Fairness in Streaming Submodular Maximization over a Matroid Constraint

Marwa El Halabi*! Federico Fusco “? Ashkan Norouzi-Fard “3 Jakab Tardos “3* Jakub Tarnawski ">

Abstract

Streaming submodular maximization is a natural
model for the task of selecting a representative
subset from a large-scale dataset. If datapoints
have sensitive attributes such as gender or race,
it becomes important to enforce fairness to avoid
bias and discrimination. This has spurred signifi-
cant interest in developing fair machine learning
algorithms. Recently, such algorithms have been
developed for monotone submodular maximiza-
tion under a cardinality constraint. In this paper,
we study the natural generalization of this prob-
lem to a matroid constraint. We give streaming
algorithms as well as impossibility results that
provide trade-offs between efficiency, quality and
fairness. We validate our findings empirically on
a range of well-known real-world applications:
exemplar-based clustering, movie recommenda-
tion, and maximum coverage in social networks.

1. Introduction

Recent years have seen a growing trend of utilizing machine
learning algorithms to support or replace human decision-
making. An undesirable effect of this phenomenon is the
potential for bias and discrimination in automated decisions,
especially in sensitive domains such as hiring, access to
credit and education, bail decisions, and law enforcement
(Munoz et al., 2016; White House OSTP, 2022; European
Union FRA, 2022). In order to attenuate such risks, the com-
puter science community has been working on developing
fair algorithms for fundamental tasks such as classifica-
tion (Zafar et al., 2017), ranking (Celis et al., 2018c; Singh
& Joachims, 2019), clustering (Chierichetti et al., 2017;

“Equal contribution 'Samsung - SAIT AI Lab, Mon-
treal “Sapienza University of Rome *Google Zurich “EPFL
*Microsoft Research. Correspondence to: Marwa El Hal-
abi <marwa.elhalabi@gmail.com>, Federico Fusco <fus-
cof@diag.uniromal.it>, Ashkan Norouzi-Fard <ashkan-
norouzi@google.com>, Jakab Tardos <tardos@google.com>,
Jakub Tarnawski <jatarnaw @microsoft.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Backurs et al., 2019; Bohm et al., 2021; Jia et al., 2022;
Anegg et al., 2022; Angelidakis et al., 2022), online learn-
ing (Joseph et al., 2016; Chzhen et al., 2021), voting (Celis
et al., 2018a), matching (Chierichetti et al., 2019), influence
maximization (Tsang et al., 2019; Rahmattalabi et al., 2021),
data summarization (Celis et al., 2018b), online selection
(Correa et al., 2021), and graph problems (Rahmattalabi
et al., 2019; Anagnostopoulos et al., 2020).

In this paper, we study fairness in the fundamental problem
of streaming monotone submodular maximization over
a matroid constraint. Submodularity is a well-studied
property of set functions that captures the natural notion
of diminishing returns and has found vast applications in
machine learning, including active learning (Golovin &
Krause, 2011), data summarization (Lin & Bilmes, 2011),
feature selection (Das & Kempe, 2011), and recommender
systems (El-Arini & Guestrin, 2011). Matroids are a
popular and powerful class of independence systems,
capturing a wide range of useful constraints such as
cardinality, block cardinality, linear independence, and
connectivity constraints. In all of the above applications,
it is crucial to have the capacity to handle the massive
volume of modern datasets, which are often produced so
rapidly that they cannot even be stored in memory. This
has motivated a long line of work on the streaming setting.

Without considering fairness, maximizing a monotone sub-
modular function over a matroid constraint is a well-studied
problem. While a tight (1 — 1/¢)-approximation is known
in the centralized setting (Calinescu et al., 2007; Feige,
1998) and in the multi-pass streaming setting (Feldman
et al., 2022), the single-pass approximability of the problem
is still not settled. Currently, the best one-pass algorithm
yields a 0.3178-approximation (Feldman et al., 2022),
while the best known upper bound is 0.478 (Oveis Gharan
& Vondrak, 2011).

Fairness in the context of submodular maximization
problems has already been investigated under a cardinality
constraint, in both centralized and streaming models (Celis
et al., 2018a; El Halabi et al., 2020). Defining the notion
of algorithmic fairness is an active line of research and,
although several notions have been proposed, no universally
accepted metric exists. Here, we follow the common
notion used in many previous works (Celis et al., 2018a;b;c;

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Chierichetti et al., 2017; 2019), where we require the solu-
tion to be balanced with respect to some sensitive attribute
(e.g., race, political affiliation). Formally, given a set V' of
items, each item is assigned a color ¢ representing a sensitive
attribute. Let V7, ..., Vi be the corresponding C' disjoint
groups of items of the same color. A set S C V is fair if
it satisfies £. < |S N V.| < u, for a given choice of lower
and upper bounds /., u. € N. This definition encompasses
several other existing notions of fairness such as statistical
parity (Dwork et al., 2012), diversity rules (Cohoon et al.,
2013; Biddle, 2006), and proportional representation rules
(Monroe, 1995; Brill et al., 2017). For a more extended
overview we refer to Celis et al. (2018a, Section 4).

1.1. Our contribution

We present streaming algorithms as well as impossibility re-
sults for the problem of fair matroid monotone submodular
maximization (which we abbreviate to FMMSM)), that pro-
vide trade-offs between memory and computation efficiency,
quality and fairness.

We start by extending the result of Huang et al. (2022) to
present a 1/2-approximation algorithm that uses memory
exponential with respect to C' and k, where k is the rank of
the input matroid. From the solution quality point of view,
this result is tight: the approximation factor of 1/2 cannot
be improved in the streaming setting using memory that is
less than linear with respect to |V | (Feldman et al., 2020).

Theorem 1.1. For any constant) € (0,1/2), there exists
a one-pass streaming (1/2 — n)-approximation algorithm
for FMMSM that uses 20+ +%1080) 160 A memory, where
A — maxecv f(e)

mingeev|f(e)>oy f(€)”

The algorithm and its analysis are presented in Appendix E.
Motivated by this result, we focus on memory-efficient algo-
rithms, which are referred to as semi-streaming algorithms
in the literature. An algorithm is semi-streaming if the mem-
ory that it uses is O(m)', where m is the size of the output.
We prove that, unlike the cardinality constraint case, it is
impossible to design a multi-pass semi-streaming algorithm
that even finds a feasible solution for a matroid constraint.

Theorem 1.2. Any (randomized) o(+/log C)-pass stream-
ing algorithm that determines the existence of a feasible
solution for FMMSM with probability at least 2/3 requires
max(k, C)2~°1) memory.

Motivated by Theorem 1.2, we relax the constraints by
allowing the fairness lower bounds to be violated by a
factor 2. More precisely, the goal is to find a solution S,
feasible with respect to the matroid constraint, that maxi-
mizes the value of the submodular function while satisfying

'We use O notation to hide log factors, more precisely for any
value m, O(m) = m - poly log m.

[£:./2] < |1SNV,| < wu,foranycolorc=1,...,C. We
present a two-pass 1/11.656-approximation algorithm in
this case.

Theorem 1.3. There exists a two-pass streaming algorithm
Sfor FMMSM that runs in polynomial time, uses O(k - C)
memory, and outputs a set S such that (i) S is independent,
(i) it holds that |£./2] < |V.N S| < u, for any color
c=1,...,C, and (iii) f(S) > OPT/11.656.

Note that although our algorithm is relatively memory-
efficient, it is not a semi-streaming algorithm. Another
limitation of our algorithm is that it operates in two passes,
instead of a single pass over the stream. We show that at
least one of these limitations is necessary, by proving that
any one-pass semi-streaming algorithm, which violates the
fairness bounds even further than our algorithm, still cannot
find a feasible solution.

Theorem 1.4. There is no one-pass semi-streaming algo-
rithm that determines the existence of a feasible solution for
FMMSM with probability at least 2/3, even if it is allowed
to violate the fairness lower bounds by a factor of 2 and
completely ignore the fairness upper bounds.

In Appendices B and C, we investigate the special case of
modular objectives. There, we present efficient exact algo-
rithms for both the streaming and the centralized versions
of the problem.

Finally, we study the performance of our algorithm in mul-
tiple real-world experiments: exemplar-based clustering,
movie recommendation, and maximum coverage in social
networks. We introduce two heuristics that improve the qual-
ity of the solution of our two-pass algorithm empirically.
Moreover, we present a one-pass heuristic algorithm, based
on the ideas of our two-pass algorithm, which is guaranteed
to satisfy both the matroid and fairness constraints, but has
no worst-case guarantee on the objective value. We observe
that our two-pass algorithm achieves similar quality to “un-
fair” baselines, while incurring significantly fewer violations
of the fairness constraint. Interestingly, our one-pass heuris-
tic algorithm achieves quality that is not too far from our two-
pass algorithm, without violating the fairness constraint.

1.2. Related work

The problem of fair submodular maximization has already
been studied under a cardinality constraint. Celis et al.
(2018a) provide a tight (1 — 1/e)-approximation to the
problem in the centralized setting using a continuous greedy
algorithm. The streaming setting has been investigated by
El Halabi et al. (2020), who show (4) a 1/2-approximation
one pass algorithm that uses memory exponential in k
(this result is tight, see Feldman et al. (2020)) and (i) a
1/4-approximation one pass algorithm, which uses only
O(k) memory and processes each element of the stream

Fairness in Streaming Submodular Maximization over a Matroid Constraint

in O(log k) time and 2 oracle calls.

A closely related problem to FMMSM is monotone submod-
ular maximization over two matroid constraints; FMMSM
reduces to this problem when ¢, = 0 for all ¢. Chakrabarti &
Kale (2015) gave a 1/8-approximation one-pass streaming
algorithm for this problem. The current state-of-the-art
(Garg et al., 2021) is a 1/5.828-approximation one-pass
streaming algorithm.

2. Preliminaries

We consider a ground set V' of n items and a non-negative
monotone submodular function f : 2V — R . Given any
two sets X, Y C V, the marginal gain of X with respect to
Y quantifies the change in value of f when adding X to Y
and is defined as

fXY) = f(XUY) = f(Y).

We use the shorthand f(z | Y) for f({z} | Y). The func-
tion f is submodular if for any two sets Y C X C V, and
any element e € V' \ X, itholds that f(e | Y) > f(e | X).
We say that f is monotone if for any element e € V' and
any set Y C V if holds that f(e | Y') > 0. Throughout the
paper, we assume that f is given in terms of a value oracle
that computes f(S) for given S C V. We also assume that
f is normalized, i.e., f(0)) = 0.

Matroids. A non-empty family of sets Z C 2" is called a
matroid if it satisfies the following properties:

e Downward-closedness: if A C B and B € Z, then
AeT,;

* Augmentation: if A, B € T with |A| < |B|, then there
exists e € B such that A + e € 7.

