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Abstract
Hypersphere classification is a classical and foun-
dational method that can provide easy-to-process
explanations for the classification of real-valued
and binary data. However, obtaining an (ideally
concise) explanation via hypersphere classifica-
tion is much more difficult when dealing with
binary data than real-valued data. In this paper,
we perform the first complexity-theoretic study of
the hypersphere classification problem for binary
data. We use the fine-grained parameterized com-
plexity paradigm to analyze the impact of struc-
tural properties that may be present in the input
data as well as potential conciseness constraints.
Our results include stronger lower bounds and
new fixed-parameter algorithms for hypersphere
classification of binary data, which can find an
exact and concise explanation when one exists.

1. Introduction
With the rapid advancement of Machine Learning (ML)
models to automate decisions, there has been increasing
interest in explainable Artificial Intelligence (XAI), where
the ML models can explain their decisions in a way humans
understand. This has led to the reexamination of ML models
that are implicitly easy to explain and interpret with a partic-
ular focus on the conciseness of explanations (Doshi-Velez
& Kim, 2017; Lipton, 2018; Monroe, 2018; Ribeiro et al.,
2018; Shih et al., 2018; Barceló et al., 2020; Chalasani et al.,
2020; Darwiche & Hirth, 2020; Blanc et al., 2021; Ignatiev
et al., 2021; Wäldchen et al., 2021; Izza et al., 2022).

In this article, we consider a simple classification task—
one of the cornerstones of machine learning—from the
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viewpoint of XAI. However, unlike previous works on ex-
plainability, which have typically targeted questions such as
identifying a suitable interpretable model for (area-specific)
classification (Nori et al., 2021; Shih et al., 2021; Wang
et al., 2021) or measuring the accuracy cost of explainabil-
ity (Laber & Murtinho, 2021; Makarychev & Shan, 2021),
the goal of this work is to obtain a comprehensive under-
standing of the computational complexity of performing
binary classification via one of the most fundamental inter-
pretable models.

Consider a set M of either real-valued or binary training
feature points, each represented as a d-dimensional feature
vector over [0, 1] or {0, 1} and labeled as either “blue” (the
set VB) or “red” (the set VR). There is, by now, a broad set
of more or less opaque classifiers capable of using such a
training set to classify unlabeled data, where the suitability
of each method depends on the data domain and context;
moreover, some classifiers are tailored to real-valued data,
while others are designed for binary (or, more generally,
categorical) data. In this paper, we consider one of the
two arguably simplest—and hence easiest to explain and
visualize—types of classifiers, which can be used in both
data settings: a hypersphere. More formally, the explana-
tions we consider consist of a cluster center ~c (an element
of [0, 1]d or {0, 1}d) and distance ` such that each feature
vector is at a distance at most ` from ~c if and only if it is
blue.

The reason for studying the complexity of hypersphere clas-
sification does not stem purely from the problem’s con-
nection to explainability. Together with classification by a
separating hyperplane, hypersphere classification represents
one of the most classic explanatory examples of classifiers
(see (Cooper, 1962; Wang et al., 2007; 2005) to name a
few) which have been extensively studied from both the
computational geometry and the machine learning perspec-
tives (Astorino et al., 2016; Astorino & Gaudioso, 2009;
Cooper, 1962; Wang et al., 2007; 2005; O’Rourke et al.,
1986; Agarwal et al., 2006; Hurtado et al., 2003). More-
over, hypersphere classification is of special importance in
one-class classification due to the inherent asymmetry of
the provided explanations (Kim et al., 2021). While hyper-
plane separation can be encoded as a linear program and
hence is easily polynomial-time solvable for real-valued and
binary data, the computational complexity of hypersphere
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classification is far less obvious and has so far remained
surprisingly unexplored.

This apparent gap contrasts the situation for several other
computational problems arising in the area of machine
learning, which have already been targeted by detailed
complexity-theoretic studies (Ordyniak & Szeider, 2013;
Ganian et al., 2018; Simonov et al., 2019; Dahiya et al.,
2021; Ganian & Korchemna, 2021; Ganian et al., 2022;
Grüttemeier & Komusiewicz, 2022), carried out using the
classical as well as the parameterized-complexity paradigms.
In this article, we close the gap by laying bare a detailed map
of the problem’s computational complexity via the design
of novel theoretical algorithms as well as accompanying
computational lower bounds.

Contributions. We begin by observing that the hyper-
sphere classification problem is polynomial-time solvable
when the input data is real-valued; in particular, this case
can be handled via a more sophisticated linear programming
encoding than the one used for the classical hyperplane
separation problem. However, this approach completely
fails when dealing with binary data, warranting a more care-
ful complexity-theoretic study of this case. Our first result
shows that hypersphere classification of binary data is not
only NP-hard in general but remains NP-hard even when
there are only two red vectors. We also obtain an analogous
hardness result for instances with two blue vectors.

The fact that the problem’s complexity differs between real-
valued and categorical data is already interesting. However,
the NP-hardness of the latter case does not preclude the
existence of efficient algorithms that can solve the problem
under additional natural restrictions. Indeed, one of the
central themes in modern complexity-theoretic research is
the identification of the exact boundaries of tractability. This
is frequently achieved through the lens of the parameterized
complexity paradigm (Downey & Fellows, 2013; Cygan
et al., 2015), where we associate each problem instance
I with an integer parameter k (often capturing a certain
structural property of the instance) and ask whether the
problem of interest can be solved by a “fixed-parameter”
algorithm, that is, by an algorithm with runtime of the form
f(k) · |I|O(1) for some computable function f . This gives
rise to a strong form of computational tractability called
fixed-parameter tractability (FPT).

