
E(n) Equivariant Message Passing Simplicial Networks

Floor Eijkelboom 1 Rob Hesselink 1 Erik Bekkers 1

Abstract

This paper presents E(n) Equivariant Message
Passing Simplicial Networks (EMPSNs), a novel
approach to learning on geometric graphs and
point clouds that is equivariant to rotations, trans-
lations, and reflections. EMPSNs can learn high-
dimensional simplex features in graphs (e.g. tri-
angles), and use the increase of geometric in-
formation of higher-dimensional simplices in an
E(n) equivariant fashion. EMPSNs simultane-
ously generalize E(n) Equivariant Graph Neural
Networks to a topologically more elaborate coun-
terpart and provide an approach for including geo-
metric information in Message Passing Simplicial
Networks, thereby serving as a proof of concept
for combining geometric and topological infor-
mation in graph learning. The results indicate
that EMPSNs can leverage the benefits of both
approaches, leading to a general increase in perfor-
mance when compared to either method individu-
ally, being on par with state-of-the-art approaches
for learning on geometric graphs. Moreover, the
results suggest that incorporating geometric in-
formation serves as an effective measure against
over-smoothing in message passing networks, es-
pecially when operating on high-dimensional sim-
plicial structures.

1. Introduction
The use of symmetry as an inductive bias in deep-learning
models has been critical for the recent developments in
areas such as drug repositioning (Zitnik et al., 2018), protein
biology (Gligorijević et al., 2021), healthcare (Cosmo et al.,
2020), and traffic forecasting (Derrow-Pinion et al., 2021),
among many others. One notable example of architectures
exploiting symmetry constraints are graph neural networks
(GNNs) (Scarselli et al., 2008). Graphs lend themselves as
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useful descriptors for data that live on an irregular domain,
such as molecules, meshes, or social networks. One of the
most common types of GNNs is Message Passing Neural
Networks (MPNNs) (Gilmer et al., 2017), where adjacent
nodes send messages to each other and update their hidden
representation accordingly.

MPNNs can be considered a differentiable and parameter-
ized counterpart of the 1-dimensional Weisfeiler-Lehman
test (1-WL) on graphs (Xu et al., 2018), where the features
of the nodes describe the colors and adjacency relations
are defined by the edges of the graph (see Kipf & Welling
(2016)). As a consequence, MPNNs are at most as ex-
pressive as the 1-WL and will give equal predictions to
non-isomorphic graphs that are not distinguished by 1-WL.
Therefore, such models are limited in learning higher di-
mensional graph structures such as cliques, as also explored
in Chen et al. (2020). One solution to this limitation is
considering higher-dimensional simplices in the graph as
learnable features (Bodnar et al., 2021), thereby consid-
ering a topologically more elaborate space. Allowing for
higher-dimensional features allows MPNNs to distinguish
more graph isomorphisms than can be distinguished with
the 1-WL test/standard MPNNs. The increased expressivity
using higher-dimensional simplicial structures has also been
explored in Morris et al. (2019).

Many real-life problems have a natural symmetry to trans-
lations, rotations, and reflections (that is, to the Euclidean
group E(n)), such as object recognition or predicting molec-
ular properties (Ramakrishnan et al., 2014). Many ap-
proaches leveraging these extra symmetries have been pro-
posed, such as Tensor Field Networks (Thomas et al., 2018),
SE(3) Transformers (Fuchs et al., 2020), E(n) Equivariant
Graph Neural Networks (Satorras et al., 2021), among oth-
ers. In contrast to using a more elaborate topology, these
methods use the underlying geometry of the space in which
the graph is positioned to improve expressivity. Even though
these methods improve greatly from incorporating geomet-
ric information, they are still limited in their expressivity
by not being able to explicitly learn higher-dimensional
features explicitly present in the graph.

We present E(n) Equivariant Message Passing Simplicial
Networks (EMPSNs), an E(n) equivariant formulation of
Simplicial Message Passing Networks as introduced by Bod-
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nar et al. (2021). This work serves as a proof of concept for
combining geometric and topological graph approaches to
leverage both benefits. We provide the following contribu-
tions:

• We provide a generalization of E(n) Equivariant Graph
Neural Networks (EGNNs) which can learn features
on simplicial complexes. This approach incorporates
more E(n) invariant information in the message pass-
ing procedure inspired by DimeNet-like architectures
(Gasteiger et al., 2020).

• We experimentally show that the use of higher-
dimensional simplex learning improves performance
compared to EGNNs and MPSNs, without requiring
more parameters. This improvement is also found in
datasets with few higher-dimensional simplices. We
finally show that EMPSNs are competitive with state-
of-the-art approaches on graphs, as illustrated in the
N-body experiment and QM9. We also show that this
improvement is obtained without a much greater for-
ward time than other existing approaches.