We write A + e for AU {e} and A — e for A\ {e}. We
call aset A C V independent if A € Z. We assume that
the matroid is available to the algorithm in the form of an
independence oracle. An independent set that is maximal
with respect to inclusion is called a base; all the bases of
a matroid share the same cardinality k, referred to as the
rank of the matroid. An important class of matroids are
partition matroids, where the universe is partitioned into
blocks V' = |, V;, each with an upper bound £;, and a set
A is independent if |A N V;| < k; for all ¢.

A crucial property that follows directly from the definition
of a matroid is that given two bases B; and Bs, one can find
two elements by € Bj and b, € B that can be swapped
while maintaining independence, i.e., such that both B —
b1 + by and By — by + by are independent. This property
can be generalized to subsets, see e.g., (Schrijver, 2003,
Statement 42.31 in Chapter 42):

Lemma 2.1 (Exchange property of bases). In any matroid,
for any two bases By and By and for any partition of B,
into X1 and Y1, there is a partition of By into X5 and Ys
such that both X1 U Y5 and X5 UY; are bases.

When two matroids Z; and Z, are defined on the same set V,
it is possible to define their intersection Z; NZy as the family
of the subsets of V" that are independent for both matroids.
Although the intersection of two matroids is generally not
a matroid itself, it is still possible to efficiently compute
a maximum-cardinality subset in it, or one of maximum
weight when there are weights associated to elements.

Lemma 2.2 (Theorem 41.7 in (Schrijver, 2003)). A
maximum-weight common independent set in two matroids
can be found in strongly polynomial time.

Fair Matroid Monotone Submodular Maximization
(FMMSM) problem. Recall that each element of V is
assigned exactly one color from the set {1, ..., C}; V. is the
set of elements of color c. We are given fairness bounds
(le,Uc)e=1,....c and a matroid Z on V of rank k. We denote
by F the collection of solutions feasible under the fairness
and matroid constraints, i.e.,

F={SCV|SeZ t.<|SN"V,| <u, Ve=1,...,C}.

Note that we use independent to denote a set that respects
the matroid constraint and feasible for a set in F. Clearly,
feasibility implies independence, but not vice versa. The
problem of maximizing a monotone submodular function f
under matroid and fairness constraints, which we abbreviate
FMMSM, is defined as selecting a set S C V with S €
F to maximize f(S). We use OPT to refer to a feasible
set maximizing f. We assume a feasible solution exists,
i.e., F # (). In this paper, we study approximations to
this problem; in particular, we say that an algorithm is an
a-approximation to the problem when its output ALG is
in F (or possibly, in some relaxed version of F) and has
f(ALG) > o - f(OPT).

3. Semi-streaming Impossibility Results

In this section we present our impossibility results. We start
by showing that even with O(1) passes, finding a feasible
solution requires more memory than the semi-streaming
setting allows.

Theorem 1.2. Any (randomized) o(+/log C)-pass stream-
ing algorithm that determines the existence of a feasible
solution for FMMSM with probability at least 2/3 requires
max(k, C)2~°M) memory.

To prove this result, we exploit the fact that it is possible
to capture perfect bipartite matching as the intersection of
a partition matroid and a fairness constraint. We use the

Fairness in Streaming Submodular Maximization over a Matroid Constraint

following result for streaming bipartite matching, where,
given a stream of edges E that belong to a 2n-vertex bi-
partite graph G = (P U Q, E), the goal is to find a perfect
matching. If a perfect matching exists, we say that G is
perfectly-matchable.

Theorem 3.1 (Theorem 5.3 in (Chen et al., 2021)). Any ran-
domized o(v/log n)-pass streaming algorithm that, given a
2n-vertex bipartite graph G(PUQ, E), determines whether
G is perfectly-matchable with probability at least 2/3, re-
quires n*~°N) memory.

Theorem 1.2 follows from Theorem 3.1 by simply setting
up a partition matroid to enforce that every vertex in P
has at most one adjacent edge in the solution, and fairness
constraints to enforce that every vertex in () has exactly one
adjacent edge in the solution (we assign color g to every
edge (p, q)). We then have k = |P| =nand C = |Q| = n.
A more detailed proof can be found in Appendix F.

We continue by presenting our second hardness result, which
shows that even if we relax fairness lower bounds and ignore
fairness upper bounds, nearly-linear memory is still not
enough to find any feasible solution in a single pass (let
alone one maximizing a submodular function).

Theorem 1.4. There is no one-pass semi-streaming algo-
rithm that determines the existence of a feasible solution for
FMMSM with probability at least 2/3, even if it is allowed
to violate the fairness lower bounds by a factor of 2 and
completely ignore the fairness upper bounds.

We first state the following auxiliary theorem, which is based
on a reduction to the hardness result of Kapralov (2021). Its
proof is provided in Appendix D.

Theorem 3.2. There is no one-pass semi-streaming algo-
rithm that, given as input the edges of a perfectly-matchable
bipartite graph G = (P U Q, E), with probability at least
2/3 finds a matching of size at least %|P|.

The above theorem shows that it is impossible to approx-
imate the matching problem better than a factor % in the
semi-streaming model. This result does not yet directly im-
ply Theorem 1.4, as in Theorem 1.4 we allow the fairness
bounds to be violated. To handle this, we use the following
lemma, which is the key ingredient in our reduction. We
use deg (p) to denote the degree of a vertex p in the set of
edges X.

Lemma 3.3. There is no one-pass semi-streaming algo-
rithm that, given as input the edges of a perfectly-matchable
bipartite graph G = (P U Q, E), with probability at least
2/3 finds a set X C E such that deg (p) < 2forallp € P
and deg (q) = 1 forall q € Q.

Proof. Suppose towards a contradiction that such an al-
gorithm A exists. We use it to design a semi-streaming
algorithm for the maximum matching problem as follows:

1. Initialize two copies of the algorithm A, A’ (where A’
will operate on a "flipped” graph whose edges come
from QQ x P)

2. When an edge (p, ¢) arrives:

* pass (p,q) to A
* pass (¢,p) to A’

3. Let X and X’ be the solutions returned by A and A’,
respectively

4. Let X" ={(p,q) : (¢,p) € X'}

5. Return a maximum matching in X U X"

Note that the above algorithm uses O(n) memory (where
n = | P|). We show that it returns a matching of size at least
%n, which contradicts Theorem 3.2. To see this, assume
otherwise. Then, by K&nig’s theorem, the graph (PUQ, XU
X") contains an independent set I of size larger than 2n —
%n = 3n. It follows that either [P N I| > Znor |[Q N 1| >
§’I’L.

We first consider the case [P 1| > Zn. Focus on the edges
in X incident to @ N I. There are |Q N I| many, because
deg (q) = 1forall ¢ € Q. As I is an independent set also
in the graph (P U @, X), all these edges must have their

other endpoints in P \ I. We have
4
2P\ I|=2n—-2|PNI| < gn—|PﬁI| <|lQnI|,

which means that some vertex in P \ I must have degree
larger than 2 in X, contradicting that deg y (p) < 2 for all
p € P.

For the case |Q N I| > %n we proceed similarly, swapping
the role of P with) and X with X", O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We show that if such an algorithm
A exists, then it can be used to solve the problem from
the statement of Lemma 3.3. Given any bipartite graph
G = (PUQ, E), let us define an instance of FMMSM on
the edges F as follows: the matroid constraint is given by a
partition matroid that requires that for a solution X C E we
have deg x (p) < 2 foreachp € P; and the color constraints
dictate that degy (q) = 2 for each ¢ € @ (that is, an edge
(p, q) has color g and we set ¢,, = u,. = 2 for all colors g).

For each edge arriving on the stream, we pass two copies of
it to A. Then, if we have a feasible instance of the problem
from the statement of Lemma 3.3 (i.e., a perfectly-matchable
graph), it gives rise to a feasible instance of FMMSM as
in the paragraph above (taking two copies of the perfect
matching gives a solution with all vertex degrees equal to

Fairness in Streaming Submodular Maximization over a Matroid Constraint

2). Now, if A is an algorithm as in the statement of this
theorem, then it returns a solution X’ with deg ., (p) < 2
for each p € P and degy,(¢q) > 1 for each ¢ € Q. We
obtain X from X' by simply removing, for each ¢ € @, any
deg . (q) — 1 edges incident to . Then we have deg y (¢) <
2 forall p € P and degy (q) = 1 forall g € @, as required
by Lemma 3.3. O

Note that Theorem 1.4 does not rule out the existence of
a two-pass semi-streaming algorithm with otherwise the
same properties as in its statement. However, such an
algorithm would give rise to a two-pass semi-streaming
2/3-approximation for maximum matching, for perfectly-
matchable bipartite graphs (using the same arguments as
in Theorem 1.4). This would significantly improve over
the current state of the art, which is a (2 — \/5) ~ 0.585-
approximation (Konrad, 2018).

4. Streaming Algorithm

In this section, we present a two-pass algorithm for
FMMSM. In particular, we show how to transform any a-
approximation for streaming submodular maximization over
the intersection of two matroids into an «/2-approximation
for FMMSM, at the cost of a factor-2 violation of the
fairness lower bound constraints. Finally, we show that the
problem can be solved exactly in one-pass in the special
case of modular objectives.

4.1. First pass: finding a feasible set

The algorithm for the first pass, FAIR-RESERVOIR, is sim-
ple: it collects a maximal independent set /. (with respect
to Z) for each color independently. The number of kept
elements is at most C' - k (recall that & is the rank of the
matroid Z). Then it computes a feasible solution in | J, I.. as
follows. First, it defines the partition matroid Z~ on V as:

Ie={SCV||V.NS| < ¢ Ve=1,...C}. (1)
Second, it uses any polynomial-time algorithm to find a
maximum-size common independent set in | J, I with re-
spect to the two matroids Z and Z¢.

To analyze FAIR-RESERVOIR we need two ingredients: that
a feasible solution is always contained in . Ic, and that
our algorithm finds one.

Lemma 4.1. For each color c, let I. C V. be any maximal
subset that is independent with respect to L. Then, as long
as F # (), there exists a feasible set R C UC I..

Proof. Let R be any set in F such that |R \ |, I.| is mini-
mal; note that such R exists as we are assuming that F # (.
To prove the lemma it is enough to show that |R \ |, I.| is
actually 0.

Algorithm 1 FAIR-RESERVOIR

I, Qforallc=1,...,C

. for each element e on the stream do

Let c be the color of e

Ifl.+ecZthenl, + I.+e¢

: Consider the partition matroid Z¢ on V defined in (1)

: S <« a max-cardinality subset of |J.I. in Z N Z¢
(Lemma 2.2)

7: Return S

Assume towards a contradiction that |R \ | J,.I.| > 0. We
show how to exchange an element € R\ |, I, for an
element y € |J. /. \ R of the same color as x such that
R —x +y € Z. This contradicts the choice of R, as

(R—z+y) \U L] =R\ U.L| - 1.

Without loss of generality, assume that (RN V7) \ I1 # 0,
and let x be any of its elements. Extend I; to any maximal
independent set] in I | J R containing I;. By maximality
of I{, and since R, I] € Z we have

|R— = <|R| < |I7].