In the case of our problem of interest, it is easy to ob-
serve that hypersphere classification of binary data is fixed-
parameter tractable when parameterized by the data di-
mension d (since the number of possible centers is upper-
bounded by 2d). Moreover, we show that the problem also
admits a fixed-parameter algorithm when parameterized
by the total number of feature points via a combinatorial
reduction to a known tractable fragment of Integer Lin-
ear Programming. While these are important pieces of the

complexity-theoretic landscape of hypersphere classifica-
tion, these two initial results are somewhat unsatisfying on
their own because (1) they rely on highly restrictive parame-
terizations, and (2) they ignore a central aspect of explain-
ability, which is conciseness or succinctness (Ribeiro et al.,
2018; Shih et al., 2018; Blanc et al., 2021; Wäldchen et al.,
2021; Chalasani et al., 2020; Izza et al., 2022; Ordyniak
et al., 2023).

A natural measure of conciseness in our setting is the num-
ber of “1” coordinates in a vector; indeed, any explanation
produced by a classifier will likely end up ignored by users
if such an explanation is incomprehensibly long, relying
on too many features. At the same time, depending on the
source of the input data, we may often deal with feature
vectors that are already concise. Having concise feature
vectors does not necessarily guarantee the existence of a
concise center (and vice-versa, concise centers may exist
for non-concise data); however, at least one of the two inde-
pendent measures of conciseness can be expected (or even
required) to be small in a variety of settings, making them
natural choices for parameters in our analysis. In the sec-
ond part of the article, we show that these two conciseness
parameters—a bound econ on the conciseness of the sought-
after explanation and a bound dcon on the conciseness of all
feature vectors in the training data—can be algorithmically
exploited to cope with the NP-hardness of the hypersphere
classification problem for binary data.

Toward understanding the complexity of hypersphere classi-
fication of binary data through the perspective of concise-
ness constraints, we begin by considering restrictions on the
data conciseness dcon. We obtain a tight classification by
showing that the problem is polynomial-time tractable when
dcon ≤ 3 via a reduction to a tractable fragment of the con-
straint satisfaction problem and NP-hard otherwise. More-
over, we obtain fixed-parameter algorithms parameterized
by dcon plus the number of red or blue points, circumvent-
ing the earlier NP-hardness results. When considering the
explanation conciseness, we show that hypersphere classifi-
cation is XP-tractable when parameterized by econ and at
the same time provide evidence excluding fixed-parameter
tractability even parameterized by econ together with the
number of red or blue points. Finally, we obtain a linear-time
fixed-parameter algorithm for the problem parameterized
by econ + dcon.

While this settles the complexity of binary-data hypersphere
classification from the perspective of conciseness measures,
the obtained lower bounds imply that neither measure of
conciseness (i.e., neither econ nor dcon) suffices to achieve
fixed-parameter tractability on its own. As our final con-
tribution, we consider whether achieving tractability for
the problem is possible by exploiting a suitable structural
measure of the input data. In particular, following recent
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Conciseness

Structure ∅ econ dcon econ + dcon

∅ NP-h (Thm 3) XP (Obs 10), W[2]-h (Thm 11) NP-h≥4 (Thm 7) FPT (Thm 13)
|VR| NP-h≥2 (Thm 3) XP (Obs 10), W[2]-h (Thm 11) FPT (Thm 9) FPT (Thm 9)
|VB| NP-h≥2 (Thm 3) XP (Obs 10), W[1]-h (Thm 12) FPT (Thm 9) FPT (Thm 9)

|VR ∪ VB| FPT (Thm 5) FPT (Thm 5) FPT (Thm 5) FPT (Thm 5)
d FPT (trivial) FPT (trivial) FPT (trivial) FPT (trivial)
tw XP (Cor 15) FPT (Cor 16) FPT (Cor 17) FPT (Cor 16)

Table 1. The complexity landscape of hypersphere classification with respect to combinations of structural and conciseness parameters: VR

and VB are the sets of red and blue points, respectively; d is the dimension; tw is the incidence treewidth of the data representation; econ is
the conciseness of the explanation, and dcon is the data conciseness. NP-h≥i means that the problem becomes NP-hard for parameter
values of at least 4, while W[j]-h means that the problem is hard for the complexity class W[j] and hence is unlikely to be fixed-parameter
tractable (Downey & Fellows, 2013).

successes in closely related areas such as clustering and data
completion (Ganian et al., 2022; 2018), we consider the
incidence treewidth tw of the data representation. Using a
non-trivial dynamic programming procedure, we obtain a
fixed-parameter algorithm for binary-data hypersphere clas-
sification parameterized by either tw + econ or tw + dcon;
in other words, each of the two notions of conciseness suf-
fices for tractability of hypersphere clustering for data that
is “well-structured,” in the sense of having small incidence
treewidth. Moreover, as a byproduct of our algorithm, we
also obtain the XP-tractability of binary-data hypersphere
classification parameterized by tw alone.

