is i+1 ← PARALLELOGRAM(ℓ = mi+1, r = mi − (b − f(mi), d =
null, u = b).

28: else {just witnessed a new best f -value}
29: Compute the improvement in f -value δf = f(mi)− b.
30: Update the best f -value found so far b← f(mi) and where it was found x← mi.
31: for each parallelogram ′ in S do
32: if ′

ℓ ≤ ′
r − δf then

33: Update ′ in S to PARALLELOGRAM(ℓ = ′
ℓ, r = ′

r − δf , d = ′
d, u = b).

34: else {update to an unused width-zero parallelogram for proof-accounting}
35: Update ′ in S to PARALLELOGRAM(ℓ = ′

ℓ, r = ′
ℓ, d = ′

d, u = ′
u + ( ′

r − ′
ℓ)).

36: end if
37: end for
38: The next query point is mi+1 ≜ mi − δq .
39: If the next query point is not inside our original interval (i.e. mi+1 ≤ ℓ), we add the final

PARALLELOGRAM(ℓ = ℓ, r = mi, d = d, u = b) to S and break out of the enclosing for loop Other-
wise, the next parallelogram is i+1 ← PARALLELOGRAM(ℓ = mi+1, r = mi, d = null, u = b).

40: end if
41: end for
42: end while
43: Repeatedly query the best f -value found so far for any remaining rounds, i.e. repeatedly query f(x).
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which is initially one, and ϕKL is nonpositive. The final
potential is bounded below because ϕbinary is nonnegative
and ϕKL is at most −O(log log T ) times the sum of
heights; an additional charging argument shows that the
sum of heights is bounded by a constant.

Proof Sketch of Theorem 5.4. We execute a semi-eager,
semi-lazy charging argument. Our two key subcases come
from algorithm lines 11 and 13, which correspond to the
binary search from Subsection 4.1 and the KL search from
Section 3, respectively. For binary search, we know we
need to do lazy charging, and we can charge any immedi-
ate regret incurred from a suboptimal query value to loss in
total width (ϕbinary). For KL search, we use eager charg-
ing, and no matter whether all planned queries execute or
we fail-fast in the middle, we can show we incur at most
O( h) regret, which can be charged to ϕKL due to the log
log factor increasing by one.
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A. Linear Contract Profit is One-Sided Lipschitz
In this appendix, we consider the application of learning the optimal linear contract. After defining some necessary contract
theory notation, we will prove that the principal’s utility, as a function of the linear contract they choose, is one-sided
Lipschitz.

In the basic hidden-action principal-agent problem, an agent chooses between n different actions, resulting in one of m
different outcomes. Action i incurs a cost of ci to the agent, has probablity Fi,j of resulting in outcome j, which would
result in a reward of rj for the principal. To incentivize the agent, the principal may present a contract where they promise
to transfer xj in the event of outcome j. Faced with such a contract, the agent chooses an action i2 that maximizes their
utility,

∑
j Fi,jxj − ci. The principal makes a net profit of

∑
j Fi,j(rj − xj) (also referred to as the principal’s utility).

A contract is linear if it can be written as xj = αrj for all outcomes j and some α ∈ [0, 1]. We are now ready to state and
prove our desired result.

Lemma A.1. Uprincipal(α) is L-left-Lipschitz continuous, where the Lipschitz constant is L = maxi
∑

j Fi,jrj , i.e. the
maximum expected reward of any action.

Proof. The first step is to use the definition of a linear contract to simplify the agent and principal utility functions:

Uagent(α) = max
i

∑
j

Fi,jαrj

− ci

= max
i

α

∑
j

Fi,jrj

− ci

Uprincipal(α) =
∑
j

Fi⋆,j(rj − αrj) (i⋆ is the agent chosen action)

= (1− α)

∑
j

Fi⋆,jrj



This highlights
[∑

j Fi,jrj

]
as a key term for action i. This is equal to the expected reward the principal gets when action

i is played.

As we increase α, Uagent jumps to actions with higher and higher expected reward. As a result, Uprincipal sometimes
jumps up because it has this expected reward as a factor, and otherwise steadily decreases due to the (1 − α) factor. This
is enough to show that Uprincipal(α) is

[
maxi

∑
j Fi,jrj

]
-left-Lipschitz continuous. More formally, consider two linear

contracts α ≤ α′.