By the matroid augmentation property, there exists y &€
I1\ (R — x) such that R — z + y € Z. Because

O\(R—z)C(LUR)\(R—x) C L \R+u,

we must have y € I; \ R or y = . The latter is impossible;
ify = z, then x € I{ and thus I} + = C I7; as the latter
is independent, so is the former. However, as x € V7, this
contradicts the maximality of I; (as an independent subset
of V7). Thus we must have y € I; \ R (and recall that
R — x4y € 1), as desired. OJ

Theorem 4.2. There exists a one-pass streaming algorithm
that runs in polynomial time, uses O(k - C') memory, and
outputs a feasible solution.

Proof. Any set I. computed by FAIR-RESERVOIR is a max-
imal subset of V. that is independent in Z, thus Lemma 4.1
guarantees the existence of a feasible set R C |, I.. By the
downward-closeness property of Z, we can further assume
that R has exactly ¢, elements of each color ¢ (by removing
any elements beyond that number), i.e., that |R| =)" /..
Note that any set independent in Z¢ has at most) __ £, ele-
ments; therefore a maximum-cardinality set S as returned
by FAIR-RESERVOIR will necessarily have |S| = ° /.
and thus |S N V| = £.. Hence, S is feasible. O

4.2. Second pass: extending the feasible solution

Starting with the solution output by FAIR-RESERVOIR
(which is feasible but has no guaranteed objective value),
we show how to find in another pass a high-value indepen-
dent set that also respects the fairness constraint, up to some

Fairness in Streaming Submodular Maximization over a Matroid Constraint

slack in the lower bounds. First, the feasible set S is split
into two sets S7 and Sy in a balanced way, i.e.,

1S, N Vil = |San V|| <1 Ve=1,2,...,C.

Both S; and S5 are independent in Z (as subsets of S). The
goal of the second pass is to extend S and Sy by adding
elements to them to maximize the submodular function. To
that end, we construct two matroids for each of the sets S;
and S5 as follows. First, a partition matroid Z¢ induced by
the upper bounds on the colors (note the difference with Z,
where the partition was induced by the lower bounds):

I ={XCV||XNV|<u. VYe=1,...,C}. (2
Second, two matroids Z; and Z, induced on Z by .S; and S5:
I, ={XCV|XUS; eI} 3)

It is easy to verify that Z; is indeed a matroid.

Let algorithm .4 be any streaming algorithm that maximizes
a monotone submodular function subject to two matroid
constraints. We run two parallel independent copies of A:
the first one with matroids Ic, 7; and the second one with
matroids Z¢, Z,. Let S} and S} be the results of these two
runs of the algorithm, respectively. We return the solution
with the larger value, adding as many elements as necessary
from S; to satisfy the relaxed lower bounds. The details of
the algorithm are presented in FAIR-STREAMING.

Algorithm 2 FAIR-STREAMING
: Input: Set S from FAIR-RESERVOIR and routine A

—_

2: Sl < (Z), SQ — @

3: for ein S do

4: Let ¢ be the color of e

5: if‘SlﬂVC‘ < |SgﬂVC|then
6: Sl — Sl +e

7: else

8: Sy« Sy +e

9:

Define matroids Z¢, Z,, 7, as in Equations (2) and (3)
Run two copies of .4, one for matroids IC, 77 and one
for matroids Z¢, Z, and let S} and S} be their outputs
11: for:=1,2do

12: forein S; do

13: Let ¢ be the color of e

14: If | S, N V.| < uc.then S} + S/ +e

15: Return S’ = argmax(f(S7), f(5%))

_
=4

We begin the analysis of FAIR-STREAMING by bounding
the violation with respect to upper and lower bounds.

Lemma 4.3. The output S’ of FAIR-STREAMING is inde-
pendent in T and for any color c it holds that |£./2] <
[Ven S| < ue.

Proof. Without loss of generality assume that S” = 57 and
divide it into two parts: the elements X that were added by
A, and the elements Y that were added from S; in the for
loop on Line 12. As X is in Z;, we have X U S7 € 7 and
therefore also S| = X UY € 7 by downward-closedness.

Consider now the color matroid Z¢ that models the upper
bounds u.. As X is in Z€, and the elements added in the
for loop on Line 12 never violate the upper bounds, we have
Sy e I¢.

Finally we consider the constraints /. and show that
[4:/2] < |V, N S| for all colors c. The set S output by
FAIR-RESERVOIR is such that [V, NS| > £, and is then
divided into S7 and S5 in a balanced way, so that

15,0V, > [6/2] VYe=1,...,C. @)

For any color ¢ such that |S] N V.| < u,, all the elements
in Sy NV, are added to S}, and thus the guarantees on the
lower bounds in (4) are passed onto S]. O]

Lemma 4.4. Assume that A is an a-approximate streaming
algorithm for the problem of monotone submodular maxi-
mization subject to the intersection of two matroids. Then
FAIR-STREAMING is an «/2-approximation algorithm.

Proof. Let S be the set output by FAIR-STREAMING that
is then divided into .S and S5, and let OPT be the optimal
solution. We apply Lemma 2.1 on the partition S7, Sy of
S and OPT.? Thus OPT can be partitioned into two sets
0O, and O5 such that O; US; € Zand O, U Sy € 7 or,
equivalently, O; € Z; for : = 1,2. Moreover, both O; and
O respect the color matroid Z¢, thus the approximation
guarantee of A and the monotonicity of f imply that

f(S)) z - f(O;) Vi=1,2 5)
Now, we are ready to prove the result:
1

1(8) 2 5 (F(51) + F(55))

> 5 (F(0) + £(02))

> S (OPT)
where the first inequality follows by the definition of S”, the
second by (5), and the last one by submodularity. O

If we plug in the state-of-the-art 1/5.828-approximation
algorithm by Garg et al. (2021) as A, we get Theorem 1.3:

Theorem 1.3. There exists a two-pass streaming algorithm
for FMMSM that runs in polynomial time, uses O(k - C)
memory, and outputs a set S such that (i) S is independent,
(i) it holds that |£./2] < |V.N S| < u, for any color
c=1,...,C, and (iii) f(S) > OPT/11.656.

Lemma 2.1 is stated for bases of the matroid Z, but it clearly
holds also for general independent sets.

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Heuristics. Although in principle, the feasible solution
chosen in the first pass does not need to have any value,
empirically it helps to choose a feasible solution with good
value. In our empirical evaluation (Section 5), we use an al-
ternative algorithm, GREEDY-FAIR-RESERVOIR, in the first
pass instead of FAIR-RESERVOIR. Rather than collecting a
maximal independent set I, of arbitrary elements for each
color ¢, GREEDY-FAIR-RESERVOIR picks elements greed-
ily (see Appendix A.l for details). Similarly, instead of
adding arbitrary elements of S, .S at the end (lines 11-14
in FAIR-STREAMING), we can use .4 to select good ele-
ments of 57,55 to add (see Appendix A.2 for details). We
call the resulting algorithm FAIR-STREAMING+.

We also propose a simple one-pass heuristic streaming algo-
rithm, GREEDY-FAIR-STREAMING, which runs GREEDY-
FAIR-RESERVOIR to find a feasible solution, then greedily
augments it with elements from | J,, /. (see Appendix A.3
for details).

4.3. The modular case

We can obtain better results in the special case of modu-
lar objectives. In particular, we present in Appendix B a
one-pass algorithm which solves the fair matroid modular
maximization (F3M) problem exactly. The algorithm greed-
ily collects maximal independent sets I.. for each color ¢
in the same way as in GREEDY-FAIR-RESERVOIR, then re-
turns an optimal feasible solution in U.I.. The second step
can be done in polynomial time, as we show in Appendix C,
where we present two polynomial time algorithms for the
centralized version of F3M. For further details, we refer the
reader to Appendices B and C.

Theorem 4.5. There exists a one-pass streaming algorithm
for F3M, which finds an optimal solution, uses O(k - C)
memory, and runs in polynomial time.

5. Empirical Evaluation

In this section, we empirically evaluate the performance
of our algorithms on three applications: maximum cov-
erage, movie recommendation, and exemplar-based clus-
tering, with various choices of fairness and matroid con-
straints. In comparing our algorithms against two base-
lines, we consider objective values, as well as violations of
fairness constraints, which we define for a given set S as
err(S) = Y. max{|S N V,| — uc, £. — |SNV|,0}. Each
term in this sum counts the number of elements by which
S violates the lower or upper bound. Note that err(S) is in
the range [0, 2k]. We compare the following algorithms:

* TWOPASS-FAIR-STREAMING: using GREEDY-
FAIR-RESERVOIR in the first pass, and FAIR-
STREAMING+ in the second pass with .4 = MATROID-
INTERSECTION, explained below.

* GREEDY-FAIR-STREAMING: a one-pass heuristic
algorithm based on the ideas of our two-pass algorithm
(see Appendix A.3 for details).

* MATROID-INTERSECTION: streaming algorithm for
submodular maximization over two matroid constraints
(Chakrabarti & Kale, 2015) with Z and Z€.

* RANDOM: randomly selects a base set in Z; no fairness
constraints.

We describe below the setup of our experiments. We
select fairness bounds /., u. which yield instances with
feasible solutions, and enforce either that each color group
V. comprises a similar portion of the solution set S (in
examplar-based clustering) or that they have a similar
representation in S as in the entire dataset (in maximum
coverage and movie recommendation). We report the results
in Figure 1, and discuss them in Section 5.4. Varying the
specific values of the bounds yields qualitatively very simi-
lar results. The code is available at https://github.
com/google—-research/google-research/
tree/master/fair_submodular_matroid.

5.1. Maximum coverage

Given a graph G = (V, E), we aim to select a subset
of nodes S C V that maximize the coverage of S in
the graph, given by the monotone submodular function
f(S) = |Upes N(v)|, where N(v) = {u : (v,u) € E}
denote the set of neighbors of v. We use the Pokec so-
cial network (Leskovec & Krevl, 2014), which consists
of 1,632,803 nodes, representing users, and 30,622,564
edges, representing friendships. Each user profile contains
attributes such as age, gender, height and weight, which can
have “null” value. We impose a partition matroid constraint
with respect to body mass index (BMI), which is calculated
as the squared ratio between weight (in kg) and height (in m).
We discard all profiles with no set height or weight (around
60%), as well as profiles with clearly fake data (fewer than
2%). The resulting graph has 582,289 nodes and 5,834,695
edges. We partition users into four standard BMI categories
(underweight, normal weight, overweight and obese). We

set the upper bound for each BMI group V; to k; = “‘ﬂ k—‘ .