• We show that the performance of EMPSNs scales with
the size and dimension of the simplicial complex, con-
trary to standard MPSNs. Moreover, the results in-
dicate that incorporating geometric information is an
effective approach to combating over-smoothing in
graph networks in all dimensions.

2. Background
In this section, we introduce the relevant definitions of equiv-
ariant and topological message passing.

Equivariance In mathematics, the symmetries of an ob-
ject are formalized using groups. Let G be a group and let
X and Y be sets on which a group action of G is defined.
A function f : X → Y is called equivariant to G when f
commutes with the group action, i.e. when doing a transfor-
mation according to g ∈ G and then evaluating the function
gives the same result as first evaluating the function and
then doing the transformation. Such a function is called
invariant to G if computing the function on a transformed
element yields the same outcome as computing the function
in the untransformed element. Observe that invariance is
therefore a specific type of equivariance. Formally, these
properties can be described as

equivariance: f(g · x) = g · f(x),
invariance: f(g · x) = f(x),

for all g ∈ G, x ∈ X , where G acts both on the the input
and output space. Enforcing equivariance in models has the
advantage that no information will be lost when the model

input is transformed, guaranteeing more stable predictions
under predefined symmetries.

Message passing Message passing neural networks
(MPNNs) are an influential class of graph networks pro-
posed by Gilmer et al. (2017). Let G = (V, E) be a graph
consisting of nodes V and edges E . Suppose that each node
vi ∈ V and edge eij ∈ E has an associated node feature
fi ∈ Rcn and edge feature aij ∈ Rce respectively, for some
dimensionalities cn, ce ∈ N>0. In message passing, the
hidden states of the nodes are iteratively updated by:

Find messages from vj to vi : mij = ϕm(fi, fj , aij)

Aggregate messages to vi : mi = Agg
j∈N (i)

mij

Update hidden state fi : f′i = ϕf (fi,mi),

where N (i) represents the set of neighbours of node vi, the
aggregation Agg is any permutation invariant function over
the neighbours (e.g. summation), and ϕm and ϕf are com-
monly parameterised by multilayer perceptrons (MLPs). To
get a hidden state representing the entire graph, a permuta-
tion invariant aggregator is applied to all final hidden states
of the nodes.

Equivariant message passing networks In some applica-
tions, the nodes in our graph are embedded in some Eu-
clidean space forming a geometric graph. This spatial
information can be incorporated in the message passing
framework to account for physical information as seen in
Thomas et al. (2018), Fuchs et al. (2020), Fuchs et al. (2021),
Klicpera et al. (2020), Gasteiger et al. (2021), Brandstetter
et al. (2021).

A common model used on geometric graphs is the E(n)
Equivariant Graph Neural Network (EGNN), which aug-
ments the message passing formulation to use the positional
information while being equivariant to E(n) (Satorras et al.,
2021). To exploit the geometric information in an E(n)
equivariant fashion in message passing, the message func-
tion is conditioned on E(n) invariant information, e.g. the
distance between two nodes. In the message passing frame-
work, the first step is hence changed as follows:

mij = ϕm(fi, fj , Inv(xi, xj), aij),

for some function Inv that computes invariant attributes
from the geometric quantities xi and xj in an E(n) invariant
fashion, i.e.

Inv(g · xi, g · xj) = Inv(xi, xj),

for all g ∈ E(n). Moreover, in each layer the position of the
nodes is updated in an equivariant fashion as follows:

x′i = xi + C
∑
j ̸=i

(xi − xj)ϕx(mij),
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Figure 1. Example of graph lifted to simplicial complex.

for some MLP ϕx and constant C. This positional update is
typically unused for E(n)-invariant tasks such as predicting
the internal energy of a molecule.

Simplicial complexes In geometry, a simplex is the gener-
alization of triangles to other dimensions. Where a triangle
(2-simplex) is formed by a set of 3 fully connected points
in space, an n-simplex is formed by a fully connected set
of n + 1 points. Examples of n-simplices are points (0-
simplices), lines (1-simplices), and tetrahedra (3-simplices).
To assign features to higher-dimensional simplices in our
graph, a generalized notion of graphs called abstract simpli-
cial complexes is considered.

An abstract simplicial complex (ASC) K is a collection of
non-empty finite subsets of some set V such that for every
set T ∈ K and any non-empty subset R ⊆ T , it is the case
that R ∈ K. In other words, an ASC is a set of simplices,
such that any lower-dimensional simplex of the simplices
in the ASC is also in the ASC. For example, if a triangle
is part of the complex, then so are its sides and vertices.
Though an ASC is a purely combinatorial object rather than
a geometric one, it provides a natural way to associate a set
of vertices of some graph G to a higher-order structure using
a lifting transformation. The lifting transformation – as
illustrated in Figure 1 – of a graph G is the ASC K with the
property that if nodes {v0, ..., vk} form a clique in G, then
the simplex {v0, ..., vk} ∈ K (see Bodnar et al. (2021) for
more information). By associating features to each simplex,
one can use a more elaborate adjacency structure in the
ASC to do message passing, as will be illustrated in the
next section. Please note that a graph can be regarded as a
1-dimensional simplicial complex, where the nodes are the
0-simplices and the 1-simplices are the edges.

