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Abstract
As with any machine learning problem with lim-
ited data, effective offline RL algorithms require
careful regularization to avoid overfitting. One
class of methods, known as one-step RL, perform
just one step of policy improvement. These meth-
ods, which include advantage-weighted regres-
sion and conditional behavioral cloning, are thus
simple and stable, but can have limited asymptotic
performance. A second class of methods, known
as critic regularization, perform many steps of
policy improvement with a regularized objective.
These methods typically require more compute
but have appealing lower-bound guarantees. In
this paper, we draw a connection between these
methods: applying a multi-step critic regulariza-
tion method with a regularization coefficient of 1
yields the same policy as one-step RL. While our
theoretical results require assumptions (e.g., deter-
ministic dynamics), our experiments nevertheless
show that our analysis makes accurate, testable
predictions about practical offline RL methods
(CQL and one-step RL) with commonly-used hy-
perparameters.

1. Introduction
Reinforcement learning (RL) algorithms tend to perform bet-
ter when regularized, especially when given access to only
limited data, and especially in batch (i.e., offline) settings
where the agent is unable to collect new experience. While
RL algorithms can be regularized using the same tools as in
supervised learning (e.g., weight decay, dropout), we will
use “regularization” to refer to those techniques unique to
the RL setting. Such regularization methods include policy
regularization (penalizing the policy for sampling out-of-
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Figure 1: Both n-step RL and critic regularization can inter-
polate between behavioral cloning (left) and un-regularized
RL (right) by varying the regularization parameter. End-
points of these regularization paths are the same. We prove
that these methods also obtain the same policy for an inter-
mediate degree of regularization.

distribution action) and value regularization (penalizing the
critic for making large predictions). Research on these sorts
of regularization has grown significantly in recent years, yet
theoretical work studying the tradeoffs between regulariza-
tion methods remains limited (Vieillard et al., 2020).

Many RL methods perform regularization and can be clas-
sified by whether they perform one or many steps of pol-
icy improvement. One-step RL methods (Brandfonbrener
et al., 2021; Peng et al., 2019; Peters & Schaal, 2007; Peters
et al., 2010) perform one step of policy iteration, updating
the policy to choose actions the are best according to the
Q-function of the behavioral policy. The policy is often
regularized to not deviate far from the behavioral policy.
In theory, policy iteration can take a large number of itera-
tions (Õ(|S||A|/(1− γ)) (Scherrer, 2013)) to converge, so
one-step RL (one step of policy iteration) fails to find the
optimal policy on most tasks. Empirically, policy iteration
often converges in a smaller number of iterations (Sutton
& Barto, 2018, Sec. 4.3), and the policy after just a single
iteration can sometimes achieve performance comparable
to multi-step RL methods (Brandfonbrener et al., 2021).
Critic regularization methods modify the training of the
value function such that it predicts smaller returns for un-
seen actions (Kumar et al., 2020; Chebotar et al., 2021;
Yu et al., 2021; Hatch et al., 2022; Nachum et al., 2019;
An et al., 2021; Bai et al.; Buckman et al., 2021). Intu-
itively, such critic regularization causes the policy to avoid
sampling unseen actions. In this paper, we will use “critic
regularization” to specifically refer to multi-step methods
that use critic regularization; multi-step methods that do not
utilize critic regularization (e.g., KL control (Ziebart, 2010),
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TD3+BC (Fujimoto & Gu, 2021)) are outside the scope of
our analysis.

These RL regularization methods appear distinct. Critic
regularization typically involves solving a two-player game,
whereby a policy predicts actions with high values while the
critic decreases the values predicted for those actions. Prior
work (Kumar et al., 2020) has argued that this complexity is
worthwhile because the regularization effect is being prop-
agated across time via Bellman backups: decreasing the
value at one state will also decrease the value at states that
lead there.

In this paper, we show that a certain type of one-step RL
is equivalent to a certain type of critic regularization, un-
der some assumptions (see Fig. 1). The key idea is that,
when using a certain TD loss, the regularized critic updates
converge not to the true Q-values, but rather the Q-values
multiplied by an importance weight. For the critic, these
importance weights mean that the Q-values end up estimat-
ing the expected returns of the behavioral policy (Qβ , as in
many one-step methods (Peters et al., 2010; Peters & Schaal,
2007; Peng et al., 2019; Brandfonbrener et al., 2021)), rather
than the expected returns of the optimal policy (Qπ). For
the actor, these importance weights mean that the logarithm
of the Q-values includes a term that looks like a KL diver-
gence. This connection allows us to make precise how critic
regularization methods implicitly regularize the policy.

The key contribution of this paper is a construction showing
that one-step RL produces the same policy as a multi-step
critic regularization method, for a certain regularization co-
efficient. We also discuss similar connections in settings
with varying degrees of regularization, in goal-conditioned
settings, and in RL settings with success classifiers. The
main assumption behind these results is that the critic is up-
dated using an update rule based on the cross entropy loss,
rather than the MSE loss. Our result is potentially surprising
because, algorithmically and mechanistically, one-step RL
and critic regularization are very different. Nonetheless, our
analysis may help explain why prior work has found that
one-step RL and critic regularization methods can perform
similarly on some (Brandfonbrener et al., 2021; Emmons
et al., 2021) (but not all (Kostrikov et al., 2021)) problems.
Our results hint that one-step RL methods may be a simpler
approach to achieving the theoretical guarantees typically
associated with critic regularization methods. Our analysis
does not say that practical implementations (which violate
our assumptions) will always behave the same in practice;
they do not (Brandfonbrener et al., 2021, Sec. 7). Nonethe-
less, our experiments show that our analysis makes accurate
testable predictions about practical methods. While our re-
sults do not say whether users should regularize the actor or
critic in practice, they hint that one-step RL methods may
be a simpler way of achieving the theoretical and empirical

properties of critic regularization on RL tasks that require
strong regularization.

2. Related Work
Regularization has been applied to RL in many different
ways (Neu et al., 2017; Geist et al., 2019), and features
prominently in offline RL methods (Lange et al., 2012;
Levine et al., 2020). While RL algorithms can be regular-
ized using the same techniques as in supervised learning
(e.g., weight decay, dropout), our focus will be on regular-
ization methods unique to the RL setting. Such RL-specific
regularization methods can be roughly categorized into one-
step RL methods and critic regularization methods.

One-step RL methods (Brandfonbrener et al., 2021;
Gülçehre et al., 2020; Peters & Schaal, 2007; Peng et al.,
2019; Peters et al., 2010; Wang et al., 2018) apply a single
step of policy improvement to the behavioral policy. These
methods first estimate the Q-values of the behavioral policy,
either via regression or iterative Bellman updates. Then,
these methods optimize the policy to maximize these
Q-values minus an actor regularizer. Many goal-conditioned
or task-conditioned imitation learning methods (Savinov
et al., 2018; Ding et al., 2019; Sun et al., 2019; Ghosh et al.,
2020; Paster et al., 2021; Yang et al., 2021; Srivastava et al.,
2019; Kumar et al., 2019b; Chen et al., 2021; Lynch &
Sermanet, 2021; Li et al., 2020; Eysenbach et al., 2020a)
also fits into this mold (Eysenbach et al., 2022), yielding
policies that maximize the Q-values of the behavioral policy
while avoiding unseen actions. Note that non-conditional
imitation learning methods do not perform policy improve-
ment, and do not fit into this mold. One-step methods are
typically simple to implement and computationally efficient.

Critic regularization methods instead modify the objective
for the Q-function so that it predicts lower returns for un-
seen actions (Kumar et al., 2020; Chebotar et al., 2021;
Yu et al., 2021; Hatch et al., 2022; Nachum et al., 2019;
An et al., 2021; Bai et al.; Buckman et al., 2021). Critic
regularization methods are typically more challenging to
implement correctly and more computationally demand-
ing (Kumar et al., 2020; Nachum et al., 2019; Bai et al.;
An et al., 2021), but can lead to better results on some chal-
lenging problems (Kostrikov et al., 2021) Our analysis will
show that one-step RL is equivalent to a certain type of critic
regularization.