The resulting rank of the matroid is then roughly k. We
also impose a fairness constraint with respect to age, with
7 groups: [1,10],[11,17],[18,25], [26, 35], [36, 45], [46+],
and the last group comprised of records with “null” age

(around 30%). We set ¢, = {0.9““/,“”144 and u, =

[1.5 ll“//“‘l k—‘ . We vary k between 10 and 200. The results are

shown in Figure 1a and 1d.

https://github.com/google-research/google-research/tree/master/fair_submodular_matroid
https://github.com/google-research/google-research/tree/master/fair_submodular_matroid
https://github.com/google-research/google-research/tree/master/fair_submodular_matroid

Fairness in Streaming Submodular Maximization over a Matroid Constraint

x10* x10%°

-
N
=]

Objective Value
N w S
Objective Value
o

-

T 4.5

—+—TwoPass-Fair-Steaming
-©-Matroid-Intersection

—%— Greedy-Fair-Streaming
—+—Random L

A__._.;_..._H—Q—Q—H—’_‘—"—H—.—‘*

S 4

Objective Value
o o o
S &6 ©

IN
o

n
o

(a?DMaxiﬁ?gm coVerage 200

o) Bxerplatluterifi 0

0
(c) Movie r%’gommé?ﬂiationzoo

20

20 60

15

N
o

w
=]

10

N
=]

L

Number of fairness violations

Number of fairness violations

mm

15

10

Number of fairness violations

(dj° Maxi#ﬂglm coVrage 200

0
) Exerfiplartlusterifiy o

0 -
(f) Movie r@@omméﬂdatiorﬁoo

Figure 1. Objective values (a,b,c) and number of fairness violations (d,e,f) on the three applications.

5.2. Exemplar-based clustering

We consider a dataset containing 4,521 records of phone
calls in a marketing campaign ran by a Portuguese bank-
ing institution (Moro et al., 2014). We aim to find a rep-
resentative subset of calls S C V in order to assess the
quality of service. We use 7 features with numeric val-
ues (age, account balance, last contact day, duration, num-
ber of contacts during the campaign, number of days that
passed by after the client was last contacted from a previ-
ous campaign, number of contacts performed before this
campaign) to represent each record e € V in the Euclidean
space as z. € R7. We impose a partition matroid con-
straint with respect to account balance, with 5 groups:
(=0, 0), [0,2000), [2000, 4000), [4000, 6000), [6000, o).
We choose equal upper bounds k; = k/5 for each age group
V;. The resulting rank of the matroid is then at most k. We
also impose a fairness constraint with respect to age, with
6 groups: [0,29], [30,39], [40,49], [50, 59], [60, 69], [70+].
We set our fairness bounds as ¢, = 0.1k + 2 and u. = 0.4k
for each color 1 < ¢ < 6. Then we maximize the following
monotone submodular function (Gomes & Krause, 2010):

£(8)="Y" (d(¢,0) -

e'eV

. d /
 S3in, 4 9)

where d(¢’, €) = ||z — z.||3 and ¢ is a phantom exemplar,
which we choose to be the origin. We vary k between 25
and 60. The results are shown in Figure 1b and le.

5.3. Movie recommendation

We emulate a movie recommendation system using the
Movielens 1M dataset (Harper & Konstan, 2016), which

includes approximately one million ratings for 3,900 movies
by 6,040 users. We implement the experimental design of
previous research (Mitrovi€ et al., 2017; Norouzi-Fard et al.,
2018; El Halabi et al., 2020) by computing a low-rank com-
pletion of the user-movie rating matrix (Troyanskaya et al.,
2001), resulting in feature vectors w, € R2? for each user
u and v,,, € R?? for each movie m. The product w, v,, ap-
proximates the rating of movie m by user . The monotone
submodular utility function f,,(S) tailored to user « for a
set S of movies is defined as:

a- Z max (g}g)s((Umvm) ,0) +(1-a)- Z AR

m’'eM

The parameter o = 0.85 interpolates between optimizing
the coverage of the entire movie collection and selecting
movies that maximize the user’s score. We enforce a propor-
tional representation in terms of movie release dates using a
laminar matroid with 9 groups for each decade d between
1911 and 2000, and three groups for each 30-year period
t: 1911-1940, 1941-1970, 1971-2000. We set an upper

bound of [1.2@15‘ for each decade group V;, and an up-

V]
per bound of roughly %k for each 30-year period group

V. The resulting rank of the matroid is then roughly k. We
also partition the movies into 18 genres ¢, which we model

using colors. As fairness constraint, we set £, = {0.8 |“‘/,C|| kJ

and u, = [1.4 ||“/;|| k} . We vary k between 10 and 200. The

results are shown in Figure 1c and 1f.

Fairness in Streaming Submodular Maximization over a Matroid Constraint

5.4. Results

We compare the results of our proposed algo-
rithms, TWOPASS-FAIR-STREAMING and GREEDY-
FAIR-STREAMING, with the baselines, MATROID-
INTERSECTION and RANDOM- see Figure 1. We observe
that the value of the submodular function for TWOPASS-
FAIR-STREAMING and GREEDY-FAIR-STREAMING is
lower than MATROID-INTERSECTION by at most 15% and
26%, respectively, while the violation in the fairness con-
straint is significantly higher for MATROID-INTERSECTION.
Indeed, GREEDY-FAIR-STREAMING does not violate the
fairness constraint in any of the experiments, as guaranteed
theoretically (see Appendix A.3). And the violation of
TwOPASS-FAIR-STREAMING is often 2 — 3 times lower
than MATROID-INTERSECTION. The objective value of
RANDOM is significantly lower than the other three algo-
rithms on maximum coverage and movie recommendation.
Surprisingly, on exemplar-based clustering, RANDOM
obtains objective values better than GREEDY-FAIR-
STREAMING and MATROID-INTERSECTION, and similar
to TWOPASS-FAIR-STREAMING, for several k values. This
comes however at the cost of significant fairness violations.

6. Broader Impact

Recent studies have shown that automated data-driven meth-
ods can have unintended biases and discriminatory effects.
Our proposed algorithms aim to prevent these issues in ap-
plications which can be modeled as a submodular maximiza-
tion over a matroid constraint problem. Such applications
arise in a variety of contexts, including selection of political
representatives, committees, candidates for outreach pro-
grams, and content selection for search engines and news
feeds. As in prior work, we observe that enforcing fairness
may come at a slight cost in utility value (see Section 5).
However, this trade-off between fairness and utility should
not be viewed as a less desirable outcome, but rather as a
balance between the two metrics. Our algorithms provide
solutions that achieve a good such balance. Lastly, while the
fairness notion we consider is broad, it does not encompass
all fairness metrics in the literature. As we noted earlier,
defining the right notion of algorithmic fairness is an active
line of research. There is no universal definition of fairness,
and the choice of which metric to use will depend on the
application.

Acknowledgements

We thank Michael Kapralov for helpful discussions. The
work of Federico Fusco is partially supported by ERC
Advanced Grant 788893 AMDROMA “Algorithmic and
Mechanism Design Research in Online Markets”, PNRR
MUR project PEO000013-FAIR”, and PNRR MUR project

IR0000013-SoBigData.it.

References

Anagnostopoulos, A., Becchetti, L., Fazzone, A., Menghini,
C., and Schwiegelshohn, C. Spectral relaxations and fair
densest subgraphs. In CIKM, pp. 35-44. ACM, 2020.

Anegg, G., Angelidakis, H., Kurpisz, A., and Zenklusen,
R. A technique for obtaining true approximations for
k-center with covering constraints. Math. Program., 192
(1):3-27, 2022.

Angelidakis, H., Kurpisz, A., Sering, L., and Zenklusen,
R. Fair and fast k-center clustering for data summariza-
tion. In ICML, volume 162 of Proceedings of Machine
Learning Research, pp. 669-702. PMLR, 2022.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian,
A., and Wagner, T. Scalable fair clustering. In ICML,
volume 97 of Proceedings of Machine Learning Research,
pp. 405—413. PMLR, 2019.

Biddle, D. Adverse impact and test validation: A practi-
tioner’s guide to valid and defensible employment testing.
Gower Publishing, Ltd., 2006.

Bohm, M., Fazzone, A., Leonardi, S., Menghini, C., and
Schwiegelshohn, C. Algorithms for fair k-clustering with
multiple protected attributes. Oper. Res. Lett., 49(5):787—
789, 2021.

Brill, M., Laslier, J., and Skowron, P. Multiwinner approval
rules as apportionment methods. In AAAI, pp. 414-420.
AAAI Press, 2017.

Cilinescu, G., Chekuri, C., Pal, M., and Vondrak, J. Maxi-
mizing a submodular set function subject to a matroid con-
straint (extended abstract). In IPCO, volume 4513 of Lec-
ture Notes in Computer Science, pp. 182—196. Springer,
2007.

Celis, L. E., Huang, L., and Vishnoi, N. K. Multiwinner
voting with fairness constraints. In IJCAI, pp. 144-151.
ijcai.org, 2018a.

Celis, L. E., Keswani, V., Straszak, D., Deshpande, A.,
Kathuria, T., and Vishnoi, N. K. Fair and diverse dpp-
based data summarization. In /CML, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 715-724.
PMLR, 2018b.

Celis, L. E., Straszak, D., and Vishnoi, N. K. Ranking with
fairness constraints. In ICALP, volume 107 of LIPIcs,
pp- 28:1-28:15. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2018c.

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: matchings, matroids, and more. Math.
Program., 154(1-2):225-247, 2015.

Chen, L., Kol, G., Paramonov, D., Saxena, R. R., Song, Z.,
and Yu, H. Almost optimal super-constant-pass streaming
lower bounds for reachability. In STOC, pp. 570-583.
ACM, 2021.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S.
Fair clustering through fairlets. In NIPS, pp. 5029-5037,
2017.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Matroids, matchings, and fairness. In AISTATS, vol-
ume 89 of Proceedings of Machine Learning Research,
pp- 2212-2220. PMLR, 2019.

Chzhen, E., Giraud, C., and Stoltz, G. A unified approach
to fair online learning via blackwell approachability. In
NeurlIPS, pp. 18280-18292, 2021.

Cohoon, J. M., Cohoon, J. P,, Reichelson, S., and Lawrence,
S. Effective recruiting for diversity. In FIE, pp. 1123—
1124. IEEE Computer Society, 2013.

Correa, J. R., Cristi, A., Duetting, P., and Norouzi-Fard, A.
Fairness and bias in online selection. In /CML, volume
139 of Proceedings of Machine Learning Research, pp.
2112-2121. PMLR, 2021.

Das, A. and Kempe, D. Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and
dictionary selection. In ICML, pp. 1057-1064. Omni-
press, 2011.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
innovations in theoretical computer science conference,
pp. 214-226, 2012.

Edmonds, J. Submodular functions, matroids and certain
polyhedra. Combinatorial structures and their applica-
tions, pp. 69-87, 1970.

El-Arini, K. and Guestrin, C. Beyond keyword search:
discovering relevant scientific literature. In KDD, pp.
439-447. ACM, 2011.

El Halabi, M., Mitrovic, S., Norouzi-Fard, A., Tardos, J.,
and Tarnawski, J. Fairness in streaming submodular max-
imization: Algorithms and hardness. In NeurIPS, 2020.

European Union FRA. Bias in Algorithms —- Artificial Intel-
ligence and Discrimination. European Union Agency for
Fundamental Rights. Publications Office of the European
Union, Luxembourg, 2022.

10

Feige, U. A threshold of In n for approximating set cover. J.
ACM, 45(4):634-652, 1998.