Uprincipal(α)− Uprincipal(α
′) = (1− α)

∑
j

Fi⋆,jrj

− (1− α′)

∑
j

Fi′⋆,j
rj


≤ (1− α)

∑
j

Fi⋆,jrj

− (1− α′)

∑
j

Fi⋆,jrj

 (i′⋆ has higher expected reward)

≤

∑
j

Fi⋆,jrj

 (α′ − α)

2It is standard to tiebreak for actions that generate more profit for the principal, since giving the agent an ϵ fraction of the reward
would induce that behavior.
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≤

max
i

∑
j

Fi,jrj


︸ ︷︷ ︸

Lipschitz constant

(α′ − α)

This completes the proof of Lemma A.1.

B. Missing proofs from Section 4
In this appendix, we provide the missing proof of Theorem 4.1, which is restated for convenience.

Theorem 4.1. There is an online algorithm that solves the LEFTLIPSCHITZMAXIMIZATION when additionally told
(max f) with at most O(1) regret.

Proof. We will show that Algorithm 1 incurs at most O(1) regret for 1-left-Lipschitz functions. This proves the result via
scaling f appropriately.

We maintain the invariant that the algorithm knows (max f) is attained somewhere in the interval [0, x]. Initially, x = 1
and so this invariant is trivially true due to the domain of f being [0, 1].

Next, consider some iteration of the loop with some initial value of x. We query f(x) and update to x′ ≜ x− [(max f)−
f(x)]. Consider some point z ∈ (x′, x], and consider what 1-left-Lipschitz continuity implies about this point.

z ≤ x

f(z)− f(x) ≤ x− z (left-Lipschitz)
f(z) ≤ f(x) + x− z

< f(x) + (max f)− f(x) (x′ < z)

= (max f)

Hence from the query result we know that (max f) is not attained in the interval (x′, x]. Since we knew it was attained in
[0, x] by our inductive hypothesis this implies it is attained in [0, x′], completing the induction.

We finish up the proof from here using a potential argument. We define our potential function to be ϕ(x) = x. Initially this
potential is one. Each round, the potential goes down by x−x′ and we incur regret (max f)−f(x). A slight rearranging of
the update rule for x shows the change in potential and the regret are equal. Since the potential is always nonnegative (the
max must be attained somewhere so the interval cannot become empty), the total error is bounded by one. This completes
the proof.

C. Missing Proofs from Section 5
In this appendix, we provide the missing proofs of Theorems 5.2, 5.3, and 5.4 from Section 5. Each theorem is restated
before its corresponding proof for convenience.

Theorem 5.2. When evaluated on the state of S before/after iterations of Algorithm 2’s while loop on line 9, both
ϕbinary(S) and ϕKL(s) are monotone nonincreasing, so ϕ(S) is as well.

Proof. We first show that our potential function is monotone between iterations of our algorithm’s main while loop, found
on line 9. To do so, we observe that the algorithm edits the parallelograms in S for two reasons: (i) the algorithm removes a
parallelogram from S at the start of the iteration and makes queries to divide its interval into smaller disjoint intervals that it
inserts back into S and (ii) when the algorithm witnesses a new best f -value, it updates all non-zero-width parallelograms
in S so that their u-values equal that best value b. We will argue about the effects of these two reasons separately, and we
also argue separately about ϕbinary and ϕKL, showing that each individually is monotone nonincreasing.

The simpler subfunction is ϕbinary. For the edits due to reason (i), we update a parallelogram that covers ( ℓ, r] with
parallelograms that cover disjoint subintervals, so the total width is nonincreasing. For the edits due to reason (ii), we only
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shrink the widths of paralellograms in S, so the total width is again nonincreasing. As a result, ϕbinary is nonincreasing
over iterations of our algorithm.

The more complex subfunction is ϕKL. For the edits due to reason (i), we claim that the iteration that removes a paral-
lelogram always inserts another parallelogram that has lower width and at least as much height. In particular, this is the
final parallelogram inserted by this iteration, which occurs on one of algorithm lines 21, 26, or 39. Importantly, we always
trigger such a final parallelogram, because we subtract δq once before the for loop begins and q̂ additional times during the
for loop if it keeps running, for a total subtraction of [q̂ + 1]δq = w. Observe all final parallelogram possibilities have a
d-value of at most d and a u-value of b which is at least u because b is nondecreasing over the algorithm, so they have
height at least the original parallelogram’s height. They trivially have less width because their corresponding interval is a
subset of that of the original parallelogram. To finish this claim, all we need to observe is that ϕKL is decreasing in h and
increasing in w. Recall the definition of ϕKL:

ϕKL ≜ − h log log
[
min

(
2 h/ w + 2, (2T + 2)2

)]
ϕKL is decreasing in h because increasing h increases the coefficient in front of the log log and possibly the quantity
inside the log log (keep in mind there is a leading negative). It is increasing in w because increasing w possibly decreases
the quantity inside the log log (again keep in mind there is a leading negative). Finally, although reason (i) may introduce
additional non-final parallelograms, ϕKL is nonpositive so this can only decrease the total potential further.

