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Abstract

Studying the dynamics of open quantum systems
can enable breakthroughs both in fundamental
physics and applications to quantum engineer-
ing and quantum computation. Since the den-
sity matrix ρ, which is the fundamental descrip-
tion for the dynamics of such systems, is high-
dimensional, customized deep generative neural
networks have been instrumental in modeling ρ.
However, the complex-valued nature and normal-
ization constraints of ρ, as well as its compli-
cated dynamics, prohibit a seamless connection
between open quantum systems and the recent
advances in deep generative modeling. Here we
lift that limitation by utilizing a reformulation
of open quantum system dynamics to a partial
differential equation (PDE) for a corresponding
probability distribution Q, the Husimi Q func-
tion. Thus, we model the Q function seamlessly
with off-the-shelf deep generative models such
as normalizing flows. Additionally, we develop
novel methods for learning normalizing flow evo-
lution governed by high-dimensional PDEs based
on the Euler method and the application of the
time-dependent variational principle. We name
the resulting approach Q-Flow and demonstrate
the scalability and efficiency of Q-Flow on open
quantum system simulations, including the dis-
sipative harmonic oscillator and the dissipative
bosonic model. Q-Flow is superior to conven-
tional PDE solvers and state-of-the-art physics-
informed neural network solvers, especially in
high-dimensional systems.
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Figure 1. Q-Flow. We reformulate differential equations for den-
sity matrix dynamics as PDEs for probability distribution dynamics.
We use off-the-shelf normalizing flows and our Euler-KL method
for solving such PDEs.

1. Introduction
Understanding open quantum system dynamics is crucial
for fundamental physics and high-impact scientific applica-
tions such as quantum engineering and quantum computa-
tion (Verstraete et al., 2009; Barreiro et al., 2011).

The state of an open quantum system is given by the den-
sity matrix ρ, which is an exponentially scaling object with
a size that grows as N2k for k subsystems each with a
Hilbert space of dimension N . Thus, computing or evolv-
ing ρ becomes infeasible as k increases due to the curse
of dimensionality. Pioneering work on representing ρ in a
compact form as a customized deep generative neural net-
work has shown great promise in advancing the frontier of
understanding high-dimensional quantum systems (Vicen-
tini et al., 2019; Yoshioka & Hamazaki, 2019; Hartmann
& Carleo, 2019; Nagy & Savona, 2019). However, a num-
ber of computational challenges remain when solving for ρ,
which motivates the development of novel machine learning
methods. Notable challenges are:

1. The density matrix ρ is complex-valued and has the
constraint tr[ρ] = 1. That makes it non-trivial to model
with standard generative models that are real-valued.

2. The differential equation that governs the dynamics of
ρ models complicated interactions in high-dimensional
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space, which hampers the application of conventional
differential equation solvers.

3. Previous efforts to model ρ with neural networks are
restricted to discrete spin systems, and it is unclear how
to model ρ in continuous or bosonic systems.

The state-of-the-art literature has addressed Challenge 1 by
developing customized neural architectures for ρ in spin sys-
tems with discrete degrees of freedom only (Vicentini et al.,
2019; Yoshioka & Hamazaki, 2019; Hartmann & Carleo,
2019; Nagy & Savona, 2019; Luo et al., 2022b; Reh et al.,
2021). Challenge 2 has been attempted by exploring physics-
inspired training objectives, such as Physics-informed neu-
ral networks (PINNs) (Raissi, 2018; Raissi et al., 2019).
PINNs have shown promise in low-dimensional systems,
but it is not clear how they can be scaled to high-dimensional
PDEs. Furthermore, the existing literature has not addressed
Challenge 3 and missed an opportunity to establish a di-
rect connection between modeling continuous variable open
quantum dynamics and novel deep generative models for
standard machine learning benchmarks. Such a connection
would drive progress in both machine learning applications
for open quantum dynamics and deep generative modeling.

In this paper, we address Challenges 1-3 by establishing
a bridge between open quantum systems in a continuous
Hilbert space and continuous-variable generative modeling.

Firstly, we reformulate the problem by replacing the density
matrix ρ with an alternative representation, the Husimi Q
function Q (Carmichael, 1999b), which can be practically
considered as a probability distribution. Thus, we enable the
use of off-the-shelf generative neural networks to model Q.
Because the optimization of high dimensional quantum sys-
tems requires access to both easy sampling and probability
density values, we use normalizing flows (Dinh et al., 2014;
Rezende & Mohamed, 2015) as our generative model.

Secondly, we develop novel methods for training normal-
izing flows that obey complicated high-dimensional PDEs,
which are an excellent fit for approximating Q. We propose
a training method, the stochastic Euler-KL method, which is
based on the forward discretization of the differential equa-
tion for Q and the Kullback-Lieber matching of probability
distributions. Our normalizing flows approach can also be
equipped with the Time-Dependent Variational Principle
(TDVP) method (McMillan, 1965), which can be derived
from the Euler method and can be thought of as an analog
of the natural gradient method (Amari, 1996; 1998).

We name our contributions Q-Flow (see Figure 1). Q-Flow
is a new approach to solving open quantum systems based
on off-the-shelf normalizing flows and the Euler/TDVP
methods for evolving such flows in complicated PDEs. We
demonstrate that Q-Flow is scalable and efficient for sim-

ulating various open quantum systems. Our contributions
can be summarized as follows:

• A new generative modeling approach for open quantum
dynamics with continuous degrees of freedom based
on the Husimi Q function, which allows for using nor-
malizing flows off the shelf.

• New methods for solving open quantum dynamics
PDEs using normalizing flows with stochastic Euler-
KL method and TDVP.

• Demonstration of the scalability and efficiency of our
methods on simulations of dissipative harmonic os-
cillator and dissipative bosonic models by surpassing
conventional PDE solvers and state-of-the-art machine
learning PDE solvers, physics-informed neural net-
works (PINN).

Importantly, with Q-Flow, the difficulty in simulating quan-
tum dynamics is no longer the dimension of the simulation
but instead the complexity of the Q function and its evolu-
tion, which opens a new avenue for research.

2. Related Work
2.1. Neural Network Quantum States

Neural network quantum states are generative neural net-
work architectures—including restricted Boltzmann ma-
chines (Carleo & Troyer, 2017), autoregressive models
(Sharir et al., 2020; Luo et al., 2022a; Chen et al., 2022; Luo
et al., 2021), and determinant neural network models (Pfau
et al., 2020; Hermann et al., 2020; Luo & Clark, 2019)—
that have been adapted to represent quantum wave functions
or density matrices (in the case of open quantum systems)
rather than probability distributions. They are optimized
using variational quantum Monte Carlo methods and have
primarily been applied to model discrete spin systems (Car-
leo & Troyer, 2017; Sharir et al., 2020; Luo et al., 2022a) as
well as tackle the continuous many-body wave function in
quantum chemistry applications (Pfau et al., 2020; Hermann
et al., 2020) and quantum field theories (Luo et al., 2022c;
Martyn et al., 2022).

In contrast with prior deep learning-based approaches that
directly model the wave function or density matrix, our
work focuses on the Q function representation of the
quantum state—a continuous quasiprobability distribution
(Carmichael, 1999b) that can be modeled using an appropri-
ate generative model, e.g., normalizing flows.

2.2. Partial Differential Equation (PDE) Solvers

To model the dynamics of an open quantum system using
the Q function formulation, we are required to solve a high-
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dimensional PDE. By parameterizing the Q function using a
normalizing flow, our approach can efficiently solve this
PDE. For comparison, we benchmark our work against
alternative PDE solvers.

Traditional PDE solvers struggle to handle high-dimensional
PDEs due to the curse of dimensionality, where storing the
state of the system on a grid or mesh grows expontentially
with the dimension of the problem. As traditional solver
benchmarks, we use finite-difference and pseudo-spectral
methods (Courant et al., 1928; Fornberg, 1998). While there
are specialized methods for solving high-dimensional PDEs,
they are often complex to set up and only apply to a few
restricted classes of PDEs, e.g., parabolic PDEs (Weinan
et al., 2021). From such specialized methods, we benchmark
against a Stochastic method (Martin et al., 2016).

We also benchmark against physics-informed neural net-
works (PINNs)—a promising deep learning-based varia-
tional approach for solving PDEs (Raissi, 2018; Raissi et al.,
2019; Berg & Nyström, 2019). PINNs, however, have been
shown to have limitations related to the difficulty of the vari-
ational optimization problem (Krishnapriyan et al., 2021)
and, in their standard form, may also suffer from the curse
of dimensionality.

3. Solving Open Quantum Dynamics with
Q-Flow

In this work, we develop Q-Flow, an approach to solving
open quantum dynamics based on flow-based models un-
der the Q function partial differential equation formulation.
The key contributions of our work are twofold. Firstly, we
establish a general framework for solving open quantum
dynamics learning through the flow-based model represen-
tation. Secondly, we develop optimization algorithms for
solving high dimensional partial differential equations and
apply them to PDEs for the Q function. Note that a more
thorough review of the relevant Quantum Mechanics is pro-
vided in Appendix A.1.