Feldman, M., Karbasi, A., and Kazemi, E. Do less, get more:
Streaming submodular maximization with subsampling.
In NeurIPS, pp. 730-740, 2018.

Feldman, M., Norouzi-Fard, A., Svensson, O., and Zen-
klusen, R. The one-way communication complexity of
submodular maximization with applications to streaming
and robustness. In STOC, pp. 1363-1374. ACM, 2020.

Feldman, M., Liu, P., Norouzi-Fard, A., Svensson, O., and
Zenklusen, R. Streaming submodular maximization un-
der matroid constraints. In /CALP, volume 229 of LIPIcs,
pp- 59:1-59:20. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2022.

Garg, P, Jordan, L., and Svensson, O. Semi-streaming
algorithms for submodular matroid intersection. In /PCO,
volume 12707 of Lecture Notes in Computer Science, pp.
208-222. Springer, 2021.

Golovin, D. and Krause, A. Adaptive submodularity: The-
ory and applications in active learning and stochastic
optimization. J. Artif. Intell. Res., 42:427-486, 2011.

Gomes, R. and Krause, A. Budgeted nonparametric learning
from data streams. In ICML, pp. 391-398. Omnipress,
2010.

Harper, F. M. and Konstan, J. A. The MovieLens datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems (TiiS), 5(4):19, 2016.

Huang, C., Kakimura, N., Mauras, S., and Yoshida, Y. Ap-
proximability of monotone submodular function maxi-
mization under cardinality and matroid constraints in the
streaming model. SIAM J. Discret. Math., 36(1):355-382,
2022.

Jia, X., Sheth, K., and Svensson, O. Fair colorful k-center
clustering. Math. Program., 192(1):339-360, 2022.

Joseph, M., Kearns, M. J., Morgenstern, J., and Roth, A.
Fairness in learning: Classic and contextual bandits. In
NIPS, pp. 325-333, 2016.

Kapralov, M. Space lower bounds for approximating
maximum matching in the edge arrival model. CoRR,
abs/2103.11669, 2021. URL https://arxiv.org/
abs/2103.116609.

Konrad, C. A simple augmentation method for matchings
with applications to streaming algorithms. In MFCS,
volume 117 of LIPIcs, pp. 74:1-74:16. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2018.

https://arxiv.org/abs/2103.11669
https://arxiv.org/abs/2103.11669

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Lin, H. and Bilmes, J. A. A class of submodular functions
for document summarization. In ACL, pp. 510-520. The
Association for Computer Linguistics, 2011.

Mitrovié, S., Bogunovié, 1., Norouzi-Fard, A., Tarnawski, J.,
and Cevher, V. Streaming robust submodular maximiza-
tion: A partitioned thresholding approach. In Advances
in Neural Information Processing Systems, 2017.

Monroe, B. L. Fully proportional representation. American
Political Science Review, 89(4):925-940, 1995.

Moro, S., Cortez, P., and Rita, P. A data-driven approach to
predict the success of bank telemarketing. Decis. Support
Syst., 62:22-31, 2014.

Munoz, C., Megan, S., and Patil, D. Big data: A report on
algorithmic systems, opportunity, and civil rights. Execu-
tive Office of the President. The White House, Washing-
ton, DC, 2016.

Nemhauser, G. L. and Wolsey, L. A. Integer and combina-
torial optimization. Wiley New York, 1999.

Norouzi-Fard, A., Tarnawski, J., Mitrovié, S., Zandieh,
A., Mousavifar, A., and Svensson, O. Beyond 1/2-
approximation for submodular maximization on massive
data streams. /ICML, 2018.

Oveis Gharan, S. and Vondrak, J. Submodular maximization
by simulated annealing. In SODA, pp. 1098-1116. SIAM,
2011.

Rahmattalabi, A., Vayanos, P., Fulginiti, A., Rice, E.,
Wilder, B., Yadav, A., and Tambe, M. Exploring al-
gorithmic fairness in robust graph covering problems. In
NeurlIPS, pp. 15750-15761, 2019.

Rahmattalabi, A., Jabbari, S., Lakkaraju, H., Vayanos, P.,
Izenberg, M., Brown, R., Rice, E., and Tambe, M. Fair
influence maximization: a welfare optimization approach.
In AAAIL pp. 11630-11638. AAAI Press, 2021.

Schrijver, A. Combinatorial optimization: polyhedra and
efficiency. Springer Science & Business Media, 2003.

Singh, A. and Joachims, T. Policy learning for fairness in
ranking. In NeurlIPS, pp. 5427-5437, 2019.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for DNA microarrays.
Bioinformatics, 17(6):520-525, 2001.

11

Tsang, A., Wilder, B., Rice, E., Tambe, M., and Zick, Y.
Group-fairness in influence maximization. In IJCAI, pp.
5997-6005. ijcai.org, 2019.

White House OSTP. Blueprint for an Al Bill of Rights.
White House Office of Science and Technology Policy,
Washington, DC, 2022.

Zafar, M. B., Valera, 1., Gomez-Rodriguez, M., and Gum-
madi, K. P. Fairness constraints: Mechanisms for fair
classification. In AISTATS, volume 54 of Proceedings of
Machine Learning Research, pp. 962-970. PMLR, 2017.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Fairness in Streaming Submodular Maximization over a Matroid Constraint

A. Heuristics

In this section, we propose two heuristics which can improve the performance of our two-pass algorithm from Section 4,
and a one-pass heuristic algorithm for FMMSM.

A.1. Alternative algorithm for finding a feasible set

We propose an alternative algorithm, GREEDY-FAIR-RESERVOIR, to FAIR-RESERVOIR (Algorithm 1) for finding a feasible
solution S € F in a single pass. GREEDY-FAIR-RESERVOIR is similar to FAIR-RESERVOIR, but instead of collecting a
maximal independent set /. of arbitrary elements for each color c, it picks elements greedily.

Algorithm 3 GREEDY-FAIR-RESERVOIR

1: I+ (forallc=1,...C
2: for the next element e on the stream do

3: Letcbe the color of e

4. if I. + e € T then

5: I.+—I.+e

6: else

7 for ¢’ € I. in order of increasing f(e’) do

8: ifl. +e—¢ e€ZTand f(I.+e—¢') > f(I.) then
9: I.+ I.+e—e¢e and

10: break

11: Consider the partition matroid Z¢ on V defined in (1)
12: Let S C Ugeq...c I be any max-cardinality set in Z N Z¢o (Lemma 2.2)
13: Return set .S

Note that Theorem 4.2 still holds; GREEDY-FAIR-RESERVOIR is guaranteed to return a feasible solution in polynomial
time and using O(k - C') memory. Using GREEDY-FAIR-RESERVOIR instead of FAIR-RESERVOIR in FAIR-STREAMING
yielded better performance in our empirical evaluation (Section 5). Furthermore, in Appendix B we show that GREEDY-
FAIR-RESERVOIR can be adapted to return an optimal solution to the problem of fair modular maximization over a matroid
constraint.

A.2. Alternative filling-up procedure

Algorithm 4 FAIR-STREAMING+

1: Input: Set S from FAIR-RESERVOIR and routine A
2: Sl <— @, 52 <— @

3: for element e in S do

4 Let ¢ be the color of e

50 if|S1 N V.| < |S2 N V.| then

6: S1+ S +e
7.
8
9
0
1

else
: Sy +— Sy +e
: Define matroids Z¢, 7, Z, as in Equations (2) and (3)
10: Run two copies of A, one for matroids IC, 7, and one for matroids IC, 7o, and let S} and .S}, be the two outputs
11: Run two copies of A, one for matroids Ilc , Ly and objective f7, and one for matroids I2C , Ly and objective f5, and let
57 and S% be the two outputs

12: Return S’ = argmax(f(S]; USY), f(S5USY))

We propose an alternative way to augment sets .S, S5 at the end of FAIR-STREAMING (Algorithm 2, lines 11-14). Instead
of adding arbitrary elements from Sy, S2, we again run A with objective f;(S) = f(S U S!) (which is still monotone
submodular), matroid Z& = {X C S; | XU S! € Z¢}, and a second dummy matroid Zy = {X C S, | | X| < |S;|}, fori =
1,2. If A outputs a base S/ € ZE (which can be easily enforced), then the output set S” = arg max(f(S]USY), f(S5USY))

12

Fairness in Streaming Submodular Maximization over a Matroid Constraint

would still satisfy Lemma 4.3 and 4.4. We refer to this algorithm as FAIR-STREAMING+ and it is presented in Algorithm 4.

A.3. One-pass heuristic algorithm

When f is not modular, we can employ a greedy heuristic to augment the set returned by GREEDY-FAIR-RESERVOIR to
obtain a simple one-pass heuristic, GREEDY-FAIR-STREAMING, for FMMSM.

Algorithm 5 GREEDY-FAIR-STREAMING

1: Run GREEDY-FAIR-RESERVOIR, let S be its output and 1. the set collected for each colorc=1,--- ,C
2: for e € U, o1, in order of decreasing f(e | S) do

33 ifS+ecZand S+ e e ZC then
4
5

S« S+e
: Return set S

Since GREEDY-FAIR-STREAMING only adds elements to the feasible set .S as long as they do not violate the matroid and
fairness upper bounds, Theorem 4.2 still holds; GREEDY-FAIR-STREAMING is guaranteed to output a feasible solution
in one pass, using O(k - C') memory. It also performs quite well in terms of objective values in our empirical evaluation
(Section 5), though in general it does not provide any worst-case guarantee on the objective value.

On one hand, this is due to the fact that the output .S of GREEDY-FAIR-RESERVOIR is an arbitrary maximum-cardinality set
in Z N Z¢ (line 12 in Algorithm 3); thus it may pick only zero-value elements from U.I.. On the other hand, any algorithm
that collects high-value independent sets I, in each color without considering the objective-value interactions between these
sets, and then returns some subset of U1, is doomed to obtain O(1/C)-approximation. To see this, consider an instance
where each color has two elements: V.. = {e, e..}, with matching lower and upper bounds ¢, = u. = 1, a matroid Z that
encodes the same constraints as the color upper bounds (i.e., Z = Z¢), and a monotone submodular function f that assigns
a value 1 to every element e, and a value 1.01 to every element e/, but in such a way that the 1.01 value is shared between
all elements e’,; more formally, f(S) = |[SN{e.:c=1,...,C} + 1.01 - min(1,[S N {e, : ¢ = 1,...,C}|). The optimal
solution, of value C, is to pick all elements e., but GREEDY-FAIR-STREAMING will pick . = {e.}. Then there is no subset
of U.I. with value higher than 1.01, which gives a multiplicative gap of O(1/C).

B. Streaming Modular Case

In this section, we present a one-pass algorithm, GREEDY-FAIR-STREAMING-M, for the fair matroid modular maximization
(F3M) problem in the streaming setting. In what follows, we assume that f is modular, but not necessarily monotone.
GREEDY-FAIR-STREAMING-M collects maximal independent sets .. for each color ¢ in the same way as in GREEDY-FAIR-
RESERVOIR, but then it returns an optimal feasible solution in U, /..