Message passing simplicial networks A simplex σ is on
the boundary of some simplex τ , denoted σ ≺ τ , iff σ ⊂ τ
and there exists no δ such that σ ⊂ δ ⊂ τ. Observe that an
n-dimensional simplex has n+ 1 boundaries if n > 0, e.g.
a triangle has its three sides as boundaries. Message Passing
Simplicial Networks (MPSNs) as introduced in Bodnar et al.
(2021) provides a message passing framework in which
more complex forms of adjacencies between objects in an
ASC are considered. Specifically, the following adjacencies
are distinguished:

1. Boundary adjacencies B(σ) = {τ | τ ≺ σ};

2. Co-boundary adjacencies C(σ) = {τ | σ ≺ τ};

3. Lower-adjacencies N↓(σ) = {τ | ∃δ, δ ≺ τ ∧ δ ≺ σ};

4. Upper-adjacencies N↑(σ) = {τ | ∃δ, τ ≺ δ ∧ σ ≺ δ}.

Please note that if our simplicial complex is a graph, the
upper adjancencies of some node v ∈ V is simply the set of
nodes u that together with v form an edge, i.e.

N↑(v) = {u ∈ V | {v, u} ∈ E}.

Hence, standard GNNs communicate over the upper adja-
cencies of the nodes exclusively.

Similarly to the standard message passing framework, the
messages sent by the neighboring nodes are aggregated.
For example, the boundary message to some simplex σ is
defined as follows:

mB(σ) = Agg
τ∈B(σ)

(ϕB(fσ, fτ )),

for some MLP ϕB. Rather than incorporating just one mes-
sage, there are four message types in the update:

f′σ = ϕf (fσ,mB(σ),mC(σ),mN↓(σ),mN↑(σ)),

where mB(σ),mC(σ),mN↓(σ), and mN↑(σ) are the respec-
tive messages and ϕf is the update MLP. In general, one
can use different update and message MLPs for the different
dimensional simplices. Bodnar et al. (2021) also shows that
this message passing framework is equally expressive when
ignoring the co-boundaries and lower adjacencies. For a
k dimensional simplicial complex K, the hidden state rep-
resenting the entire complex, denoted by hK, is found by
concatenating simplex-invariant aggregation over the final
hidden states:

hK :=

k⊕
i=0

Agg
σ∈K,

|σ|=i+1

hσ,

where ⊕ denotes concatenation.

3. E(n) Equivariant Message Passing
Simplicial Networks

E(n) Equivariant Message Passing Simplicial Networks
(EMPSNs) generalize regular message passing neural net-
works to a E(n) equivariant counterpart on simplicial com-
plexes. This is done in two steps:

1. The input graph is lifted to a simplicial complex. This
is done by either doing a graph lift or constructing a
Vietoris–Rips complex.

3



E(n) Equivariant Message Passing Simplicial Networks

2. To each adjacency a set of E(n) invariant geometric
attributes is assigned based on the communicating sim-
plices. These so-called invariants are based on the
positioning of the different points of the simplices in
space.

In this section, we will go over both steps and illustrate
how the message passing formulation is altered. Note that
the above two steps simply give us a set of neighborhoods
for communication and geometric attributes between them.
As such, our formulation is not restricted to any specific
way of incorporating geometric information, and thus any
geometric graph approach could be used. In this work,
we base our model on EGNN due to its simplicity and
scalability, something on which we reflect a little more in
the future research section.

3.1. Defining the simplicial complex and adjacencies

To leverage the higher-dimensional simplicial structure of
the data, the input graph needs to be lifted to an ASC first.
One of the aspects that make EGNNs highly effective is that
EGNNs can operate on a fully connected graph and learn
the relevance of each message passing connection based on
the distance between the simplices, essentially defining an
attention-like mechanism. Though in theory one could use a
fully connected graph and assign a n-simplex to each clique
of n+ 1 nodes, this approach would be hugely unscalable
as a fully connected graph would have

( |V|
n+1

)
simplices of

dimension n, e.g. a fully connected small graph of 30 nodes
will have 435 edges, 4060 triangles, and 27, 405 tetrahedra.

