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Abstract
Spherical CNNs generalize CNNs to functions on
the sphere, by using spherical convolutions as the
main linear operation. The most accurate and effi-
cient way to compute spherical convolutions is in
the spectral domain (via the convolution theorem),
which is still costlier than the usual planar convo-
lutions. For this reason, applications of spherical
CNNs have so far been limited to small problems
that can be approached with low model capacity.
In this work, we show how spherical CNNs can
be scaled for much larger problems. To achieve
this, we make critical improvements including
novel variants of common model components, an
implementation of core operations to exploit hard-
ware accelerator characteristics, and application-
specific input representations that exploit the prop-
erties of our model. Experiments show our larger
spherical CNNs reach state-of-the-art on several
targets of the QM9 molecular benchmark, which
was previously dominated by equivariant graph
neural networks, and achieve competitive perfor-
mance on multiple weather forecasting tasks. Our
code is available https://github.com/
google-research/spherical-cnn.

1. Introduction
Spherical convolutional neural networks (Cohen et al., 2018)
were introduced as a response to the convolutional neural
networks (CNNs) that were central to a series of break-
throughs in computer vision (Krizhevsky et al., 2012; He
et al., 2016; Simonyan & Zisserman, 2015; Ronneberger
et al., 2015). Given the prevalence of spherical data across
many applications, it seemed sensible to design neural net-
works that possess attributes analogous to those that con-
tribute to the success of planar CNNs, such as translation
equivariance, spatial weight sharing, and localized filters.
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Figure 1. Previous spherical CNNs were limited to low resolutions
and relatively shallow models. In this work, we scale spherical
CNNs by one order of magnitude and show that they can be com-
petitive and even outperform state-of-the-art graph neural networks
and transformers on scientific applications. In the figure, the num-
ber of convolutions in a layer mapping between Cin and Cout

channels is counted as CinCout, and the feature map size for a
H×W feature with C channels is the number of entries HWC.

Much of the ensuing research into designing spherical
CNNs (Cohen et al., 2018; Kondor et al., 2018; Esteves
et al., 2020) fulfilled these objectives, providing theoretical
guarantees on rotation equivariance, the ability to learn local
and expressive filters, and faithful models of both scalar and
vector fields on the sphere.

Nonetheless, these models have not impacted many real-
world applications. One reason is that learning from large
datasets requires models with adequate representational ca-
pacity, and it has not yet been shown that spherical convolu-
tion layers can be composed to construct such large models
effectively. See Figure 1 – there is no spherical CNN archi-
tecture used in practice analogous to common CNN models
such as VGG19 (Simonyan & Zisserman, 2015).

We are inspired by scientific applications in two areas, drug
discovery and climate analysis, that have the potential for
broad societal impact. Naturally, both have drawn great in-
terest from the machine learning community – for example
AlphaFold for predicting 3D structure of proteins (Jumper
et al., 2021), and a litany of deep learning approaches for
molecular property prediction (Wiedera et al., 2020). Prop-
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erty prediction of small molecules may also be relevant in
the design of drugs targeting the interaction between two
proteins. For instance, current cancer drugs based on disrupt-
ing the binding of tumor suppressor p53 and ubiquitin ligase
MDM2 (which targets p53 for degradation) have very low
efficiency (Sun, 2006). The second area of interest is short
and medium-range weather forecasting (Ravuri et al., 2021;
Lam et al., 2022; Rasp et al., 2020). Climate interventions
are being considered to mitigate the effects of increased
greenhouse gas concentrations in the atmosphere1. As such
interventions represent uncharted and potentially dangerous
territory, climate prediction models may prove important to
improve their safety and effectiveness.

Intuitively, both molecular property prediction and climate
forecasting problems should benefit from spherical CNNs.
The intrinsic properties of molecules are invariant to rota-
tions of the 3D structure (atom positions), so representa-
tions that are rotation equivariant by design would provide
a natural way to encode this symmetry. However, QM9 (Ra-
makrishnan et al., 2014), a current standard benchmark for
this problem, contains 134K molecules, over 18 times larger
than the dataset existing spherical CNNs can accommo-
date (Rupp et al., 2012). The scale of this problem neces-
sitates models with much greater representation power and
computational efficiency.

Similarly, climate forecasting datasets (Rasp et al., 2020)
represent samples of the Earth’s atmospheric state and thus
are ideally represented as spherical signals. Furthermore,
in meaningful forecasting applications, models will rely on
numerous input variables and the objective is to predict at
a high spatial resolution (e.g. 1◦ angular resolution or 64k
samples). Such input and output sizes demand large models.

In this work we present a systematic and principled approach
to scale spherical CNNs. Our contributions include

• a design of large scale spherical CNN models, which
includes an efficient implementation of spin-weighted
spherical harmonic transforms tailored to TPUs,

• general purpose layers and activations that improve
expressivity and efficiency,

• application-specific modeling for molecules and
weather forecasting.

As the contributions listed above hint at, we observe a naive
scaling of existing spherical CNN architectures (simply in-
creasing depth and/or width) is insufficient. Rather, our
larger models required a measured design that altered mul-
tiple standard components such as the nonlinearity, batch
normalization, and residual blocks – all of these improved
both efficiency and test performance (see Table 1).

1https://www.ametsoc.org/index.
cfm/ams/about-ams/ams-statements/
statements-of-the-ams-in-force/
climate-intervention

These advancements, along with novel domain-specific in-
put feature representations, lead to state of the art perfor-
mance on the QM9 benchmark, which has been mostly dom-
inated by variations of graph neural networks and transform-
ers. Our models are also competitive in multiple weather
forecasting settings, showing, for the first time, that spheri-
cal CNNs are viable neural weather models.

This work shows the feasibility of, and introduces best prac-
tices for, scaling spherical CNNs. Based on our findings,
we expect our JAX (Bradbury et al., 2018) implementation
will provide a platform for further research with spherical
CNNs targeting real world applications.

2. Related work
2.1. Spherical CNNs

Spherical CNNs have been introduced as the natural exten-
sion of standard CNNs to the sphere (Cohen et al., 2018;
Esteves et al., 2018), with spherical convolutions computed
via generalized Fourier transforms, where the translation
equivariance is generalized to 3D rotation equivariance.
Later work introduced spectral nonlinearities (Kondor et al.,
2018), and extended the equivariance to conformal transfor-
mations (Mitchel et al., 2022).