Some regularization methods do not fit exactly into these
two categories. Methods like KL control regularize both the
actor and the reward function (Geist et al., 2019; Ziebart,
2010; Haarnoja et al., 2018; Abdolmaleki et al., 2018; Wu
et al., 2019; Jaques et al., 2019; Rezaeifar et al., 2022).
Other methods only regularize the policy used in the critic
updates (Fujimoto et al., 2019; Kumar et al., 2019a).
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Our results are conceptually similar to prior work on regular-
ization in the supervised learning setting. There, regulariza-
tion methods like weight decay, spectral regularization, and
early stopping all appear quite distinct, but are actually math-
ematical equivalent under some assumptions (Bakushinskii,
1967; Wahba, 1987; Fleming, 1990; Santos, 1996; Bauer
et al., 2007). This result is surprising because the methods
are so different: weight decay modifies the loss function,
early stopping modifies the update procedure, and spectral
normalization is a post-hoc correction.

3. Preliminaries
We start by defining the single-task RL problem, and then
introduce prototypical examples of one-step RL and critic
regularization. We then define an actor critic algorithm for
use in our analysis.

3.1. Notation

We assume an MDP with states s, actions a, initial state dis-
tribution p0(s0), dynamics p(s′ | s, a), and reward function
r(s, a). We assume episodes always have infinite length
(i.e., there are no terminal states). Without loss of gener-
ality, we assume rewards are positive; adding a positive
constant to all rewards can make them all positive without
changing the optimal policy. We will learn a Markovian
policy π(a | s) to maximize the expected discounted sum
of rewards:

max
π

Eπ(τ)

[ ∞∑
t=0

γtr(st, at) | s0 ∼ p0(s0)

]
,

where π(τ) = p(s0)
∏∞

t=0 π(at | st)p(st+1 | st, at) is the
probability of policy π sampling an infinite-length trajectory
τ = (s0, a0, · · · ). We define Q-values for policy π(a | s) as

Qπ(s, a) = Eπ(τ)

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

Because the rewards are positive, these Q-values are also
positive, Qπ(s, a) > 0. Since we focus on the offline setting,
we will consider two policies: β(a | s) is the behavioral
policy that collected the dataset, and π(a | s) is the online
policy output by the algorithm that attempts to maximize
the rewards. We will use p(s, a, s′) to denote the empirical
distribution of transitions in an offline dataset, and p(s, a)
and p(s) denote the corresponding marginal distributions.
The behavioral policy is defined as β(a | s) = p(a | s).

3.2. Examples of Regularization in RL

While actor and critic regularization methods can be im-
plemented in many ways, we introduce two prototypical
examples below to make our discussion more concrete.

Example of one-step RL: Brandfonbrener et al. (2021).
One-step RL first estimates the Q-values of the behavioral
policy (Qβ(s, a)), and then optimizes the policy to maxi-
mize the Q-values minus a actor regularizer. While the actor
regularizer can take different forms and the Q-values can be
learned via regression, we will use a reverse KL regularizer
and TD-style critic update so that the objective is similar to
critic regularization:

max
π

Ep(s)π(a|s)

[
Qβ(s, a) + λ log

β(a | s)
π(a | s)

]
(1)

where Qβ(s, a) = limt→∞ Qt(s, a) and

Qt+1 ← argmin
Q

Ep(s,a)

[(
Q(s, a)− yβ,Qt(s, a)

)2]
yβ,Qt(s, a) ≜ r(s, a) + γEp(s′|s,a)

β(a′|s′)
[Qt(s

′, a′)] .

The scalar λ is the regularization coefficient and β(a | s)
is an estimate of the behavioral policy, typically learned
via behavioral cloning. Like most TD methods (Haarnoja
et al., 2018; Mnih et al., 2013; Fujimoto et al., 2018), the
TD targets y are not considered learnable. In practice, most
methods do not solve optimize the critic to convergence at
each step, instead taking just a few gradient steps before
updating the TD targets. This one-step critic loss is different
from the multi-step critic losses used in other RL methods
(e.g., TD3, SVG(0)) because it uses the TD target yβ,Q(s, a)
(corresponds to a fixed policy) rather than yπ,Q(s, a) (corre-
sponding to a sequence of learned policies). One-step RL
amounts to performing one step of policy iteration, rather
than full policy optimization. While truncating the itera-
tions of policy iteration can be suboptimal, it can also be
interpreted as a form of early stopping regularization.

Example of critic regularization: Kumar et al. (2020).
CQL (Kumar et al., 2020) modifies the standard Bellman
loss to include an additional term that decreases the values
predicted for unseen actions. The actor objective is to maxi-
mize Q values; some CQL implementations also regularize
the actor loss (Hoffman et al., 2020; Kumar et al., 2020)).
The objectives can then be written as

max
π

Ep(s)π(a|s) [Q
π(s, a)] (2)

where Qπ(s, a) = limt→∞ Qt(s, a) and

Qt+1 =argmin
Q

Ep(s,a)

[(
Q(s, a)− yπ,Qt(s, a)

)2]
+ λ

(
Ep(s)π(a|s) [Q(s, a)]− Ep(s)β(a|s) [Q(s, a)]

)
.

The second term decreases the Q-values for unseen actions
(those sampled from π(a | s)) while the third term increases
the values predicted for seen actions (those sampled from
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the behavioral policy β(a | s)). Unlike standard temporal
difference methods, the CQL updates resemble a compet-
itive game between the actor and the critic. In practice,
this cyclic dependency can create unstable learning (Kumar
et al., 2020; Hoffman et al., 2020).

3.3. How are these methods connected?

Prior work has observed that one-step methods and critic reg-
ularization methods perform similarly on many (Fujimoto
& Gu, 2021; Emmons et al., 2021) (but not all (Kostrikov
et al., 2021)) tasks. Despite the differences in objectives and
implementations of these two methods (and, more broadly,
the actor/critic regularization methods for which they are
prototypes), are there deeper, unifying connections between
the methods?

In the next section, we introduce a different actor-critic
method that will allow us to draw a connection between
one-step RL and critic regularization. We experimentally
validate this equivalence in Sec. 5.1. Despite its difference
from practically-used methods, such as one-step RL and
CQL, we will show that it makes accurate predictions about
the behavior of these practical methods (Sec. 5.2 and 5.3).

3.4. Classifier Actor Critic

To support our analysis, we will introduce a new actor-critic
algorithm. This algorithm is similar to prior work, but trains
the critic using a cross entropy loss instead of an MSE loss.
We introduce this algorithm not because we expect it to
perform better than existing actor-critic methods, but rather
because it allows us to make precise a connection between
actor and critic regularization. This method treats the value
function like a classifier, so we will call it classifier actor
critic. We will then introduce actor-regularized and critic-
regularized versions of this method. The subsequent section
(Sec. 4) will show that these two regularized methods learn
the same policy.

The key to our analysis will be to treat Q-values like prob-
abilities, so we define the critic loss in terms of a cross-
entropy loss, similar to prior work (Kalashnikov et al., 2018;
Eysenbach et al., 2021). Recalling that Q-values are positive
(Sec. 3.1), we transform the Q-values to have the correct
range by using Q

Q+1 ∈ [0, 1). We will minimize the cross-
entropy loss applied to the transformed Q-values:

Ep(s,a)

[
CE
(

Q(s, a)

Q(s, a) + 1
;

yπ,Qt(s, a)

yπ,Qt(s, a) + 1

)]
= −Ep(s,a)

[
yπ,Qt(s, a)

yπ,Qt(s, a) + 1
log

Q(s, a)

Q(s, a) + 1

+
1

yπ,Qt(s, a) + 1
log

1

Q(s, a) + 1

]

const.
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1

+ log
1

Q(s, a) + 1︸ ︷︷ ︸
≜Lcritic(Q,yπ,Qt )

]
. (3)

In the last line we scale both the positive and negative
term by yπ,Qt(s, a) + 1, a choice that does not change
the optimal classifier but reduces notational clutter. When
the TD target can be computed exactly, solving this opti-
mization problem results in performing one SARSA update:
Q(s, a)← r(s, a) + γQ(s′, a′) (see Lemma 4.1). Thus, by
solving this optimization problem many times, each time us-
ing the previous Q-value to compute the TD targets, we will
converge to the correct Q-values (see Lemma 4.1). The actor
objective is to maximize the expected log of the Q-values:

max
π
Lactor(π) ≜ Ep(s)π(a|s) [log(Q

π(s, a))] (4)

where Qπ(s, a) = limt→∞ Qt(s, a) and

Qt+1 = argmin
Q

Lcritic(Q, yπ,Qt).