An alternative is constructing a simplicial complex based
on the distances between the nodes similar to a radius graph.
A common way for defining a simplicial complex as such
is through constructing the Vietoris–Rips complex, which
using some predefined distance δ contains a simplex for
every set of points that lie at most a (Euclidean) distance δ
away from each other. Formally, the Vietoris-Rips complex
for some δ > 0 - denoted VietorisRips(δ) - is constructed
by assigning a simplex so nodes {v1, · · · , vn} ⊆ V if and
only if ||xi − xj || ≤ δ for all 0 ≤ i, j ≤ n. This process is
illustrated in Figure 2. In general, computing the Vietoris-
Rips (VR) complex is exponential in the number of nodes,
i.e. O(2|V|). Hence, in general lifting to an ASC in each
layer would add L such exponential operation in a model of
L layers. In practise, this complexity will not be an issue,
an argued in an analysis of the computational complexity
and choice of construction of the ASC in Appendix A.

An advantage of this approach over the standard graph lift
illustrated in section 2 is that this approach enables higher-
dimensional simplex learning on data that has few higher
dimensional simplices, e.g. molecules. By increasing δ
arbitrarily, we get a fully connected simplicial complex.

Figure 2. Example of Vietoris Rips complex.

This leads to a trade-off between the number of simplices
in the complex and computation time during the message
passing process. Similarly as done in EGNNs, we allow the
model to learn the relative importance of each connection
based on the geometric invariant defined over that adjacency.
Note that as such the initial graph connectivity is lost, as it
is when using EGNNs. Note that if this is undesired, it is
always possible to do a regular graph lift to construct the
ASC.

3.2. Geometric information

Given that the original graph is embedded in some Euclidean
space, it is possible to condition the message passing func-
tion on E(n) invariant geometric information. The usage of
a simplex to describe geometric information is natural, for
considering the distances between set of k points implicitly
defines a k− 1 dimensional simplex which geometry can be
studied. In standard node-to-node communication, the de-
fined simplex is an edge/line segment, and as such the only
E(n) invariant attribute that can be considered is the length
of the edge or any direct derivative of that length. When
considering higher-dimensional simplices, however, there
is more E(n) invariant information than a single distance
one could leverage during message passing. The geometric
information for the upper adjacent relations considered in
this work is explored next.

Volumes Let K be a simplicial complex embedded in
Rn and let ξ ∈ K be a simplex in the complex. If the
dimensionality of ξ is greater than 0, it is possible to assign
a volume to ξ, denoted as Vol(ξ), defining a geometric
invariant intrinsic to the feature. Hence, for each adjacency,
the model is provided both the volume of the sending and
receiving simplex. For some n-dimensional simplex ξ =
{v0, · · · , vn} embedded in Rn, its volume is given by

Vol(ξ) =
1

n!
| det

(
v1 − v0 · · · vn − v0

)
|.

Using Cayley–Menger determinants, also volumes of lower
dimensional simplices in Rn can be computed, but these are
not considered in this paper.
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a

pi

pi

b

Figure 3. Example of different invariants present in upper adjacent
communication between 2-simplices.

Angles Let σ ∈ K be an n-dimensional simplex and let
τ, η ≺ σ be distinct boundaries of σ. Since τ and η are
(n− 1)-dimensional, they both define a hyperplane in Rn

under the assumption that not all points of either boundary
lie on a lower-dimensional plane, where the hyperplanes are
denoted as Hτ , Hη respectively. This allows us to define the
angle between τ and η, denoted as Angle(τ, η) using the
dihedral angle between their respective hyperplanes, i.e.

Angle(τ, η) := arccos
|nτ · nη|
|nτ ||nη|

,

where nτ ,nη denote the normal vectors of Hτ , Hη. This
process can be applied recursively to define new angles.
Using τ as our point of reference, for two distinct bound-
aries δ1, δ2 ≺ τ , the boundaries define hyperplanes in Hτ ,
allowing us to define a new dihedral angle Angle(δ1, δ2)
using their respective normals in Hτ . Note that this does not
define an angle between n-dimensional objects in Rn.

Distances Comparable to EGNNs one can consider all
invariants ||xi − xj || between the points of the simplices.
To make sure that the final set of invariants is permutation
invariant, we aggregate the relevant items in a permutation
invariant fashion. Since two distinct upper adjacent sim-
plices share all but one point, we can divide the relevant
points into 1) the shared points {pi}, 2) the unique point
a which is in the sending simplex but not in the receiving
simplex, and 3) the unique point b which is in the receiving
simplex but not in the sending simplex. This division gives a
way to generate a set of aggregates of geometric information
in an invariant manner:

1. Distances from the pi to a: Aggi ||xpi
− xa||,

2. Distances from the pi to b: Aggi ||xpi − xb||,

3. Distances between the pi: Aggi,j ||xpi
− xpj

||,

4. Distance from a to b: ||xa − xb||,

as illustrated in Figure 3. These distances are then concate-
nated to form a 4-dimensional invariant.