One set of approaches applies filters directly to discrete
samples of the spherical input. Perraudin et al. (2019) used
a rotation equivariant graph CNN based on isotropic filters.
Cohen et al. (2019) considered charts of an icosahedral grid,
where filters are rotated and shared, yielding approximate
rotation equivariance. Shakerinava & Ravanbakhsh (2021)
generalized Cohen et al. (2019) to other grids, using less
constrained filters that maintain equivariance.

Tangentially related are methods that operate on the sphere
but are not rotation-equivariant (Coors et al., 2018; Jiang
et al., 2019; Su & Grauman, 2019).

There have been attempts at improving spherical CNN’s
efficiency. Esteves et al. (2020) introduced spin-weighted
spherical CNNs, which brought anisotropic filters at smaller
cost than the full rotation group Fourier transforms. Cobb
et al. (2021) counteracted the feature size expansion caused
by the tensor products in Kondor et al. (2018) with heuris-
tics to select the representation type at each layer. McEwen
et al. (2022) handled high resolution spherical signals by
first applying a scattering network with fixed filters (not
trainable), followed by downsampling and a spherical CNN.
Ocampo et al. (2022) approximated the group convolution
integral using a quadrature rule, avoiding expensive general-
ized Fourier transforms. These previous attempts were still
limited to small and sometimes contrived applications.

In this paper, we scale spherical CNNs to a number of oper-
ations and feature resolutions one order of magnitude larger
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than prior work (see Figure 1), and apply them successfully
to large benchmarks on molecule and weather modeling,
showing that they can be comparable and sometimes surpass
the state-of-the-art graph and transformer-based models.

2.2. Deep learning for molecules

There have been many flavors of message-passing graph
neural networks designed specifically for molecules. See
Wiedera et al. (2020) and Han et al. (2022) for relevant sur-
veys, and a broader discussion not limited to deep learning
techniques can be found in von Lilienfeld et al. (2020). Re-
garding the deep learning approaches, much of the recent
work has focused on 3D equivariant or invariant models.

Examples of invariant models include SchNet (Schütt et al.,
2017) and DimeNet++ (Klicpera et al., 2020), where the
update function only uses invariant information such as
bond angles or atomic distances. E(n)-equivariant net-
works (Satorras et al., 2021) propose an equivariant up-
date function for node coordinates that operates on direc-
tional information (displacement between atoms), although
the model instantiation for molecules skips this update
leading to strict invariance. Related, Tensor Field Net-
works (Thomas et al., 2018) also construct an equivariant
update function, this one is based on spherical harmon-
ics. Cormorant (Anderson et al., 2019) and Steerable E(3)-
equivariant GNNs (Brandstetter et al., 2022) can be seen as
extensions of TFN, the former noted for using the Clebsch-
Gordan non-linearity, and the latter generalizing to E(n)
equivariance. PaiNN (Schütt et al., 2021) is a related model
whose gated equivariant update block does not rely on spher-
ical harmonics. This work also closely examines the loss
of directional information in invariant models and finds
equivariance allows for models with reduced model size.
Related to the equivariant graph models are the equivari-
ant transformer approaches such as TorchMD-Net (Thölke
& Fabritiis, 2022) which updates scalar and vector node
features with self-attention.

2.3. Deep learning for weather modeling

Mudigonda et al. (2017) and Weyn et al. (2019) utilize
vanilla CNNs for extreme weather segmentation and short-
term forecasting (“NowCasting”), respectively, while Rasp
& Thuerey (2021) uses a ResNet model. Other methods for
NowCasting use UNets (Agrawal et al., 2019) and condi-
tional generative modeling (Ravuri et al., 2021).

In Weyn et al. (2020) and Lopez-Gomez et al. (2022), a
cubed sphere representation (projecting the sphere onto six
planar segments) is proposed. This approach enjoys some of
the computational benefits of traditional CNNs while more
closely observing the underlying spherical topology. Jiang
et al. (2019) introduces a model for unstructured grids with
experiments on extreme weather segmentation on icosa-

hedral grids. This orientable CNN model does not offer
equivariance to 3D rotations and thus expects inputs to be
consistently oriented which is true of climate data.

Keisler (2022) recently introduced a graph neural network
model inspired by Battaglia et al. (2018). The central com-
ponent of this model is a message passing network operating
on an icosahedral grid. A similar approach is taken in Lam
et al. (2022), with a multi-scale mesh graph representation.

The datasets used in most of the recent deep learning re-
search for climate modeling, such as WeatherBench (Rasp
et al., 2020), consists of equiangular grids derived from
reanalysis of the ERA5 data (Hersbach et al., 2020).

3. Background
Spherical CNNs. The ubiquitous convolutional neural net-
works (CNNs) for image analysis have convolutions on the
plane as their main operation,

(f ∗ k)(x) =
∫

t∈R2

f(t)k(x− t) dt,

for an input function f and learnable filter k. This opera-
tion brings filter sharing between different regions of the
image via translation equivariance, which means that given
a shifted input f ′(x) = f(x + h), the convolution output
also shifts: (f ′ ∗ k)(x) = (f ∗ k)(x+ h). This is one of the
main reasons for CNNs high performance.

Spherical CNNs generalize this notion to functions on the
sphere (f : S2 7→ R) by using spherical convolutions,

(f ∗ k)(x) =
∫

g∈SO(3)

f(gν)k(g−1x) dg, (1)

where SO(3) is the group of 3D rotations (which can be rep-
resented by special orthogonal 3× 3 matrices), and ν ∈ S2

is a fixed point. Any two points on the sphere S2 are related
by a rotation in 3D (in technical terms, the sphere is a homo-
geneous space of the group of rotations), and the spherical
convolution is equivariant to 3D rotations. Equation (1)
was adopted by Esteves et al. (2018), while Cohen et al.
(2018) lifts from S2 to SO(3) and performs convolutions
on the group, which have an almost identical expression to
Equation (1) but with x ∈ SO(3).