While most actor-critic methods do not use the loga-
rithm transformation, prior work on conditional behavioral
cloning (e.g., (Savinov et al., 2018; Ding et al., 2019; Sun
et al., 2019; Ghosh et al., 2020; Srivastava et al., 2019)) im-
plicitly includes this transformation (Eysenbach et al., 2022).
In the absence of additional regularization, the optimal pol-
icy π(a | s) = 1(a = argmaxa′ Q(s, a′)) is the same as
the optimal policy for the standard actor objective (without
the logarithm). We next introduce a one-step version of
this method, as well as a critic regularization variant that re-
sembles CQL. While we will implicitly use a regularization
coefficient of 1 below, Appendix B.1 discusses versions of
classifier actor critic with varying degrees of regularization.

One-step RL. To make classifier actor critic resemble
one-step RL (Brandfonbrener et al., 2021), we make two
changes: estimating the value of the behavioral policy and
adding a regularization term to the actor objective. To esti-
mate the value of the behavioral policy, we modify the critic
loss to sample the next action a′ from the behavioral policy
(i.e., we use yβ,Qt(s, a) rather than yπ,Qt(s, a)). We also
regularize the policy by adding a relative entropy term to
the actor loss, analogous to the reverse KL penalty used in
one-step RL:

max
π

Ep(s)π(a|s)
[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
(5)

where Qβ(s, a) = limt→∞ Qt(s, a) and

Qt+1 = argmin
Q

Lcritic(Q, yβ,Qt).

In tabular settings, this critic objective estimates the Q-
values for β(a | s) (Appendix Lemma 4.1).
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Critic regularization. To emulate CQL, we modify the
critic loss (Eq. 3) by adding a penalty term that decreases the
values for unseen actions. Whereas CQL applies this penalty
to the Q-values directly, we will apply it to the logarithm of
the Q-values:1

max
π

Ep(s)π(a|s) [logQ
π
r (s, a)] (6)

where Qπ
r (s, a) = limt→∞ Qt(s, a) and Qt+1(s, a) =

argminQ Lr
critic(Q, yπ,Qt):

Lr
critic(Q, yπ,Qt) ≜ Lcritic(Q, yπ,Qt)

+ λ
(
E p(s)
π(a|s)

[log(Q(s, a) + 1)]− E p(s)
β(a|s)

[log(Q(s, a) + 1)]
)
.

4. A Connection between One-Step RL and
Critic Regularization

This section provides our main result, which is that actor
and critic regularization yield the same policy under some
settings. The key to proving this connection will be to ana-
lyze the Q-values learned by critic regularization. While we
mainly focus on the single-task setting, Sec. 4.1 describes
how similar results also apply to other settings, including
goal-conditioned RL, example-based control, and settings
with smaller degrees of regularization. All proofs are in
Appendix A.

To relate one-step RL to critic regularization, we start by
analyzing the Q-values learned by both methods. We first
show that the classifier critic converges to the correct Q-
values:

Lemma 4.1. Assume that states and actions are tabular
(discrete and finite), that rewards are positive, and that
TD targets can be computed exactly (without sampling).
Incrementally update the critic by solving a sequence of
optimization problems:

Qt+1 ← argmin
Q

Lcritic(Q, yπ,Qt).

This sequence of Q-functions will converge to Qπ:

lim
t→∞

Qt(s, a) = Qπ(s, a) for all states s and actions a.

Because one-step RL trains the critic using Lcritic(Q, yβ,Q),
it learns Q-values corresponding to Qβ(s, a). When regu-
larization is added to the critic updates, it learns different
Q-values. Perhaps surprisingly, this regularization means
that our estimates for the value of policy π(a | s) look like
the value of the original behavioral policy:

1From a dimensional analysis perspective (Huntley, 1967), this
choice makes sense because it allows the penalty term to have the
same “units” as the critic loss: log Q-values. A second motivation
for regularizing the logarithm is that the actor loss uses a logarithm.

Lemma 4.2. Assume that states and actions are tabular
(discrete and finite), that rewards are positive, and that
TD targets can be computed exactly (without sampling).
Incrementally update the critic by minimizing a sequence of
regularized critic losses using policy π and hyperparameter
λ = 1:

Qt+1 ← argmin
Q

Lr
critic(Q, yπ,Qt).

In the limit, this sequence of Q-functions will converge to
the Q-values for the behavioral policy (β(a | s)), weighted
by the ratio of the behavioral and online policies:

lim
t→∞

Qt(s, a) =
Qβ(s, a)β(a | s)

π(a | s)

for all states s and actions a.

Proof sketch. The ratio β(a|s)
π(a|s) above is an importance

weight. Ordinarily, a TD backup for policy π(a | s) would
entail sampling an action a ∼ π(a | s). However, this
importance weight means that TD backup is effectively per-
formed by sampling an action a ∼ β(a | s). Such a TD
backup resembles the TD backup for β(a | s). The full
proof is in Appendix A.

Intuitively, this result says that critic regularization
reweights the Q-values to assign higher values to in-
distribution actions, where β(a | s) is large. An unexpected
part of this result is that the Q-values correspond to the be-
havioral policy. In other words, critic regularization added
to a multi-step RL method (one using yπ,Qt(s, a)) yields the
same critic as a one-step RL method (one using yβ,Qt(s, a)).
Our main result is a direct corollary of this Lemma:
Theorem 4.3. Let a behavioral policy β(a | s) be given
and let Qβ(s, a) be the corresponding value function. Let
π(a | s) be an arbitrary policy (typically learned) with
support constrained to β(a | s) (i.e., π(a | s) > 0 =⇒
β(a | s) > 0). Let Qπ

r (s, a) be the critic obtained by the
regularized critic update (Eq. 6) to this policy with λ = 1.
Then critic regularization results in the same policy as one-
step RL:

Eπ(a|s) [logQ
π
r (s, a)] = Eπ(a|s)

[
logQβ(s, a) + log

β(a | s)
log π(a | s)

]
for all states s.

Since both forms of regularization result in the same ob-
jective for the actor, they must produce the same policy in
the end. While prior work has mentioned that critic regu-
larization implicitly regularizes the policy (Yu et al., 2021),
this result shows that under the assumptions stated above,
the implicit regularization of critic regularization results in
the exact same policy learning objective as one-step RL.
This equivalence holds when λ = 1, and not necessarily
for other regularization coefficients. Appendix B.1 shows
how a variant of this result that includes an additional regu-
larization mechanism does apply to different regularization
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Figure 2: Actor and critic regularization produce identical policies. Across three tabular settings, we plot the action
probabilities π(a | s) for the policies produced by one-step RL and critic-regularized classifier actor-critic (R2 ≥ 0.999).
We also plot the action probabilities for a policy learned by an unregularized policy to confirm that the equivalence between
one-step RL and critic regularization is not a coincidence.

coefficients. This connection between one step RL and critic
regularization concerns their objective functions, not the pro-
cedures used to optimize those objective functions. Indeed,
because practical offline RL algorithms sometimes use dif-
ferent optimization procedures (e.g., TD vs. MC estimates
of Qβ(s, a)), they will incur errors in estimating Qβ(s, a),
violating Theorem 4.3’s assumption that these Q-values are
estimated exactly.

Limitations. Our theoretical analysis makes assumptions
that may not always hold in practice. For example, our
results use a critic loss based on the cross entropy loss,
while most (but not all (Kalashnikov et al., 2018; Eysenbach
et al., 2020b)) practical methods use the MSE. Our analysis
assumes that critic regularization arrives at an equilibrium,
and ignores errors introduced by function approximation
and sampling. Nonetheless, our theoretical results will
make accurate predictions about prior offline RL methods.

4.1. Extensions of the Analysis

We extend this analysis in three ways. First, we also show
that a similar connection can be established for lesser de-
grees of regularization (λ < 1) (see Appendix B.1). Second,
we show that a similar connection holds for RL problems
defined via success examples (Pinto & Gupta, 2016; Tung
et al., 2018; Kalashnikov et al., 2021; Singh et al., 2019;
Zolna et al., 2020; Calandra et al., 2017; Eysenbach et al.,
2021) These results use existing actor-critic method, rather
than classifier actor critic (see Appendix C). Third, we
extend our analysis to multi-task settings by looking at goal-
conditioned RL problems. Taken together, these extensions
show that the connection between actor and critic regulariza-
tion extends to other commonly-studied problem settings.