Next, we consider edits due to reason (ii). It is simpler to see that each parallelogram updated to a parallelogram that has
less width and more height. As we have already argued for reason (i), this only decreases their potential value under ϕKL.

We have now shown that ϕ(S) is monotone nonincreasing between iterations.

Theorem 5.3. The initial potential satisfies ϕ(S) ≤ O(1) and the final potential satisfies ϕ(S) ≥ −O(log log T ).

Proof. To understand the range of ϕ, we now need to upper-bound its initial value and lower-bound its final value. The
bound on initial value comes from observing the state of the initial parallelogram. The potential of the initial parallelogram
is at most O(1), since its width is at most one and ϕKL is nonpositive. The bound on the final value is a little trickier, but
we will show that ϕKL is at least −O(log log T ) and note that ϕbinary is nonnegative.

Observe that due to the min in ϕKL: ∑
∈S

ϕKL( )

=
∑
∈S

[
− h log log

[
min

(
2 h/ w + 2, (2T + 2)2

)]]
≥ −

∑
∈S

h log log
[
(2T + 2)2

]
≥ −

∑
∈S

h ·O(log log T )

≥ −O(log log T ) ·
∑
∈S

h

We want to show that
∑

∈S h is at most O(1) to complete this part of the proof. The height of the initial parallelogram
is indeed O(1), since by assumption f has range [0, 1]. How much can the total height grow over the duration of the
algorithm? We claim that increases to the total height can be charged to either decreases to the total width or increases to
the best f -value found so far (i.e. b). Since total width can drop by at most O(1) and b can increase by at most O(1) due
to the range of f being [0, 1], this claim implies3 the desired lower bound on the final value of ϕKL. To prove this claim,

3Interestingly, b actually can only increase by the size of the f ’s range less the height of the original rectangle, so a more precise
bound on final total height is domain size plus range size. This is also the point in the analysis where the dependence on the larger of
range size and Lipschitz constant emerges. This is easiest to see when considering the size of the range after we have scaled to achieve
unit domain size and unit Lipschitz constant. If we shrink the range size below one, then the unit Lipschitz constant dominates the range
size and correspondingly the unit domain size dominates the total height analysis. If we grow the range size above one, then the range
size dominates the Lipschitz constant and correspondingly the range size dominates the total height analysis.
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it will be useful to again divide parallelogram changes into these two reasons: (i) the algorithm removes a parallelogram
from S at the start of the iteration and makes queries to divide its interval into smaller disjoint intervals that it inserts back
into S and (ii) when the algorithm witnesses a new best f -value, it updates all non-zero-width parallelograms in S so that
their u-values equal that best value b.

Let’s consider parallelogram changes due to reason (i). Recall that we have shown that the height of the original parallel-
ogram is primarily inherited by the final parallelogram inserted in this iteration. The final parallelogram’s height can be a
little larger, though, due to having a lower d-value and/or having a higher u-value. The only way to get a lower d-value is
if we query a bad point (f(mi) + (mi − ℓ) < b) and skip over the entire remaining interval; this makes the algorithm set
i
d ← min{f(mi), d}. For this case:

i
d = min{f(mi), d}
≥ f(mi)

≥ f( ℓ)− (mi − ℓ) (Lipschitzness)

In other words, the final parallelogram can only have a lower d-value than the original parallelogram by the width of the
interval skipped over, ( ℓ,mi]. If this does not occur, then the final parallelogram receives a d-value of d. The final
parallelogram can also have a higher u-value. Its u-value is set to b, which may be higher than u. We charge this against
the increase to b (indeed, this is the only thing we charge to increases to b).

That just leaves all the non-final parallelograms inserted by reason (i). Since they are nonfinal, we know that at the time of
insertion into S, their d-values are i

d ← f(mi) and their u-values are b. If such a parallelogram has nonzero height, then
right after insertion we wind up in the f(mi) ≤ b case and proceed to skip exactly b− f(mi) in width before making the
next query point.

We now move on to reason parallelogram updates made by reason (ii). It is straightfoward to observe that these updates
deduct exactly as much width as they increase height. This completes the proof.

Theorem 5.4. The total regret of Algorithm 2 is at most a constant times the total drop in the potential function ϕ(S) plus
a constant.