A summary of our results is provided in Table 1.

Related Work.

While there is, to the best of our knowledge, no prior work
targeting the complexity of hypersphere classification of
binary data, there is a significant work on the real-valued
variant of the problem by the machine learning commu-
nity (Cooper, 1962; Wang et al., 2007; 2005; Astorino &
Gaudioso, 2009; Astorino et al., 2016), where they stud-
ied the optimization version of the problem in which one
seeks the smallest bounding sphere that separates the blue
points from the red ones. Our results extend to the optimiza-
tion version of the problem for binary data, as mentioned
in Section 7. Many of the above works consider relax-
ations of the real-valued optimization problem, in which
the sphere sought is not of minimum radius (Wang et al.,
2007; 2005; Astorino & Gaudioso, 2009; Astorino et al.,
2016)—allowing for error or for outliers—and reduce the
problem to some fragment of quadratic programming. We
point out that the problem is also related to that of finding a
minimum bounding sphere to distinguish/discriminate a set
of objects (i.e., one-class classification) (Tax & Duin, 1999),
which is, in turn, inspired by the Support Vector Machine
models introduced in (Vapnik, 1995).

The hypersphere classification of real-valued low-
dimensional data has also been studied in the context

of point separability within the field of computational
geometry. In particular, the separability of two sets of points
in R2 by a circle was studied by O’Rourke, Kosaraju and
Megiddo (1986), who established the linear-time tractability
of that case. They also observed that their result could be
lifted to an O(nd)-time algorithm for the separability of
n d-dimensional data points by a hypersphere; however
this is superseded by the nO(1)-time algorithm observed
in Proposition 1, which runs in polynomial time even
for unbounded values of d. Several authors also studied
related point-separation problems in R2 and R3, such
as separability of points via polyhedra (Megiddo, 1988),
L-shapes (Sheikhi et al., 2015) and a variety of other
objects (Agarwal et al., 2006; Alegrı́a et al., 2022).

2. Preliminaries
For ` ∈ N, we write [`] for {1, . . . , `}. For convenience,
we identify each vector ~v = (v1, . . . , vd) with the point
(v1, . . . , vd) in d-dimensional space.

Problem Definition and Terminology. For two vectors
~a,~b ∈ {0, 1}d, we denote by δ(~a,~b) the Hamming distance
between ~a and ~b. For a vector ~v ∈ {0, 1}d and r ∈ N,
denote by B(~v, r) the hypersphere (i.e., ball) centered at ~v
and of radius r; that is, the set of all vectors ~x ∈ {0, 1}d
satisfying δ(~v, ~x) ≤ r. Similarly, for vectors over [0, 1]d we
denote by B(~v, r) the hypersphere (i.e., ball) centered at ~v
and of radius r with respect to the Euclidean distance in Rd.

The problem under consideration in this paper is defined as
follows:

BINARY HYPERSPHERE CLASSIFICATION (BHC)

Input: A set V = VR∪VB of d-dimensional vectors
over the binary domain D = {0, 1}, where
VR ∩ VB = ∅.

Question: Is there a vector ~c ∈ Dd and r ∈ N such
that VB ⊆ B(~c, r) and VR ∩B(~c, r) = ∅?
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Throughout the paper, we will refer to the vectors in VR
as “red” and those in VB as “blue”. We also denote by
1(~v) the set of all coordinates i such that ~v[i] = 1 and we
write con(~v) for the conciseness of ~v, i.e., con(~v) = |1(~v)|.
Moreover, observe that the Hamming distance δ(~v,~c) of two
vectors ~v and ~c can be written as δ(~v,~c) = |1(~c)|+ |1(~v)|−
2|1(~v) ∩ 1(~c)|.

Naturally, one may also consider the analogous problem of
REAL-VALUED HYPERSPHERE CLASSIFICATION, where
the only distinction is that the domain is [0, 1] instead of
{0, 1}. As mentioned in the introduction, this problem can
be shown to be polynomial-time solvable and hence is not
considered further in our complexity-theoretic analysis.

Proposition 1. REAL-VALUED HYPERSPHERE CLASSIFI-
CATION can be solved in polynomial time.

Parameterized Complexity. In parameterized algorith-
mics (Flum & Grohe, 2006; Downey & Fellows, 2013; Cy-
gan et al., 2015) the running-time of an algorithm is studied
with respect to a parameter k ∈ N0 and input size n. The
basic idea is to find a parameter that describes the structure
of the instance such that the combinatorial explosion can
be confined to this parameter. In this respect, the most fa-
vorable complexity class is FPT(fixed-parameter tractable)
which contains all problems that can be decided by an algo-
rithm running in time f(k) ·nO(1), where f is a computable
function. Algorithms with this running-time are called fixed-
parameter algorithms. A less favorable outcome is an XP
algorithm, which is an algorithm running in time O(nf(k));
problems admitting such algorithms belong to the class XP.

Showing that a parameterized problem is hard for the
complexity classes W[1] or W[2] rules out the existence
of a fixed-parameter algorithm under well-established
complexity-theoretic assumptions. Such hardness results are
typically established via a parameterized reduction, which
is an analogue of a classical polynomial-time reduction with
two notable distinctions: a parameterized reduction can run
in time f(k) · nO(1), but the parameter of the produced
instance must be upper-bounded by a function of the param-
eter in the original instance.