Esteves et al. (2020) introduced spin-weighted spherical
CNNs to overcome the limited expressivity of Esteves et al.
(2018) and the computational overhead of Cohen et al.
(2018). Spin-weighted spherical functions are complex-
valued and their phase changes under rotation. They can also
be interpreted as functions on SO(3) (Boyle, 2016) with
sparse spectrum. Convolution is computed through products
of spin-weighted spherical harmonics coefficients (Esteves
et al., 2020).
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Computing generalized convolutions. Approximating
spherical and rotation group convolutions with a discrete
sum is problematic because there is no arbitrarily dense self-
similar grid on the sphere and on the rotation group. Hence,
these convolutions are most efficiently and accurately com-
puted in the spectral domain, via products of (generalized)
Fourier coefficients (Driscoll & Healy, 1994; Kostelec &
Rockmore, 2008; Huffenberger & Wandelt, 2010), which
correspond to the spherical harmonics decomposition coef-
ficients f̂ ℓ

m for degree ℓ and order m in the case of Equa-
tion (1). Even the fastest algorithms for spherical and rota-
tion group convolutions are still much slower than a planar
convolution with a 3× 3 kernel on modern devices, which
has so far limited the applications of spherical CNNs.

In this paper, we adapt the algorithm of Huffenberger &
Wandelt (2010) for computing spin-weighted transforms,

sf̂
ℓ
m =

∫
S2

f(x)sY ℓ
m(x) dx, (2)

f(x) =
∑
ℓ

∑
|m|≤ℓ

sf̂
ℓ
msY

ℓ
m(x), (3)

where sY
ℓ
m is the spin-weighted spherical harmonic of spin

s, degree ℓ, and order m, and 0Y
ℓ
m corresponds to the stan-

dard spherical harmonic Y ℓ
m. The forward transform imple-

mentation rewrites Equation (2) as

sf̂
ℓ
m = (−1)sim+s

√
2ℓ+ 1

4π

ℓ∑
m′=−ℓ

∆ℓ
m′m∆ℓ

m′(−s)Im′m,

(4)

where ∆ℓ
m,m′ = dℓm,m′(π/2) is the Wigner ∆ function, dℓ

is a Wigner (small) d matrix, and Im′m is an inner product
with f over the sphere, computed by extending f to the
torus and evaluating standard fast Fourier transforms (FFTs)
on it. Symmetries of the Wigner ∆ enable rewriting the sum
in Equation (4) with half the number of terms as

ℓ∑
m′=−ℓ

∆ℓ
m′m∆ℓ

m′(−s)Im′m =

ℓ∑
m′=0

∆ℓ
m′m∆ℓ

m′(−s)Jm′m,

(5)

where Jm′m = Im′m + (−1)m+sI−m′m for m′ > 0 and
J0m = I0m.

The inverse transform rewrites Equation (3) as

f(θ, ϕ) =

ℓ∑
m′=−ℓ

ℓ∑
m=−ℓ

eim
′θeimϕGm′m, (6)

Gm′m = (−1)sim+s
∑
ℓ

αℓ∆
ℓ
(−m′)(−s)∆

ℓ
(−m′)msf̂

ℓ
m,

(7)

Table 1. Effects of our modeling and implementation contributions.
Differences are shown with respect to the results of the previous
row. A model similar to the one described in Section 5.1.3 for
enthalpy of atomization on QM9 was used for this analysis.

∆ Steps/s [%] ↑ ∆ RMSE [%] ↓

JAX implementation 33.7 0.0

Phase collapse −4.6 −8.0
No ∆ symmetries 16.3 0.0

Use DFT 21.4 0.0

Spectral batch norm 7.8 −1.4
Efficient residual 19.3 −2.4

where αℓ =
√

2ℓ+1
4π . Again, the Wigner ∆ symmetries

imply Gm′m = (−1)m+sG(−m′)m so the full G is recon-
structed by computing only half of its values.

The algorithm just described was adopted and implemented
in TensorFlow (Abadi et al., 2016) with no changes by
Esteves et al. (2020). In this work, we offer a complete
rewrite in JAX, tuned for TPUs. This is by itself faster, but
we also propose modifications to the algorithm to further
improve its speed (see Section 4.2).

4. Method
We contribute a fast implementation of spin-weighted spher-
ical CNNs in JAX, optimized for TPUs, that can run dis-
tributed in dozens of devices. The implementation is about
3× faster than the original, and the ability to run distributed
can speed it up 100×or more (we use up to 32 TPUs).

Moreover, we introduce a new nonlinearity, normalization
layer, and residual block architecture that are more accurate
and efficient than the alternatives. Table 1 summarizes the
effects on efficiency and accuracy.

4.1. Modeling

Phase collapse nonlinearity. Designing equivariant nonlin-
earities for equivariant neural networks containing vector
or tensor features is challenging. A number of equivari-
ant activations appear in the literature (Weiler et al., 2018;
Kondor et al., 2018; de Haan et al., 2021; Xu et al., 2022)
and typically the best performing one is problem-dependent.
Spin-weighted spherical CNNs require specialized activa-
tions for nonzero spin features, and Esteves et al. (2020)
chose a simple magnitude thresholding.

Guth et al. (2021) introduced phase collapse nonlineari-
ties for complex-valued planar CNNs with wavelet filters,
motivated by 1) translation invariance is usually desirable
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for image classification, 2) in the spectral domain, trans-
lations correspond to phase shifts, 3) when applying com-
plex wavelet filters to images, which yields complex feature
maps, input translations approximately correspond to fea-
ture phase shifts, 4) using the modulus as part of the acti-
vation collapses the phase, achieving translation invariance
and increasing class separability.

We adapt these ideas to spin-weighted spherical functions;
in our case, we want rotation invariance (or equivariance) for
functions on the sphere. The features are complex-valued
and an input rotation results in phase shifts when the spin
number is nonzero. Thus, using the modulus as part of the
activation eliminates these shifts and brings some degree of
invariance. The activation mixes all spins but only updates
the zero-spin features. Since the nonzero spin features are
unaffected, no information is lost by collapsing the phase.