Algorithm 6 GREEDY-FAIR-STREAMING-M

1: I+ (Qforalle=1,..,C
2: for the next element e on the stream do
Let ¢ be the color of e
if I. + e € 7 then
I.«—I.+e
else
for ¢’ € I, in order of increasing f(e’) do
ifl.+e—e €Zand f(I.+e—¢) > f(I.) then
I+ I.+e—¢
10: break
11: Let S C Ugei...cl. be any set in F which maximizes f(.5).
12: Return set S

R A A

We start by recalling the following notions for matroids: A circuit of a matroid 7 is a dependent set that is minimal with
respect to inclusion. We say that an element u € V' is spanned by a set S € T if the maximum size independent subsets of .S
and S + w are of the same size. It follows from these definitions that every element v of a circuit S is spanned by S — wu.

13

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Before proving the result, we need the following lemma which relates independence in matroids with reachability on
graphs. Given a directed graph G = (V, E), we denote with 67 (u) the out-neighborhood of a vertex v € V , i.e.
0t (u) ={veV]|(u,v) € E}.

Lemma B.1 (Lemma 13 of (Feldman et al., 2018)). Consider an arbitrary directed acyclic graph G = (V, E) whose
vertices are elements of some matroid L. If every non-sink vertex u of G is spanned by 5% (u) in Z, then for every set S of
vertices of G which is independent in T there must exist an injective function 1) such that, for every vertex u € S, ¥(u) is a
sink of G which is reachable from u.

Using Lemma B.1, we can make the following key observation about GREEDY-FAIR-STREAMING-M.

Lemma B.2. For each color ¢, the independent set 1. output by GREEDY-FAIR-STREAMING-M maximizes f in V. over the
matroid constraint I. Moreover, if any element x € V. is not in 1., then there must exist a subset I, of I. such that

e Il+adT,
e forally € I, f(y) > f(x).

Proof. For each color ¢, let OPT.. be any independent set in V.. which maximizes f in V., we show that f(I.) > f(OPT,),
thus proving the optimality of I... Consider the following directed graph G. = (V,, E..), whose nodes are the elements in V.
Fort =1, -, |V|, let x! be the t-th element of color ¢ to arrive on the stream, I ﬁ the set I.. at time ¢, Y'* the set of elements
in Y'* which can be swapped with 2%, i.e., Y := {y € I' | I + 2' —y € T}. If ' was swapped with y* € Y, then we add
directed edges from 3 to all the elements in Y'* — ' + z¢. If 2! was not added, then we add directed edges from z! to each
element in Y. If 2* was added without any swap, then its out-neighborhood is empty. Note that every edge in the graph G
points from a vertex dropped or swapped out at some time to a vertex that is either never deleted or removed at a later time.
This time component makes the underlying graph a DAG. Note also that because of the design of the algorithm (lines 7-8),
the value of f is non-increasing along every edge (u,v) € E., i.e., f(u) < f(y).

We want to apply Lemma B.1 on the graph G.. To that end, we argue that for any ¢ where z* is not a sink, and thus
It + 2t ¢ T, the set Y + ! is a circuit in I + x*. First, we show that any proper subset of Y + z! is independent.
For any y € I! + z', we have that Y + 2t —y C I! + 2! — y € T by the definition of Y and since I. € Z. Hence,
Y! + ot —y € Z. Next, we show that Yt 4 2 is a dependent set. To see this, assume towards contradiction that this is not
the case, i.e. that Y + 2! € 7; then we could repeatedly apply the augmentation property and add to Y* some elements
{y1,y2,...,y;} C L.\ Y"untl |Y* + 2" + y; + - - - + y;| = |I.|, while maintaining independence. We get a contradiction:
the remaining element z € I, \ (Y! +a' +y; +--- +y;) satisfies Y* + 2' + y; + -+ +y; = I. + 2 — z € Z, while on
the other hand z ¢ Y, which implies I. + x — z ¢ Z by definition of Y. It follows then that for ever non-sink vertex u of
G., its out-neighborhood 6 (u) = Y* 4 x! is a circuit, hence u is spanned by 61 (u) in Z.

By Lemma B.1, there exists an injective function 1) which associates each element v in OPT. to an element ¢)(u) in I,
which is reachable from u. As discussed earlier, the value of f is non-increasing along every edge in the graph, and in
particular along each u-1(u) path. Hence f(u) < f(¢(u)) forall u € OPT,, and f(I.) > f(OPT,).

Next, we prove the remaining statement of the lemma. For any = € V. \ I, we define I, :={y € I. | I. + « —y € T}.
We show that I/, satisfies the two required properties. First, it is clear that for all y € I it holds that f(y) > f(z), because
otherwise the independent set I. + x — y would have value strictly larger than I., violating the optimality of .. Second,
using a similar argument as above, we can show that I’ + z is a circuit, and hence I’ + z ¢ . O

We are now ready to prove the optimality of GREEDY-FAIR-STREAMING-M.

Theorem 4.5. There exists a one-pass streaming algorithm for F3M, which finds an optimal solution, uses O(k - C') memory,
and runs in polynomial time.

Proof. For every color ¢, the set I. collected by GREEDY-FAIR-STREAMING-M is a maximal independent set in V_;
therefore, by Lemma 4.1 there always exists a feasible set in J, I.. We need to prove that when f is modular, | J,. 1. also
contains an optimal feasible set.

The proof proceeds similarly to that of Lemma 4.1. Let R € F be the optimal feasible set such that |R \ | J, I.| is minimal.
We will prove that |R \ |, I.| is actually 0. Assume towards contradiction |R \ | J,, .| > 0. We will show how to exchange

14

Fairness in Streaming Submodular Maximization over a Matroid Constraint

an element x € R\ U.I, for an element y € | J.I. \ R. Without loss of generality, assume that (R N V;) \ I; # 0, and
let = be any of its elements. It is enough to show that there exists an element y € I; \ R such that R — x + y € Z and

f(R—z+y) > f(R).

Let I{ be the set guaranteed by Lemma B.2. Further let I{’ be a maximal set with I{ C I/ C I{ U R that is independent.
By maximality of I}, and since R, I{ € Z we have |R| < |I]| and |R — x| < |I{|. By the matroid augmentation property,
thereisy € I \ (R — z) such that R — = + y € Z. Because

H\(R—-2)C(I[JUR)\(R—2)C I +ux,

we must have y € I} \ R or y = x. The latter is impossible, since this would imply that = € I{’; however, this is impossible
because I] + z is not independent by Lemma B.2. So we have found an element y € I \ R such that R — x +y € Z and
f(R—2x+y) > f(R) (by Lemma B.2). This contradicts the original assumption, and concludes the proof that the output
of GREEDY-FAIR-STREAMING-M is optimal.

Finally, in the following section, we show that F3M can be solved in polynomial time in the offline setting. Hence, line 11 in
GREEDY-FAIR-STREAMING-M can be done in polynomial time when f is modular, and hence GREEDY-FAIR-STREAMING-
M runs in polynomial time in this case. O

C. Centralized Modular Case

In this section, we present two polynomial-time algorithms for F3M, in the centralized setting. One is based on linear
programming and the other reduces the problem to modular maximization over two matroid constraints. We again do not
assume monotonicity here.

C.1. Linear programming algorithm
Given a modular function f, we show that the F3M problem

max {f(S) => fle):Se]—"} (6)

SCV
ecS

admits an exact Linear Programming relaxation which can be solved in polynomial time.

Let 1s € R™ denote the vector whose i-th entry is 1 if ¢ € S and 0 otherwise. We show in particular that the linear program
relaxation of (7) given by

max {erf(e):xeconv({]lS:Se}'})}, @)

2€[0.1) eeV

is integral, i.e., it has at least one integral optimal solution z* € {0, 1}". Hence, the relaxation is exact. For that it is enough
to show that the polytope conv({1gs : S € F} is integral, i.e. all of its extreme points are integral (Nemhauser & Wolsey,
1999, Proposition 1.3 in Part III. 1, Section 1). This result generalizes the one given in Edmonds (1970, Theorems 35 and 45)
for the intersection of two matroids. Our proof follow a similar structure to the proof given in Schrijver (2003, Section 41.4)
of this result.

Let Zr denote the family of fair sets, i.e.,
Ip={SCV: L. <|SNV | <wu.Yec=1,..,C}.

Recall that 7 = Z N Z. Let P be the matroid polytope of 7 defined as Py; = {x € R"} : x(A) < r(A),VA C V'}, where
x(A) = > .c4 e, and r is the rank function of Z. The matroid polytope P corresponds to the convex-hull of indicator
vectors of independent sets, i.e., P = conv({lg : S € Z}).

The following lemma provides the convex-hull of indicator vectors of fair sets.

Lemma C.1. Let
Pr={z€[0,1]]": x(V,) € [le,uc],YVec=1,...,C},

then Pr = conv({lg : S € Zp}).

15

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Proof. Since {1s:S € Irp} C Pp, then conv({lgs : S € Zr}) C Pp. To prove the other direction, we show that for any
6 € R™, the linear program max,¢ p,. 0 ' « is integral, hence P is integral (Nemhauser & Wolsey, 1999, Proposition 1.3 in
Part III.1, Section 1).

Let V. be the set of indices ¢ € V" where 6; > 0. For each color c, let .J. be the set of indices corresponding to the largest
{.. coefficients ; for i € V., and J} be the set of indices corresponding to the largest min{u. — ., |(V. \ J.) N Vi|}
coefficients 0; for i € V. \ J. N V.. Then it is easy to see that the integral vector 2* = Uc 1,; U]lJ—j is an optimal solution

of max,ep, ' x. Hence, Pr C conv({lgs : S € Zr}), which concludes the proof. O

Next we show that the linear system corresponding to Pr N P is totally dual integral (TDI), and hence Pr N P is integral.
We recall first the definitions of TDI and box-TDI.

Definition C.2 (Sections 5.17 and 5.20 in (Schrijver, 2003)). A system Mz < b is called totally dual integral (TDI) if
M and b are rational, and the dual of max{cTa: : Mz < b} has an integer optimal solution (if finite), for each ¢ € 7.
Furthermore, a system Mx < b is called box-totally dual integral (box-TDI) if the system Mz < b,d; < x < ds is TDI for
each dy,dy € Z7}.

Theorem C.3. The linear system {0 < x < 1,z(A) < r(A),YACV,—x(V.) < —l.,z2(V.) <wu.,Ve=1,...,C} is TDL
Hence, Pr N P is integral.