Treewidth. A nice tree-decomposition T of a graph G =
(V,E) is a pair (T, χ), where T is a tree (whose vertices are
called nodes) rooted at a node tr and χ is a function that
assigns each node t a set χ(t) ⊆ V such that the following
hold:

• For every uv ∈ E there is a node t such that u, v ∈
χ(t).

• For every vertex v ∈ V , the set of nodes t satisfying
v ∈ χ(t) forms a subtree of T .

• |χ(`)| = 0 for every leaf ` of T and |χ(tr)| = 0.
• There are only three kinds of non-leaf nodes in T :

– Introduce node: a node t with exactly one child
t′ such that χ(t) = χ(t′) ∪ {v} for some vertex
v 6∈ χ(t′).

– Forget node: a node t with exactly one child
t′ such that χ(t) = χ(t′) \ {v} for some vertex
v ∈ χ(t′).

– Join node: a node t with two children t1, t2 such
that χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is the size of
a largest set χ(t) minus 1, and the treewidth of the graph
G, denoted tw(G), is the minimum width of a nice tree-
decomposition of G.

We let Tt denote the subtree of T rooted at a node t, and use
χ(Tt) to denote the set

⋃
t′∈V (Tt)

χ(t′) andGt to denote the
graph G[χ(Tt)] induced by the vertices in χ(Tt). Efficient
fixed-parameter algorithms are known for computing a nice
tree-decomposition of near-optimal width:
Proposition 2 (Kloks 1994; Korhonen 2021). There ex-
ists an algorithm which, given an n-vertex graph G and
an integer k, in time 2O(k) · n either outputs a nice tree-
decomposition ofG of width at most 2k+1 andO(n) nodes,
or determines that tw(G) > k.

Constraint Satisfaction Problems. Let D = {0, 1} and
let n an integer. An n-ary relation on D is a subset of Dn.
An instance I of a Boolean constraint satisfaction problem
(CSP) is a pair (V,C), where V is a finite set of variables
and C is a set of constraints. A constraint c ∈ C consists
of a scope, denoted by V (c), which is an ordered list of a
subset of V , and a relation, denoted by R(c), which is a
|V (c)|-ary relation on D; |V (c)| is the arity of c.

A solution to a CSP instance I = (V,C) is a mapping
τ : V → D such that 〈τ(v1), . . . , τ(v|V (c)|)〉 ∈ R(c) for
every c ∈ C with V (c) = 〈v1, . . . , v|V (c)|〉. A CSP instance
is satisfiable if and only if it has at least one solution.

3. NP-hardness of BHC Restricted to Two
Red or Blue Vectors

In this section, we show that BHC remains NP-hard even
when one of the two sets (VB or VR) has size at most two.
In particular, let us denote by 2RED-BHC the restriction
of BHC to instances in which the number of red vectors is
two (i.e., |VR| = 2), and by 2BLUE-BHC the restriction of
BHC to instances in which the number of blue vectors is
two (i.e., |VB| = 2).
Theorem 3. 2RED-BHC and 2BLUE-BHC are NP-
complete.

Proof Sketch. Proving membership in NP is straightfor-
ward and is omitted. We begin with the following problem,
which is known to be NP-hard (Frances & Litman, 1997):
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Minimum Radius (MR)

Input: A set V of (2n)-dimensional binary vectors
where n ∈ N.

Question: Is there a (2n)-dimensional center vector ~c
such that V ⊆ B(~c, n)?

Denote by Rest-MR the restriction of MR to instances in
which V contains the (2n)-dimensional all-zero vector ~02n
and we ask for a center vector ~c that contains exactly n
ones. We first show that Rest-MR remains NP-hard via a
polynomial-time Turing-reduction from MR to Rest-MR.

At this point, to complete the proof of the theorem it suf-
fices to exhibit a polynomial-time reduction from Rest-MR
to 2RED-BHC (an analogous reduction is also be used
for 2BLUE-BHC). Given an instance V of Rest-MR, we
construct an instance V + of 2Red-BHC such that V is
a Yes-instance of Rest-MR if and only if V + is a Yes-
instance of 2RED-BHC. Without loss of generality, we
may assume that (the (2n)-dimensional all 1’s vector)
~12n ∈ V since V is a Yes-instance of Rest-MR if and
only if V ∪ {~12n} is. The previous statement is true since
~02n ∈ V ⊆ B(~c, n), where ~c contains exactly n 1’s, if and
only if (V ∪ {~12n}) ⊆ B(~c, n).

To construct V +, we extend each (2n)-dimensional vec-
tor ~v ∈ V by adding two coordinates, that we refer to
as coordinates q2n+1 and q2n+2, and setting their values
to 0 and 1, respectively; let ~v+ denote the extension of
~v. Let Vb be the resulting set of (extended) vectors from
V , and let Vr = {~02n+2,~12n+2}, where ~02n+2,~12n+2 are
the (2n + 2)-dimensional all-zero and all-one vectors, re-
spectively. Finally, let V + = Vb ∪ Vr. We can now show
that V is a Yes-instance of Rest-MR if and only if V + is a
Yes-instance of 2Red-BHC.

