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Abstract

Diffusion models are a class of probabilistic gen-
erative models that have been widely used as a
prior for image processing tasks like text con-
ditional generation and inpainting. We demon-
strate that these models can be adapted to
make predictions and provide uncertainty quan-
tification for chaotic dynamical systems. In
these applications, diffusion models can implic-
itly represent knowledge about outliers and ex-
treme events; however, querying that knowledge
through conditional sampling or measuring prob-
abilities is surprisingly difficult. Existing meth-
ods for conditional sampling at inference time
seek mainly to enforce the constraints, which is
insufficient to match the statistics of the distri-
bution or compute the probability of the cho-
sen events. To achieve these ends, optimally
one would use the conditional score function, but
its computation is typically intractable. In this
work, we develop a probabilistic approximation
scheme for the conditional score function which
provably converges to the true distribution as the
noise level decreases. With this scheme we are
able to sample conditionally on nonlinear user-
defined events at inference time, and matches
data statistics even when sampling from the tails
of the distribution.

1. Introduction
Accurately predicting trajectories for chaotic dynamical
systems is a great scientific challenge of societal impor-
tance. For instance, despite the impressive progress of nu-
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merical weather prediction (Richardson, 1922; Bauer et al.,
2015), current methodologies still struggle to forecast ex-
treme events. Heat waves (Perkins & Alexander, 2013),
flooding (Mosavi et al., 2018), and oceanic rogue waves
(Dysthe et al., 2008), are examples of catastrophic events
of enormous socio-economic impact. Part of the difficulty
of forecasting such extreme events can be attributed to the
chaotic behavior of the dynamical systems associated with
weather prediction (Lorenz, 1963; Hochman et al., 2019).
Furthermore, extreme events are often located at the tail
of the distribution and are non-trivial to characterize, ren-
dering them hard to sample efficiently, which in return has
spun several methods seeking to attenuate this issue (Kahn
& Harris, 1951; Rosenbluth & Rosenbluth, 1955; Faraz-
mand & Sapsis, 2019; Qi & Majda, 2020). Most of the
methods above are based on rejection-sampling (Hastings,
1970; Rossky et al., 1978), whose cost, measured as the
number of on-demand large-scale simulations of the dy-
namical system, increases as events become rarer, rapidly
becoming prohibitive.

Recent advances in deep generative models, particularly
diffusion-based models, have shown remarkable results
in capturing statistics of high-dimensional variables (such
as images) and generating new samples from the learned
probabilistic models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2020). In constrast
with GANs (Goodfellow et al., 2020) which often struggle
with dropping modes that are difficult to model, diffusion
models have proven better at capturing the full diversity of
the data.

In this paper, we investigate the application of diffusion
models to modeling trajectories. In particular, we are in-
terested in whether such models can be used as surrogate
models for the physical systems. We consider three classi-
cal dynamical systems: Lorenz strange attractors (“butter-
fly”) (Figure 1 left), the double pendulum, and FitzHugh-
Nagumo neuron model (Figure 1 right). Even though these
models are fairly simple they retain the core difficulty of
more complex ones, e.g., the first two exhibit chaotic tra-
jectories while the last one exhibits extreme events.

Concretely, we study two questions. First, can we learn
diffusion-based generative models directly from trajecto-
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Figure 1: Chaotic nonlinear dynamical systems often have out-
lier events, and these events can be difficult to predict due to the
chaotic nature of the system. Left: Trajectories of the Lorenz at-
tractor, split into the trajectories which do not cross over to the op-
posite arm of the attractor in a given time horizon vs those that do.
Right: Trajectories of the FitzHugh-Nagumo model, which fea-
ture the rare and unpredictible neuron spikes shown in red, which
are nestled in with typical trajectories shown in purple.

ries without explicit knowledge of the underlying differ-
ential equations and sample high-fidelity trajectories from
the models? Second, can we condition the sampling pro-
cess to generate user-specified events — trajectories of cer-
tain properties — without the need to retrain the model?
Positive answers will enable researchers and practitioners
to query the learned models with amortized computational
costs, and the flexibility of studying events in tails of the
distribution.