3.1. Quantum Overview

The fundamental mathematical object in quantum mechan-
ics is a complex vector space known as the Hilbert space.
It is customary to use the notation |·⟩, known as a ket, for
vectors in the Hilbert space. We also denote the conjugate
transpose of |a⟩ as ⟨a|, where ⟨·| is known as a bra. The
inner product of two kets |a⟩ and |b⟩ can be written as a
bra-ket ⟨a|b⟩ .

Operators on the Hilbert space can be thought of as complex-
valued matrices. The most important operators are the
Hamiltonian H , which governs the evolution of quantum
systems, and the density matrix ρ, which describes the state
of an open quantum system.

A particularly ubiquitous Hilbert space is that corresponding
to particle number. The particle number Hilbert space has
basis kets written |n⟩, for n ∈ {0, 1, 2, . . .}, where |n⟩
represents a system with n particles. This Hilbert space is
ubiquitous; it can also be used to represent many 1d bound
systems. In particular, this Hilbert space appears in most
bosonic and continuous quantum systems.

In the particle number Hilbert space, there are special opera-
tors, the creation and annihilation operators, which increase
and decrease the number of particles, respectively. The cre-
ation operator a† satisfies a† |n⟩ =

√
n+ 1 |n+ 1⟩ and the

annihilation operator a satisfies a |n⟩ =
√
n |n− 1⟩ with

a |0⟩ = 0.

The coherent state |α⟩ with a complex number α is defined
as |α⟩ = eαa

†−α∗a |0⟩, where e should be interpreted as the
matrix exponential function.

Hilbert spaces of systems with multiple subsystems are
tensor products of the subsystems’ Hilbert spaces. Sup-
pose we have two Hilbert spaces, H1 and H2. For ev-
ery two kets |a⟩ ∈ H1 and |b⟩ ∈ H2, there exists a
ket |a⟩ ⊗ |b⟩ ∈ H1 ⊗ H2, where |a⟩ ⊗ |b⟩ is the tensor
product of |a⟩ and |b⟩ and H1 ⊗ H2 is the tensor prod-
uct space of Hilbert spaces H1 and H2. The inner prod-
uct for tensor products of Hilbert spaces is defined as
(⟨a| ⊗ ⟨b|) (|c⟩ ⊗ |d⟩) = ⟨a|c⟩ ⟨b|d⟩, where ⟨a| ⊗ ⟨b| is the
conjugate transpose of |a⟩ ⊗ |b⟩. If an operator O1 acts on
H1 and O2 acts on H2, then (O1 ⊗ O2) acts on H1 ⊗H2

according to (O1 ⊗ O2) |a⟩ ⊗ |b⟩ = (O1 |a⟩) ⊗ (O2 |b⟩).
Finally, note that we often use shorthands such as O1 or O2

to referer to O1 ⊗ 1 or 1⊗O2, respectively.

3.2. Open Quantum System

As discussed in Section 1, in an open quantum system, the
state is described as a complex-valued, unit-trace positive
definite matrix ρ, known as the density matrix. The den-
sity matrix is a generalization of the wave function in the
Schrödinger equation, which can be viewed as an ensemble
of wave functions.

A generic Markovian open quantum system has an evolution
equation of the form

ρ̇ = Lρ = −i[H, ρ] + Llossρ, (1)

where H is the Hamiltonian matrix, Lloss is a dissipative
operator, and [·, ·] is the commutation operator between
matrices, i.e., [A,B] = AB −BA. Often, H is composed
of raising and lowering operators, a and a†. Here, L is
a superoperator; given a matrix ρ, it returns a new matrix
Lρ. Eq. 1 is a complex-valued high-dimensional differential
equation, which is challenging to solve in general.

Our work applies to open quantum systems with continuous
degrees of freedom. Such systems include bosonic systems,
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which arise in a variety of contexts (Cazalilla et al., 2011;
Adesso et al., 2014). A bosonic particle, also known as a bo-
son, is a type of fundamental particle in quantum mechanics
that has continuous degrees of freedom. Bosonic systems
may be composed of multiple sites, which are subsystems
described by the particle number Hilbert space.

Simulating quantum systems with continuous variables in-
troduces higher-dimensional complexity compared to those
with discrete variables, such as spin systems. Even for a
1-site continuous variable system, there is infinite degree
of freedom. In practice, one workaround is to truncate the
infinite degree of freedom to some large finite degree N .
Even with truncation, k sites live in an exponentially-large-
dimensional Hilbert space of size Nk, which is generally
intractable to simulation. In contrast, our approach works
with the infinite degree-of-freedom Hilbert space directly.

3.3. Q Function Formulation

The Husimi Q function (Carmichael, 1999a) provides an
exact reformulation of Eq. 1 into a probabilistic differential
equation:

Q̇ = L̃Q (2)

where Q is the Husimi Q function, and L̃ is the Q-function
evolution operator including the effects of H and Lloss.

Mathematically, the Q function of n sites is defined as

Q(q⃗, p⃗) = Q(α⃗, α⃗∗) =
1

π
⟨α⃗| ρ |α⃗⟩ ,

where α⃗ = q⃗ + ip⃗ is a complex number, and

|α⃗⟩ = |α1⟩ ⊗ · · · ⊗ |αn⟩

is a tensor product of coherent states.1 Q(α⃗, α⃗∗) ≥ 0 for
any α⃗ and

∫
Q = 1, so Q can be interpreted as a probability

distribution in practice.

We use the notations Q(q⃗, p⃗) and Q(x) interchangeably.

To use the Q function formalism, we must convert between
the ρ and Q functions and obtain L̃. We provide the key
conversion formulas and the corresponding proofs in Ap-
pendix A.

3.4. Q-Flow representation: Flow-based Generative
Models of Q function

One important feature of our work is to represent the Q
function with off-the-shelf flow-based generative models.
This distinguishes our work from previous works (Vicen-
tini et al., 2019; Yoshioka & Hamazaki, 2019; Hartmann
& Carleo, 2019; Nagy & Savona, 2019) that represent the

1Although α and α∗ are both input to Q, it is customary in
physics and complex analysis to write Q(α, α∗) instead of Q(α).

high dimensional complex-valued density matrix using cus-
tomized neural networks. There are several advantages of
our approach: i) we do not work with complex-valued func-
tions, which could be complicated by the sign structure
problem (Westerhout et al., 2020). ii) Q-Flow is natural
for systems with continuous degrees of freedom. iii) Q-
Flow allows normalized probability modeling with exact
sampling, which is important for solving high dimensional
probabilistic PDEs with the stochastic Euler method.

Normalizing Flows. Normalizing flows are generative
models for continuous probability distributions that provide
both normalized probabilities and exact sampling—making
them ideal for modeling the continuous Q function in our ap-
proach. Normalizing flows transform a simple initial density
pX (often a unit-normal distribution) to a target density pY
(i.e., the distribution that we want to model) via a sequence
of invertible transformations (Dinh et al., 2014; Rezende &
Mohamed, 2015). The invertible transformations are usually
parameterized by an invertible neural network architecture
y = fθ(x) with x ∼ pX and y ∼ pY . The target probability
density is then given by

pY (y) = pX(f−1
θ (y))

∣∣∣∣∂f−1
θ (y)

∂y

∣∣∣∣ .
Many choices of fθ are available, including affine coupling
layers (RealNVP) (Dinh et al., 2017), continuous normal-
izing flows (CNF) (Grathwohl et al., 2019), and convex
potential flows (CP-Flow) (Huang et al., 2021). While Real-
NVP is the simplest to implement, affine coupling layers are
less expressive than CNFs or CP-Flows, which are provably
universal density estimators (Huang et al., 2021). Because
of Equation 12, we would like our flow to be infinitely differ-
entiable, which is satisfied by the above flow architectures.

Theorem 3.1. For a Q function from a given density matrix
ρ, there exists a universal approximation with a Q-Flow
representation.

Proof. For any given density matrix ρ, there is a correspond-
ing Qρ which satisfies Qρ ≥ 0 and

∫
Qρ = 1. Since it

has been shown that normalization flow is a universal ap-
proximator of probability distribution (Huang et al., 2021),
there exists a Q-Flow representation Qf such that it can be
arbitrarily close to Qρ.

Theorem 3.2. For any local observable expected value
to be computed with respect to ρ, there exists a Q-Flow
representation which can compute the observable efficiently.

Proof. We prove the single-site case here and the multi-site
case follows from the tensor product structure of the Hilbert
space. Consider the corresponding Q function Qρ of ρ. Con-
sider a local observable in the form of O = ama†n+ana†m.
WLOG, we can consider O = ama†n and the other part can
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be done in a similar way. its expectation⟨O⟩ρ = tr(ρama†n).
Eq. A.5 in Appendix shows that it can be equivalently com-
puted by

∫
(q + ip)m(q − ip)nQρ(p, q)dpdq, which is a

polynomial moment of the Q function. Since normaliza-
tion flow is a universal approximator, there exists a Q-Flow
representation Qf can be arbitrarily close to Qρ, which
implies that ⟨Q⟩f can be arbitrarily close to ⟨Q⟩ρ. Even
though computing ⟨Q⟩f =

∑
(q,p)∼Qf

(q + ip)m(q − ip)n

has stochastic fluctuation, the exact sampling nature of the
flow-based model can suppress the statistical error, which
will decay with increasing sample size Ns as 1√

Ns
due to

the Central Limit Theorem.