5. Numerical Simulations
Our numerical simulations study whether the theoretical
connection between actor and critic regularization holds

empirically. The first experiments (Sec. 5.1) will use classi-
fier actor-critic, and we will expect the equivalence to hold
exactly in this setting. We then study whether this con-
nection still holds for practical prior methods (one-step RL
and CQL), which violate our assumptions. We study these
commonly-used methods in both tabular settings (Sec. 5.2)
and on a benchmark offline RL task with continuous states
and actions (Sec. 5.3). We do not expect these methods to al-
ways be the same (see, e.g., Kostrikov et al. (2021, Table 1)),
and we will focus our experiments on critic regularization
with moderate regularization coefficients. See Appendix F
for details and hyperparameters for the experiments. Code
for the tabular experiments is available online.2

5.1. Exact Equivalence for Classifier Actor Critic

Our first experiment aims to validate our theoretical result
under the required assumptions: when using classifier
actor-critic as the RL algorithm, and when using a tabular
environment. We use a 5 × 5 deterministic gridworld
with 5 actions (up/down/left/right/nothing). We describe
the reward function and other details in Appendix F. To
ensure that critic regularization converges to a fixed point
and to avoid oscillatory learning dynamics, we update
the policy using an exponential moving average. We also
include (unregularized) classifier actor-critic to confirm that
regularization is important in some settings.

We compare these three methods in three environments. The
first setting (Fig. 2 (left)) checks our theory that one-step
RL and critic regularization should obtain the same policy.
The second setting (Fig. 2 (center)) shows that one-step RL
and critic regularization learn the same (suboptimal) pol-
icy in settings where using the Q-values for the behavioral
policy lead to a suboptimal policy. The final setting is de-
signed so that regularization increases the expected returns.
The dataset is a single trajectory from the initial state to

2Code: https://github.com/ben-eysenbach/ac-connection
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(a) reward function (b) Q-learning (c) One-step RL (d) CQL(λ = 10) (e) CQL(λ = 0.1)

Figure 3: CQL can behave like one-step RL. We design a gridworld (a) so that one-step RL (c) learns a suboptimal policy.
For the three cells highlighted in blue, the optimal policy (b) navigates towards the high-reward state (green) while the
one-step RL policy (c) navigates away from the high-reward state. (d) CQL with a large regularization coefficient exhibits
the same suboptimal behavior as one-step RL, taking actions that lead away from the high-reward states. (e) CQL with a
small regularization coefficient behaves like Q-learning. For clarity, we only show the argmax action in each state; we omit
the arrow when the argmax action is “do nothing”.

the goal. With such limited data, unregularized classifier
actor critic overestimates the Q-values at unseen actions,
learning a policy that mistakenly takes these actions. In con-
trast, the regularized approaches learn to imitate the expert
trajectory. Fig. 2 (right) shows that both forms of regulariza-
tion produce the optimal policy. In summary, these tabular
experiments validate our theoretical results, including in
settings where regularization is useful and harmful. These
experiments also demonstrate that the actor-critic method
introduced in Sec. 3.4 does converge (Lemma 4.1).

5.2. Predictions about Prior Methods: Tabular Setting

Based on our theoretical analysis, we predict that practical
implementations of one-step RL and critic regularization
will exhibit similar behavior, for a certain critic regulariza-
tion coefficient. This section studies the tabular setting, and
the following section will use a continuous control bench-
mark. For critic regularization, we used CQL (Kumar et al.,
2020) together with soft value iteration; following (Brand-
fonbrener et al., 2021), we implement one-step RL (reverse
KL) using Q-learning.

We designed a deterministic gridworld so one-step RL
would fail to learn the optimal policy (see Fig. 3 (left)).
If CQL interpolates between the behavioral policy (random)
and the optimal policy, then the argmax action would always
be the same as the action for π∗. Based on our analysis, we
make a different prediction: that CQL will learn a policy
similar to the one-step RL policy. We show results in Fig. 3,
just showing the argmax action for visual clarity. The CQL
policy takes actions away from both the high-reward state
and the low reward state, similar to the behavioral policy
but different from both the behavioral policy and the opti-
mal policy. This experiment suggests that CQL can exhibit
behavior similar to one-step RL. Of course, this effect is me-
diated by the regularization strength: a larger regularization
coefficient would cause CQL to learn a random policy, and
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fraction of suboptimal actions 
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Figure 4: CQL and one-step RL take similar actions on most
MDPs that resemble Fig. 3

a coefficient of 0 would make CQL identical to Q-learning.
We extend Fig. 3 to include classifier actor critic and regu-
larized variants in Appendix Fig. 9.

How often does one-step RL approximate CQL? To
show that the results in Fig. 3 are not cherry-picked, we
repeated this experiment using 100 MDPs that are struc-
turally similar to that in Fig. 3, but where the locations of
the high-reward and low reward state are randomized. In
each randomly generated MDP, we determine whether CQL
exhibits behavior similar to one-step RL by looking at the
states where CQL takes actions that differ from the reward-
maximizing actions (as determined by running Q-learning
with unlimited data). Since there are five total actions, a
random policy would have a similarity score of 20%. As
shown in Fig. 4, the similarity score is significantly higher
than chance for the vast majority of MDPs, showing that
one-step RL and CQL(λ = 10) produce similar policies on
most such gridworlds.

When does one-step RL approximate CQL? Because
one-step RL is highly regularized (policy iteration is trun-
cated after just one step), one might imagine that it would
be most similar to CQL with a very large regularization
coefficient. To study this, we use the same environment
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Figure 5: One-step RL is most similar to CQL with a mod-
erate regularization coefficient.

(Fig. 3) and measure the fraction of states where one-step
RL and CQL choose the same argmax action. As shown in
Fig. 5, one-step RL is most similar to CQL with moderate
regularization (λ = 10), and is less similar to CQL with a
very strong regularization.

5.3. Predictions about Prior Methods: Continuous
Control Setting

Our final set of experiments studies whether our theoret-
ical results can make accurate testable predictions about
practically-used regularization methods in a setting where
they are commonly used: offline RL benchmarks with con-
tinuous states and actions. For these experiments, we will
use well-tuned implementations of CQL and one-step RL
from Hoffman et al. (2020), using the default hyperparame-
ters without modification. While our theoretical results do
not apply directly to these practical methods, which violate
the assumptions in our analysis, they nonetheless raise the
questions of whether these methods perform similarly in
practice. We made one change to the one-step RL imple-
mentation to makethe comparison more fair: because CQL
learns two Q functions and takes the minimum (a trick in-
troduced in Fujimoto et al. (2018)), we applied this same
parametrization to the one-step RL implementation. Since
offline RL methods can perform differently on datasets of
varying quality (Wang et al., 2020; Fujimoto & Gu, 2021;
Paine et al., 2020; Wang et al., 2021; Fujimoto et al., 2019),
we will repeat our experiments on four datasets from the
D4RL benchmark (Fu et al., 2020).

Lower bounds on Q-values. One oft-cited benefit of
critic regularization is that it has guarantees about value-
estimation (Kumar et al., 2020): under appropriate assump-
tions, the learned value function will underestimate the dis-
counted expected returns of the policy. Because our analysis
shows a connection between one-step RL and critic regu-
larization, it raises the question of whether one-step RL
methods have similar value-estimation properties. Taken
at face value, this hypothesis seems obvious: the behav-
ioral critic estimates the value of the behavioral policy, so it
should underestimate the value of any policy that is better
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medium random

predicted returns
actual returns

0 0.5 1
gradient steps 1e6

0

500

re
tu

rn
s

CQL

0 0.5 1
gradient steps 1e6

0 0.5 1
gradient steps 1e6

 overestimation

 underestimation

0 0.5 1
gradient steps 1e6

predicted returns
actual returns

Figure 6: Q-value under/over-estimation. (Top) Experi-
ments on benchmark datasets of varying quality show that
one-step RL underestimates the Q-values. (Bottom) Despite
the theoretical guarantees about critic regularization (CQL)
yielding underestimates, in practice we observe that the
values learned via critic regularization can sometimes over-
estimate the actual returns. We plot the mean and standard
deviation across five random seeds. Note that the Q-values
are equivalent to the value function V π(s).

than the behavioral policy. Despite this, the lower bound
property of methods like one-step RL are rarely discussed,
suggesting that it has yet to be widely appreciated.