We answer the first question by building diffusion mod-
els capable of learning the trajectories of the three classical
systems mentioned above. The models can produce trajec-
tories with low error and calibrated uncertainties even when
the underlying system is chaotic.

We answer the second question by deriving an approxima-
tion scheme to compute the conditional score function that
enables conditioning on user-defined nonlinear statistics at
inference time. The key idea is to use moment-matching to
derive the distribution of the denoised sample conditioned
on a noised sample, which is typically intractable. We show
that the approximation becomes exact as the noise scale
vanishes. Using this method, we can directly sample events
in the tail of the distribution and quantify their likelihood.

2. Related Work
Denoising Diffusion Probabilistic Models Denoising Dif-
fusion Probablisitic Models (DDPMs) (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song & Ermon, 2019) con-
struct a forward process where each training example from
the data distribution is sequentially corrupted by increas-
ingly larger noise. At the final step of this process, the
sample is distributed according to a standard Gaussian dis-
tribution, completely erasing the data. The reverse process

defines a generative model where, starting from a standard
Gaussian sample, we follow the reverse denoising process
using a neural network. These diffusion models are trained
using score matching (Hyvärinen, 2005; Vincent, 2011) or
denoising (Ho et al., 2020) objectives. Song et al. (2020)
introduce a continuous formulation of the diffusion process
using stochastic differential equations (SDEs). Further-
more, by leveraging the connection with Neural Ordinary
Differential Equations (NeuralODEs) (Chen et al., 2018),
Song et al. (2020) show how to perform exact likelihood
computation.

A posteriori conditioning

Inference time (a posteriori) conditioning is a promising
and powerful paradigm for training large prior models and
using them to perform different downstream tasks like in-
painting, colorization, reconstruction, and solving general
inverse problems. In contrast with (a priori) train time
conditioning, where the form of the conditioning must be
known and used at training time, inference time condi-
tioning enables using a unconditional diffusion model as
a prior and then conditioning it on different observations at
inference time.

Song et al. (2020) provide a crude approximation of the
conditional score function to perform inpainting. Meng
et al. (2021) use a similar method, but instead they per-
form unconditional generation from a noised version of a
guide image. Chung & Ye (2022) and Chung et al. (2022c)
generalize the method to linear transformations (such as in
MRI reconstruction) and apply an explicit projection onto
the constraints at each iteration. As shown by Lugmayr
et al. (2022) and others (Chung et al., 2022b), these pro-
jection strategies (e.g. replacing noised versions of known
pixels with the Gaussian samples p(xt|x0) for inpainting)
produces samples that lack global coherence: inpainted re-
gions do not properly integrate information from the known
regions. Lugmayr et al. (2022) address this by iterating for-
wards and backwards multiple times in order to better har-
monize the information. Chung et al. (2022b) take a differ-
ent approach with manifold constrained gradients (MCG):
they combine constraint projection with an additional term
that encourages the conditional sample iterates xt to lie on
the data manifold given by p(xt). Both methods address
the global coherency issue of prior methods; however, they
are only valid for linear equality constraints and it is unclear
how the samples relate to the true conditional distribution
of the generative model.

Graikos et al. (2022) take a more general approach for in-
verse problems using optimization, but only produce point
estimates. Recently, Chung et al. (2022a) proposed an im-
proved version of MCG that removes the projections and
enables it to work both when there is measurement noise
and nonlinear constraints. This method makes a probabilis-
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tic approximation of the score function, which becomes de-
generate as the measurement noise goes to 0, thus limiting
its applicability for tail sampling of the deterministic events
we consider here.

Likelihoods Even though diffusion models are not explic-
itly designed as likelihood models, they can be used to
compute the likelihood p(x0) of a particular data point ac-
cording to the model. In order to obtain more than a lower
bound on the likelihood, one needs to exploit the connec-
tion between the probability flow ODE and continuous nor-
malizing flows (Grathwohl et al., 2018) as done in Song
et al. (2020), unfortunately, such connection is only avail-
able in continuous time.