Whereas volume is an invariant that is both applicable for up-
per adjacent communication and boundary communication,
both angles and distances are altered slightly for boundary

Figure 4. Change of invariants after position updates.

communication. For the invariant based on the boundary ad-
jacency τ ≺ σ, we partition and aggregate the set of angles
between all boundaries of σ into 1) a set of angles with τ
and 2) a set of angles without τ to define two aggregates.
Moreover, since τ ⊂ σ, there is no need for distances (1)
and (4). Note that - even though not used in this work - there
is no theoretical limitation to define invariant information
based on equivariant features such as velocities in EGNN,
e.g. for two velocities vi, vj an invariant can be defined by
taking their dot product.

3.3. Equivariant simplicial message passing

Message passing is done analogously to MPNNs, now condi-
tioning each message function on the relevant E(n) invariant
information based on the simplices that are communicated
over. Let Inv(σ, τ) denote the combined invariant as defined
in subsection 3.2. Then, we simply find the aggregated mes-
sage sent to some simplex σ over a specific adjacency (e.g.
boundaries) as follows:

mB(σ) = Agg
τ∈B(σ)

ϕB(fσ, fτ , Inv(σ, τ)).

We then update the features as done in the standard MPSN
formulation. Since in some tasks we care about node pre-
dictions specifically, coboundary communication is always
included - contrary to the only boundary and upper adja-
cent communication - such higher-dimensional geometric
information can reach the nodes as well, allowing for geo-
metrically stronger informed features on the nodes.

Furthermore, to ensure the geometry of the underlying sim-
plices is consistent, only the positions of the nodes are up-
dated. Please note that after each layer hence the invariant
information between simplices might change, as illustrated
in Figure 4. When node positions are not updated - and
hence the architecture is simply E(n) invariant - the model
will be referred to as E(n) Invariant Message Passing Sim-
plicial Networks (IMPSNs).

4. Experiments
For all experiments, the implementation and experimental
details are provided in Appendix B and Appendix C respec-
tively.

QM9 The QM9 dataset (Ramakrishnan et al., 2014) is
a molecular dataset consisting of small molecules contain-

5



E(n) Equivariant Message Passing Simplicial Networks

Table 1. Mean absolute error (MAE) on a subset of QM9 dataset. Relative improvement with respect to EGNNs (gain) is provided for
comparison.

Task α ∆ε εHOMO εLUMO µ Cv G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
SchNet * .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.02
TFN .223 58 40 38 .064 .101 - - - - - -
SE(3)-Tr. .142 53 35 33 .051 .054 - - - - - -
DimeNet++ * .043 32 24 19 .029 .023 7 6 .331 6 6 1.21
SphereNet * .046 32 23 18 .026 .021 8 6 .292 7 6 1.21
PaiNN * .045 45 27 20 .012 .024 7 6 .066 5 5 1.12
SEGNN .060 42 24 21 .023 .031 15 16 .660 12 15 1.62
MPSN .266 153 89 77 .101 .122 31 32 .887 33 33 3.02
EGNN .071 48 29 25 .029 .031 12 12 .106 12 12 1.55

IMPSN .066 37 25 20 .023 .024 6 9 .101 7 10 1.37
Gain 7% 23% 14% 20% 26% 23% 50% 25% 4% 42% 17% 12%

ing at most 29 atoms embedded in 3-dimensional space.
The task is to predict a series of chemical properties of the
molecule. This dataset is especially interesting since only
∼ 43.7% of molecules in this dataset contain a 2-simplex,
and hence performing a standard graph-lift would not lever-
age many of the benefits of MPSNs. Comparable to EGNN,
the initial graph structure is dropped. The results are pro-
vided in Table 1.

When comparing IMPSN to EGNN we observe that on all
properties IMPSN outperforms EGNN, on average leading
to an improvement of 22% on those targets. Moreover, on
many targets IMPSN performs almost on par with SOTA
approaches on molecules, even beating SOTA in predicting
free energy at 298.15K (G). This is an interesting result
since the architecture is not curated for molecular tasks
specifically, e.g. we do not leverage many of the molecule-
specific intricacies such as Bessel function embeddings in
our network as is done in Gasteiger et al. (2020).

N-body system As introduced in Kipf et al. (2018), the
N-body system experiment considers the trajectory in 3-
dimensional space of 5 charged particles over time. The
task is to predict the position of all bodies after 1,000 time
steps, based on their initial positions and velocities. For
a fair comparison, we use the experimental setup of this
experiment as introduced in Satorras et al. (2021). The
results are summarized in Table 2.

We observe a 10% improvement over standard EGNNs
when passing messages over the ASC, only being beaten by
SEGNNs. This suggests that learning higher-order simpli-
cial structures is beneficial to modeling N-body systems.
Moreover, we observe that even though EMPSNs com-

Table 2. Mean Squared Error for the N-body system experiment.
Average forward time for a batch size of 100 5-body systems is
seconds is added for comparison.