Fig. 6 shows both these predicted and actual (discounted) re-
turns throughout the course of training. The results for one-
step RL confirm our theoretical prediction on 4/4 datasets:
the Q-values from one-step RL underestimate the actual
returns. In contrast, we observe that critic regularization
overestimates the true returns on 2/4 environments, perhaps
because the regularization coefficients used to achieve good
returns in practice are too weak to guarantee the lower bound
property, and perhaps because the theoretical guarantees are
only guaranteed to hold at convergence. In total, these ex-
periments confirm our theoretical predictions that one-step
RL will result in Q-values that are underestimations, while
also questioning the claim that critic regularization methods
are always preferable for ensuring underestimation.

Critic regularization causes actor regularization. Our
analysis in Sec. 4 not only suggests that one-step RL meth-
ods might inherit properties of critic regularization (as stud-
ied in the previous section), but also suggests that critic
regularization methods may behave like one-step methods.
In particular, while critic regularization methods such as
CQL do not explicitly regularize their actor, we hypothesize
that they implicitly regularize the actor (Lemma 4.2), similar
to how one-step RL methods explicitly regularize the actor.

We measure the MSE between the action in the dataset and
the action predicted by the learned policy. Fig. 7 shows
the results. Some CQL implementations, including ours,
“warm-start” the actor by applying a behavioral cloning loss
for 50,000 iterations; we omit these initial gradient steps
from our plots so that any effect is caused solely by the
critic regularization. On 4/4 datasets, we observe that the
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Figure 7: Critic regularization causes actor regulariza-
tion. Performing critic regularization via CQL implicitly
results in actor regularization, similar to one-step RL: the
MSE between the predicted actions and the dataset actions
decreases. We plot the mean and standard deviation across
five random seeds.

MSE between the CQL policy’s actions and the actions in
the datasets decreases throughout training. Perhaps the one
exception is on the medium-replay dataset, where the
MSE eventually starts to increase after 5e5 gradient steps.
While directly regularizing the actor leads to MSE errors that
are ∼ 3× smaller, this plot nevertheless provides evidence
that critic regularization indirectly regularizes the actor.

6. Conclusion
In this paper, we drew a connection between two seemingly-
distinct RL regularization methods: one-step RL and critic
regularization. While our analysis made assumptions that
are typically violated in practice, it nonetheless made
accurate, testable predictions about practical methods with
commonly-used hyperparameters: critic regularization
methods can behave like one-step methods, and vice versa.
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Appendices
In the Appendices, we provide proofs of the theoretical results (Appendix C), extend the analysis to other RL settings
(Appendices C–D), and then provide details of the experiments (Appendix F).

A. Proofs
A.1. Proof of Lemma 4.1

Proof sketch. Lemma 4.1 shows that classifier actor critic converges. The key idea of the proof will be to show that the
incremental updates for classifier actor critic are exactly the same as the incremental updates for Q-learning. Q-learning
converges, so an algorithm that performs the same incremental updates as Q-learning must also converge.

Proof. As the cross entropy loss is minimized when the predictions equal the labels, updates for Lcritic(Q, π) can be written
as Q(s,a)

Q(s,a)+1 ←
yπ,Qt (s,a)

yπ,Qt (s,a)+1
. If the updates are performed by averaging over all possible next states (e.g., in the tabular

setting), these updates are equivalent to directly updating Q(s, a)← yπ,Qt(s, a) = r(s, a) + γEp(s′|s,a)π(a′|s′) [Qt(s
′, a′)],

which is the standard policy evaluation update for policy π(a | s). Thus, we can invoke the standard result that policy
evaluation converges to Qπ (Agarwal et al., 2019, Theorem 1.14.) to argue that updates for Lcritic likewise converge to
Qπ .

In this proof, the TD targets were the expectation over the next state and next action. If Eq. 3 were optimized using a
single-sample estimate of this expectation, y = r(s, a) + γQt(s

′, a′), then the updates would be biased:

Q(s, a)

Q(s, a) + 1
← E

[
y

y + 1

]
≤ E[y]

E[y] + 1
=

yπ,Qt(s, a)

yπ,Qt(s, a) + 1
.

In settings with stochastic transitions or policies, these updates would result in estimating a lower bound on Qπ(s, a).

A.2. Proof of Lemma 4.2 and Theorem 4.3

Proof. Our proof proceeds in three steps. First, we derive the update equations for the regularized critic update. That is,
if we maintained a table of Q-values, what would the new value for Q(s, a) be? Second, we show that these updates are
equivalent to performing policy evaluation on a re-parametrized critic Q̃(s, a) = Q(s, a)π(a|s)β(a|s) . We invoke the standard

results for policy evaluation to prove convergence that Q̃(s, a) convergences. Finally, we undo the reparametrization to
obtain convergence results for Q(s, a).

Step 0. We start by rearranging the regularized critic objective:

Lr
critic(Q, yπ,Qt) ≜ Lcritic(Q, yπ,Qt) +

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
+

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+
�������
log

1

Q(s, a) + 1

]
−
(
�������������

Ep(s)π(a|s)

[
log

1

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

])
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

]
.

For the cancellation on the third line, we used the fact that p(s, a) = p(s)β(a | s).

Step 1. To start, note that the regularized critic update is equivalent to a weighted classification loss: positive examples are
sampled (s, a) ∼ p(s)β(a | s) and receive weight yπ,Qt (s,a)

yπ,Qt (s,a)+1
, and negative examples are sampled (s, a) ∼ p(s)π(a | s)
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and receive weight 1
yπ,Qt (s,a)+1

. The Bayes’ optimal classifier is given by

Q(s, a)

Q(s, a) + 1
=

yπ,Qt (s,a)
yπ,Qt (s,a)+1

p(s)β(a | s)
yπ,Qt (s,a)

yπ,Qt (s,a)+1
p(s)β(a | s) + 1

yπ,Qt (s,a)+1
p(s)π(a | s)

=
yπ,Qt(s, a)β(a | s)

yπ,Qt(s, a)β(a | s) + π(a | s)
.

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yπ,Qt(s, a)
β(a | s)
π(a | s)

= (r(s, a) + Ep(s′|s,a)π(a′|s′)[Qt(s
′, a′)])

β(a | s)
π(a | s)

. (7)

This equation tells us what each update for the regularized critic loss does.

Step 2. To analyze these updates, we define Q̃(s, a) ≜ Qt(s, a)
π(a|s)
β(a|s) . Then these updates can be written using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s)

=

(
r(s, a) + Ep(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s)

, (8)

which can be simplified to
Q̃(s, a) = r(s, a) + Ep(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
. (9)

Note that the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight, so that the expectation over π(a′ | s′)

becomes an expectation over β(a′ | s′). Thus, the regularized critic updates are equivalent to perform policy evaluation
on Q̃(s, a). An immediately consequence is that the regularized critic updates converge, and they converge to Q̃∗(s, a) =
Qβ(s, a).

Step 3. Finally, we translate these convergence results for Q̃(s, a) into convergence results for Q(s, a). Written in terms of
the original Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

. (10)

This completes the proof of Lemma 4.2.

We now prove Theorem 4.3 by applying a logarithm:

Proof.

logQ∗(s, a) = log

(
Qβ(s, a)

β(a | s)
π(a | s)

)
= logQβ(s, a) + log β(a | s)− log π(a | s).

We note that our proof does not account for stochastic and function approximation errors. However, if we assume that the
TD updates are deterministic (e.g., as they are in deterministic MDPs), then the updates for classifier actor-critic are identical
to those of Q-learning (Lemma 4.1). Thus, it immediately inherits any theoretical results regarding the propagation of errors
for Q-learning.

While this Theorem 4.3 shows that one-step RL and critic regularization have the same fixed point, it does not say how
many transitions or gradient updates are required to reach those fixed points.

A.3. Why use the cross-entropy loss?