Formally, let x0 ∈ CC be the stack of C channels of zero
spin at some position on the sphere, and x ∈ CSC be a stack
of all S spins in the feature map (including zero). We apply

x0 ←W1x0 +W2|x|+ b,

where W1, W2 and b are learnable parameters. This oper-
ation updates only the spin zero; subsequent convolutions
propagate information to the nonzero ones. Table 6 shows
this nonlinearity brings sizeable performance improvements.

Spectral batch normalization. Previous spherical CNNs
computed spherical convolutions on the spectral domain
and batch normalization on the spatial domain. Batch
normalization requires approximating the statistics with a
quadrature rule in the spatial domain. Moreover, in the
spin-weighted case, zero and nonzero spins need different
treatments, which is inefficient.

We propose to compute the batch normalization in the spec-
tral domain instead. Consider that 1) the coefficient 0f

ℓ

for ℓ = 0 corresponds to the function average, and 2) the
variance of the rest of the coefficients is the variance of the
function. The normalization is then computed by 1) setting
0f

0 to zero and 2) dividing all coefficients by the variance.
Similarly, a learnable bias is applied by directly setting 0f

0,
and a learnable scale is applied to all coefficients.

The spectral batch norm is shown to be faster and more
accurate than the spatial one in Table 1. It also enables a
faster residual block as described next.

Spectral pooling and efficient residual block. In contrast
with Esteves et al. (2020), and similarly to Cohen et al.
(2018), we perform pooling in the spectral domain, which
proves to be faster and more accurate. This is because
the spatial pooling is sensitive to the sampling grid so it
is only approximately rotation-equivariant; it also requires
approximation with quadrature weights which adds to the
errors. Spectral pooling is implemented by simply skipping

the computation of the higher frequency coefficients within
a spin-spherical Fourier transform. Spectral pooling is also
conceptually different than spatial because it is a global
operation while spatial pooling is localized.

One potential issue with spectral pooling is in residual lay-
ers, where the downsampling happens in the first Fourier
transform, so the downsampled spatial input is never com-
puted and hence cannot be used in the skip-connection. Our
solution is to add the residual connection between Fourier
coefficients, which is enabled by the spectral batch nor-
malization described earlier. Figure 2 shows our residual
block. Table 1 shows it is faster and performs better than
the alternative with spatial pooling and batch norms.

Figure 2. Our efficient residual block contains spin-weighted spher-
ical Fourier transforms (FT) and inverses (IFT), multiplication with
filter coefficients (∗K), activation (σ) and spectral batch normal-
ization (BN). The residual connection happens in Fourier space.
Optionally, spectral pooling is performed at the first FT block.

4.2. Efficient TPU implementation

We implement the spin-weighted spherical harmonics trans-
forms aiming for fast execution on TPUs (Jouppi et al.,
2017)2. This drives our design decisions and sometimes
departs from the optimal implementation for CPUs as in-
troduced by Huffenberger & Wandelt (2010). The main
difference is that TPUs perform matrix multiplications ex-
tremely fast, but memory manipulations like slicing and
concatenating tensors may quickly become a bottleneck.

In particular, the use of Wigner ∆ symmetries to reduce
the number of elements computed in Equations (4) and (7)
requires slicing, modifying and reconstructing the original
tensors in order to cut the number of operations in half. It
turns out this is slower on TPU than just computing twice
as many operations without the intermediate steps for the
architecture we consider, so we skip the computation of
Jnm (Equation (5)) completely, and compute all entries of
Gnm (Equation (7)) in a single step.

Furthermore, Huffenberger & Wandelt (2010) leverage the
Fast Fourier transform (FFT) algorithm to reduce asymp-
totic complexity of the standard Fourier transforms (from
O(n2) to O(n log n)). While there are on-device imple-
mentations of the FFT, it turns out that in our cases it is
significantly faster to compute Fourier transforms as ma-
trix multiplications via the discrete Fourier transform (DFT)
matrix. This is because, in a typical neural network pass,
we will compute thousands of Fourier transforms (one for
each channel for each convolution), but the resolution of

2The implementation is compatible with GPUs as well.
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each transform is relatively small (up to n = 256 in our
experiments), so the constant terms dominate and there is
no benefit in reducing the asymptotic complexity. Table 1
quantifies the efficiency increase of these changes.

5. Experiments
5.1. Molecular property regression

We first demonstrate scaling spherical CNNs for molecu-
lar property regression from atoms and their positions in
space, a task that was so far dominated by rotation equiv-
ariant graph neural networks and transformer-based models
(Wiedera et al., 2020; Klicpera et al., 2020; Liao & Smidt,
2022; Thölke & Fabritiis, 2022). Previous applications of
spherical CNNs (Cohen et al., 2018; Kondor et al., 2018;
Cobb et al., 2021) considered only the QM7 (Rupp et al.,
2012) dataset, which has 7165 molecules with up to 23
atoms, and a single regression target. However, the much
larger QM9 (Ramakrishnan et al., 2014) dataset, which
contains 134 000 molecules with up to 29 atoms and 12
different regression targets, has supplanted QM7 as the stan-
dard benchmark for this task. The molecules are described
by their atom types and 3D positions, and labeled with geo-
metric, energetic, electronic, and thermodynamic properties
such as enthalpies and free energies of atomization.

In this section, we report the first results of spherical CNNs
on QM9. The main reason to employ spherical CNNs for
this task is their equivariance to 3D rotations, since the
molecule properties do not change under rotations. A sec-
ondary reason is that we can design rich physically-based
features when mapping from molecule to sphere.

5.1.1. SPHERICAL REPRESENTATION OF MOLECULES

The first step for applying spherical CNNs is to represent
the molecule as spherical functions. Cohen et al. (2018)
proposed a map where spheres are placed around each atom,
and points on each sphere are assigned a Coulomb-like quan-
tity using the charge of the central atom and the distances
between points on the sphere and other atoms.