3.5. Q-Flow Optimization: Stochastic Euler-KL Method

In the previous section, we discuss the representation of
the Q function with flow-based models. To solve the real-
time dynamics given by Eq. 2, we further develop the high
dimensional stochastic Euler-KL method.

The algorithm represents the Q function at time t with a
flow-based model and iteratively updates the representation
at the next time t+dt based on the Euler method. It requires
two copies of flow-based models for Qt+dt and Qt. Based
on the first-order Euler method with time step dt, Eq. 2
yields

Qt+dt = Qt + L̃Qtdt = (I + L̃dt)Qt ≡ Qt
L. (3)

Notice that Qt+dt represents the Q function that we obtain
in the next time step. At each learning step, we fix Qt

and optimize the parameters θ in Qt+dt to match the above
relation. Hence, we also denote Qt+dt by Qt+dt

θ . We train
Qt+dt

θ using the KL divergence loss function

KL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt

θ ln
Qt+dt

θ

Qt
L

. (4)

The gradient of Eq. 4 can be derived with a control variance
technique as follows (see Appendix for a derivation):

1

N

∑
x∼Qt+dt

θ

[
ln

Qt+dt
θ (x)

Qt
L(x)

− b

]
∇θ lnQ

t+dt
θ (x) (5)

where b = 1
N

∑
x∼Qt+dt

θ
ln

Qt+dt
θ (x)

Qt
L(x)

is the baseline for con-
trol variance.

The stochastic Euler-KL method is summarized in Algo-
rithm. 1. We further provide an error bound by developing
the analysis in Gutiérrez & Mendl (2022) to Q-Flow.
Theorem 3.3. The global error ϵ(tn) of the n-step stochas-
tic Euler method is bounded by |ϵE(tn)|+ |ϵNN (tn)|, where
ϵE(tn) is the global error of the exact Euler method and
ϵNN (tn) = −P−1

∑n
i=1 P

irn+1−i with P = I + L̃dt and
ri being the i-th step stochastic Euler optimization error
with neural network representation of the Q-Flow.

Algorithm 1 Stochastic Euler-KL Method
Input: normalizing flow models for Qt+dt

θ and Qt, total time
T , time step dt, niter , optimizer Adam.
Output: Optimal parameters θ∗ at time step t+ dt
Initialization: Random θ(t0)
for j in range(T/dt) do

for i = 0 to niter do
update θ using Eq. 5 and optimizer Adam

end for
Qt← Qt+dt

θ∗

end for

Proof. ϵ(tn) = Qtn − Qtn
NN = (Qtn − Qtn

E ) + (Qtn
E −

Qtn
NN ) ≡ ϵE(tn) + ϵNN (tn), where Qtn

E and Qtn
NN are

the Q function from the exact Euler method and the neural
network Q-Flow at time step tn. By the triangular inequality,
|ϵ(tn)| ≤ |ϵE(tn)| + |ϵNN (tn)|. Since the Euler method is a
first-order method, it has global error of order O(dt) where
dt the time step.

Denote the optimization error of Eq. 4 in time step tn+1 as
rn+1, such that Qtn+1

NN − PQtn
NN = rn+1. It follows that

Q
tn+1

E − ϵNN (tn+1)−P (Qtn
E − ϵNN (tn)) = rn+1, which

implies that ϵNN (tn+1) = PϵNN (tn) − rn+1 due to the
cancellation of Qtn+1

E −PQtn
E from the exact Euler method.

By induction, ϵNN (tn) = −P−1
∑n

i=1 P
irn+1−i.

Time Dependent Variational Principle (TDVP). Instead
of taking the gradient with respect to the KL divergence as
Eq. 5 shows, Reh & Gärttner (2022) demonstrate that the
minimization of Eq. 4 is equivalent to the time-dependent
variational principle, which provides a nonlinear differential
equation on the parameter space θ as follows.

Skk′ θ̇k′ = Fk (6)

where Skk′ = E[(∂θk lnQ)(∂θ′
k
lnQ)] is the Fisher in-

formation matrix, and Fk = E[(∂θk lnQ)(∂t lnQ)] with
∂t lnQ = (∂tQ)/Q = (L̃Q)/Q.

Reh & Gärttner (2022) has only applied TDVP to solving
classical PDEs. Under our Q-Flow approach, we can also
apply TDVP to simulate open quantum dynamics.

Complexity Analysis. Even though the stochastic Euler-KL
method and the TDVP method are equivalent mathemati-
cally, they share different algorithmic complexity. TDVP
requires solving the nonlinear differential equation in Eq. 6,
which requires explicitly inverting the Fisher information
matrix Skk′ . Besides potential instability, this procedure
has complexity scaling as O(N3) for explicit inversion, or
O(N2) with the conjugate gradient approach, where N is
the number of parameters. This may limit its application
for parameters beyond the orders of ten thousands. Mean-
while, the stochastic Euler method only requires first order
optimization based on Eq. 5, the main cost of which comes
from the number of optimization steps in each dt.
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1-site

Q-Flow Q-Flow
Time Euler (ours) TDVP (ours) PINN PS FD

3 2.08e-3 5.11e-3 1.79e-1 3.47e-4 8.90e-4
6 5.10e-4 1.17e-3 1.84e-1 3.47e-4 9.01e-4
9 1.01e-4 2.16e-4 1.91e-1 3.47e-4 9.01e-4

12 1.68e-5 3.58e-5 1.91e-1 3.47e-4 9.01e-4
15 1.58e-5 5.55e-6 1.98e-1 3.47e-4 9.01e-4

2-site

3 3.91e-3 1.23e-2 1.00e0 1.83e-1 6.12e-2
6 1.91e-3 4.66e-3 1.00e0 1.82e-1 6.09e-2
9 7.59e-4 1.77e-3 1.00e0 1.81e-1 6.09e-2

12 2.92e-4 6.21e-4 1.00e0 1.81e-1 6.09e-2
15 1.47e-4 2.05e-4 1.00e0 1.81e-1 6.09e-2

20-site

3 9.94e-2 1.08e-1 2.17e31 - -
6 3.29e-2 4.10e-2 2.38e30 - -
9 2.02e-2 2.44e-2 1.34e29 - -

12 1.46e-2 1.68e-2 1.46e28 - -
15 1.07e-2 1.23e-2 7.07e26 - -

Table 1. L1[Qsim, Qexact] for each simulation method over time.
For each row, we mark the best result in bold.

3.6. Q-Flow Initialization: Initial State Pretraining

Using a Q-Flow to simulate a quantum system requires ini-
tializing the flow to the correct starting Q function. For
some simple initial states, we find that it is sufficient to
simply make the initial state the prior for the flow and ini-
tialize the flow to the identity. However, we find that using
more complex initial distributions as priors to a flow tends
to hamper their ability to model a system’s evolution. In
these cases, we instead use the standard Gaussian prior, but
we use a two-step process to pretrain the flow to match the
initial distribution Qinit.

First, we sample from the desired initial distribution using
the Metropolis-Hastings Monte Carlo method and update
the flow parameters to minimize the negative log-likelihood
−
∑

x∼Qinit
lnQθ(x). This ensures that the model has some

overlap with Qinit, which helps the next step’s training algo-
rithm converge more quickly.

Second, we sample from the flow and update the flow pa-
rameters to minimize the KL Loss, KL(Qinit||Qθ). We
compute the gradient according to

∇θKL ≈ − 1

N

∑
x∼Qθ

Qinit(x)

Qθ(x)
∇θ lnQθ(x). (7)

4. Experiments
For our experiments, we focus on two types of open quan-
tum systems: dissipative harmonic oscillators and dissi-
pative bosonic systems. We test on dissipative harmonic
oscillators because they have an analytic solution, which
makes them useful for benchmarking high-dimensional PDE
solvers beyond the limits of conventional solvers. We then

test on dissipative bosonic systems because they are com-
monly studied and of practical use in physics.

In these experiments, we compare Euler and TDVP methods
to PINNs, Pseudo-spectral solvers, Finite Difference solvers,
and stochastic solvers. Although we do not develop the
TDVP method, we propose a method to apply it to open
bosonic quantum systems. As such, we sometimes describe
the Euler and TDVP methods as “our methods.”

For our experiments, we use Affine Coupling Flows and
Convex-Potential Flows for the Euler and TDVP methods.
Affine Coupling Flows are fast but less expressive, so we
use them for the dissipative harmonic oscillator experiments.
Convex Potential Flows are slow but more expressive, so we
use them for problems involving more complex Q functions.