Proof. Before S is initialized and our potential is defined, our algorithm queries f(0) and f(1), incurring at most O(1)
regret since by assumption the range of f is [0, 1]. After the while loop finishes and we repeatedly query f(x), we know that
any f -value that is higher than b must occur inside the interval corresponding to some parallelogram in S. We also know
that the width of every parallelogram in S is at most 1

T and that the u-value of every parallelogram in S is at most b, so the
optimal f -value is at most b+ 1

T due to Lipschitzness. Since we make at most T queries, this incurs at most 1
T · T = O(1)

regret. Both of these O(1) regret amounts are accounted for by the “plus a constant” in the theorem statement.

As Subsection 4.1 describes, it is necessary for our charging scheme to be partially lazy to handle the example there. One
missing detail until now is how to pay for increases in the best seen f -value. When b increases, we can use the fact that our
parallelogram update logic is shrinking widths to charge the regret we just learned about to ϕbinary. There is a small issue
with this idea: if a parallelogram runs out of width, then we will not have enough potential drop to charge against. As a
result, we cannot lazily charge all parallelograms; we need to eagerly pay for some queries that might have been associated
with small-width parallelograms upfront.

Formally, all of the while loop queries are either eagerly paid for or lazily associated with a parallelogram. For an eagerly
paid for query, we charge the difference between f(mi) and the best possible f -value consistent with the queries so far. For
a lazily associated query, we charge the difference between f(mi) and the best f -value seen so far (i.e. b), then associate
the query with a parallelogram being inserted into S. When this parallelogram is extracted from S to be processed by
the while loop, we charge the total improvement in best f -value (i.e. the sum of δf ) to the total potential changes to this
parallelogram from updates. Furthermore, this while loop must either eagerly pay for the difference between its u and
the best possible f -value consistent with the queries so far or associate it with yet another parallelogram being inserted
into S. When the while loop terminates, we must also take all the lazily associated parallelograms in S and charge their
total improvement in f -value. We then pay an additional 1

T per such parallelogram to account for the fact that the best
possible f -value might be 1

T better than b, but since our algorithm only makes T queries total, there are at most T such
lazily associated queries for an additional uncharged O(1) regret, which also goes to the “plus a constant” in the theorem
statement.
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Then, when this parallelogram is either removed from S to be processed by the while loop, or the while loop terminates,
we charge the total improvement in best f -value (i.e. the sum of δf ) to the total potential changes to this parallelogram.
We impose the condition that a parallelogram can only be lazily associated with a query if, at the moment of its insertion
into S, its width is at least a quarter of the maximum width in S.

Consider some iteration of the while loop, which extracts a parallelogram to refine. An extracted parallelogram must
have at least 1

T width, i.e. strictly positive width, so the updates performed on it while it was sitting in S did not zero its
width. Since each increase in b was successfully matched by a decrease in the width of this parallelogram, we can charge
the sum of b improvements to the drop in this parallelogram’s ϕbinary. Note that while this parallelogram actually may or
may not be lazily associated with a query, our proof assumes the worst (that it is lazily associated) and explains how to
perform the accounting to handle this.

Our analysis now splits into two cases, depending on how the value of q̂ was calculated.

Case 1: w ≥ h (q̂ ← 1) The while loop only makes a single query, in the middle of the interval ( ℓ, r].

If we trigger the f(mi) + (mi − ℓ) < b condition, then the only parallelogram we insert is PARALLELOGRAM(ℓ =
mi, r = r, d = min{f(mi), d}, u = b). It has half the width of the original parallelogram , so we know ϕbinary drops
by 1

2 w ( w is the original width). We will eagerly pay for our query using this drop in potential. Since had the maximum
width among all parallelograms in S when we extracted it, we know that the best possible f -value is at most b+ w.

f( ℓ)− f(mi) ≤ mi − ℓ (left-Lipschitz)

=
1

2
w

b+ w − f(mi) ≤ b+ w − f( ℓ) +
1

2
w

=
3

2
w + b− f( ℓ)

=
3

2
w + h

≤ 5

2
w ( w ≥ h)

Hence, we can eagerly charge our incurred regret (b+ w − f(mi)) to the drop in ϕbinary times a constant factor (namely,
five). Our original rectangle might also have been lazily associated, but we can eagerly pay for it here as well; the best
possible f -value is at most b+ w so we can charge the difference of w to the same drop in ϕbinary, increasing the constant
factor (to seven).

If we do not trigger this condition, then what happens next depends on the comparison f(mi) ≤ b. If this condition is true,
then we consider how much of the interval we skip over, i.e. b−f(mi). Since we did not trigger the f(mi)+(mi− ℓ) < b
condition, we know that b− f(mi) is at most w/2. We break into two subcases, depending on how b− f(mi) compares
to w/4.