4. Basic Parameterizations for BHC
We follow up on Theorem 3 by considering the two remain-
ing obvious parameterizations of the problem, notably d and
|V |. The former case is trivial since it bounds the size of the
input.

Observation 4. BHC is FPT parameterized by d.

Next, we give a fixed-parameter algorithm for BHC param-
eterized by the total number of vectors.

Theorem 5. BHC is FPT parameterized by the number of
red vectors plus blue vectors.

Proof Sketch. Let k be the total number of red vectors plus
blue vectors. For convenience, we will consider the matrix
representation of the input, in which the vectors are repre-
sented as the rows of a matrix M . Observe that, since there
are k rows of binary coordinates in M , the total number of

different column configurations of M is at most 2k. The
idea behind the fixed-parameter algorithm is to encode the
problem as an instance of an Integer Linear Program (ILP)
with 2k+1 variables—two for every column type. One such
variable will capture the number of “1”s the center uses in
the columns belonging to that type, while the other simply
captures the number of “0”s of the center in these columns.
The main reason why this suffices is that the exact positions
of these “0”s and “1”s within these column types is irrel-
evant when considering the distance between an arbitrary
point and a center. The constraints simply ensure that the
distance between the center and each blue point is strictly
smaller than the distance between the center and each red
point.

It is well known that such an ILP instance can then
be solved in FPT time using the classical result of
Lenstra (H. W. Lenstra, 1983; Kannan, 1987; Frank & Tar-
dos, 1987). Once the coordinates of the desired (hyper-
sphere) center have been determined, the radius of the hy-
persphere can be set as the maximum Hamming distance
between the center and the blue vectors in M .

5. The Complexity of BHC with Conciseness
In this section, we perform a detailed analysis of the com-
plexity of BHC with respect to conciseness. We will distin-
guish between data conciseness and explanation conciseness.
Data conciseness is the maximum number of 1’s appearing
in any red or blue vector of the instance I and is denoted
dcon(I); that is, dcon(I) = max~v∈VR∪VB con(~v). The ex-
planation conciseness on the other hand is the maximum
number of 1’s appearing in the sought-after vector ~c. To
capture this aspect of the problem, we define a new version
of BHC that imposes a bound econ on the explanation con-
ciseness of the vector ~c. Formally, let EC-BHC be defined
analogously to BHC, but where we are additionally given
an integer econ and the question is whether there exists a
vector ~c ∈ Dd of conciseness at most econ and r ∈ N such
that VB ⊆ B(~c, r) and VR ∩B(~c, r) = ∅.

5.1. Data Conciseness

In this subsection, we analyse the parameterized complex-
ity of BHC parameterized by the conciseness of the data
dcon(I). We start by showing that instances I satisfying
dcon(I) ≤ 3 can be solved in polynomial-time.

Theorem 6. The restriction of BHC to instances I satisfy-
ing dcon(I) ≤ 3 can be solved in time O(|V |d).

Proof Sketch. The main idea behind the algorithm is a case
distinction based on the minimum distance Mr of any red
vector from a solution vector ~c. Note first that if we fix a
solution ~c for I , then |1(~v)| − 2|1(~v) ∩ 1(~c)| can be used
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instead of the Hamming distance to compare the distances
of two vectors from ~c. Altogether, we obtain four cases for
Mr = min~r∈Vr

|1(~r)| − 2|1(~r) ∩ 1(~c)| , i.e., (1) Mr ≤ −1,
(2) Mr = 0, (3) Mr = 1, and (4) Mr ≥ 2. While (1)
and (4) are trivial to solve, (2) and (3) are solved via a
reduction to a Boolean CSP instance that can be solved in
polynomial-time because its relational language is closed
under a majority operation. To illustrate the ideas for (1),
note that if Mr ≤ −1, then it is easy to show that any
solution vector must be 1 on all coordinates that has a 1
for any blue vector. But this means that the instance has a
solution if and only if the vector ~c that is 1 at all coordinates
in

⋃
v∈VB

1(~v) and otherwise 0 is a solution for I; this is
because setting the coordinates outside of

⋃
v∈VB

1(~v) to 1
only reduces the distance of ~c to vectors in VR.

We now show that BHC is already NP-complete for in-
stances with dcon(I) ≥ 4; in fact, this holds even when
restricted to the class of instances where dcon(I) is pre-
cisely 4.

Theorem 7. BHC is NP-complete even when restricted to
instances I satisfying dcon(I) = 4.

We prove Theorem 7 via a reduction from the CSP problem
using a constraint language Γ4 that is NP-hard by Schaefer’s
theorem (Schaefer, 1978; Chen, 2009). Γ4 is the Boolean
constraint language containing the following two Boolean
4-ary relations: the red relation RR containing all tuples
having at most 2 ones and the blue relation RB containing
all tuples having at least 3 ones.

Lemma 8. CSP(Γ4) is NP-complete.

With Lemma 8 in hand, we establish Theorem 7 by de-
signing a polynomial-time reduction from CSP(Γ4). We
note that, as mentioned already in the proof of Theorem 3,
inclusion in NP is trivial.