Extreme event prediction Qi & Majda (2020) apply deep
convolutional neural networks to the prediction of extreme
events in dynamical systems. Wan et al. (2018) use reduced
order modelling in conjunction with LSTM-RNN networks
to model extreme events. Asch et al. (2022) tackle the
problem of lack of data when training deep networks for
extreme event prediction. Doan et al. (2021) use reservoir-
computing based model to forecast extreme events. Guth
& Sapsis (2019) use machine learning to detect extreme
events in advance from a given trajectory; rather than mod-
eling trajectories of dynamical systems directly. In contrast
to the above works, our approach uses likelihood-based
generative models which allows us to provide probability
estimates for the extreme event occurring. Deep genera-
tive models, particularly NeuralODEs (Chen et al., 2018;
Yildiz et al., 2019) have shown promise in modeling dy-
namical systems (Lai et al., 2021), but their effectiveness
in capturing tail events is yet to be ascertained.

3. Diffusion Model for Dynamical Systems
Background Diffusion models are composed of a for-
ward noising process and its corresponding backward
denoising process, which we describe below in its
continuous-time formulation (Song et al., 2020).

The forward process evolves a given clean signal x0 ∈ Rd

from time t = 0 to t = 1 via the Itô Stochastic Differential
Equation (SDE)

dxt = f(xt, t)dt+ g(t)dW,

where W is the Wiener process, adding noise at each step.
Ultimately, xt, the signal at time t, is a transformed (due
to the drift term f(x, t)) and noised (due to the diffusion
term g(t)dW ) version of x0. These values are also chosen
so that the marginal distribution p(x1) is simply a spherical
Gaussian. Here we denote the distribution of the data given
the noise level at time t as p(xt), though this distribution
depends on t and is sometimes written as pXt

(xt) or pt(xt).

If f(x, t) is affine, the noise kernel p(xt|x0) can be com-

puted in closed-form. In this work, we define

f(x, t) = ṡt
st
x and g(t)2 = σtσ̇t − σ2

t
ṡt
st
. (1)

If these relations are specified, then the noise kernel has a
simple form:

p(xt|x0) = N (xt; stx0, σ
2
t I). (2)

Namely, the diffusion model describes how x0 is scaled
and blurred. The derivation of Equation 1 can be found in
Särkkä & Solin (2019) and specific choices of st and σt are
described in Song et al. (2020); Karras et al. (2022).

The reverse process removes the noise from data. Specifi-
cally, given a noisy sample x1 from the marginal distribu-
tion p(x1) = N (0, σ2

1I), the backward process evolves x1

to x0 by the following SDE

dxt =
(
f(xt, t)− g(t)2∇xt log p(xt)

)
dt+ g(t)dW̄ , (3)

where W̄ is the Wiener process running backwards.
∇xt

log p(xt) is the score function for the noised data, de-
fined as the gradient of log p(xt), the marginal probabil-
ity of xt. The diffusion model can be seen as a sequence
of denoising steps according to the model score sθ(xt, t)
aimed to match the noised score function of the true data
∇xt

log pdata(xt). This can be achieved with standard opti-
mization algorithms on the score matching loss. From now
on we will refer to∇xt log p(xt) not as the noised scores of
the data distribution, but as the noised scores of the model
distribution.

We use the continuous time score matching formulation of
diffusion models (Song et al., 2020) to enable likelihood
computations, and we train using the score matching loss

L(θ) = E(t,x0,xt)∥sθ(xt, t)−∇xt
log p(xt|x0)∥2/σ2

t ,

where x0 ∼ D (the data distribution), xt ∼ p(xt|x0), and
t ∼ U[0, 1]. For hyperparameters and additional training
setup, see Appendix G. After training, we sample from the
model using the Euler-Maruyama integrator with 1000 uni-
formly spaced timesteps applied to the SDE in Equation 3.

Application to Dynamical Systems The trajectory of a
dynamical system for a given initial condition x(0), is the
function x(τ) : [0, T ]→ Rd, which is the solution to

ẋ(τ) = g(x(τ), τ),

for a given dynamics function g. We use ODE time τ to
distinguish it from the diffusion time t. Note that the initial
condition x(0) should not be confused with x0, where the
latter refers to a noise free data point.