Method MSE Time (s)

SE(3)-Tr. (Fuchs et al., 2020) .0244 .1918
TFN (Thomas et al., 2018) .0155 .0452
NMP (Gilmer et al., 2017) .0107 .0044
Radial Field (Köhler et al., 2019) .0104 .0049
SEGNN (Brandstetter et al., 2021) .0043 .0672
MPSN (Bodnar et al., 2021) .0808 .0598
EGNN (Satorras et al., 2021) .0070 .0158

EMPSN .0063 .0612

pute many more messages in each layer, the computational
time does not exceed other approaches for N-body such as
SEGNN.

EMPSN architecture and ablations We compare stan-
dard MPSNs to EMPSNs to see how much MPSNs benefit
from an increase in geometric information and how the im-
provement varies when we increase the dimensionality of
the ASC. Also, by comparing MPSNs and EMPSNs over
multiple dimensionalities, we simultaneously evaluate how
much an increase in dimensionality improves the EGNN
message-passing framework. These experiments hence im-
plicitly define an ablation study for both the topological and
geometric additions. Since the models with more elaborate
simplicial communication require more parameters, we off-
set this by either 1) reducing the number of parameters in
each MLP or 2) by giving the smaller models more layers to
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compensate. For both experiments, we used models with a
fixed parameters budget (∼ 200K). We report performance
on the isotropic polarizability (α) property of QM9 for ASC
formed with radii of δ = 3.0 Å and δ = 4.0 Å, where δ = 3
is the smallest δ value such that each molecule has at least
one triangle.

We call the highest dimensional adjacency relations used
by the EMPSN the type of the EMPSN. For example, a
(1-1) EMPSN is the EMPSN in which we do have all com-
munication up to communication between 1-simplices and
1-simplices - and thus between 0-simplices and 0-simplices
and 0-simplices and 1-simplices - but nothing higher. Sim-
ilarly, a (1-2) EMPSN would have all the communication
of the (1-1) EMPSN with added communication from 1-
simplices to 2-simplices. The results for the different com-
pensations are summarized in Table 3 and Table 4 respec-
tively, where the improvement of EMPSNs relative to the
MPSNs (or: gain) is also reported.

Table 3. Mean absolute error (MAE) on QM9 α property using
small models compensated with number of hidden dimensions
(δ = 3.0 Å / 4.0 Å). Relative improvement when geometric
information is given to the model (gain) is added for comparison.

Type MPSN EMPSN Gain

0-0 0.188 / 0.310 0.118 / 0.107 1.6 / 2.9
0-1 0.206 / 0.329 0.121 / 0.092 1.7 / 3.6
1-1 0.169 / 0.310 0.103 / 0.083 1.6 / 3.8
1-2 0.173 / 0.341 0.101 / 0.078 1.7 / 4.4

Table 4. Mean absolute error (MAE) on QM9 α property using
small models compensated with number of layers (δ = 3.0 Å
/ 4.0 Å). Relative improvement when geometric information is
given to the model (gain) is added for comparison.

Type MPSN EMPSN Gain

0-0 0.173 / 0.307 0.124 / 0.115 1.4 / 2.7
0-1 0.195 / 0.323 0.133 / 0.100 1.5 / 3.3
1-1 0.165 / 0.296 0.107 / 0.085 1.5 / 3.5
1-2 0.173 / 0.341 0.101 / 0.078 1.7 / 4.4

In line with Satorras et al. (2021), we see that providing the
network with geometric information improves the perfor-
mance of MPNNs. Moreover, we observe that increasing the
connectivity of the graph improves performance on MPNNs
when this geometric information is provided, but leads to
a decrease in performance otherwise. This suggests that
incorporating geometric information is an effective measure
to combat overfitting.

The results also suggest that increasing both the dimension-
ality and size of the ASC over which messages are passed

indeed improves the performance of EMPSNs. However,
when not using geometric information, there seems to be no
added benefit to learning these higher-dimensional features,
even leading to a decrease in performance when the ASC is
too large. As we increase the dimensionality over which we
do message passing, the gain increases dramatically, again
supporting the claim that geometric information is an effec-
tive measure against over-smoothing. These effects persist
both when we alter hidden dimensions and when we alter
the number of message passing layers.

5. Conclusion
We presented EMPSNs, E(n) Equivariant Message Passing
Simplicial Networks, a proof of concept on combining geo-
metric and topological graph methods on geometric graphs
and point clouds. These networks can learn using higher-
dimensional simplices in graphs and take into account the
increase in E(n) invariant geometric information during
message passing. We provided a general approach for 1)
lifting graphs to ASCs for message passing in a scalable
fashion and 2) defining E(n) invariant information based on
the relative positions of the communicating simplices. Our
results indicate that the usage of higher dimensional emer-
gent simplex learning is beneficial without requiring more
parameters, hence leveraging the benefits of topological and
geometric methods. Moreover, the results indicated that our
formulation is on par with SOTA approaches for learning on
graphs. Last, we showed that using geometric information
combats over-smoothing and that this effect is stronger in
higher dimensions.