To run our experiments (Dugan et al., 2023), we use the
Jax library (Bradbury et al., 2018) for Euler and TDVP
methods. We make use of the jax-flows library. To imple-
ment the TDVP method, we make use of the NetKet library
(Carleo et al., 2019; Vicentini et al., 2022) and its Stochas-
tic Reconfiguration (Sorella, 1998; 2001) feature, which is
mathematically equivalent to TDVP. For distributed train-
ing, NetKet uses the mpi4jax package (Häfner & Vicentini,
2021). For PINNs, we use the PINA library, which is built
on top of PyTorch. Finally, for the other three baselines we
use Julia (Rackauckas & Nie, 2017).

Further explanation of the observables chosen and their
significance can be found in Appendix A.6. More details
about the Normalizing Flow models we use are provided in
Appendix C. More details about experimental setup, hyper-
parameters, and baselines are provided in Appendix D.

4.1. Dissipative Harmonic Oscillator

Experimental Setup. The multi-site dissipative harmonic
oscillator evolves according to Equation 1 with Hamiltonian
(Carmichael, 1999a) H =

∑
j ωja

†
jaj and loss term

Llossρ =
∑
j

γj

[
1

2
(2ajρa

†
j − a†jajρ− ρa†jaj)

+ n̄j(ajρa
†
j + a†jρaj − a†jajρ− ρaja

†
j)

]
.

(8)

Here, j labels what we will call sites. Converting to the Q
function formalism gives (Carmichael, 1999b)

L̃ =
∑
j

[
γj +

1

4
γj(n̄j + 1)

(
∂2

∂q2j
+

∂2

∂p2j

)

+
(γj
2
qj − ωjpj

) ∂

∂qj
+
(γj
2
pj + ωjqj

) ∂

∂pj

]
.

We test the simulation methods on three problems of in-
creasing dimensionality: a 1-site system, a 2-site system,
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Time Q-Flow (Euler) Q-Flow (TDVP) PINN

3 1.30 · 10−7 8.18 · 10−7 2.43 · 10−3

6 7.64 · 10−9 4.06 · 10−8 2.66 · 10−3

9 3.16 · 10−10 1.38 · 10−9 2.68 · 10−3

12 7.49 · 10−12 3.79 · 10−11 2.34 · 10−3

15 4.30 · 10−12 9.21 · 10−13 1.89 · 10−3

Table 2. L2 loss for each simulation method’s density matrix over
time for the 1-site system. We mark each row’s best result in bold.
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E[q]
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Q-Flow Euler (Ours)
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Figure 2. The trajectory of the centroids of the simulated distribu-
tions. The PINN baseline is excluded from the inset. Error bars
are included for all but the FD and PS methods but are small.

and a 20-site system. For each system, we use a coher-
ent state initial condition, which corresponds to a Gaussian
with variance 1/2. We center the Gaussian at (−1, . . . ,−1).
As time passes this Gaussian spirals toward the origin and
changes its standard deviation. To make the simulation
more challenging, for every site j we uniformly sample
the system’s parameters n̄j ∈ [3, 7), γj ∈ [0.5, 1.5), and
ωj ∈ [0.5, 1.5). See Appendix D.1 for more details about
the choice of system parameters.

Metrics. To evaluate performance, we compute the L1 Loss
between each simulation and the exact distribution:

L1[Qsim, Qexact] ≡
∫

ddx |Qsim(x)−Qexact(x)|

≈ 1

N

∑
x∼Qexact

∣∣∣∣ Qsim(x)

Qexact(x)
− 1

∣∣∣∣ . (9)

Although the L1 Loss is a useful metric, it is also illustrative
to examine observables of the system. One observable is the
centroid, E[x⃗] ≈ 1

N

∑
x∼Qsim

x⃗. With more sites, we cannot
easily plot the centroid trajectory, so instead we compute
the centroid’s distance from the origin, ∥E[x⃗]∥.

Additionally, we compute the Liouvillian loss,∫
dx
∣∣∣[L̃Q](x)

∣∣∣ = E[|L̃Q|/Q].

The Liouvillian loss measures the magnitude of the dynam-
ics relative to the distribution, an indicator of how perturbed
the system is from equilibrium.

For the Euler and TDVP methods, we sample directly from
the flow to compute expected values. For PINNs, we use
Markov chain Monte Carlo (MCMC) to obtain samples.
For pseudo-spectral results, we compute expected values by
summing over the grid and scaling by Q.

Finally, for the 1-site system, we compute the first 4x4 block
of the density matrix according to Equation 12 and compute
its L2 distance from the exact density matrix:

L2[ρpred, ρexact] =
∑

1≤i,j≤4

|(ρpred)ij − (ρexact)ij |2 . (10)

Because the density matrix is the standard parametrization
of a quantum system, this comparison is another useful
benchmark for performance. Equation 12 requires spatial
derivatives of the Q-function, so we only compute this loss
for solvers that return spatially differentiable Q functions.

Results and Discussion. Table 1 shows the L1 Loss be-
tween each simulation and the exact distribution for a num-
ber of simulation times. Although we do not include error
bounds in the table for ease of viewing, the error is usually
at least an order of magnitude smaller than the L1 Loss
(see Appendix. E). Error bounds for the pseudo-spectral and
finite-difference results (standard solvers) are not computed
because these methods are deterministic. We exclude stan-
dard solvers from the 20-site system because a grid size of
only 10 would require storing at least 1040 values.

Both the Euler and TDVP methods have extremely low L1

Loss. Both methods perform better than the standard solvers
in the 2-site case and in the later times of the 1-site case.
Increasing the number of sites, we find that the Euler and
TDVP methods continue to perform well while PINNs and
standard solvers struggle. Standard solvers cannot simu-
late the 20-site system due to the curse of dimensionality,
and while PINNs can in principle simulate the system, in
practice they perform extremely poorly. On the other hand,
both the Euler and TDVP methods still consistently report
low fidelities. Finally, note that the Euler method has a
consistently lower L1 loss than the TDVP method.

Figure 2 shows the trajectory of each simulation method’s
centroid for the 1-site case. Once again, the Euler and
TDVP methods both closely match the exact evolution, and
the Euler method performs slightly better in general. On
the other hand, the PINN solution exhibits consistently bi-
ased and rapidly fluctuating estimates of the centroid. As
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Figure 3. The simulated evolution of two observables for 1-site, 2-site, and 20-site dissipative harmonic oscillators. Error bars are included
for all but the Finite Difference and Pseudo-spectral results but are small for most observables.

expected, the standard solvers closely track the exact trajec-
tory. However, we note that although our methods appear
to match the exact results less accurately, the large error
bars in the cutout demonstrate that this is in large part due
to sampling error. We could have computed the centroid
for the Euler and TDVP methods using grid integration as
with the pseudo-spectral method, but we instead choose to
use sampling because this better generalizes to higher di-
mensions. The stochastic method performs comparably to
our Euler and TDVP methods, but we note that it applies
to a restricted subset of diffusion-type PDEs. Additionally,
the stochastic method cannot provide exact values of the
Q function, which makes it challenging to evaluate other
observables such as the Liouvillian loss or L1 and L2 losses.

Figure 3 shows the evolution of the centroid distance and
the Liouvillian Loss for all three problems. Euler and TDVP
closely match the exact evolution of the two observables.
Although the two methods’ estimates of the centroid dis-
tance begin to diverge from the exact centroid distance at
around time 10, once again the large error bars demonstrate
that this is due to error in the sampling estimate. Although
the PINN centroid distance also begins to diverge from the
desired value, the small error bars for this estimate suggest
that the deviation does not come from sampling error.

The Euler and TDVP methods’ Liouvillian losses decrease
consistently. At around time 15, the Euler Liouvillian loss
jumps slightly. This jump occurs at a Liouvillian loss below

10−7, so the simulation is still likely precise enough for most
applications. The Euler method’s performance can likely be
improved by increasing the number of fitting steps per time
step and by decreasing the step size. In practice, we find
that decreasing the step size improves both the Euler and
TDVP methods’ performance. Interestingly, the standard
solvers provide very poor estimates of the Liouvillian loss.
We suspect that this is due to error in numerical derivatives.

Finally, note that unlike the other methods, our methods
continue to correctly simulate the system for large numbers
of sites. It is only toward the end of time evolution in the
20-site case that our methods begin to show some devia-
tion from the exact observables. Again, this can likely be
reduced by decreasing the step size and taking more sam-
ples. Interestingly, the stochastic method appears to diverge
slightly more than our methods in the 20-site case.

Table 4.1 shows the L2 loss from Equation 10. The Euler
and TDVP methods have extremely low losses, with the
Euler method performing slightly better. The PINN L2 loss,
while low, is much larger than the Euler and TDVP methods.

4.2. Dissipative Bosonic Model

Experimental Setup. The dissipative bosonic model is
a frequently studied open quantum system (Kordas et al.,
2013; Berg & Nyström, 2019). We test our methods on this
model because it has a more complex evolution equation
with rich real-world applicabilitions.
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Figure 4. 2-site dissipative bosonic experiment: simulated ⟨n1⟩.