Our proof of Theorem 4.3 helps explain why classifier actor-critic use the cross entropy loss for the critic loss, rather than the
MSE loss. Precisely, our analysis requires that the optimal Q function be a ratio, Q̃(s, a) = Q(s,a)π(a|s)

β(a|s) . The cross entropy

loss can readily estimate ratios. For example, the optimal classifier for data drawn from p(x) and q(x) is C(x) = p(x)
p(x)+q(x) ,
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so the ratio can be expressed as C(x)
1−C(x) =

p(x)
q(x) . However, fitting a function C(x) to data drawn from (say) a 1:1 mixture of

p(x) and q(x) would result in C(x) = 1
2p(x) +

1
2q(x), which we cannot transform to express the ratio p(x)

q(x) as a function of
C(x).

A.4. Validating the Theory
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Figure 8: Under the assumptions of Theorem 4.3, one-step
RL is most similar to critic regularization with a coefficient of
λ = 1.

Our theoretical results suggest that one-step RL and critic
regularization should be most similar with critic regu-
larization is applied with a regularization coefficient of
λ = 1. To test this hypothesis, we took the task from
Fig. 2 (Left) and measured the similarity between one-
step RL and critic-regularized classifier actor critic, for
varying values of the critic regularization parameter. We
measured the similarity of the policies obtained by the
two methods by counting the fraction of states where the
two methods choose the same (argmax) action. The re-
sults, shown in Fig. 8, validate our theoretical prediction
that these methods should be most similar with λ = 1.

A.5. What about using the policy gradient?

Our analysis fundamentally requires using TD learning: the key step is that doing TD backups using one policy is equivalent
to doing (modified) TD backups with a different policy. However, the actor updates for both methods could be implemented
using a policy gradient or natural gradient, rather than a straight-through gradient estimator. Indeed, much of the work on
one-step RL methods (Peng et al., 2019; Siegel et al.) uses an actor update that resembles a policy gradient or natural policy
gradient (e.g., 1-step RL with a reverse KL penalty (Brandfonbrener et al., 2021)).

B. Varying the regularization coefficient
While our main analysis (Theorem 4.3)showed that regularization and critic regularization yield the same policy when these
regularizers are applied with a certain strength, in practice the strength of regularization is controlled by a hyperparameter.
This hyperparameter raises a question: does the connection between one-step RL and critic regularization hold for different
values of this hyperparameter?

In this section, we show that there remains a precise connection between actor and critic regularization, even for different
values of this hyperparameter. This result not only suggests that the connection is stronger than initially suggested by the
main result. Proving this connection also helps highlight how many regularization methods can be cast from a similar mold.

B.1. A Regularization Coefficient.

We start by modifying the actor regularizer and critic regularizer introduced in Sec. 3.4 to include an additional hyperparam-
eter.

Mixture policy. Both the actor and critic losses will make use of a mixture policy, (1− λ)π(a | s) + λβ(a | s), where
λ ∈ [0, 1] will be a hyperparameter. Larger values of λ yield a mixture policy that is closer to the behavioral policy; this will
correspond to higher degrees of regularization. Mixtures of policies are commonly used in practice (Kumar et al., 2020,
Appendix F),(Villaflor et al., 2020, Eq. 11), (Finn et al., 2016, Sec. 4.3) (Lyu et al., 2022) (Hazan et al., 2019, Eq. 2.5), even
though it rarely appears in theoretical offline RL literature. Indeed, because critic regularization resembles a two-player
zero-sum game, mixture policies might even be required to find a (Nash) equilibrium of the critic regularizer (Nash, 1951).

λ-weighted critic loss. With this concept of a mixture policy, we define the λ-weighted actor and critic regularizers. For
the λ-weighted critic loss, we will change how the TD targets are computed. Instead of sampling the next action from π or
β, we will sample the next action from a λTD-weighted combination of these two policies, reminiscent of how prior work
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has regularized the actions sampled for the TD backup (Fujimoto et al., 2019; Zhou et al., 2021):

yλTD ≜ y(1−λ)π+λβ(s, a) = r(s, a) + γE p(s′|s,a)
(1−λTD)π(a|s)+λTDβ(a|s)

[Q(s′, a′)].

When introducing one-step RL in Sec. 3.4, we used λTD = 1.

Using this TD target, the λ-weighted critic loss can now be written as a combination of the un-regularized objective (Eq. 3)
plus the regularized objective (Eq. 6):

Lr
critic(Q,λcritic) ≜ (1− λcritic)

(
−Ep(s,a)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])
+ λ

(
−E p(s,a)

a−∼π(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])

= −E p(s,a)

a−∼(1−λcritic)π(·|s)+λcriticβ(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a−) + 1

]
.

(11)

The second line rewrites this objective: the first term looks the same as the original “positive” term in the critic objective,
while the “negative” term uses actions sampled from a mixture of the current policy and the behavioral policy. When
λcritic = 1, we recover the regularized critic loss introduced in Sec. 3.4.

λ-weighted actor loss. Finally, the strength of the actor regularizer can be controlled by changing the reverse KL penalty.
While it may seem like changing the reward scale would varying the strength of the actor loss, this is not the case for
classifier actor critic because of the log(·) in the actor loss. Instead, we will relax the reverse KL penalty between the learned
policy π(a | s) and the behavioral policy β(a | s) so that only the mixture policy only needs to be close to behavioral policy:

Lr
actor(π, λKL) ≜ Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))] . (12)

As indicated on the second line, replacing β(a | s) with the mixture policy has an effect similar to that of decreasing the
weight applied to the KL penalty. The approximation on the second line is determined by the Jensen Gap (Abramovich &
Persson, 2016; Gao et al., 2017). When introducing one-step RL in Sec. 3.4, we used λKL = 1, together with λTD = 1.

In summary, the strength of the actor and critic regularizers can be controlled through additional hyperparameters
(λcritic, λTD, λKL). Indeed, it is typical for offline RL methods to require many hyperparameters (Brandfonbrener et al., 2021;
Lu et al., 2021; Paine et al., 2020; Wu et al., 2019), and performance is sensitive to their settings. However, the close
connection that we have shown between actor and critic regularizers allows us to decrease the number of hyperparameters.

B.2. Analysis

In our main result (Thm. 4.3), we showed that one-stel RL and critic regularization are equivalent when λcritic = λTD =
λKL = 1. This is a large value for the regularization strength, and we now consider what happens for smaller degrees of
regularization: is there still a connection between one-step RL and critic regularization?

The following theorem will prove that this is the case. In particular, applying critic regularization with coefficient λcritic
yields the same policy as applying one-step RL with λTD = λKL = λcritic. That is, there is a very simple recipe for converting
the hyperparameters for critic regularization into the hyperparameters for one-step RL.
Theorem B.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-function of the behavioral policy, and let QλTD

r (s, a, λcritic)
be the critic obtained by the λcritic-weighted regularized critic update (Eq. 11) using TD targets yλTD(s, a). If λcritic = λTD =
λKL, then the λKL-weighted actor loss (Eq. 12) is equivalent to the un-regularized policy objective using the regularized
critic:

Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))]
= Eπ(a|s)

[
logQλTD

r (s, a, λcritic)
]

for all states s.

While we used the cross entropy loss for this result, it turns out that the result also holds for the more standard MSE loss (we
omit the proof for brevity).
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Limitations. Before presenting the proof in Sec. B.3, we discuss a few limitations of this result. Like the rest of the
analysis in this paper, the form of the critic regularizer is different from that often used in practice. Additionally, our
analysis assumes ignores many sources of errors (e.g., sampling, function approximation), and assumes that each objective
is optimized exactly.

B.3. Proof of Theorem B.1

Proof. We start by defining the fixed point of the λ-weighted regularized critic loss. Like in the single-task setting, this loss
resembles a weighted classification problem, so we can write down the Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

yλTD (s,a)
yλTD (s,a)+1

p(s)β(a | s)
yλTD (s,a)

yλTD (s,a)+1
p(s)β(a | s) + 1

yλTD (s,a)+1
p(s)((1− λcritic)π(a | s) + λcriticβ(a | s))

=
yλTD(s, a)β(a | s)

yλTD(s, a)β(a | s) + (1− λcritic)π(a | s) + λcriticβ(a | s)
.

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yλTD(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

= (r(s, a) + Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)])
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)
. (13)

Note that the next action a′ is sampled from a mixture policy defined by λTD. This equation tells us what each update for the
λ-weighted regularized critic loss does.