We suppose that the initial condition x(0) follows a cer-
tain distribution, which in return generates a distribution of
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trajectories. We assume each trajectory is discretized into
m timesteps, yielding a m × d-dimensional array. We use
diffusion models to model the collection of the trajectories.
The architecture of the diffusion model’s score function is
described in Appendix H.

4. A Posteriori Conditioning
Once p(x) is learnt, we would like to obtain samples from
it with properties of interest. Abstractly, we seek

p(x0|E)

where the property E is a set given by E = {x0 : C(x0) =
y}, for equality constraints or E = {x0 : C(x0) ≤ y},
for inequality constraints, for some smooth function C :
Rmd → Rn. This construction is fairly general and it can
be used for different downstream applications, e.g., in the
task of image inpainting, the property C(x0) = y encodes
whether the observed portion of a sampled image x0 corre-
sponds to known pixel values y.

In order to perform a posteriori conditional sampling using
the learned model, we use the score function of the condi-
tional distribution

∇xt
log p(xt|E) = ∇xt

log p(E|xt) +∇xt
log p(xt)

= ∇xt
log p(E|xt) + sθ(xt, t) (4)

in the reverse diffusion process. The challenge is to com-
pute the first term while knowing the definition of E only
after p(xt) is learned (without knowledge of E).

Directly computing this quantity is hard: p(E|xt) =∫
I[x0∈E]p(x0|xt)dx0, which is intractable. A naive ap-

proach would be to use p(E|x0) in place of p(E|xt).
However, this approach leads to conditional samples lack-
ing global coherence (Lugmayr et al., 2022; Chung et al.,
2022b). Instead, we derive an approximation to p(x0|xt)
based on moment matching, which we use to perform con-
ditioning with linear and nonlinear equality constraints as
well as inequality constraints.

4.1. Moment-matching Based Approximation

We can view the forward diffusion process as a Bayesian
inference task:

x0 ∼ p(x0), p(xt|x0) = N (xt; stx0, σ
2
t I). (5)

To compute the mean of p(x0|xt), we apply Tweedie’s for-
mula (Robbins, 1992; Efron, 2011)

E[x0|xt] =
xt + σ2

t∇xt
log p(xt)

st
:= x̂0(xt), (6)

where x̂0 represents the best guess for x0 given a value of
xt. Furthermore, Tweedie’s formula can also be applied

to the higher moments. As we derive in Appendix A, the
conditional covariance matrix can be expressed exactly as

Cov[x0|xt] =

[
σ2
t

s2t

(
I + σ2

t∇2 log p(xt)
)]

:= Σ̂(xt), (7)

where∇2 log p(xt) is the Hessian of the log probability, or,
equivalently, the Jacobian of the score function.

Using these two expressions for the conditional mean and
covariance of x0, we can approximate p(x0|xt) with a
Gaussian

p(x0|xt) ≈ N (x̂0, Σ̂), (8)

which can be conveniently applied to constraining x0 to
satisfy the desired property E.

4.2. Linear Equality Constraints

As an example, we consider the goal of imposing the set of
linear constraints E = {x0 : Cx0 = y} onto samples from
the diffusion model for a given constraint matrix C ∈ Rr×d

and y ∈ Rr. The linear transformation Cx0 leads to yet
another Gaussian

p(Cx0|xt) ≈ N (Cx̂0, CΣ̂C⊤). (9)

Both x̂0 and Σ̂ depend on xt, and the matrix CΣ̂C⊤

can be computed using automatic differentiation involv-
ing the Jacobian of the score function. Specifically, the
matrix CΣ̂ can be computed as the Jacobian of the map
xt 7→ (σ2

t /st)Cx̂0. We now have,

∇xt
log p(E|xt) ≈ ∇xt

logN (y;Cx̂0, CΣ̂C⊤) (10)

This enables using the modified score function 4 to sample
from the constrained generative process.