Proof Sketch for Theorem 7. Let I = (V,C) be the given
instance of CSP(Γ4). We denote by Cr/Cb the set of
all constraints c in C with R(c) = RR/R(c) = RB;
note that C = Cr ∪ Cb. We will construct the instance
I ′ = (VR, VB, d) of BHC as follows. First, we introduce
one coordinate dv for every variable v ∈ V . Moreover, for
every constraint c ∈ Cr, we introduce the red vector ~rc that
is 1 on all coordinates that correspond to variables within
the scope of c and is 0 otherwise, i.e., ~rc is 1 exactly on the
coordinates in { dv | v ∈ S(c) } and 0 at all other coordi-
nates. Similarly, for every constraint c ∈ Cb, we introduce
the blue vector~bc that is 1 on all coordinates that correspond
to variables within the scope of c and 0 otherwise.

Finally, we will introduce two gadgets which will enforce
that in every solution ~c of I ′, it holds that:

(1) there is a red vector ~r ∈ VR such that ~c is 1 on at least
two coordinates, where ~r is also 1; and

(2) there is a blue vector~b ∈ VB such that ~c is not 1 on all
coordinates where~b is 1.

Towards enforcing (1), we add two new blue vectors ~vb1 and
~vb2 together with 8 new coordinates db1, . . . , d

b
8 such that ~vb1

is 1 exactly at the coordinates db1, . . . , d
b
4 and ~vb2 is 1 exactly

at the coordinates db5, . . . , d
b
8. Moreover, for every i and j

with 1 ≤ i < j ≤ 8, we introduce a red vector vrij that is
1 exactly at the coordinates ci and cj plus two additional
fresh coordinates.

Towards enforcing (2), we add one new blue vector ~ubi
together with four fresh coordinates ei1, . . . , e

i
4 for every

i with 1 ≤ i ≤ 4 such that ~ubi is 1 exactly on the coordinates
ei1, . . . , e

i
4. Finally, we add one new red vector ~ur that is 1

exactly at the coordinates e11, e21, e31, and e41.

We can now complete the proof by showing the equiva-
lence between the original instance I of CSP(Γ4) and the
constructed instance I ′ of BHC.

5.2. Data Conciseness Plus |VR| or |VB|

Here we show that if in addition to the input conciseness
one also parameterizes by the minimum of the numbers
of red vectors and blue vectors, then BHC becomes fixed-
parameter tractable.

Theorem 9. BHC is fixed-parameter tractable parameter-
ized by dcon(I) + min{|VB|, |VR|}.

Proof. Let I = (VR, VB, d) be the given instance of BHC.
It suffices to show that BHC is fixed-parameter tractable
parameterized by dcon(I) + |VB| and also by dcon(I) +
|VR|. To avoid any confusion, we remark that it is well
known (and easy to see) that establishing fixed-parameter
tractability w.r.t. the sum α+β of two numbers is equivalent
to establishing fixed-parameter tractability w.r.t. the product
α · β of the same numbers.

The main observation behind the algorithm (for the case
dcon(I)+|VB|) is that the total number of coordinates, where
any blue vector can be 1 is at most |VB|dcon(I); let B =⋃
~b∈VB

1(~b) be the set of all those coordinates. Since any
solution ~c can be assumed to be 0 at any coordinate outside
ofB, we can solve I by “guessing” (i.e., branching to find) a
solution in time O(2dcon(I)|VB||V |d). More specifically, for
every subset B′ of the at most 2dcon(I)|VB| subsets of B, we
check in timeO(|V |d) whether the vector ~c that is 1 exactly
at the coordinates in B′ is a solution for I . If one of those
vectors is a solution, then we output it, otherwise we can
correctly return that I is a No-instance.

The algorithm for the case where we parameterize by
dcon(I) + |VR| is almost identical with the only difference
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being the observation that the set R =
⋃
~r∈VR

1(~r) has size
at most 2dcon(I)|VR| and that any solution ~c can be assumed
to be 1 at every coordinate in R.

5.3. Explanation Concisness

Recall that EC-BHC is defined analogously as BHC, but
one is additionally given an integer econ and is asked for a
solution~c for BHC with conciseness at most econ. Note that
a simple brute-force algorithm that enumerates all potential
solution vectors~cwith at most econ 1’s shows that EC-BHC
is in XP parameterized by econ.

Observation 10. EC-BHC can be solved in time
O(decon|V |d).

Therefore, it becomes natural to ask whether this can be
improved to fixed-parameter tractability. The following two
theorems show that this is unlikely to be the case, even if
we additionally assume |VB| = 1 or |VR| = 1.

Theorem 11. EC-BHC is W[2]-hard parameterized by the
conciseness econ of the solution even if |VR| = 1.

Proof Sketch. We provide a parameterized reduction from
the UNIFORM HITTING SET problem, which given a set U
of elements, a family F ⊆ 2U of subsets of U with |F | = `
for every F ∈ F and an integer k, asks whether F has a
hitting set H ⊆ U of size at most k, i.e., H ∩ F 6= ∅ for
every F ∈ F . UNIFORM HITTING SET is W[2]-complete
parameterized by k (Downey & Fellows, 2013).