We propose an alternative formulation which performs better
in practice (see Table 6). Our spherical functions have no
assigned radius, so they only contain directional information.
The values of these functions are constructed from an inverse
power law computed from pairs of atoms, spread out with
a Gaussian decay. The input consists of one set of features
per atom, with one channel per atom type in the dataset.
We sum the contributions of all atoms of the same type.
Formally, let zi be the atomic number of atom i and rij
the displacement between atoms i and j, we define the one

Figure 3. We represent a molecule with a set of Z functions on the
sphere for each atom, where Z is the number of atom types in the
dataset. Consider the H2O molecule in the figure and let Z = 2;
the rectangles show the two channels for each atom. The values
on the sphere come from physically-based interactions between
pairs of atoms, smoothed with a Gaussian kernel, and aggregated
over atom types. For example, the sphere marked with an H on
the top right sums up the Coulomb forces between the oxygen the
two hydrogen atoms.

input channel of atom i corresponding to atom type z as

fiz(x) =
∑
zj=z

zizj
|rij |p

e
−

(x·rij)
2

β|rij | ,

where β and p are hyperparameters. We set β such that
the value is reduced by 95% at 45◦ away from rij . We
stack the features for p = 2 and p = 6, which correspond
to the power laws of Coulomb and van der Waals forces,
respectively. These powers have been shown to perform
well by Huang & von Lilienfeld (2016) and we confirm
their findings in our setting.

Thus, a molecule with N atoms in a dataset containing Z
different atom types is represented by 2NZ feature maps.
The input representation contains global information since
it aggregates interactions between all atoms, however the
power law makes it biased towards nearby atoms. Figure 3
depicts the spherical representation of an H2O molecule.

This representation is computed on-device using JAX primi-
tives and thus is differentiable, enabling future applications
such as predicting molecule deformations or interactions.

5.1.2. ARCHITECTURE AND TRAINING

We first apply a spherical CNN separately to the input fea-
tures, at 32 × 32 resolution, for each atom (up to 29 on
QM9). The model contains one standard spin-spherical con-
volutional block followed by 5 residual blocks as depicted
in Figure 2 (for a total of 11 convolutional layers) with 64
to 256 channels per layer. Our method’s computational cost
roughly scales linearly with the number of atoms.

This first step results in one feature map per atom. We then
apply global average pooling which results in a set of feature
vectors, one per atom. Two different methods are used for
aggregating this set to obtain per-molecule predictions. The
first method, used for most of the QM9 targets, applies
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Table 2. QM9 mean average errors (MAE). We scale spherical CNNs for QM9 for the first time, and show they are competitive with the
previously dominant equivariant graph neural networks and transformers. We compare on two splits found in the literature, where “Split 1”
has a larger training set. Our model outperforms the baselines on 8 out of 12 targets in “Split 1” and 9 out of 12 targets in “Split 2”.

µ α ϵHOMO ϵLUMO ϵgap < R2 > zpve U0 U H G Cv

[D] [a30] [meV] [meV] [meV] [a20] [meV] [meV] [meV] [meV] [meV] [ cal
mol K ]

Split 1

DimeNet++ (2020) 0.030 0.044 24.6 19.5 32.6 0.331 1.21 6.32 6.28 6.53 7.56 0.023

PaiNN (2021) 0.012 0.045 27.6 20.4 45.7 0.066 1.28 5.85 5.83 5.98 7.35 0.024

TorchMD-Net (2022) 0.011 0.059 20.3 17.5 36.1 0.033 1.84 6.15 6.38 6.16 7.62 0.026

Ours 0.016 0.049 21.6 18.0 28.8 0.027 1.15 5.65 5.72 5.69 6.54 0.022

Split 2
EGNN (2021) 0.029 0.071 29.0 25.0 48.0 0.106 1.55 11.00 12.00 12.00 12.00 0.031

SEGNN (2022) 0.023 0.060 24.0 21.0 42.0 0.660 1.62 15.00 13.00 16.00 15.00 0.031

Equiformer (2022) 0.014 0.056 17.0 16.0 33.0 0.227 1.32 10.00 11.00 10.00 10.00 0.025

Ours 0.017 0.049 22.3 19.1 29.8 0.028 1.19 5.96 5.98 5.97 6.97 0.023

a DeepSets (Zaheer et al., 2017) or PointNet (Qi et al.,
2017) aggregation, similarly to Cohen et al. (2018). The
second method applies a self-attention transformer (Vaswani
et al., 2017) with four layers and four heads, and is applied
only to the polarizability α and electronic spatial extent
< R2 >, which require more refined reasoning between the
atom features for accurate prediction. It is common in the
literature to use different aggregation for these and other
targets (Thölke & Fabritiis, 2022; Schütt et al., 2021).

We train for 2000 epochs on 16 TPUv4 with batch size 16;
training runs at around 37 steps/s.

5.1.3. RESULTS

Table 2 shows our results on the QM9 dataset. There are two
different splits used in the literature, the major difference
being that “Split 1” uses a training set of 110 000 elements
while “Split 2” uses 100 000. We evaluate our model on
both splits and compare against the relevant models. Our
model outperforms the baselines on 8 out of 12 targets in
“Split 1” and 9 out of 12 targets in “Split 2”.

5.2. Weather forecasting

We now analyze large spherical CNNs for weather forecast-
ing. A unique challenge here is that accurate recordings of
weather data are limited to the last few decades, and thus
the limited training data motivates a search for the right
inductive biases for best generalization.

One potential issue to consider is that the Earth has specific
topography and orientation in space which influence the
weather, and input atmospheric data is always aligned, so
one could argue that global rotation equivariance is unnec-
essary or even harmful. We claim, however, that equivari-
ance is not harmful because we can simply include constant
feature channels such as the latitude, longitude, land-sea
mask and orography at each point. In fact, current neural
weather models (NWMs) do include these constants (Rasp

& Thuerey, 2021; Lopez-Gomez et al., 2022; Keisler, 2022).

Furthermore, we speculate that rotation equivariance can be
beneficial, not in the global sense since inputs are aligned,
but in the local sense where local patterns can appear at
different orientations at different locations.

We evaluate large spherical CNNs on different settings us-
ing ERA5 reanalysis data (Hersbach et al., 2020), which
combines meteorological observations with simulation mod-
els to provide atmospheric data such as wind speed and
temperatures uniformly sampled in time and space.