The dissipative bosonic model we use has (Kordas et al.,
2013) H = −J

∑
j

(
a†j+1aj + a†jaj+1

)
and

Llossρ = −1

2

∑
j

γj

(
njρ+ ρnj − 2ajρa

†
j

)
(11)

where nj = a†jaj and j enumerates the sites. Converting to
the Q function formalism gives that L̃ is

∑
j

γj

(
1

4

(
∂2

∂q2j
+

∂2

∂p2j

)
+

1

2

(
qj

∂

∂qj
+ pj

∂

∂pj
+ 1

))

+ J
∑
j

(
pj+1

∂

∂qj
− qj+1

∂

∂pj
+ pj

∂

∂qj+1
− qj

∂

∂pj+1

)
.

Following Figure 3 of (Kordas et al., 2015), we consider
a 2-site system with J = 1, U = 0, and γ = [1, 0]. We
simulate the evolution of an antisymmetric Bose-Einstein
Condensate (BEC) with 50 particles in each site, which has
a Q function Q(q1, p1, q2, p2) given by

Q =

[
(q1 − q2)

2 + (p1 − p2)
2
]100

π2 · 2100 · 100!
e−(q21+p2

1+q22+p2
2).

Because of the complex multimodal initial distribution, we
use the Convex Potential Flow for these experiments. We
pretrain the flow as described in Section 3.6.

Metric. For this system, we compute the observable ⟨n1⟩ ≈
1
N

∑
(q⃗,p⃗)∼Qsim

(q21 + p21 − 1) because it’s exact evolution is
given in (Kordas et al., 2015).

Results and Discussion. We show the simulated evolution
of ⟨n1⟩ in Figure 4. The existence of the J term is respon-
sible for the oscillations shown because it causes the two
sites to exchange particles, which could cause challenges
for simulations. Even so, both the Euler and TDVP methods

closely match the exact evolution, demonstrating the wide
applicability of our methods.

5. Conclusion
In this work, we made an important contribution to the
problem of simulating open quantum systems. We used a
reformulation of the density matrix to the Husimi Q func-
tion, which allowed us to study open quantum systems as
an evolution of a probability distribution under dynamics,
described by a partial differential equation that we derive for
each system. This allowed us to establish a direct connec-
tion between simulating continuous or bosonic open quan-
tum systems and the rich literature on generative models in
standard machine learning. With off-the-shelf normalizing
flows, Affine Coupling Flows and Convex Potential Flows,
and a new efficient method for solving high-dimensional
PDEs, Euler-KL, we established Q-Flow, a new and efficient
approach to simulation of open quantum systems.

We compared Q-Flow to the state-of-the-art numerical and
deep learning approaches on two important systems to
the field, the dissipative harmonic oscillator and dissipa-
tive bosonic models. We established superior performance
across the board, especially for large system dimensionality.

We believe the significance of our results is twofold. On one
hand, Q-Flow’s accurate simulation of open quantum sys-
tems can be further developed to aid progress in fundamental
physics and engineering applications, such as superconduc-
tors and quantum computers. On the other hand, through our
reformulation from evolving the density matrix to evolving
the Q function, we shifted the modeling challenges from
the curse of dimensionality to the accurate evolution of a
high-dimensional deep generative model. Q-Flow can aid
progress in evolving probability distributions under PDE dy-
namics and inspire future work on deep generative models.
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A. Further Details about the Q Function Formalism
A.1. Quantum Preliminaries

Here, we provide a brief and intuitive introduction to the theory of bosonic systems. We intentionally simplify most of the
definitions and focus on the important concepts to our study. For an in-depth discussion, please refer to (Shankar, 2012).

We will discuss a few important terms that we use throughout the main text.

Hilbert Space. In a closed system, i.e., one which is insulated from the environment, each subsystem’s state can be
described as a unit vector in a complex vector space Cn, a Hilbert space, for some dimension n which we will from now on
denote as the Hilbert space dimension or the degrees of freedom.

Open Quantum Systems In an open quantum system, interactions with the environment introduce additional uncertainty
about the quantum state of the system. To model open systems, we must thus resort to the density matrix. The density matrix
is an n× n positive definite unit-trace complex-valued matrix, where n is the Hilbert space dimension of the system. The
space Cn×n of density matrices is sometimes known as the double Hilbert space. This space is spanned by the set of outer
products |b1⟩ ⟨b2| of basis vectors. The density matrix can be thought of as an operator on the Hilbert space.

Braket notation. Such notation is used throughout the text to denote quantum states. Quantum states are elements of
a complex vector space V , equipped with a Hermitian form. In our work we use the standard Hermitian inner product,
which in math notation is (v,w) = v†w. Here † denotes the complex conjugate, for any two vectors v,w ∈ V. In physics
notation, we write v as |v⟩ (known as a ket) and likewise for w. We also use the notation ⟨v| ≡ v†, and call this a bra. Then,
v†w can be written ⟨v| |w⟩, or more concisely as ⟨v|w⟩. Furthermore, |v⟩ ⟨w| denotes the outer product of v and w†.

Particle number Hilbert space, Vacuum states, the Fock space. There exists a special Hilbert space known as the
particle number Hilbert space or the Fock space. This Hilbert space describes a location, such as a potential well, with varying
number of particles. It is spanned by a countably infinite set of orthonormal basis vectors, which we label |0⟩ , |1⟩ , . . .,
where |n⟩ represents a system with n particles. To represent a general element of |0⟩ , |1⟩ , . . ., we will use a Roman letter
inside the ket or bra. We denote |0⟩ as the vaccum state because it represents a system with no particles.

Although a system with varying number of particles can be described by the particle number Hilbert space, there are many
other systems that can be similarly described. For example, a particle confined to move in a 1d potential well can be
described by this Hilbert space. In this paper, we use the term site to refer to any system with a Hilbert space that is the
particle number Hilbert space. For multiple sites, the total Hilbert space is the tensor product of each particle’s Hilbert space.

Creation, annihilation operators and Coherent state. The creation operator a† satisfies a† |n⟩ =
√
n+ 1 |n+ 1⟩ and

the annihilation operator a satisfies a |n⟩ =
√
n |n− 1⟩ with a |0⟩ = 0. The coherent state |α⟩ with a complex number α is

defined as |α⟩ = eαa
†−α∗a |0⟩, where e should be interpreted as matrix exponential function. A more practical equivalent

definition of the coherent state is

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ .

Compute observables. In quantum mechanics, a density matrix ρ can be expressed as ρ =
∑

n,m ρn,m |n⟩ ⟨m| and an
observable O can be expressed as O =

∑
n,m On,m |n⟩ ⟨m|, where both ρ and O can be viewed as Hermitian matrices. It

follows that the expectation value of the observable ⟨O⟩ = tr(ρO) =
∑

n,m On,mρm,n.

Tensor products. Suppose we have two Hilbert spaces H1 and H2. For every two kets |a⟩ ∈ H1 and |b⟩ ∈ H2, there
exists a ket |a⟩ ⊗ |b⟩ ∈ H1 ⊗H2, where |a⟩ ⊗ |b⟩ is the tensor product of |a⟩ and |b⟩ and H1 ⊗H2 is the tensor product
space H1 and H2. The inner product for tensor products of Hilbert spaces is defined as (⟨a| ⊗ ⟨b|) (|c⟩ ⊗ |d⟩) = ⟨a|c⟩ ⟨b|d⟩,
where ⟨a| ⊗ ⟨b| is the conjugate transpose of |a⟩ ⊗ |b⟩. From this it is clear that the basis kets for the new Hilbert space are
all pairs of tensor products of basis kets of the two smaller Hilbert spaces. If an operator O1 acts on H1 and O2 acts on H2,
then (O1 ⊗O2) acts on H1 ⊗H2 according to (O1 ⊗O2) |a⟩ ⊗ |b⟩ = (O1 |a⟩)⊗ (O2 |b⟩). Finally, note that we often use
shorthands such as O1 or O2 to refer to O1 ⊗ 1 or 1⊗O2, respectively.
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A.2. Q Function to ρ

In this section, we show that for a given Q(α, α∗), the density matrix ρ corresponding to it is given by

⟨m| ρ |n⟩ = π
√
m!n!

min(m,n)∑
k=0

Qm−k,n−k

k!
, (12)

where

Qa,b(α, α
∗) =

1

a!b!

∂a+b

∂aα∂bα∗Q(α, α∗)

∣∣∣∣
α=α∗=0

.

This result generalizes to multi-site Q functions using the tensor product structure, but for simplicity we consider only a
single site here.

From expressing ⟨α| and |α⟩ in terms of Harmonic Oscillator eigenstates, we have that

Q(α, α∗) =
1

π
e−αα∗

∞∑
m=0

∞∑
n=0

⟨m| ρ |n⟩√
m!n!

α∗mαn

=
1

π

( ∞∑
s=0

(−1)s

s!
(αα∗)s

) ∞∑
m=0

∞∑
n=0

⟨m| ρ |n⟩√
m!n!

α∗mαn

=
1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

⟨m| ρ |n⟩√
m!n!

(α∗)
m+s

αn+s

To determine ⟨m| ρ |n⟩, we must thus invert this series. However, since we know the correct form, we can simply substitute
Equation 12 into the expression above and show that it correctly gives Q(α, α∗) :

1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

⟨m| ρ |n⟩√
m!n!