Let I = (U,F , k) be an instance of UNIFORM HITTING
SET with sets of size `. We construct an equivalent in-
stance I ′ = (VR, VB, d, econ) of EC-BHC as follows. We
set econ = k. For every u ∈ U , we introduce the (ele-
ment) coordinate du and for every i with 1 ≤ i ≤ `, we
introduce the (dummy) coordinate d′i. Moreover, for every
F ∈ F , we add the blue vector ~bF to VB, which is 1 on
all coordinates du with u ∈ F and 0 at all other coordi-
nates. Finally, we introduce the red vector ~r that is 1 at
all dummy coordinates d′i and 0 at all element coordinates.
This completes the construction of I ′, which can clearly be
achieved in polynomial-time.We can now show that I is a
Yes-instance of UNIFORM HITTING SET if and only if I ′ is
a Yes-instance of EC-BHC.

Theorem 12. EC-BHC is W[1]-hard parameterized by the
conciseness econ of the solution even if |VB| = 1.

Proof Sketch. We will provide a parameterized reduction
from the MULTI-COLORED INDEPENDENT SET problem,
which given an undirected graph G = (V,E), where V
is partitioned into k vertex sets V1, . . . , Vk with |Vi| = n
and G[Vi] is a clique and an integer k, asks whether G
has an independent set of size at least k; note that such an

independent set must contain exactly one vertex from each
Vi. MULTI-COLORED INDEPENDENT SET is well-known
to be W[1]-complete (Downey & Fellows, 2013).

Let I = (G,V1, . . . , Vk, k) be an instance of MULTI-
COLORED INDEPENDENT SET with |Vi| = n and V =⋃k
i=1 Vi. We construct an equivalent instance I ′ =

(VR, VB, d, econ) of EC-BHC as follows. We set econ = k.
For every v ∈ V , we introduce the (vertex) coordinate
dv and for every i with 1 ≤ i ≤ nk − 2k + 1, we in-
troduce the (dummy) coordinate d′i. Moreover, for every
e = {u, v} ∈ E(G), we add the red vector ~re to VR, which
is 1 on the coordinates du and dv as well as the coordinate
d′i for every i with 1 ≤ i ≤ nk − 2k + 1. We also add
the red vector ~r to VR that is 1 at the coordinates d′i with
1 ≤ i ≤ nk − 2k + 1. Finally, we introduce the blue vector
~b that is 1 at all vertex coordinates dv and 0 at all dummy co-
ordinates. This completes the construction of I ′, which can
clearly be achieved in polynomial-time. We can now show
that I is a Yes-instance of MULTI-COLORED INDEPENDENT
SET if and only if I ′ is a Yes-instance of EC-BHC.

5.4. Data and Explanation Conciseness

As our final result in this section, we show that EC-BHC is
fixed-parameter tractable when parameterized by data and
explanation conciseness combined.

Theorem 13. EC-BHC can be solved in time
O(dcon(I)econ|V |d) and is therefore fixed-parameter
tractable parameterized by econ + dcon.

Proof. Let I = (VR, VB, d, econ) with V = VR ∪ VB be the
given instance of EC-BHC. The main idea behind the algo-
rithm is as follows. We start by initializing the solution vec-
tor ~c to the all-zero vector. We then check in time O(|V |d)
whether ~c is already a solution. If so, we are done. Other-
wise, there must exist a red vector ~r ∈ VR and a blue vector
~b ∈ VB such that δ(~r,~c) ≤ δ(~b,~c) and therefore: |1(~r)| +
|1(~c)|−2|1(~r)∩1(~c)| ≤ |1(~b)|+ |1(~c)|−2|1(~b)∩1(~c)|, or
in short |1(~r)| − 2|1(~r)∩ 1(~c)| ≤ |1(~b)| − 2|1(~b)∩ 1(~c)|. It
follows that any vector ~c′ with 1(~c) ⊆ 1(~c′) and δ(~r,~c′) >
δ(~b,~c′) has to be obtained from ~c by flipping at least one
coordinate in B = 1(~b) \ (1(~r) ∪ 1(~c)) from 0 to 1; note
that |B| ≤ dcon(I). We can therefore branch on the coordi-
nates of B, and for every such choice b ∈ B, we continue
with the vector ~c′ obtained from ~c after flipping the coor-
dinate b from 0 to 1. We stop if either we have reached
a solution or if the number of 1’s in the current vector ~c
exceeds the conciseness upper bound econ. In other words,
we can solve the problem using a branching algorithm that
has at most |1(~b)| ≤ dcon(I) many choices per branch, uses
time O(|V |d) per search-tree node, and makes at most econ
branching decisions before it stops. Therefore, the run-time
of the algorithm is O(dcon(I)econ|V |d).
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6. A Treewidth-Based Algorithm for BHC
Let the incidence graph GI of an instance I = (VR, VB, d)
of BHC be the bipartite graph defined as follows. First of
all, V (GI) = VR ∪ VB ∪ [d]. As for the edge set, there is
an edge ~vc ∈ E(GI) between a vector ~v ∈ VR ∪ VB and
a coordinate c ∈ [d] if and only if c ∈ 1(~v). We identify
the vertices of GI with the vectors in VR ∪ VB and the
coordinates in [d]. That is, for a set of vertices X in GI , we
often say “vectors in X” or “coordinates in X” to mean the
vectors/the coordinates associated with the vertices in X .