5.2.1. WEATHERBENCH

The WeatherBench (Rasp et al., 2020) benchmark is based
on ERA5 data, where the data is provided in hourly
timesteps for 40 years, for a total of around 350 000 exam-
ples. The dataset is accompanied by simple baseline models
for predicting geopotential height at 500 hPa (Z500) and
temperature at 850 hPa (T850) at t+ 3 days and t+ 5 days
given the values at t. In follow-up work, Rasp & Thuerey
(2021) applied deep residual networks to similar targets, but
now taking a much larger number of predictors including
geopotential, wind speed, specific humidity at 7 vertical
levels, temperature at 2m (T2M), total precipitation, and
solar radiation. Each predictor is sampled at t, t− 6h and
t − 12h, and the constants land-sea mask, orography, and
latitude are included as features, for a total of 117 channels.
In both settings, the inputs are sampled at 32×64 resolution.

Architecture and training. We follow Rasp & Thuerey
(2021) and train a spherical CNN with an initial block fol-
lowed by 19 residual blocks (as in Figure 2) and no pooling,
for a total of 39 spherical convolutional layers, all with
128 channels. We train one model to directly predict Z500,
T850 and T2M at 3 days ahead, and another to predict 5
days ahead. We train for 4 epochs on 16 TPUv4 with batch
size 32; training runs at around 8.9 steps/s.
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Results. Table 3 shows the results on the test set which
comprises years 2017 and 2018. We outperform the baseline
on all metrics in the simpler setting that takes two predictors,
and show lower temperature errors on the second setting
with 117 predictors. The spherical CNN even outperforms
models that are pre-trained on large amounts of simulated
data on some metrics. We notice that models tend to overfit,
and Rasp & Thuerey (2021) employ dropout and learning
rate decay based on validation loss to mitigate the issue.
We did not use these methods, which might explain our
underperforming the geopotential target.

Table 3. WeatherBench results. We report the RMSE on geopo-
tential height (Z500) and temperature at two verticals (T850 and
T2M). The top block follows the protocol from Rasp et al. (2020),
the middle follows Rasp & Thuerey (2021). A “cont” superscript
indicates a continuous model that takes the lead time as input.
Spherical CNNs generally outperform conventional CNNs on this
task, and even outperform models pre-trained (superscript “pre”)
on large amounts of simulated data on most temperature metrics.

3 days 5 days

Z500 T850 T2M Z500 T850 T2M
[m2/s2] [K] [K] [m2/s2] [K] [K]

2 predictors
Rasp et al. (2020) 626 2.87 - 757 3.37 -
Ours 531 2.38 - 717 3.03 -

117 predictors
Rasp & Thuereycont 331 1.87 1.60 545 2.57 2.06

Rasp & Thuerey 314 1.79 1.53 561 2.82 2.32

Ours 329 1.62 1.29 601 2.57 1.89

Pretrained
Rasp & Thuereypre 268 1.65 1.42 523 2.52 2.03

Rasp & Thuereypre,cont 284 1.72 1.48 499 2.41 1.92

5.2.2. GLOBAL TEMPERATURE FORECASTING

Lopez-Gomez et al. (2022) proposed the task of extreme
heat forecasting from short to subseasonal (up to 28 days
head) timescales. Current physics-based weather models
cannot forecast such long lead times, which motivates the
use of machine learning. In contrast with Rasp et al. (2020)
and Rasp & Thuerey (2021), Lopez-Gomez et al. (2022)
does consider the spherical topology and employ an approx-
imately uniform cubical sampling on the sphere.

Data used for this task is averaged over 24 h, and sampled
daily, resulting in around 15 000 examples. Furthermore,
data that is not present in WeatherBench is used, such as
soil moisture, longwave radiation and vorticity. For the
task we consider, Lopez-Gomez et al. (2022) used 20 pre-
dictors while we use only the 5 that are present in Weath-
erBench, namely temperature at 2m (T2M), geopotential
height at 300 hPa, 500 hPa and 700 hPa and incoming ra-
diation. Lopez-Gomez et al. (2022) applied a UNet-like
(Ronneberger et al., 2015) model on a 6×48×48 cubemap to

forecast 28 channels corresponding to 1 to 28 days T2M.

Architecture and training. We used WeatherBench data at
128×128 resolution, which has similar number of samples
to the 6×48×48 cubemap. We implement a spherical UNet
with 9 spherical convolutional layers with 128 channels
each. We train for 5 epochs on 16 TPUv4 with batch size
32; training runs at around 13 steps/s.

Results. Table 4 shows a comparison against 3 models
introduced by Lopez-Gomez et al. (2022) over the test set
(2017 to 2021). HeatNet has a loss biased towards high
temperatures, ExtNet is biased towards both hot and cold
extremes, while GenNet uses a standard L2 loss like our
model. Our model nearly matches GenNet’s performance,
even when using a small subset of the predictors.

Table 4. Temperature at 2m (T2M) prediction, following the pro-
tocol and comparing against baselines from Lopez-Gomez et al.
(2022). Our model nearly matches the best baseline performance,
even when using only a small subset of predictors.

T2M RMSE [K]
Predictors 1 day 2 days 4 days 7 days 14 days 28 days

ExtNet 20 1.15 1.64 2.11 2.31 2.40 2.42

HeatNet 20 1.26 1.77 2.23 2.42 2.50 2.53

GenNet 20 1.13 1.60 2.03 2.22 2.31 2.34

Ours 5 1.24 1.63 2.04 2.27 2.39 2.46

5.2.3. ITERATIVE HIGH RESOLUTION FORECASTING

Keisler (2022) proposed an iterative graph neural network
for weather forecasting. In this setting, predictors and tar-
gets have the same cardinality such that the model can be
iterated repeatedly to forecast longer ranges, where a sin-
gle iteration produces the forecast 6 h ahead. Temperature,
geopotential height, specific humidity and the three com-
ponents of the wind speed, are all sampled at 13 vertical
levels, for a total of 78 predictors and targets, at 180×360
resolution. The dataset comprises the years 1979 to 2020
with one example every 3 h, for a total of 120 000 examples.

Architecture and training. We use the same data as Keisler
(2022), but at 256×256 resolution, which has approximately
the same number of samples as the baseline.

We implement a spherical UNet with 7 convolutional layers
and a single round of subsampling, because a too large
receptive field should not be necessary for predicting 6 h
ahead iteratively. The model is repeated up to 12 steps
during training, for a total of 84 convolutional layers.