Proof. We first show that the linear system {z(A4) < r(A),VA C V,—xz(V,) < —Ll,z(V.) < ue, Ve = 1,...,C} is
box-TDI. We can write the linear system as Mx < b. Given any § € R", the dual of maXT/{GTx : Ma < b}, is given by:

C C

)\202’1218}520 Z)\AT(A) + Z(acuc - ﬂcgc) : Z Aalag + Z(ac - /BC)]IVC =0

ACV c=1 ACV e=1

We argue that the dual has an optimal solution *, o*, 8* for which the collection of sets C = {A C V : A% > 0} form
achain, i.e.,if A, B € C then A C B or A C B. Given any optimal dual solution, let § = min{\%, A}, then decrease
A4, A by 0, and increase A%y g, A%~ by 0. The modified solution is still feasible since 14 + 1p = Laup + Lans,
and it has an equal or lower cost since r(A) + r(B) > r(AU B) + r(A N B). Applying this uncrossing operation for all
pairs of sets in C, results in a chain. The submatrix of M with rows corresponding to the constraints z(A) < r(A),VA € C,
and (V) < u., Ve =1, ..., C is the incidence matrix of the union of two laminar families, hence it is totally unimodular
(TU) (Schrijver, 2003, Theorem 41.11). Adding the rows corresponding to the constraints —x(V,) < —¢.,Vc=1,...,C
preserves the TU property (Nemhauser & Wolsey, 1999, Proposition 2.1 in Part III. 1, Section 2). It follows then by Schrijver
(2003, Theorem 5.35) that the linear system Mz < b is box-TDI.

By definition of box-TDI, we then have that the linear system corresponding to Pr N P is TDI, which implies that Pr N P
is integral by (Schrijver, 2003, Theorem 5.22). O

Corollary C.4. We have conv({lg : S € F}) = Pr N P and hence it is integral.
Proof. We note that any integral vector in Pr N P must also belong to {1g : S € F}. Since Pr N P is integral

(Theorem C.3), all its vertices are integral. Hence Pr N P C conv({lg : S € F}), and since Pp = conv({ls : S € Zp})
and P = conv({lgs : S € Z}), we also have conv({1g : S € F}) C Ppr N P. O

Theorem C.5. There is an exact polynomial-time algorithm for F3M.

Proof. Since conv({1lg : S € F}) is integral, We can solve problem (6) by solving its exact LP relaxation (7). The latter
can be solved in polynomial time using the ellipsoid method, since conv(Zy; N Zx) admits a polynomial time separation
oracle (which simply queries the separation oracles of Pr and P). O

C.2. Reduction to submodular (modular) maximization over matroid intersection bases

In this section we show that fair matroid submodular maximization (FMSM) reduces to a version of submodular maximization
over an intersection of two matroids (with an extra “full-rank” constraint). This will imply another polynomial-time exact
algorithm for F3M.

Let us define the submodular maximization over matroid intersection bases (SMOMIB) problem as follows:

16

Fairness in Streaming Submodular Maximization over a Matroid Constraint

e input: two matroids Z; and 7, on the same ground set V', with equal ranks k; = ks, and a submodular objective
function f : 2V — R,,

* output: a set S C V that is independent and full-rank in both matroids: S € 73 N7y, |S| = k1 = ka,

* objective: maximize f(S5).
Proposition C.6. Let A be an a-approximation to SMOMIB. Then there is an a-approximation to FMSM.
Proof. LetV =J,. V., Z, ({¢, uc)cec, f be an instance of FMSM. For every guess « € [4., > . uc] we will try to find
a good solution of size exactly x using A.

Let us first sketch the idea: we clone every element v € V' into two elements v, and v,, that are copies (in the sense of the
matroids and the function), so that only one of the two can be in a solution, the intuition being that v, is used to satisfy the
lower bound on v’s color and v,, is used to take elements beyond the lower bound. We can enforce the necessary constraints
using a second (laminar) matroid, which will be defined so that a solution of size z must have all its bounds satisfied with
equality. We also truncate the first matroid to cardinality x, so that the ranks are equal.

Now we formalize the above. Fix z, and let V' = {v;, v, : v € V'} be the new universe. For a set S’ C V' denote its
projection w(S’) to V' as
7(S)={veV:v €S orv, €S}

We will define two matroids Z; and Z> on V. Let
1 ={8"CV':n(S)eZand (Vv e V) {vy,v,} S and |5’'| < z}.

It is easy to see that Z; is a matroid. Next, we define Z, to be the following laminar matroid:

* for each color ¢, set {vy : v € V. } with bound /..,
« for each color ¢, set {v, : v € V.} with bound u. — £,

* the union of the latter sets, that is {v,, : v € V'}, with bound = — > _£..

Having those two matroids, we verify if each has rank x; if not, we skip this guess of x. Finally, we define f” : 2V R4 in
the natural way: f'(S’) := f(mw(S’)). One can check that f’ is submodular if f was. Now call A on instance V', Z;, T, f’.

To verify that the reduction works, we need to check:

* If S is a feasible solution to FMSM, then for guess x = |.S], the following “lift” S’ of S is feasible for SMOMIB: from
each color ¢, pick some £, elements v € V., N S and take v, into S’, while taking v,, for the other |V, N S| — ¢. many
elements. Then 7(S") = S so S’ € 7;, we also have S’ € 7, by construction, and |S’| = |S| = 2 = k1 = k2. Also
f(8) = f'(5).

* Conversely, for any = and any S’ € Z; N Z, with |S’| = z, we have that S := 7(5”) has |S| = |.S’| and one can check
that S is feasible for the fair problem (in particular, we must then have |S' N {v; : v € V_}| = £, for all ¢). Also

f(8) = f(5).
O

Now we are ready to give another proof of Theorem C.5, which we restate for convenience.

Theorem C.5. There is an exact polynomial-time algorithm for F3M.

Proof. Note that if f is a modular function, then we can instead define f’ in the proof of Proposition C.6 as f/(S’) =
Y vipest £ (V) + 200 s f(v), which is also modular (and equal to f(7(S’)) for sets S” € Z). Thus it is enough to give
a polynomial-time algorithm for SMOMIB in the special case of modular objective, which is easy: set an objective function
F7(S") = AlS’| + f/(S"), where X is very large. This is still a modular function. Now we run any exact weighted matroid
intersection algorithm (see Lemma 2.2); f”' will enforce that the optimal set has the maximum cardinality |S’| = z and,
subject to that, maximum f’-value. O

17

Fairness in Streaming Submodular Maximization over a Matroid Constraint

D. Proof of Theorem 3.2

In this section, we prove Theorem 3.2 which is based on a reduction to the hardness result of Kapralov (2021, Theorem 1).

Theorem 3.2. There is no one-pass semi-streaming algorithm that, given as input the edges of a perfectly-matchable
bipartite graph G = (P U Q, E), with probability at least 2/3 finds a matching of size at least %\P\

Proof. The main result (Theorem 1) of Kapralov (2021) states that no single-pass semi-streaming algorithm can find a
((1/(1 + In 2) + n)-approximate maximum matching in a bipartite graph, for any absolute constant > 0, with probability
at least 1/2. This differs from the statement of the theorem in two ways: i) Theorem 3.2 requires the existence of a perfect
matching in the input graph which it not the case in Kapralov (2021, Theorem 1); ii) the approximation factors are different.

The lower bound of Kapralov (2021, Theorem 1) is achieved using a hard input distribution on graphs which contain a
nearly-perfect matching with high probability. In particular, let G= (PUQ, E) be the random bipartite input graph of
the hard distribution and # = | P| + |Q|. The definition of G (see Equations (239)-(241) in Section 7.1) and the parameter
settings (see (p0)-(p7) in Section 5.2 and Lemma 85) imply that |P| = N - ©(|L/2] +1),|Q| = N - ©([L/2] + 1/2),
where L is an arbitrary, sufficiently large, absolute constant, satisfying 7 = o(1/L), and N is a sufficiently large constant as
a function of L. We thus have |P| = (1 £ O(1/L))|Q|. Lemma 150 of Kapralov (2021) states that with probability at least
1 — O(1/N), G contains a matching of size at least (1 — O(1/L))|P|.

Choosing N, L sufficiently large, and 7 sufficiently small, we can ensure that there exists a random distribution of bipartite,
n-vertex graphs, such that

1. the random graph G has a matching of size at least 0.999 - 72/2 with probability at least 0.999,

2. no semi-streaming algorithm can find a 0.6-approximate maximum matching with probability more than 1/2.

From here, we can exclude the possibility that a semi-streaming algorithm exists that can find a 2/3-approximate matching,
given that the input graph contains a perfect matching. Suppose for contradiction that such an algorithm A exists, with 2/3
success probability 3. We can use A to solve the hard instance distribution of Kapralov (2021). We simply augment G with
a small number of additional vertices and edges:

1. 71/100 new vertices added to P, called Pt
|P| + |PT| — |Q| new vertices added to @, called Q;
a complete bipartite graph between P and Q;

a complete bipartite graph between PT and Q;

A

a complete bipartite graph between P and Q.

We call the added edges
E* = (PTxQ)U(PxQ*)U(PTxQ").

We call the augmented graph R
Gt =(PUPT,QUQT,EUEY).

We show that G+ is guaranteed to have a perfect matching with probability at least 0.999. Let Mo pr be the maximum
matching in G, Py and Q, the corresponding unmatched vertices of P and @, respectively. Note that |Py| = | P| — [Mopr|
and |Qo| = |Q| — |[Mopr|. We can augment Mo pr with edges connecting vertices of Py to Q, Qo to P, and all the
remaining unmatched vertices in P to the ones in Q. To do so we need |Q | = |PT| —|Qo| + |Po| = |PT|+|P| — Q).
which is satisfied. We also need |PT| > |Qo| = |Q| — |[Mopr|, which holds with probability at least 0.999, since
|Mopr| > 0.999 - 2/2 with probability at least 0.999.

Hence, running A on Gt is guaranteed to find a matching of size at least 2/3 - |P U P*| with probability at least
2/3-0.999 > 1/2. We can simply discard edges of E* from this matching, and still retain a better-than-0.6-approximate

3 Assuming any constant success probability here is equivalent, as such an algorithms can always be ran in parallel multiple times, with
independent sources of randomness, to boost its success probability

18

Fairness in Streaming Submodular Maximization over a Matroid Constraint

matching in G, leading to a contradiction. To see this note that the number of edges in E™ in the matching returned by A is at
most max{|PT|,|@%|}. So the size of the matching after removing these edges is at least 2/3-|PUP*|—|PT|—(|P|—|Q|)+
which is larger than 0.6 - | P|.

O

E. Exponential-Memory Algorithm

In this section we present an algorithm for achieving a nearly 1/2-approximate solution for FMMSM in the streaming
setting, albeit with exponential memory in k£ and C. Our algorithm and proof closely follow the result of (Huang et al.,
2022).

Theorem 1.1. For any constant) € (0,1/2), there exists a one-pass streaming (1/2 — n)-approximation algorithm for
FMMSM that uses 20(+*+k1080) . log A memory, where A = maxeey f(c)

mingeev|f(e)>oy f(e)”

As is standard technique with exponential-memory streaming algorithms, we will first consider our algorithm to have access
to hidden information about some optimal solution. We will then replace decisions based on hidden information with
random guessing, and show that our algorithm succeeds with positive probability while consuming a bounded amount of
randomness. Finally, we run our algorithm in parallel using all possible sequences of random bits, and conclude that at least
one instance of the algorithm succeeds.