This section is dedicated to proving the following technical
theorem, which implies all the claimed tractability results
concerning the treewidth of the incidence graph:
Theorem 14. Given an instance I = (VR, VB, d) of
BHC and a nice tree-decomposition T = (T, χ) of
GI of width w, there is an algorithm solving I in time
(2 min{econmin, dcon(I)})2w+2 · (|V | + d)O(1), where
econmin is the minimum conciseness of any center. More-
over, if I is Yes-instance, then the algorithm outputs a center
with conciseness econmin and minimum radius among all
such centers.

Proof Sketch. We begin by enumerating each choice of
center conciseness λ = 0, 1, 2, . . . , d and radius r =
0, 1, 2, . . . , d, and aim to construct a solution with exactly
this conciseness and radius. The algorithm is a bottom-up
dynamic programming along the nice tree-decomposition
T . We first describe the records that we need to com-
pute for every node t of T . Given the description of the
records, we need to show that for each of the node types
(i.e., leaf/introduce/forget/join), we can compute the records
from the records of their children. Finally, we need to also
show that given the records for the root node of the tree-
decomposition, we can decide whether I is a Yes-instance
and if so output a center vector ~c such that |1(~c)| = λ,
VB ⊆ B(~c, r), and VR ∩B(~c, r) = ∅.

We begin by describing the record Γt for each node t ∈ T .
We can think about Γt as a map that maps a tuple C =
(cpast, cfuture, Cbag, Vbag) ∈ N×N× 2χ(t) ×N|χ(t)| to either
a vector ~ct = {0, 1}d with con(~ct) = λ or ⊥. The intuition
behind the record is that the tuple (cpast, cfuture, Cbag, Vbag) is
mapped to an arbitrary vector ~ct such that

1. cpast is the number of non-zero coordinates of ~ct on
already “forgotten” coordinates, i.e., cpast = |1(~ct) ∩
χ(Tt) \ χ(t)|;

2. cfuture is the number of non-zero coordinates of ~ct on
coordinates that are not yet introduced, i.e., cfuture =
|1(~ct) ∩ [d] \ χ(Tt)|;

3. Cbag = 1(~ct) ∩ χ(t);
4. Vbag contains, for every vector ~v ∈ χ(t), the number

of ones on ”forgotten” coordinates in 1(~ct), that is
Vbag(~v) = |1(~ct) ∩ 1(~v) ∩ (χ(Tt) \ χ(t))|;

5. no forgotten red vector is at distance at most r from ~ct,
i.e., VR ∩ (χ(Tt) \ χ(t)) ∩B(~ct, r) = ∅; and

6. all forgotten blue vectors are at distance at most r from
~ct, i.e., (VB ∩ (χ(Tt) \ χ(t))) ⊆ B(~ct, r).

We say that a vector ~ct that satisfies all the above properties
is compatible with (cpast, cfuture, Cbag, Vbag) for t. Moreover,
(cpast, cfuture, Cbag, Vbag) is mapped to⊥ if and only if no vec-
tor in {0, 1}d is compatible with (cpast, cfuture, Cbag, Vbag).

First note that if t is the root node, then χ(t) is empty and
χ(Tt) \ χ(t) contains all vectors in the instance. Hence, if
any tuple is mapped to a vector in the root, then the vector
is a solution by properties 5 and 6 above.

We say that a tuple C = (cpast, cfuture, Cbag, Vbag) is achiev-
able for Γt if the following holds:

• cpast + cfuture + |Cbag| = λ; and
• for all vectors ~v ∈ χ(t): Vbag(~v) ≤ min{λ, |1(~v) ∩

(χ(Tt) \ χ(t))|}.

Note that if C is not achievable for Γt, then no vector with
conciseness λ can be compatible with C. Hence, the table Γt
will only contain the achievable tuples for Γt. We observe
that |Γt| ≤ λ2 ·2χ(t) · (min{λ, dcon(I)})|χ(t)|. We can now
compute the records in a leaf-to-root fashion at each of the
four different types of nodes in T .

Combining Theorem 14 and Proposition 2, we get the fol-
lowing three corollaries:

Corollary 15. BHC and EC-BHC are in XP parameter-
ized by tw(GI).

Corollary 16. EC-BHC is fixed-parameter tractable pa-
rameterized by tw(GI) + econ.

Corollary 17. BHC and EC-BHC are fixed-parameter
tractable parameterized by tw(GI) + dcon(I).

7. Concluding Remarks
In this paper, we studied hypersphere classification prob-
lems from a parameterized complexity perspective, focus-
ing strongly on conciseness. We considered conciseness in
terms of the sought-after explanation and in terms of the
feature vectors in the training data. Our algorithmic and
lower-bound results draw a comprehensive complexity map
of hypersphere classification. This map pinpoints the exact
complexity of the various combinations of parameters which
can either measure the structural properties of the input data
or the conciseness of data or explanations.

All our lower and upper complexity bounds are essentially
tight, with a single exception: While we show that hyper-
sphere classification without conciseness restrictions is XP-
tractable when parameterized by treewidth alone, whether
the problem is fixed-parameter tractable or W[1]-hard under
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this parameterization is left open.

Finally, we remark that all our results carry over to the
case where one aims to find a minimum-radius separating
hypersphere (instead of merely deciding whether one exists)
that classifies the training data. This problem has also been
extensively studied (Cooper, 1962; Wang et al., 2007; 2005;
Astorino & Gaudioso, 2009; Astorino et al., 2016).
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