Remark In the case of linear constraints studied here, our
work generalizes the recent work on constraining samples
conditioned on linear constraints to be consistent with the
data manifold (Chung et al., 2022b). Specifically, if we ap-
proximate the Hessian as σ2

t∇2 log p(xt) ≈ λI , we arrive
at

∇xt
log p(xt|y) = sθ(xt, t)−

s2t
2(1 + λ)σ2

t

∇xt
∥Cx̂0−y∥2,

which reproduces eq.(14) in (Chung et al., 2022b), ignor-
ing constraint projections, and up to a scaling matrix W
lacking the s2t/σ

2
t factor. In Appendix D, we show how the

additional constraint projection for linear constraints arises
under different circumstances with our moment matching
approximation.

However, using (Chung et al., 2022b) or (Chung et al.,
2022a) directly with adaptive step size integrators in the
continuous time formulation leads to numerical issues due
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Figure 2: Relative error of sample diffusion model samples and pointwise median of 20 samples when conditioned on initial condition
compared to ground truth trajectories, NeuralODE rollouts, as well as errors for small perturbations of the initial condition evolved with
the simulator, and independently sampled initial conditions for comparison. Shaded lines show two standard errors computed in log
space. Diffusion model is evaluated on Left: Lorenz attractor, Middle: Fitzhugh-Nagumo model, and Right: double pendulum. The
diffusion model and NeuralODE perform similarly, despite the diffusion model lacking ODE specific inductive biases of NeuralODE.

to the stiffness of the problem; the ODE integrator step
sizes shrink to zero and the integration does not complete.
We explore these issues further in Appendix E. Observing
that the ratio s2t/σ

2
t = SNR (signal to noise ratio) typically

varies over 12 orders of magnitude in the region t ∈ (0, 1],
we can now understand how the misscaling of this term
leads to numerical problems. Adding the additional scaling
factor s2t/σ

2
t enables us to use the method in continuous

time. Additionally, we can now leverage our probabilistic
interpretation and the full covariance matrix to determine
how to condition on nonlinear and inequality constraints.

4.3. Nonlinear Equality Constraints

For a set of nonlinear constraints C(x0) = y, we approxi-
mate C(x0) with its first-order Taylor expansion:

C(x0) ≈ C(x̂0) +∇C · (x0 − x̂0). (11)

The Jacobian ∇C is evaluated at x̂0. In this “linearized”
constraint, we approximate the desired probability using
the result from the previous section on linear constraints:

p(C(x0) = y|xt) ≈ N (C(x̂0),∇C Σ̂∇C⊤). (12)

The quality of the approximation depends on how much
the function C varies over the scale of the variance of x0,
which we evaluate in subsection 5.3.

4.4. Inequality Constraints

With the Gaussian approximations of Equation 10 and
Equation 12 for linear and nonlinear equality constraints,
we can also handle inequality constraints such as E =
{x0 : C(x0) > y}. For a one-dimensional inequality con-
straint,

p(E|xt) = p(C(x0) > y|xt) ≈ Φ

(
C(x̂0)− y√
∇C⊤Σ̂∇C

)
,

where Φ is the Gaussian CDF.

Plugging the above into the score function for sampling
conditional distribution Equation 4, we can directly sam-
ple from the tails of the distribution according to any user
defined nonlinear statistic C(·), focusing the model on ex-
treme and rare events, using the conditional scores

∇xt log p(xt|E) ≈ sθ(xt, t)+∇xt log Φ

(
C(x̂0)− y√
∇C⊤Σ̂∇C

)
.

4.5. Likelihoods of Events

Since we can obtain samples from p(x0|E), for a given
user-defined event E, we can also compute the marginal
likelihood of such an event. Concretely, given a sample x0,
we can break down the likelihood using Bayes rule:

log p(E) = log p(x0)− log p(x0|E) + log p(E|x0).
(13)

When sampling x0 ∼ p(x0|E), the last term is zero when
x0 is a member of E. The two probabilities p(x0) and
p(x0|E) can be computed by integrating the probability
flow ODEs (Song et al., 2020)

ẋt = f(xt, t)− 1
2g(t)

2∇xt
log p(xt), (14)

ẋt = f(xt, t)− 1
2g(t)