Limitations One limitation of this approach is the in-
creased time complexity of the higher dimensional message
passing approaches since we pass many more messages in
each layer. An avenue worth exploring is allowing the model
to pass messages over the different dimensional simplices,
but not perform each message passing type in each layer,
e.g. first pass messages from nodes to triangles in the first
layers, and then pass messages over triangles only. This
would cut down the time complexity of the model, while
still leveraging its benefits.

Future work Since our work serves as a proof of concept
for combining topological and geometric graph approaches,
there are a lot of directions for future work that could be
worthwhile to study.

An interesting direction for future research is considering
more elaborate topological spaces than simplicial complexes
and using the increased E(n) invariant information present
to improve performance further. Especially in the case of
molecular predictions, using topological spaces such as CW
complexes could be hugely beneficial since those structures
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can model rings explicitly. Similarly, the usage of other geo-
metric graph approaches can be combined with topological
graph approaches. Moreover, two-hop connections and the
corresponding invariants can be considered to generalize
the framework, e.g. through concatenating the different
invariants.

Moreover, since steerable methods based on Clebsch-
Gordan products work really well by being able to capture
aspects of the geometric graph such as relative orientation,
it would be interesting to explore steerable alternatives to
EGNN - e.g. SEGNN - as our base model to do message
passing on. Even though we think the invariant approach
on simplicial complexes is useful given that we can good
performance without needing to go to equivariant features,
we think that modeling topology explicitly and using equiv-
ariant features would leverage the best of both worlds if one
can find a way to keep computational costs manageable.

Last, the EMPSN framework might lend itself to a general
classification for many graph methods. It could be worth-
while to explore how different existing methods on graphs
compare using our framework, possibly formulating our
framework as general group convolutions on point clouds.
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A. Constructing the abstract simplicial complexes
In this section, the design choices and computational complexity of constructing the ASCs are described.

A.1. Čech and Vietoris-Rips complexes

When considering the topology formed by considering the union of δ-balls around all points v ∈ V , the case can be made that
Čech complexes of size δ - denoted Čech(δ) - more directly resemble this intuitive topology on the data. This is especially
the case since Čech(δ) is homotopy equivalent to this δ-ball topological space - and the fact that part of the motivation of
using simplicial complexes in DL comes from using persistent homologies. However, even though the runtime complexity
of constructing a Čech complex is equal to that of constructing a Vietoris-Rips complex - both being O(2|V|) - in practice,
a Vietoris-Rips complex is much cheaper to compute. The main reason is that essentially constructing a Vietoris-Rips is
implemented as 1) constructing a radius graph, and then 2) finding the cliques in that graph to do a graph lift. For instance,
in practice, it is much cheaper to find all 5 cliques in a graph than it is to loop over all subsets of size 5 of the points as would
be needed in constructing the Čech complex, as there you assign a simplex to set of vertices {v1, · · · , vn} iff

⋂n
i=1 Uvn ̸= ∅,

for some open set Uvn around vn. Moreover, a formal case can be made that nothing is lost when choosing a Vietoris-Rips
complex, since for any δ it holds that

Čech(δ) ⊂ VietorisRips(δ) ⊂ Čech(2δ),

where VietorisRips(δ) denotes the Vietoris-Rips complex of size δ. That is, if we can find some δ such that the data is well
described by the respective Čech complexes, then so will it be by our Vietoris-Rips complex.

A.2. Computational efficiency

In general, computing the Vietoris-Rips (VR) complex is exponential in the number of nodes, i.e. O(2|V|). Hence, in
general lifting to an ASC in each layer would add L such exponential operation in a model of L layers. However, often this
exponential runtime is not an issue.

The first scenario where this forms no issue is when the ASC can be precomputed. In many situations, e.g. in QM9, it is
common to not update the node positions in the model, in which case these ASCs can be computed before training. The
second scenario where no problems are encountered is when a fully connected ASC can be used. This is seen in N-bdoy, as
the number of nodes is small enough for one to use a fully connected ASC, i.e. for 5 bodies one has 10 edges, 10 triangles,
and 5 tetrahedra.