To analyze these updates, we define

Q̃(s, a) ≜ Q(s, a)
(1− λcritic)π(a | s) + λcriticβ(a | s)

β(a | s)
.

Like before, the ratio β(a′|s′)
(1−λTD)π(a′|s′)+λTDβ(a′|s′) can act like an importance weight. When λTD = λcritic, then this importance

weight cancels with the sampling distribution, providing the following identity:

Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)]

= Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)

[
Q̃(s, a)

β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s)

]
= Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

Substituting this identity in Eq. 13, we can write the updates using Q̃(s, a):

Q̃(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

=
(
r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)]

) β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s)

,

which can be simplified to

Q̃(s, a) = r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

We then translate these convergence results for Q̃(s, a) into convergence results for Q(s, a). Written in terms of the original
Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a) = Qβ(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)
. (14)
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Note that this holds for any value of λcritic = λTD ∈ [0, 1]. This result suggests that two common forms of regularization,
decreasing the values predicted at unseen actions and regularizing the actions used in the TD backup, can produce the same
effect: a critic that estimates the Q-values of the behavioral policy (multiplied by some importance weight).

Finally, substitute this Q-function into the un-regularized actor loss, we see that the result is equivalent to the λ-weighted
actor loss:

Ep(s)π(a|s) [logQ
∗(s, a)] =Ep(s)π(a|s)

[
logQβ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))︸ ︷︷ ︸

λ-weighted actor regularizer

]

C. Regularization for Goal-Conditioned Problems
Like single-task RL problems, goal-conditioned RL problems have also been approached with both one-step methods (Ghosh
et al., 2020; Ding et al., 2019; Sun et al., 2019) and critic regularization (Chebotar et al., 2021). In these problems, the aim
is to learn a goal-conditioned policy π(a | s, sg) that maximizes the expected discounted sum of goal-conditioned rewards
rg(s, a), where goals are sampled sg ∼ pg(sg):

max
π

Epg(sg)Eπ(τ |sg)

[ ∞∑
t=0

γtrg(st, at)

]
.

We will use the goal-conditioned reward function rg(s, a) = p(s′ = sg | s, a), which is defined in terms of the environment
dynamics. In settings with discrete states, maximizing this reward function is equivalent to maximizing the sparse indicator
reward function (rg(s, a) = 1(sg = s)).

In this section, we show that one-step RL and critic regularization are equivalent for a certain goal-conditioned actor-critic
method. Unlike our analysis in the single-task setting, this analysis here uses an existing method, C-learning (Eysenbach
et al., 2020b). C-learning is a TD method that already makes use of the cross entropy loss for training the critic:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yπ,Qt(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yπ,Qt(s, a, sg) = Ep(s′|s,a)π(a′|s′,sg) [Q(s′, a′, sg)] serves the role of the TD target.

The first two terms increase the Q-values while the last term decreases the Q-values. The actor is updated to maximize the
Q-values. While this objective for the actor can be written in many ways, we will write it as maximizing a log ratio because
it will allow us to draw a precise equivalence between actor and critic regularization:

max
π

Epg(sg)p(s)π(a|s,sg) [logQ(s, a, sg)]

We will now consider variants of C-learning that incorporate actor and critic regularization.

One-step RL. We will consider a variant of C-learning that resembles one-step RL (Brandfonbrener et al., 2021). The
critic update will be similar to before, but the next-actions sampled for the TD updates will be sampled from the marginal
behavioral policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yβ,Qt(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yβ,Qt(s, a, sg) = Ep(s′|s,a)β(a′|s′)[Qt(s
′, a′, sg)]. The actor update will be modified to include a reverse KL

divergence:
max
π

Ep(s)pg(sg)π(a|s,sg) [logQ(s, a, sg) + log β(a | s)− π(a | s, sg)] . (15)
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Note that we are regularizing the policy to be similar to the average behavioral policy, β(a | s). Compared to regularization
towards a goal-conditioned behavioral policy β(a | s, sg), this choice gives the policy additional flexibility: when trying to
reach goal sg , it is allowed to take actions that were not taken by β(a | s, sg), as long as they were taken by the behavioral
policy when trying to reach some other goal s′g .

Critic regularization. To regularize the critic, we will modify the “negative” term in the C-learning objective to use
actions sampled from the policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
(16)

+ γEp(s,a)pg(sg)

[
yπ,Qt(s, a, sg) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
(17)

+ Ep(s)pg(sg),a∼π(·|s,sg)

[
log

1

Q(s, a, sg) + 1

]
. (18)

C.1. Analysis for Goal-Conditioned Problems

Like in the single-task setting, these two forms of regularization yield the same fixed points:
Theorem C.1. Let policy π(a | s, sg) be given, let Qβ(s, a, sg) be the Q-values for the marginal behavioral policy β(a | s)
and let Qπ

r (s, a, sg) be the critic obtained by the regularized critic update (Eq. 18). Then performing regularized policy
updates (Eq. 15) using the behavioral critic is equivalent to the un-regularized policy objective using the regularized critic:

Eπ(a|s,sg)
[
logQβ(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
= Eπ(a|s,sg) [logQ

π
r (s, a, sg)]

for all states s and goals sg .

Proof. We start by determining the fixed point of critic-regularized C-learning. Like in the single-task setting, the C-learning
objective resembles a weighted-classification problem, so we can write down the Bayes’ optimal classifier as

Q(s, a, sg)

Q(s, a, sg) + 1
=

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))β(a | s)

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s′, sg))β(a | s) + p(sg)π(a | s, sg)
.

Solving for Q(s, a, sg) on the left hand side, the optimal value for Q(s, a, sg) is given by

Q(s, a, sg) = ((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))

β(a | s)
π(a | s, sg)

This tells us what each critic-regularized C-learning update does.

To analyze these updates, we define Q̃(s, a, sg) ≜ Q(s, a, sg)
π(a|s,sg)
β(a|s) . Then these updates can be written using Q̃(s, a, sg)

as

Q̃(s, a, sg)
β(a | s)

π(a | s, sg)
=

(
(1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)π(a′|s′,sg)

[
Q̃(s′, a′, sg)

β(a′ | s′)
π(a′ | s′, sg)

])
β(a | s)

π(a | s, sg)
.

These updates can be simplified to

Q̃(s, a, sg) = (1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′, sg)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′,sg) inside the expectation acts like an importance weight. Thus, the regularized critic updates

are equivalent to perform policy evaluation on Q̃(s, a, sg). Note that this is estimating the probability that the average
behavioral policy β(a | s) reaches goal sg; this is not the probability that a goal-directed behavioral policy β(a | s, sg)
reaches the goal.

Finally, we translate these convergence results for Q̃(s, a, sg) into convergence results for Q(s, a, sg). Written in terms of
the original Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a, sg) = Q̃∗(s, a, sg)
β(a | s)

π(a | s, sg)
= Qβ(·|·)(s, a, sg)

β(a | s)
π(a | s, sg)

.
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Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as one-step RL:

Ep(s),sg∼p(s),π(a|s,sg) [logQ
∗(s, a, sg)]

= Ep(s),sg∼p(s),π(a|s,sg)

[
logQβ(·|·)(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
.

D. Regularization for Example-based Control Problems
While specifying tasks in terms of reward functions is standard for MDPs, it can be difficult for real-world applications of
RL. So, prior work has looked at specifying tasks by goal states (as in the previous section) or sets of states representing
good outcomes (Pinto & Gupta, 2016; Tung et al., 2018; Fu et al., 2018). In addition to requiring more flexible and
user-friend forms of task specification, these algorithms targeted at real-world applications often demand regularization. In
the same way that prior goal-conditioned RL algorithms have employed critic regularization, so too have prior example-based
control algorithms (Singh et al., 2019; Hatch et al., 2022). In this section, we extend our analysis to regularization of an
example-based control algorithm. Again, we will show that a certain form of critic regularization is equivalent to regularizing
the actor.

We first define the problem of example-based control (Fu et al., 2018). In these problems, the agent is given a small collection
of states s ∼ pe(s), which are examples of successful outcomes. The aim is to learn a policy π(a | s) that maximizes the
probability of reaching a success state:

max
π

Ep(sg)Eπ(τ |sg)

[ ∞∑
t=0

γtpe(st)

]
.