Let OPT be a canonical optimal feasible solution, which appears in the stream in the order o1, 09, ..., 0,. We will first
present an algorithm that assumes approximate knowledge of f(OPT); specifically we assume that our algorithm receives as
input some v where f(OPT) € [(1 —) - v,] is guaranteed. In the, we will show how to get rid of this assumption at a
small cost to memory complexity in terms of the so-called aspect ratio, A.

Initially our algorithm will also rely on the following pieces of hidden information:

1. The cardinality ¢ of OPT; we call this the cardinality oracle.
2. The color of any opt element, ¢(0;); we call this the color oracle.

3. The f-value of any opt element, conditioned on a set .S (that we fix later on), f(0;|S); we call this the function oracle.
Here we need only that the oracle returns the value up to an additive error of f(OPT) - 7/¢; this will be crucial in
bounding the amount of randomness guessing needed to replace the oracle.

4. The independence in Z of some set which may contain opt elements, as well as elements form the algorithm’s memory,

?
SU{oi,...,0i,} € L, we call this the matroid oracle.

With this in mind, the algorithm is presented in Algorithm 7.

Note the invariant that
Vi: {S1,...,8i,0i41,...,00} €T 8)
is guaranteed by the matroid oracle call on Line 15.

Lemma E.1. In Algorithm 7, the if clause on Line 13 is satisfied (and thus the algorithm does not proceed to Line 15) only
lf{slv s o3 8i—1,6,0441,5 - .- 705} QI

Proof. Consider the first element e for which the Lemma’s statement is violated. Recall that at this point S = {s1,...,s;—1}
and let O = {0;41, ..., 0} for simplicity of notation. Suppose for contradiction that SUT +e € Zbut SUO + e € 7.
Notice also that for all elements ¢ € T it must be the case that S U O + ¢t & Z, otherwise ¢ never would have been added to
T'; this is because, by our assumption, the Lemma statement was true for all previous elements.

If |T'| > |O| we immediately get a contradiction: Both S U T and S U O are independent, and |S UT| > |S U O| so my the
augmentation property of matroids there existsaset SUO +t € Zfort € T.

If, on the other hand, |T'| < |O|, |[SUT| < |S U +e¢| (also independent), so by the augmentation property of matroids, there
exists aset SUT U’ € T where O’ C O + e. However, e cannot be in O’, since SUT + e¢ ¢ 7 by assumption, so

19

Fairness in Streaming Submodular Maximization over a Matroid Constraint

Algorithm 7 Exponential algorithm

1: Input: Cardinality, color, function, and matroid oracles, and ~.

2: { < |OPT| // Query the cardinality oracle.
3 S« 0

4: fori <+ 1...0do

5: ¢ < color of o; /I Query color oracle.

6: Set € Z such that f(0;]S) € [Ony/¢, (0 + 1)ny/¢) I/ Query function oracle.
7. T«

8: for e element in the stream do

9 if e is not color ¢ then
10: continue
11: if f(e|S) & [0ny/¢, (0 + 1)ny/L) then
12: continue

13: if SUT + e &7 then
14: continue
15: if SU{0j4+1,...,00} + ¢ &7 then /I Query matroid oracle.
16: T+ T+e

17: else

18: S; e

19: S+ S+ Si

20: Return S

O’ C O. Furthermore, [SUT +¢e| and [SUT UO’| = |SUO + e| > |S U O|. Therefore, by applying the augmentation
property again, we can get an independent set of the form S U O + ¢t where ¢ € T'; this is a contradiction.

O

Lemma E.2. Algorithm 7 will always find an appropriate element s;, and break out of the loop on Line 4.

Proof. We can prove the following stronger claim through induction over i: The algorithm will break out of the loop on
Line 4 no later than o;’s arrival in the stream.

For any 7 (both base case and inductive step), we know that o; is still in the stream when the loop at Line 4 begins. Then the
inductive statement follows simply due to the fact that o; itself will pass all the filters on Lines 9, 11, 13 (due to Lemma E.1),
and 15: Tt is the right color, the right size, and e = o; satisfies the condition {s1,...,8;-1,€,0;41,...,0¢}.

O

From this it follows that Algorithm 7 will indeed always output a feasible solution of £ elements, due to Equation (8) when
i=4.

We now turn to showing a lower bound on the quality in terms of f(OPT) of the solution output by Algorithm 7.
Lemma E.3. The solution output by Algorithm 7 has value at least (1/2 —n) - f(OPT).

Proof. We prove the following statement by induction over i:
i
2 f({s1,- o 8i}) + f({0i1s- 00 {81,y si}) + % > f(OPT). ©)

The base case of 7 = 0 holds trivially, and by substituting in ¢ = ¢, we get the statement of the Lemma.

For simplicity denote S = {s1,...,8;-1} and O = {0;41, ..., 0¢}. To prove the inductive step, it suffices to show that the

20

Fairness in Streaming Submodular Maximization over a Matroid Constraint

change in the left hand size of Equation (9) is positive when moving form ¢ — 1 to ::

LHS; — LHS, 1 = 2 (S +5,) = 2f(5) + f(OIS +5:) = (O +0,|$) +
> 2. f(slS) — [(0ilS) = S(si]9) + T
> [(sil) + § — J(0i]S)

20,

since we know that f(0;|.S) and f(e|S) are both in [01y /¢, (8 4+ 1)n~/¢) from Lines 6 and 11.
Finally, taking Equation (9) with ¢ = £ gives us

2- f({s1,---,8¢}) +my > f(OPT),

and therefore
f({s1,---,80}) = f(OPT) - (1/2 —m - (1 +n)/2) > f(OPT) - (1/2 —n).
O

This concludes the proof of correctness of Algorithm 7 in the presence of the four oracles (cardinality oracle, color oracle,
function oracle, and matroid oracle). We are now ready to prove Theorem 1.1.

Lemma E.4. There exists a randomized single-pass streaming algorithm using O (k) memory, and outputting a 1/2 — n-
approximately optimal feasible solution with positive probability, while consuming O(k* + klog C) bits of randomness.

Proof. Algorithm 7 is such an algorithm when replacing the three oracles with uniformly random choices. Indeed, it
produces the correct output with positive probability (when all random choices happen to be correct).

The cardinality oracle is called only once and chooses between k options, so a random implementation consumes log k
random bits. The color oracle is called at most k times and chooses between C' options, so a random implementation
consumes O(klog C') random bits. The function oracle is called at most k times and chooses between O(k/7) options.
This is because 6 is at least 0 and at most £/ < k/n, since v > f(OPT) > f(o0;) > f(0;]S). Therefore, a random
implementation consumes O(klog(k/n)) random bits. The matroid oracle is called at most k? + k times; at most
k + 1 times every iteration of the for loop in Line 4. This is because every time it is called and returns true (that is
{81,.-.,8i—1,€,0i41,...,0¢} € T), the current iteration of the loop is terminated; every time it is called and returns false,
T is incremented, and since 1" € Z, it can have size at most k. Therefore, a random implementation of this consumes K2 +k
random bits.

In total this is O(log k + k? + klog(k/n) + klog C) = O(k* + klog C) random bits. O

Proof of Theorem 1.1. We simply run 20(+*+k108) paralle] copies of the algorithm guaranteed by Lemma E.4, each with
a different stream of bits as randomness. At least one is guaranteed to succeed. We can then find and return the highest
valued feasible set output by the algorithms.

However, all versions of Algorithm 7 assume access to -y with the guarantee that f(OPT) € [(1 —n) - v, 7]. For the purposes
of this proof, we call the above algorithm the y-dependent algorithm; it satisfies the requirements postulated by Theorem 1.1,
but only under the condition that ~ is set correctly. We will now show how to drop this requirement while losing a O(log A)
factor in the memory complexity. (What follows is standard technique often used in the literature in the context of streaming
submodular maximization.) We again run multiple copies of the y-dependent algorithm, with different guesses of . In fact,
we run a copy for v = (1 — n)* for every ¢ € Z, thus guaranteeing that in at least one of the cases f(OPT) € [(1 —n) - v,7]
is satisfied.

Although this is potentially an infinite number of parallel copies, we show that all but O(log(kA)) of them fall into one

of two classes, such that copies within the same class look identical to each other; thus we require only 20(k*) . log A
memory in the end. Recall that A is the ratio between the value of the larges and smallest (non-zero) elements on the

21

Fairness in Streaming Submodular Maximization over a Matroid Constraint

stream, that is A = max f(e)/ ming)+o f(e). Let the largest and smallest elements be epax and emin respectively, such

that A = f(emax)/f(emin)'

For values of + that are less than f(emin)/2, an element e can only pass the filter at Line 11 if f(e) = 0. This can be proven
by induction. As long as .S contains only elements with f-value 0, f(S) = 0, and Ve : f(e|S) = f(e). For any e such that
f(e) > 0it follows that f(e|S) > f(emin) > (0 4+ 1)ny/¢ so e does not pass the filter at Line 11. As a result all copies of
the y-dependent algorithm with v < f(emin)/2 look identical to each other and can be stored as one.

For values of v that are greater than f(emay) - k/7 it is also true that all copies of the y-dependent algorithm look identical.
In this case, if 6 is anything other than 0 on Line 6, all elements will be filtered out on Line 11, since Ve : f(e) < yn/L.
On the other hand, if # is 0 on Line 6, all elements e pass the filter on Line 11 for the same reason. Therefore, when
~v > f(emax) - k/7, the exact value of ~ is irrelevant to the execution of the y-dependent algorithm, and all such copies can
be stored as one.

In summary, copies of the y-dependent algorithm for v’s over f(emax) - k/n as well as v’s under f(enin)/2 are stored as
though they constituted only two total copies of the y-dependent algorithm. (This can be done without foreknowledge of
f(emax)s f(emin) or even A.) All other copies of the algorithm are stored explicitly — a total of O(log(kA)) copies. Once
again, the correct solution among all possibilities can be selected by simply picking the largest f-valued feasible set. The
total memory complexity is 20**) - log A.

O

F. Proof of Theorem 1.2

Towards a contradiction assume that A is an algorithm as in the statement of Theorem 1.2. We then describe how to construct
an algorithm B to find a perfect matching. Consider any instance of the perfect bipartite matching streaming problem, and
let <(l1, 1), (l2,72), ... (| 5] T‘E‘)> denote the stream of edges of a bipartite graph G(L U R, E). Define the following
matroid constraint on E: a subset of edges is independent if it has at most one edge incident to any left vertex [€ L. Note
that this is a partition matroid, and its rank £ = n, as we can assume that each left vertex has at least one edge (otherwise
there is no perfect matching). Moreover, we use the fairness constraint to ensure that exactly one edge incident to each
vertex r € R is selected; we have C' = n. With these two constraints on the set of edges, we have that any solution S C E
is feasible if and only if S is a perfect matching. The submodular function f does not play a role in this reduction and can be
defined arbitrarily. B can simulate the behavior of algorithm .4 on the edge set with the constraints defined above and returns
that there exists a perfect matching if and only .4 return that there exists a feasible solution. This contradicts Theorem 3.1
and concludes the proof.

22