Only in the case where we do update positions and recompute the ASC in each layer, we do arrive at the exponential
complexity. This is similar to how in EGNN one would have to recompute a radius graph when working with a larger
geometric graph. However, in practice, for the Vietoris-Rips complexes, there is no need to do ‘intersection checks’ over all
subsets, and as such the complexity of this operation will be much more efficient than exponential. Moreover, given that the
radius we choose is fairly small in practice, one also saves a lot of computation when detecting cliques since our graph is
sparse. To illustrate the point that indeed the runtime is limited, we computed the average runtime in ms for constructing the
radius graph versus the Vietoris-Rips complex for different values of δ on graphs in QM9. The implementations used are
those of Pytorch Geometric and Gudhi respectively. The results in Table 5 clearly show that indeed we are a tiny bit slower
for large values of δ, but the difference is fairly subtle, especially in absolute terms.

δ (Å) RadiusGraph (ms) VietorisRips (ms)
4 .121 .122
8 .124 .254
12 .124 .259
16 .124 .259
20 .125 .261

Table 5. Average runtime in ms for constructing the radius graph versus the Vietoris-Rips complex for different values of δ on graphs in
QM9. The implementations used are those of Pytorch Geometric and Gudhi respectively.
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B. Implementation
In this section, we describe the implementation of EMPSNs. After having constructed the Vietoris-Rips complex from a
geometric graph or point cloud, we have access to 1) a set of features for all different simplices plus initial features {hn

i }
where hn

i denotes the ith feature of dimension n, 2) a set of adjacency relationships between these simplices, 3) positional
information of the nodes {xi}, and 4) optionally initial velocities of the nodes {vi}. The main learnable functions are the
following:

• The features are embedded using linear embedding: Initial Feature → {LinearLayer} → Embedded Feature.

• For each adjacency, we learn a message function, e.g. for the adjacency A from τ to σ: [hσ,hτ , Inv(σ, τ)] →
{hσ ⊕ hτ ⊕ Inv(σ, τ) → LinearLayer → Swish → LinearLayer → Swish} → mA

σ,τ , where ⊕ denotes concatenation.

• For each message, an edge importance is computed: mA
σ → {LinearLayer → Sigmoid} → eAσ

• For each simplex type, we learn an update for the simplex based on the different adjacency updates, i.e.
[hσ, {mA

σ }, {eAσ }] → {hσ ⊕ (
⊕

A eAσ · mA
σ ) → LinearLayer → Swish → LinearLayer → Addition(hσ)} → h′

σ .

• A final readout: {hn
i } → {LinearLayer → Swish → LinearLayer →

⊕
n(
∑

i hn
i ) → LinearLayer → Swish →

LinearLayer} → Prediction.

These learnable functions are the same across all experiments. In all experiments, we included boundary, co-boundary, and
upper adjacent communication. Moreover, if the initial graph has velocities, we update the position using two MLPs similar
to done in Satorras et al. (2021):

• A new velocity is computed based using two MLPs vi = ϕv(hi)vinit
i + C

∑
j ̸=i(xi − xj)ϕx(mij).

• The position is updated using the velocity, x′i = xi + vi.

Both ϕv and ϕx are two-layer MLPs with a Swish activation function, i.e. Input → {LinearLayer → Swish →
LinearLayer} → Output. Our experiments showed that not regressively updating vi in each layer but rather predict-
ing vi based on the initial velocity vinit

i in each layer yielded better performance.

C. Experimental details
C.1. EMPSN architecture and QM9

For the data, we used the common split of 100K molecules for training, 10K molecules for testing and the rest for validation.
For both experiments, the models are trained for 1000 epochs each, where we used 200K parameters for the small model
comparison and 1M parameters for the SOTA comparison. For the small model comparison, we used a 4-layer EMPSN of
dimension 2 as our starting point. For the comparison where we compensate for the number of layers, we used 8 layers in
the 0-dimensional model, and 6 layers for the 1 dimensional models. For the SOTA comparison, we used a 7-layer EMPSN
of dimension 2.

The models are optimized using Adam (Kingma & Ba, 2014) with an initial learning rate of η = 5 · 10−4 and a Cosine
Annealing learning rate scheduler (Loshchilov & Hutter, 2016). The loss used for optimization is the Mean Absolute Error.
All predicted properties have been normalized by first subtracting the mean of the target in the training set and then dividing
by the mean absolute deviation in the training set to stabilize training. We used a batch size of 128 molecules per batch and
a weight decay of 10−16. Last, we endowed the message and update functions with batch normalization.

C.2. N-body system

For the data, we used the same setup as used in Satorras et al. (2021), i.e. we used 3, 000 training trajectories, 2, 000
validation trajectories, and 2, 000 test trajectories, where each trajectory contains 1, 000 time steps. We used a 4-layer
EMPSN of dimension 2 for our experiments.

The optimization is done using Adam, with a constant learning rate of η = 5 · 10−4, a batch size of 100, and weight decay of
10−12. Moreover, the invariant features are embedded using Gaussian Fourier features as introduced in Tancik et al. (2020).
The loss minimized is the MSE in the predicted position.

11