Note that this objective function is exactly equivalent to a reward-maximization problem, with a reward function r(s, a) =
pe(st).

In this section, we show that one-step RL and critic regularization are equivalent for a certain example-based control
algorithm. Unlike our analysis in the single-task setting, this analysis here uses an existing method, RCE (Eysenbach et al.,
2021). RCE is a TD method that already makes use of the cross entropy loss for training the critic:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yπ,Qt(s, a) = Ep(s′|s,a)π(a′|s′)[Q(s′, a′)] serves the role of the TD target. The first two terms increase the Q-values
while the last term decreases the Q-values. The actor is updated to maximize the Q-values. While this objective for the
actor can be written in many ways, we will write it as maximizing a log ratio because it will allow us to draw a precise
equivalence between actor and critic regularization:

max
π

Ep(s)π(a|s) [logQ(s, a)]

We will now consider variants of RCE that incorporate actor and critic regularization.

One-step RL. We will consider a variant of RCE that resembles one-step RL (Brandfonbrener et al., 2021). The critic
update will be similar to before, but the next-actions sampled for the TD updates will be sampled from the behavioral policy:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyβ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yβ,Qt(s, a) = Ep(s′|s,a)β(a′|s′)[Q(s′, a′)]. The actor update will be modified to include a reverse KL divergence:

max
π

Ep(s),π(a|s) [logQ(s, a) + log β(a | s)− π(a | s)] . (19)

Critic regularization. To regularize the critic, we will modify the “negative” term in the RCE objective to use actions
sampled from the policy:

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a),a−∼π(·|s)

[
γyπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a−) + 1

]
, (20)
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D.1. Analysis for Example-based Control Problems

Like in the single-task setting, these two forms of regularization yield the same fixed points:

Theorem D.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-values for the behavioral policy β(a | s) and let Qπ
r (s, a)

be the critic obtained by the regularized critic update (Eq. 20). Then performing regularized policy updates (Eq. 19) using
the behavioral critic is equivalent to the un-regularized policy objective using the regularized critic:

Eπ(a|s)
[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
= Eπ(a|s) [logQ

π
r (s, a)]

for all states s.

Proof. We start by determining the fixed point of critic-regularized RCE. Like in the single-task setting, The RCE objective
resembles a weighted-classification problem, so we can write down the Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

((1− γ)pe(s) + γyπ,Qt(s, a))β(a | s)
((1− γ)pe(s) + γyπ,Qt(s, a))β(a | s) + π(a | s)

.

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = ((1− γ)pe(s) + γyπ,Qt(s, a))
β(a | s)
π(a | s)

This tells us what each critic-regularized RCE update does.

To analyze these updates, we define Q̃(s, a) ≜ Q(s, a)π(a|s)β(a|s) . Then these updates can be written using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s)

=

(
(1− γ)pe(s) + γEp(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s)

.

These updates can be simplified to

Q̃(s, a) = (1− γ)pe(s) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight. Thus, the regularized critic updates are

equivalent to perform policy evaluation on Q̃(s, a).

Finally, we translate these convergence results for Q̃(s, a) into convergence results for Q(s, a). Written in terms of the
original Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

.

Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as one-step RL:

Ep(s),π(a|s) [logQ
∗(s, a)] = Ep(s),π(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
.

E. Additional Experiments
E.1. Is classifier actor critic a good model of practically-used RL methods?

To study whether classifier actor critic is an accurate model for practically-used RL methods, we extended Fig. 3 by
adding three additional methods: classifier actor critic, classifier actor critic with actor regularization (Equations 4 and 3).
Comparing Q-learning with classifier actor critic, we see that both yield reward-maximizing policies (in line with Lemma 4.1),
though these policies are different (i.e., they perform symmetry breaking in different ways). Comparing one-step RL with
actor-regularized classifier actor critic, we observe that both methods take the same three actions at the states within the blue
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(a) Q-learning (b) One-step RL (c) CQL(λ = 10)

(d) classifier actor critic
(no regularization)

(e) classifier actor critic
(actor regularization)

(f) classifier actor critic
(critic regularization)

Figure 9: Extension of Fig. 3 with additional figures for classifier actor critic and regularized variants. As expected,
classifier actor critic produces a reward-maximizing policy (Lemma 4.1), as does Q-learning. In line with Theorem 4.3,
critic-regularized and actor-regularized classifier actor critic product the same policies. Comparing (b) one-step RL (e)
actor-regularized classifier actor critic, we see that the methods produce the same three actions within the blue box (states
where we expect regularization to be important), but can produce different actions in states outside the blue box. The
comparisons between (c) CQL and (d) critic-regularized classifier actor critic are similar, supporting the claim that classifier
actor critic is only an approximate (no a perfect) model of practically-used offline RL methods.

box, states where we expect regularization to have a large effect. Outside this blue box, these two methods occasionally
take different actions. Similarly, comparing CQL to critic-regularized classifier actor-critic, we observe that the methods
take the same actions within the blue box, but occasionally take different actions outside the blue box. In line with
Theorem 4.3, classifier actor-critic with critic regularization produces the exact same policy as classifier actor-critic with
actor regularization. Taken together, these results provide empirical backing for our theoretical results, while also showing
that classifier actor critic is only an approximate model of practical algorithms, not a perfect model.

F. Experimental Details
F.1. Tabular experiments

Implementing critic regularization for classifier actor critic. The objective for critic regularization in contrastive actor
critic (Eq. 6) is nontrivial to optimize because of the cyclic dependency between the policy and the critic: simply alternating
between optimizing the actor and the critic does not converge. In our experiments, we update the critic using an exponential
moving average of the policy, as proposed in Wen et al. (2021). We found that this decision was sufficient for ensuring
convergence. When applying CQL in the tabular setting (Figures 3 and 4), we did not do this because soft value iteration
represents the policy implicitly in terms of the value function.

Fig. 2 (left) The initial state and goal state are located in opposite corners. The reward function is +1 for reaching the goal
and 0 otherwise. We use a dataset of 20 trajectories, 50 steps each, collected by a random policy. We use γ = 0.95 and
train for 20k full-batch updates, using a learning rate of 1e-2. The Q table is randomly initialized using a standard normal
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distribution.

Fig. 2 (center) The initial state and goal state are located in adjacent corners. The goal state has a reward of +3.5, the
states between the initial state and goal state have a reward +1, and all other states (including the initial state) have a reward
of +2. We use a dataset of 20 trajectories, 50 steps each, collected by a random policy. We use γ = 0.95 and train for 20k
full-batch updates, using a learning rate of 1e-2. The Q table is randomly initialized using a standard normal distribution.

Fig. 2 (right) The initial state and goal state are located in adjacent corners. The reward is +0.01 at the goal state and 0
otherwise. We use a dataset of 1 trajectories with 10 steps, which traces the following path:

[(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4), (0, 4), (0, 4), (0, 4)].

We use γ = 0.95 and train for 10k full-batch updates, using a learning rate of 1e-2. The Q table is randomly initialized using
a standard normal distribution.

Fig. 3 There is a bad state (reward of −10) next to the optimal state (reward of +1), so the behavioral policy navigates
away from the optimal state. We generate 10 trajectories of length 100 from a uniform random policy. We use γ = 0.95
and train each method for 10k full-batch updates. The Q table is randomly initialized using a standard normal distribution.
One-step RL performs SARSA updates while CQL performs soft value iteration (as suggested in the CQL paper).

Fig. 4 We generate 100 random variants of Fig. 3 by randomly sampling the high-reward state and low-reward state
(without replacement). The datasets are generated in the same way.

Fig. 5 We use the same environment and dataset as in Fig. 3, but train the CQL agent with varying values of λ, each with 5
random seeds. We train the one-step RL agent for 5 random seeds. For each point on the X axis of Fig. 5, we compare
compute 5× 5 pairwise comparisons and report the mean and standard deviation.

F.2. Continuous control experiments

For the experiments in Figures 6 and 7, we used the implementation of one-step RL (reverse KL) and CQL provided
by Hoffman et al. (2020). We choose this implementation because it is well tuned and uses similar hyperparameters for the
two methods. As mentioned in the main text, the only change we made to the implementation was adding the twin-Q trick to
one-step RL, such that it matched the critic architecture used by CQL. We did not change any of the other hyperparameters,
including hyperparameters controlling the regularization strength.
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