We train in 3 stages. The first uses 4 rollout steps (24 h) for
50 epochs on 32 TPUv4 with batch size 32, and is followed
by 10 epochs with 8 rollout steps (48 h) and 10 epochs with
12 rollout steps (72 h). Training runs at around 0.92 steps/s,
0.35 steps/s and 0.24 steps/s for each stage.
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Results. Table 5 and Figure 4 show the results. Our model
tends to perform better at geopotential but worse at temper-
ature forecasts. Keisler (2022) employs a different training
procedure where the resolution changes in each stage, and
the results are smoothed during evaluation.

Table 5. Iterative weather forecasting, following the protocol from
Keisler (2022). We compare results for 24h, 72h and 120h lead
times, and report the RMSE. Our model tends to perform better at
geopotential but worse at the temperature forecasts.

1 day 3 days 5 days
Z500 T850 Z500 T850 Z500 T850

Keisler (2022) 64.9 0.730 175.5 1.17 344.7 1.78

Ours 58.3 0.827 167.2 1.26 340.0 1.91

5.3. Ablations

Activation, pooling, molecule representation. We train
a small model with five spherical convolutional layers to
regress the enthalpy of atomization H on QM9; it is trained
for 250 epochs (in contrast with 2000 epochs in Section 5.1).
We compare the effect of replacing each of our main contri-
butions and show that each of them increases performance.
Specifically, we compare against the magnitude activation
used in Esteves et al. (2020), the gated activation introduced
by Weiler et al. (2018), which we implement by learning a
spin 0 feature map that is squashed and pointwise-multiplies
each channel. We also compare against the spherical molec-
ular representation introduced by Cohen et al. (2018). Ta-
ble 6 shows the results.

Table 6. Effects of activation, pooling, molecule representation.
We employ a phase collapse activation, compared against the gated
nonlinearity of Weiler et al. (2018) and the magnitude thresholding
of Esteves et al. (2020). We employ spectral pooling, compared
against the spatial pooling from Esteves et al. (2020). We introduce
a novel spherical representation of molecules, compared against
the one by Cohen et al. (2018).

Activation Pooling
Molecule QM9/H

representation MAE (meV)

Ours Ours Ours 15.25

Ours Esteves et al. Ours 16.13
Weiler et al. Ours Ours 16.70
Esteves et al. Ours Ours 17.01
Ours Ours Cohen et al. 20.90

Effects of scaling. In this experiment, we investigate
how the resolutions and model capacity affect accuracy
in weather forecasting. As in Section 5.2.3, we follow the
protocol of Keisler (2022), but only supervising and evaluat-
ing the forecasts 6 h in the future. Table 7 shows the results;

the most important factors for high performance in this task
are the input and feature maps resolutions.

Table 7. Effects of scaling. We report the RMSE for geopotential
at 500 hPa (Z500) and temperature at 850 hPa (T850), predicting
6 h ahead following Keisler (2022). Top row shows our base model.
The next block reduces the input resolution. The following row
uses separable convolutions in every other layer, which reduces
the number of convolutions but keeps the feature size constant.
The final block reduces the number of channels per layer, which
reduces both the number of operations and feature size.

channels convolutions feature size
Z500 T850

[m2/s2] [K]

256×256 100% 3.0× 105 8.4× 107 34.93 0.62

192×192 100% 3.0× 105 4.7× 107 39.68 0.74
128×128 100% 3.0× 105 2.1× 107 46.39 0.87
64×64 100% 3.0× 105 5.2× 106 69.60 1.08

256×256 100% 1.6× 105 8.4× 107 36.24 0.65

256×256 75% 1.7× 105 6.3× 106 36.65 0.65
256×256 50% 7.4× 104 4.2× 106 41.34 0.71

6. Discussion
Limitations. The major limitation of our models is still
the computational cost – our best results require training
up to 4 days on 32 TPUv4, which can be expensive. As a
comparison, the baseline for weather (Keisler, 2022) trains
in 5.5 days on a single GPU, and the baseline for molecules
(Liao & Smidt, 2022) trains in 3 days on a single GPU.

From the point of view of the applications, there are con-
cerns of how much a model trained on reanalysis is useful
for forecasting the real weather, and whether models super-
vised by chemical properties at some level of theory like
QM9 are useful to estimate the true properties.

Conclusion. Spherical CNNs possess numerous qualities
that makes them appealing for modeling spherical data or
rotational symmetries. We have introduced an approach
to scaling these models so they can be utilized on larger
problems, and our initial results already reach state of the
art or comparable performance on molecule and weather
prediction tasks. We hope this work and supporting imple-
mentation will allow the research community to revisit this
powerful class of models for important large scale problems.
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message passing for molecular graphs. CoRR, 2020. URL
http://arxiv.org/abs/2003.03123v2.

Guth, F., Zarka, J., and Mallat, S. Phase collapse in neural
networks. CoRR, 2021. URL http://arxiv.org/
abs/2110.05283v1.

Han, J., Rong, Y., Xu, T., and Huang, W. Geometrically
equivariant graph neural networks: A survey. arXiv
preprint arXiv:2202.07230, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2016.

10

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/pdf/1806.01261.pdf
http://dx.doi.org/10.1063/1.4962723
http://dx.doi.org/10.1063/1.4962723
http://github.com/google/jax
https://openreview.net/forum?id=Hkbd5xZRb
https://openreview.net/forum?id=Hkbd5xZRb
https://openreview.net/forum?id=Jnspzp-oIZE
https://openreview.net/forum?id=Jnspzp-oIZE
http://dx.doi.org/10.1039/C7SC02267K
http://dx.doi.org/10.1039/C7SC02267K
http://arxiv.org/abs/2003.03123v2
http://arxiv.org/abs/2110.05283v1
http://arxiv.org/abs/2110.05283v1


Scaling Spherical CNNs

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi,
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Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Ros-
nay, P., Rozum, I., Vamborg, F., Villaume, S., and
Thépaut, J.-N. The era5 global reanalysis. Quarterly
Journal of the Royal Meteorological Society, 146(730):
1999–2049, 2020. doi: https://doi.org/10.1002/qj.3803.
URL https://rmets.onlinelibrary.wiley.
com/doi/abs/10.1002/qj.3803.