(α∗)
m+s

αn+s

=
1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

π
√
m!n!

∑min(m,n)
k=0

Qm−k,n−k

k!√
m!n!

(α∗)
m+s

αn+s

=

∞∑
s=0

∞∑
m=0

∞∑
n=0

min(m,n)∑
k=0

(−1)s

s!

Qm−k,n−k

k!
(α∗)

m+s
αn+s.

Setting a = m+ s and b = n+ s gives

∞∑
a=0

∞∑
b=0

min(a,b)∑
s=0

min(a,b)−s∑
k=0

(−1)s

s!

Qa−k−s,b−k−s

k!
(α∗)

a
αb.

Then, setting d = s+ k gives

∞∑
a=0

∞∑
b=0

min(a,b)∑
d=0

d∑
s=0

(−1)s

s!

Qa−d,b−d

(d− s)!
(α∗)

a
αb

=

∞∑
a=0

∞∑
b=0

(α∗)
a
αb

min(a,b)∑
d=0

Qa−d,b−d

d∑
s=0

(−1)s
(
d

s

)
.

Now, by the Binomial Theorem,
∑d

s=0(−1)s
(
d
s

)
= (1− 1)d = 0d, which is 0 unless d = 1. So, we get

∞∑
a=0

∞∑
b=0

Qa,b(α, α
∗) · (α∗)

a
αb

=

∞∑
a=0

∞∑
b=0

(α∗)
a
αb

a!b!

∂a+b

∂aα∂bα∗Q(α, α∗)

=Q(α, α∗),

14



Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows

as desired. The last step comes from the Taylor series representation of Q, which is only valid if Q is analytic. So as long as
Q is analytic, this result holds.

A.3. Coherent State Identities

Here we present a few coherent state identities that prove useful in A.4.

a† |α⟩ = a†e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩

= e−|α|2/2
∞∑

n=0

αn

√
n!

√
n+ 1 |n+ 1⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn+1√
(n+ 1)!

|n+ 1⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn

√
n!

|n⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn

√
n!

|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩ −
(

∂

∂α
e−|α|2/2

) ∞∑
n=0

αn

√
n!

|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩ −
(

∂

∂α
e−|α|2/2

) ∞∑
n=0

αn

√
n!

|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩+ α∗

2
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩

=

(
α∗

2
+

∂

∂α

)
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩

=

(
α∗

2
+

∂

∂α

)
|α⟩ .

Similarly,

⟨α| a =

(
α

2
+

∂

∂α∗

)
⟨α| .

Also,

∂

∂α∗ |α⟩ = ∂

∂α∗ e
−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩ = −α

2
e−|α|2/2

∞∑
n=0

αn

√
n!

|n⟩ = −α

2
|α⟩ (13)

and

∂

∂α
⟨α| = −α∗

2
⟨α| .

A.4. ρ Evolution to Q Function Evolution

In this section, we demonstrate how to convert to a general equation of motion for a density matrix to an equation of motion
for the corresponding Q function using the tensor product structure. This result generalizes to multi-site Q functions, but for
simplicity we consider only a single site here.
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Note that

⟨α| a†Ô1ρÔ2 |α⟩ = α∗ ⟨α| Ô1ρÔ2 |α⟩ ,
⟨α| Ô1ρÔ2a |α⟩ = α ⟨α| Ô1ρÔ2 |α⟩ .

Also,

⟨α| aÔ1ρÔ2 |α⟩ =
[(

α

2
+

∂

∂α∗

)
⟨α|
]
Ô1ρÔ2 |α⟩

=

(
α

2
+

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩ − ⟨α| Ô1ρÔ2

∂

∂α∗ |α⟩

=

(
α

2
+

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩+

α

2
⟨α| Ô1ρÔ2 |α⟩

=

(
α+

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩ ,

and

⟨α| Ô1ρÔ2a
† |α⟩ = ⟨α| Ô1ρÔ2

(
α∗

2
+

∂

∂α

)
|α⟩

=

(
α∗

2
+

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩ −

[
∂

∂α
⟨α|
]
Ô1ρÔ2 |α⟩

=

(
α∗

2
+

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩+

α∗

2
⟨α| Ô1ρÔ2 |α⟩

=

(
α∗ +

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩ .

With these results, we now have that for an equation of the form

ρ̇ =
∑

j,k,l,m

cj,k,l,m(a†)jakρ(a†)lam,

we can convert the the Q function equation of motion by inserting 1
π ⟨α| |α⟩ to get

1

π
⟨α| ρ̇ |α⟩ = 1

π

∑
j,k,l,m

cj,k,l,m ⟨α| (a†)jakρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α∗)j ⟨α| akρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α∗)j
(
α+

∂

∂α∗

)k

⟨α| ρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α∗)j
(
α+

∂

∂α∗

)k

αm ⟨α| ρ(a†)l |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α∗)j
(
α+

∂

∂α∗

)k

αm

(
α∗ +

∂

∂α

)l

⟨α| ρ |α⟩

=⇒ Q̇(α, α∗) =
∑

j,k,l,m

cj,k,l,m(α∗)j
(
α+

∂

∂α∗

)k

αm

(
α∗ +

∂

∂α

)l

Q(α, α∗).

A.5. Observable calculation with respect to Q function

In this section, we demonstrate how to efficiently compute observables by sampling from the Q function using the tensor
product structure. This result generalizes to multi-site Q functions, but for simplicity we consider only a single site here.
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Consider a general observable Ô. Its expected value given a density matrix ρ is

⟨Ô⟩ = Tr
(
Ôρ
)
. (14)

Inserting the coherent state resolution of the identity, we get that

Tr
(
Ôρ
)
=

∫
dαdα∗

π
Tr
(
Ôρ |α⟩ ⟨α|

)
=

∫
dαdα∗

π
⟨α| Ôρ |α⟩ .

Depending on the operator, it may be most useful to insert the resolution of the identity elsewhere.

Example The expected value of am(a†)n given a density matrix ρ is

⟨am
(
a†
)n⟩ = Tr

(
am
(
a†
)n

ρ
)

=

∫
dαdα∗

π
Tr
(
am |α⟩ ⟨α|

(
a†
)n

ρ
)

=

∫
dαdα∗

π
⟨α|
(
a†
)n

ρam |α⟩

=

∫
dαdα∗

π
αm(α∗)n ⟨α| ρ |α⟩

=

∫
dqdp (q + ip)m(q − ip)nQ(q, p).

If m ̸= n, this is not an observable, but could be made an observable by adding its Hermitian conjugate.

A.6. Choice of observables

The Liouvillian is chosen because the differential equation evolution is governed by the Liouvillian. In particular, as Eq. 2
shows that Q̇ = LQ, when the norm of LQ goes to zero, Q̇ approaches zero which is the steady state of interest. Hence,
the observable Liouvillian signifies how soon the system evolves to steady state. The centroid is chosen as an observable
because it is the macroscopic observable that can be directly measured in the experiment. It behaves as the center of the
mass of the system, which naturally connects to the classical limit and provides a good intuition and direct visualization on
how the system evolves.

B. Stochastic Euler-KL Method
Here we derive Equation 5 for the control-variance gradient of the KL-Divergence. We start with

KL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt

θ ln
Qt+dt

θ

Qt
L

.

Taking the gradient gives

∇θKL(Qt+dt
θ ||Qt

L) = ∇θ

∫
Qt+dt

θ ln
Qt+dt

θ

Qt
L

=

∫ (
∇θQ

t+dt
θ

)
ln

Qt+dt
θ

Qt
L

+

∫
Qt+dt

θ ∇θ ln
Qt+dt

θ

Qt
L

=

∫
Qt+dt

θ

(
∇θ lnQ

t+dt
θ

)
ln

Qt+dt
θ

Qt
L

+

∫
Qt+dt

θ ∇θ lnQ
t+dt
θ

=

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ .

17



Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows

Now, note that∫
Qt+dt

θ (x)∇θ lnQ
t+dt
θ (x) =

∫
Qt+dt

θ (x)
∇θQ

t+dt
θ (x)

Qt+dt
θ (x)

=

∫
∇θQ

t+dt
θ (x) = ∇θ

∫
Qt+dt

θ (x) = ∇θ1 = 0. (15)

So, letting

b =

∫
Qt+dt

θ ln
Qt+dt

θ (x)

Qt
L(x)

≈ 1

N

∑
x∼Qt+dt

θ

ln
Qt+dt

θ (x)

Qt
L(x)

, (16)

we can subtract a control variance to get

∇θKL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ

=

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ − (b+ 1)

∫
Qt+dt

θ (x)∇θ lnQ
t+dt
θ (x)

=

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

− b

]
∇θ lnQ

t+dt
θ

=

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

− b

]
∇θ lnQ

t+dt
θ

Finally, approximating the integral gives

∇θKL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

− b

]
∇θ lnQ

t+dt
θ

≈ 1

N

∑
x∼Qt+dt

θ

[
ln

Qt+dt
θ

Qt
L

− b

]
∇θ lnQ

t+dt
θ ,

as desired.