In our first subcase, b − f(mi) ≤ w/4, i.e. we did not incur that much regret and the left parallelogram is still sizable.
The plan is to lazily assign the query f(mi) to the left parallelogram and pass on the original parallelogram’s lazy query to
the right parallelogram. We need to pay upfront for b− f(mi), which we do by observing that this amount is missing from
the width of this parallelogram and hence we can charge it to ϕbinary. We then need to guarantee that each parallelogram
has at least one quarter the width of the maximum width in S. This is why we extracted the maximum width parallelogram
from S. The left parallelogram is half the width minus the amount skipped (which is at most a quarter of the width), so it
is at least a quarter the width of the original parallelogram. The right parallelogram is half the width. Hence it is safe to
lazily associate queries with these parallelograms.

In our second subcase, b − f(mi) ≥ w/4, i.e. we incurred more regret and the left parallelogram is not that sizable.
The plan is now to eagerly pay upfront for everything. Observe that at least w/4 is missing from the width of the left
parallelogram, i.e. ϕbinary dropped by that much. Remember that b − f(mi) ≤ w/2 due to skipping the first condition,
and the best possible f -value is at most b + w. We can pay for 3

2 w for f(mi) and w for the lazily associated query of
the original parallelogram by charging to ϕbinary times a constant factor (ten).

This completes the analysis for case 1.
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Case 2: w < h (q̂ ← ⌊2 h/ w + 4 + w/ h⌋) The while loop makes multiple queries, but we know that all new
parallelograms have width at most δq ≜ w

q̂+1 ≤ w

2 h/ w+4+ w/ h
. Additionally, we know that the final parallelogram has

at least as much height as the original parallelogram. The drop in potential from the ϕKL of the original parallelogram to
the ϕKL of the final parallelogram is hence at least:

ϕKL( )− ϕKL( final)

≥ − h log log [2 h/ w + 2]

+ h log log [(2 h/ w) · (2 h/ w + 4 + w/ h) + 2]

= − h log log [2 h/ w + 2]

+ h log log
[
4 2

h/
2
w + 8 h/ w + 4

]
= − h log log [2 h/ w + 2]

+ h log log
[
(2 h/ w + 2)2

]
= − h log log [2 h/ w + 2]

+ h [1 + log log [2 h/ w + 2]]

= h

Note that we were able to safely omit the min with (2T + 2)2 because the height of parallelogram is at most one and the
width is at least 1

T if it was extracted from S by the while-loop, implying 2 h/ w + 2 ≤ 2T + 2. As a result, our log log
factor must still have the capacity to grow by one.

Our plan is to use this h drop in potential to eagerly pay for all queries, including the one possibly lazily associated with
the original parallelogram.

Observe that q̂ is O( h/ w), since h/ w ≥ 1 and w/ h ≤ 1. For each query that does not trigger the condition
f(mi) + (mi − ℓ) < b, the regret is at most b + w − f(mi) ≤ mi − ℓ + w ≤ 2 w, even assuming the best possible
f -value. Since h ≥ w, we can charge this to our potential drop times a constant factor (two).

We may make a single query that triggers the condition f(mi) + (mi − ℓ) < b, because doing so ends the querying.
However, the value of that query is limited by d and Lipschitzness. Formally:

f( ℓ)− f(mi) ≤ mi − ℓ (left-Lipschitz)

d ≤ f( ℓ) (parallelogram)

d − f(mi) ≤ mi − ℓ

d − f(mi) ≤ w

(max f)− f(mi) ≤ (max f)− d + w

≤ ( h + w) + w

≤ 3 h

Hence this single query can also be charged to our potential drop, bringing the constant factor up to five.

Finally, we pay for lazily associated query attached to the original parallelogram, which risks the best f -value increasing
by w which is again dominated by h. This increases our constant factor to six.

This completes the analysis for case 2.

The only thing left to consider is the parallelograms in S when the while loop finishes. Some of them have nonzero width,
in which case we charge their growth in height directly to their loss in width, using the potential drop of ϕbinary. Others
ran out of width, and now we use the fact that queries can only be lazily associated with parallelograms that have width at
least a quarter of the maximum width in S. For such a parallelogram, we incur regret at most the maximum with in S when
that parallelogram was added to S. Since we lost all our width, we know that ϕbinary dropped by at least a quarter that,
and hence we can charge to the drop in ϕbinary times a constant factor (four). As a reminder, the actual best f -value might
be 1

T better than the best seen f -value when the while loop terminates, but since there are at most T outstanding queries
this was only O(1) uncharged regret that we can safely file under the “plus a constant” in the theorem statement.

This finishes the charging accounting and concludes our proof.
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