Huang, B. and von Lilienfeld, O. A. Communication: Un-
derstanding molecular representations in machine learn-
ing: The role of uniqueness and target similarity. The
Journal of Chemical Physics, 145(16):161102, 2016. doi:
10.1063/1.4964627. URL https://doi.org/10.
1063/1.4964627.

Huffenberger, K. M. and Wandelt, B. D. Fast and exact
spin-s spherical harmonic transforms. The Astrophysical
Journal Supplement Series, 189(2):255–260, jul 2010.
doi: 10.1088/0067-0049/189/2/255.

Jiang, C. M., Huang, J., Kashinath, K., Prabhat, Marcus, P.,
and Nießner, M. Spherical cnns on unstructured grids. In
International Conference on Learning Representations,
(ICLR), 2019.

Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., luc Cantin, P., Chao, C., Clark, C., Coriell,
J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaem-
maghami, T. V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D.,
Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H.,
Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J.,
Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A.,
MacKean, G., Maggiore, A., Mahony, M., Miller, K., Na-
garajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps, A., Ross, J.,
Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A.,
Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Va-
sudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon,
D. H. In-datacenter performance analysis of a tensor
processing unit. In ISCA. ACM, 2017.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Appendix
A.1. Experimental details

We use the Adam (Kingma & Ba, 2014) optimizer and a
cosine decay on the learning rate with one epoch linear
warmup in all experiments.

The inputs of all models are conventional spherical functions
(zero spin). The first layer maps it to features of spins zero
and one, which are mapped back to spin zero at the last
spherical convolutional layer. This last feature is complex-
valued, which we convert to real by taking the magnitude.

A.1.1. MOLECULAR PROPERTY REGRESSION

For the experiments in Section 5.1, we use five spherical
residual blocks with resolutions [322, 162, 162, 82, 82] and
[64, 128, 128, 256, 256] channels per layer. We minimize
the L1 loss with a maximum learning rate of 10−4.

Our model applies the spherical CNN independently to each
atom’s features, followed by global average pooling, re-
sulting in one feature vector per atom. These are further
processed by a DeepSets or transformer, as explained in
Section 5.1. Finally, we map the set of atom feature vectors
to the regression target in three different ways, depending on
the target. The dipole moment µ relates to the displacement
between atoms and the center of mass, so we use a weighted
average by the displacements to aggregate the atom features
(as Gastegger et al. (2017)), followed by a small MLP. We
compute the electronic spatial extent < R2 > similarly,
but using the distance to the center of mass squared as the
weights, following Schütt et al. (2021). For the other tar-
gets, which are energy-related, we use the atom types as the
weights.

Following Gasteiger et al. (2020), we estimate ϵgap as
ϵHOMO − ϵLUMO, using the predictions from models the
trained for ϵHOMO and ϵLUMO, without training a model
specifically for the gap.

A.1.2. ITERATIVE HIGH RESOLUTION WEATHER
FORECASTING

We implement a spherical UNet similar to the one
in Appendix A.1.4, with feature maps of resolu-
tions [2562, 2562, 1282, 1282, 1282, 1282, 2562, 2562] and
[128, 128, 256, 256, 256, 256, 128, 128] channels per layer,
which are followed by batch normalization and phase col-
lapse

Similarly to Keisler (2022), we concatenate a few constant
fields to the 78 predictors; namely, the orography, land-sea
mask, latitude (sine), longitude (sine and cosine), hour of
the year, and hour of the day.

The maximum learning rate for the first stage is 2× 10−4,

and we reduced it by a factor of 10 at each subsequent state.

A.1.3. WEATHERBENCH

For the experiments in Section 5.2.1, we use 64×64 inputs
and feature maps, while the baseline is at 32×64. Since the
spherical harmonic transform algorithm we use requires the
same number of samples along both axes, we upsample the
inputs from 32×64 to 64×64. We minimize the L2 loss for
this and all weather experiments.

A.1.4. GLOBAL TEMPERATURE FORECASTING

For the experiments in Section 5.2.2, we implement
a spherical UNet with feature maps of resolutions
[1282, 642, 642, 322, 322, 322, 322, 642, 642, 1282, 1282],
and 128 channels on all convolutional layers, which
are followed by batch normalization and phase collapse
activation. Features in the downsampling layers are
concatenated to the same resolutions in the upsampling
layers.

A.2. Extra experiments

FFT vs DFT. One of our perhaps surprising findings is that
computing Fourier transforms via DFT matrix multiplica-
tion is faster than using the fast Fourier transform (FFT)
algorithm. Here, we investigate whether this remains true
for larger input resolutions. We train shallow models with
only two spin-spherical convolutional layers on the protocol
of Keisler (2022), with upsampled inputs to 512× 512 and
768× 768. Table 8 shows the results when running on 32
TPUv4 with batch size of one per device. The direct DFT
method performs better than FFT on TPU even at higher
resolutions, due the TPU greatly favoring computing a large
matrix multiplication instead of running multiple steps on
smaller inputs.

Table 8. Training time comparison of a shallow model using DFT
and FFT for Fourier transform computation, varying the input
resolution.

FT method resolution steps/s
DFT 256× 256 28.5
FFT 256× 256 18.7
DFT 512× 512 12.6
FFT 512× 512 5.8
DFT 768× 768 5.1
FFT 768× 768 1.8

TPUs vs GPUs While we made design decisions with TPUs
in mind, the model can also run on GPUs. We evaluated
our model for molecules (Section 5.1) on 8 V100 GPUs,
with batch size of 1 per device, and it trains at 13.1 steps/s.
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In comparison, the same model trains at 35.6 steps/s on 16
TPUv4.

Visualization Figure 4 shows a sequence of predictions of
our model for a few variables, compared to the ground truth.
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Figure 4. One day rollout of a few predictions of our model. Top two rows: specific humidity at 850 hPa (Q850). Middle two rows:
geopotential height at 500 hPa (Z500). Bottom two rows: temperature at 850 hPa (T500). The first column shows the input values at
t = 0, and subsequent columns shows 6 h steps. On each group of two rows, the top shows the ground truth and the bottom one shows our
predictions. Our predictions show that large spherical CNNs are capable of producing high resolution outputs with high frequency details.
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