Similar technique on baseline control variance has been used in the context of reinforcement learning (Mohamed et al.,
2020). It has been shown that it can reduce the variance of the gradient and helpful for the optimization.

C. Additional Normalizing Flow Implementation Details
C.1. Affine Coupling Flow

For our Affine Coupling models, we use the following architecture:

For each Affine Coupling layer, we split each input vector into two equal-sized vectors v1 =
input[:input.shape[0]//2] and v2 = input[input.shape[0]//2:]. We then compute two neu-
ral networks s = NN1(W1, v2) and t = NN2(W2, v2). We then return the concatenation of esv1 + t and v2.

The neural networks used in the Affine Coupling layers are fully-connected feed-forward neural networks. They have a set
number of hidden layers of a fixed size. The input is fed into a linear layer with output size equal to the hidden layer size
(usually 3) and then fed into a GELU nonlinearity (Hendrycks & Gimpel, 2016). Then, this output is concatenated with
the original input vector. We refer to the output concatenated with the previous layer as the “augmented hidden layer.” For
each subsequent internal layer, we feed the previous augmented hidden layer into a linear layer with output size equal to the
hidden layer size. We then feed this output into a GELU and concatenate the previous augmented hidden layer. Finally, for
the final linear layer, the output has size equal to the input dimension of the neural network, and we do not apply a GELU or
concatenate the previous augmented hidden layer.

The Affine Coupling flow is then constructed as follows: We use a unit Gaussian centered at the origin as our flow prior. To
transform an input vector from the data coordinate system to the coordinate system of the prior, we apply an Affine Coupling
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layer and then reverse the order of the input vector. We repeat this process a user specified number of times (usually 3). To
transform an input vector from the prior coordinate system to the coordinate system of the data, we apply the inverse of the
above transformation.

For the Affine Coupling model, the number of inputs and outputs of the neural networks defining the coupling transforms are
equal to the dimension of the probability distribution. Increasing the number of sites will increase the number of inputs and
outputs of these neural networks. We do not increase the dimensions of the hidden layers of the neural networks. However,
at each hidden layer, we concatenate the previous hidden layer to the current one. As a result, the input is concatenated
to every hidden layer, so the dimension of each hidden layer effectively increases. As a result, the number of parameters
grows as a quadratic function of the number of sites currently. However, it is feasible to replace the concatenations with skip
connection, so that the number of parameters in the hidden layers will stay constant as a function of the number of sites.

C.2. Convex Potential Flows

For our implementation of the Convex Potential Flows, we closely follow the methods described in (Huang et al., 2021).
Our architecture is described below.

For our Input Convex Neural Network (ICNN), we follow the ICNN architecture given in section 5 of (Huang et al., 2021).
In particular, given an input vector x, we use the following procedure to compute the output of the ICNN:

Following Huang et al. (2021), let L denote a linear layer, L+ denote a linear layer with positive weights, and s denote a
softplus. Also, let a denote an ActNorm layer, as defined in (Kingma & Dhariwal, 2018) and cat denote concatenation. We
first compute h = L(x). Then, for each layer in the network, we set

h̃ = s(a(L+(h) + L(x))) (17)
haug = a(s(L(x))) (18)

h = cat
(
h̃, haug

)
. (19)

. The output of the neural network is then

out = ICNN(x) = a(L+(h) + L(x)). (20)

Now, let f(x) = s(a1)
||x||2
2 + s(a2)ICNN(x), where the parameters of f are the parameters of a1, a2, and the parameters

of ICNN . f is an input-convex function.

We use a unit Gaussian centered on the origin as our prior. To transform an input from the data distribution coordinates to
the prior coordinates, we apply ∇f . To transform an input x from the prior distribution coordinates to the data coordinates,
we use LGBFS (Nocedal & Wright, 1999) to find the y that minimizes

f(y)− x · y.

For the Convex Potential Flow, the number of inputs to the convex neural network is equal to the dimension of the probability
distribution, so increasing the number of sites will increase the number of inputs to the convex potential flow. The internal
layer sizes all stay constant, so the only change is the input size. Thus, the number of parameters in the hidden layers is
constant as a function of the number of sites and only the number of parameters in the first layer is linear in the number of
sites.

D. Additional Experimental Details
D.1. Dissipative Harmonic Oscillator system parameters

As mentioned in the main text, we uniformly sample the dissipative harmonic oscillator system’s parameters n̄j ∈ [3, 7),
γj ∈ [0.5, 1.5), and ωj ∈ [0.5, 1.5).

The values sampled are as follows:

For the 1-site system, the sampled parameters were
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n b a r = [ 4 . 8 4 8 7 2 8 0 4 ]
gamma = [ 1 . 3 9 6 8 2 8 6 6 ]
omega 0 = [ 1 . 0 8 5 6 4 5 2 1 ] ,

for the 2-site system, the sampled parameters were

n b a r = [ 6 . 3 2 8 7 0 5 2 8 , 5 . 2 4 6 8 4 1 2 3 ]
gamma = [ 0 . 8 5 6 2 9 2 0 8 , 1 . 1 4 0 2 6 6 8 2 ]
omega 0 = [ 1 . 0 4 4 3 6 3 1 8 , 0 . 7 5 8 2 0 8 9 9 ] ,

and for the 20-site system, the sampled parameters were

n b a r = [ 5 . 5 6 5 9 9 5 0 8 , 3 .65962215 , 4 .00906784 , 4 .18744726 ,
6 .60341254 , 6 .11329932 , 4 .84059527 , 5 .81464032 ,
5 .79018256 , 3 .86014355 , 6 .84045506 , 4 .05790151 ,
6 .92639748 , 3 .43788247 , 4 .17439805 , 5 .9303111 ,
5 .63412769 , 4 .52153322 , 3 .56601688 , 4 . 3 8 0 0 5 0 1 4 ]

gamma = [ 0 . 7 1 5 8 4 4 4 3 , 1 .08686172 , 1 .40588976 , 1 .47121715 ,
0 .87775305 , 0 .78137437 , 1 .27848082 , 1 .14247345 ,
0 .95718403 , 0 .76484186 , 1 .22056516 , 1 .24775589 ,
0 .57332893 , 1 .06557609 , 0 .60105471 , 1 .32710909 ,
0 .90712674 , 0 .67560123 , 0 .98142727 , 0 . 8 4 5 1 5 1 8 9 ]

omega 0 = [ 1 . 4 8 9 8 2 0 3 2 , 0 .52079238 , 1 .30285575 , 0 .89810077 ,
1 .35623683 , 0 .78528379 , 1 .0019163 , 0 .77954035 ,
0 .93705822 , 1 .32502792 , 0 .53982753 , 0 .67051701 ,
0 .95749435 , 0 .98833336 , 0 .86078757 , 1 .00879361 ,
0 .88153798 , 1 .05195061 , 1 .17483548 , 1 . 1 7 1 8 4 0 4 ] .

D.2. Pseudo-spectral and finite difference baseline details

As a baseline approach to solving the Q function evolution PDE (Eq. 2), we implement a pseudo-spectral and finite difference
discretization of the PDE (Fornberg, 1998) in a square domain with −10 < qj < 10 and −10 < pj < 10 for each site
j, set Q = 0 at the boundaries, and integrate using an adaptive Tsitouras 5/4 Runge-Kutta solver (Tsit5) (Rackauckas &
Nie, 2017) while projecting at each time step to ensure the probability density Q remains positive and normalized. The
psuedo-spectral method uses periodic boundary conditions and computes spatial derivatives using a fast Fourier transform.
The finite difference method uses Dirichlet boundary conditions set at zero and computes spatial derivatives using the
standard second-order finite difference stencil. We use a grid size of 256 grid points per dimension for 1-site and 32 grid
points per dimension for 2-sites, resulting in a state size of 2562 = 65,536 for 1-site and 324 = 1,048,576 for 2-sites. Note
that for a fixed grid size, the state grows exponentially with the number of sites—i.e., the curse of dimensionality. This
limits our ability to perform more fine-grained simulations on larger domains and makes this baseline approach intractable
for more than a few sites.

D.3. PINN baseline details

We also use Physics Informed Neural Networks (PINNs) as a baseline. To implement this, we use the PINA library which is
built on top of PyTorch. For each problem, we have two loss terms. The first computes the L2 loss between the predicted
initial distribution and the actual initial distribution for points sampled uniformly from within the domain of the solver at
t = 0. The second computes the L2 loss between the PINN time derivative and the predicted time derivative L̃Q at points
sampled uniformly from within the spacial and temporal domain of the solver. The total loss is the sum of these two losses.
We then optimize using gradient decent. Every 500 epochs we re-sample the points with which to compute the loss.

For each experiment, we use a fully connected feed forward neural network. The network has layer sizes of [input size, 40,
40, 40, 1]. For the first layer, we feed the input through a linear layer with output dimension 40 and then apply a GELU
nonlinearity. We then concatenate the input. We denote a hidden layer with the previous layer concatenated the “augmented
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hidden layer.” For each subsequent layer, we take the input, feed it through a linear layer with output the size of the next
hidden layer, apply GELU, and then concatenate the previous augmented linear layer. For the final layer, we apply a linear
layer with output dimension 1 and do not apply GELU or concatenate.

The following are the hyperparameters used for each of the experiments:

• 1-site Harmonic Oscillator: We use 1000 samples at a time for the initial condition and 50000 samples at a time for
the derivative condition. We train for 25000 epochs with a learning rate of 0.001.

• 2-site Harmonic Oscillator: We use 1000 samples at a time for the initial condition and 30000 samples at a time for
the derivative condition. We train for 25000 epochs with a learning rate of 0.001.

• 20-site Harmonic Oscillator: We use 3000 samples at a time for the initial condition and 3000 samples at a time for
the derivative condition. We train for 50000 epochs with a learning rate of 0.001. Here, we have to decrease the number
of samples for the derivative condition because of memory limits.

• 2-site Dissipative Bosonic Model: We use 1000 samples at a time for the initial condition and 30000 samples at a time
for the derivative condition. We train for 25000 epochs with a learning rate of 0.001.

D.4. Stochastic baseline details

Using the known Green’s function for the N -site Harmonic Oscillator system (Carmichael, 1999b), we can construct a
stochastic differential equation (SDE)

dqi = (−γiqi/2 + ω0pi) dt+
√
γi(n̄i + 1)/2 dWqi

dpi = (−γipi/2− ω0qi) dt+
√
γi(n̄i + 1)/2 dWpi

,
(21)

where dWqi , dWpi
are independent Wiener processes with unit variance and i ∈ {1, . . . , N}. Starting with samples from

the initial Q function, this SDE generates samples qi, pi from Q at each time point, which can be used to compute simple
observables, such as the centroid (i.e., the mean of the samples). Note that this approach does not explicitly provide the Q
function and so cannot be used to compute observables involving Q or derivatives of Q. This method also only works for a
limited set of systems whose evolution equations admit a stochastic description, e.g., a Fokker–Planck equation.

In our experiments, we use 100,000 sample points for the 1-site and 2-site Harmonic Oscillators and 10,000 sample points
for the 20-site Harmonic Oscillator.

D.5. Flow Initialization details

As discussed in Section 4.2 of the main text, for the Bose Hubbard simulation, we initialize our Normalizing Flow models to
the desired initial state of

Q =

[
(q1 − q2)

2 + (p1 − p2)
2
]100

π2 · 2100 · 100!
e−(q21+p2

1+q22+p2
2).

To do this, we use the two pretraining methods described in Section 3.6. We describe our pretraining hyperparameters
in more detail below. At any point below, if we mention sampling from the exact distribution, we do so using MCMC
algorithms.

We first initialize the Convex Potential Flow ActNorm layers by providing 10000 samples from the exact distribution. Next,
we perform 200 epochs of the following training algorithm (we use a learning rate of 1e-2):

1. Sample 1000 points from the exact distribution Qinit.

2. Compute the loss L = −
∑

x∼Qinit
lnQθ(x).

3. Backpropagate to obtain ∇θL.

4. Take a gradient step using the Adabeleif optimizer (Zhuang et al., 2020).

After this, we perform 3000 training steps of the following training algorithm (we use a learning rate of 1e-3):
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1. Sample 1000 points from the model distribution Qθ.

2. Compute the gradient update

∇θKL ≈ − 1

N

∑
x∼Qθ

Qinit(x)

Qθ(x)
∇θ lnQθ(x). (22)

3. Take a gradient step using the Adabeleif optimizer (Zhuang et al., 2020).

Note that for the dissipative harmonic oscillator systems, we use the exact initial state as the prior and initialize the
normalizing flow transformation to be the identity. As such, we do not need to use pretraining for the dissipative harmonic
oscillator systems.

D.6. Euler experiment details

Below are the hyperparameters we use for the Euler method. For the Harmonic Oscillator results, we use a 3 layer RealNVP
where each affine transformation is a 2-hidden-layer feed-forward neural network with hidden layers of size 5. Instead of
skip connections in the feed-forward neural network, we concatenate the previous activations at each activation layer. For
the Dissipative Bosonic Model result, we use a Convex Potential Flow with a 5-hidden-layer input-convex neural network
with hidden layers of size 20 and augmented layers of size 4, see (Huang et al., 2021).

• 1-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For each step, we use the KL control
variance loss to fit for 150 epochs with a learning rate of 0.001. We use 1000 samples per fitting epoch.

• 2-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For each step, we use the KL control
variance loss to fit for 150 epochs with a learning rate of 0.001. We use 1000 samples per fitting epoch.

• 20-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For each step, we use the KL control
variance loss to fit for 150 epochs with a learning rate of 0.001. We use 10000 samples per fitting epoch.

• 2-site Dissipative Bosonic Model: We train for 400 steps with a step size of 0.02. For each step, we use the KL control
variance loss to fit for 200 epochs with a learning rate of 0.002. We use 10000 samples per fitting epoch.

D.7. TDVP experiment details

Below are the hyperparameters we use for the TDVP method. For the Harmonic Oscillator results, we use a 3 layer RealNVP
where each affine transformation is a 2-hidden-layer feed-forward neural network with hidden layers of size 5. Instead of
skip connections in the feed-forward neural network, we concatenate the previous activations at each activation layer. For
the Dissipative Bosonic Model result, we use a Convex Potential Flow with a 5-hidden-layer input-convex neural network
with hidden layers of size 20 and augmented layers of size 4, see (Huang et al., 2021).

• 1-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We use 1000 samples per step. We use a
diagonal shift of 0.01.

• 2-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We use 1000 samples per step. We use a
diagonal shift of 0.01.

• 20-site Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We use 10000 samples per step. We use
a diagonal shift of 0.01.

• 2-site Dissipative Bosonic Model: We train for 2000 steps with a step size of 0.004. We use 10000 samples per step.
We use a diagonal shift of 0.01.

E. Additional Experimental Results
Figure 5 displays the L1 divergence between the simulated Q function and the exact dissipative harmonic oscillator Q
function for various simulation methods. Table 3 shows the same information as 1 but with errors included. These give
additional information about the L1 Loss evolution for the dissipative harmonic oscillator.
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Figure 5. The L1 divergence between the simulated Q function and the exact Q function for 1-site, 2-site, and 20-site dissipative harmonic
oscillators. Error bars are included for all but the finite difference and pseudo-spectral results but are small for most observables. In the
20-site case, it is not possible to run finite difference (FD) or pseudo-spectral methods (PS). Further, although the PINN method runs, it
produces an L1 loss on the order of 1030, so we do not display it here.

1-site

Q-Flow Q-Flow
Time Euler (ours) TDVP (ours) PINN PS FD

3 (2.08± 0.01) · 10−3 (5.11± 0.01) · 10−3 (1.79± 0.01) · 10−1 3.47 · 10−4 8.90 · 10−4

6 (5.10± 0.01) · 10−4 (1.17± 0.00) · 10−3 (1.84± 0.01) · 10−1 3.47 · 10−4 9.01 · 10−4

9 (1.01± 0.00) · 10−4 (2.16± 0.01) · 10−4 (1.91± 0.01) · 10−1 3.47 · 10−4 9.01 · 10−4

12 (1.68± 0.01) · 10−5 (3.58± 0.01) · 10−5 (1.91± 0.01) · 10−1 3.47 · 10−4 9.01 · 10−4

15 (1.58± 0.01) · 10−5 (5.55± 0.01) · 10−6 (1.98± 0.01) · 10−1 3.47 · 10−4 9.01 · 10−4

2-site

3 (3.91± 0.01) · 10−3 (1.23± 0.00) · 10−2 1.00± 0.00 1.83 · 10−1 6.12 · 10−2

6 (1.91± 0.00) · 10−3 (4.66± 0.01) · 10−3 1.00± 0.00 1.82 · 10−1 6.09 · 10−2

9 (7.59± 0.02) · 10−4 (1.77± 0.00) · 10−3 1.00± 0.00 1.81 · 10−1 6.09 · 10−2

12 (2.92± 0.01) · 10−4 (6.21± 0.01) · 10−4 1.00± 0.00 1.81 · 10−1 6.09 · 10−2

15 (1.47± 0.00) · 10−4 (2.05± 0.00) · 10−4 1.00± 0.00 1.81 · 10−1 6.09 · 10−2

20-site

3 (9.94± 0.03) · 10−2 (1.08± 0.00) · 10−1 (2.17± 0.62) · 1031 - -
6 (3.29± 0.01) · 10−2 (4.10± 0.01) · 10−2 (2.38± 0.81) · 1030 - -
9 (2.02± 0.01) · 10−2 (2.44± 0.01) · 10−2 (1.34± 0.52) · 1029 - -

12 (1.46± 0.00) · 10−2 (1.68± 0.00) · 10−2 (1.46± 1.19) · 1028 - -
15 (1.07± 0.00) · 10−2 (1.23± 0.00) · 10−2 (7.07± 3.66) · 1026 - -

Table 3. L1[Qsim, Qexact] for each simulation method over time, with errors. For each row, we mark the best result in bold.
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