2∇xt log p(xt|E), (15)

forwards in time with the continuous change of variables
formula derived in FFJORD (Grathwohl et al., 2018). To
reduce variance and the integration time, we use a second-
order Heun integrator with a fixed time step, and compute
the Jacobian log determinant directly using autograd. For
more details, see Appendix I. While the above procedure
is theoretically valid for a single sample x0, we can aver-
age the estimate over multiple samples x0|E for improved
accuracy.
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Figure 3: Uncertainty quantification captured by the learned diffusion model. (Left) 20-80th precentiles state values for the x2 com-
ponent of the Lorenz attractor diffusion model, compared to the actual trajectory. As this trajectory lies in a region of the state space
with a lower local Lyapunov exponent, the dynamics are less chaotic here, and the model uncertainties are relatively low. (Middle) For
samples in the very chaotic region, state transitions to the opposite arm of the attractor are common and captured by the uncertainties.
(Right) Calibration of the predicted uncertainty quantiles for pointwise predictions as compared to the ground truth empirical quantiles,
where optimal lies along x = y. While not perfect, the models are reasonably well calibrated, with bias to uncertainties being slightly
to broad at early times and too narrow at late times.

5. Results
In order to evaluate the capability of diffusion models to
express chaotic nonlinear dynamics, we train the models to
fit the distribution of trajectories over different initial con-
ditions for the test problems. For each system, we choose
a Gaussian initial condition distribution, and integrate for
a sufficient time to allow the distribution to reach equilib-
rium before recording the data. We choose st and σt ac-
cording to the variance exploding process, i.e., st = 1 and
σt = σmin

√
(σmax/σmin)2t − 1. Equation parameters and

collection details are specified in Appendix F. We train on
the following three dynamical systems:

Lorenz Attractor The Lorenz attractor (Lorenz, 1963) is
a well-studied example of chaotic behavior, governed by
a coupled three dimensional nonlinear ODE. The system
contains two prominent arms of a strange attractor, and tra-
jectories chaotically switch between the two arms.

FitzHugh-Nagumo The FitzHugh-Nagumo model
(FitzHugh, 1961) is a nonlinear ODE given by the coupled
equations

dxi

dτ = xi(ai − xi)(xi − 1) + yi + k

n∑
j=1

Aij(xj − xi),

dyi

dτ = bixi − ciyi,

for i = 1, 2, leading to a set of four equations modeling the
dynamics of two coupled neurons. The values for the pa-
rameters are specified in Appendix F and match the choice
of Farazmand & Sapsis (2019) which cause the system to
exhibit rare but high magnitude neuron spikes, such as the
examples shown in Figure 1 (right) and Figure 4 (d).

Double Pendulum The double pendulum is another classic
example of a chaotic system produced by the dynamics of a
rigid pendulum with two point masses under the influence

of gravity, but with trajectories having distinct energies un-
like the previous two systems.

5.1. Unconditional Samples

Point Predictions We first evaluate the extent to which the
model captures the system dynamics by measuring its abil-
ity to make accurate predictions of a trajectory given an
initial condition. For each dataset, we train a conditional
model that takes in the first three timesteps of a trajec-
tory so as to make it conditional on the initial conditions
(prior conditioning). Both the errors of a single sample
and the pointwise median of 20 samples are shown, which
are computed against the ground truth from a held out set
of initial conditions. We compare the prediction relative
errors against NeuralODE models, which were trained on
the same data (see Appendix F for details), and perturbed
ground truth, in which we use a ground truth trajectory but
with an initial condition perturbed by Gaussian noise with
standard deviation 10−3. The last comparison specifies
how the error of a small perturbation is chaotically ampli-
fied, and therefore provides a lower bound on performance.
We measure relative error as RelativeError(a, b) = ∥a −
b∥/(∥a∥+ ∥b∥). Figure 2 shows that diffusion models cap-
ture the dynamics of the system performing similarly to
NeuralODEs on pure point predictions, despite the fact that
NeuralODEs make use of the ODE structure bias whereas
the diffusion model does not.

Uncertainty Quantification While the model makes ac-
curate point predictions, we are interested in the distribu-
tion over the outputs captured by the model. In particular,
we provide numerical evidence showing that the pointwise
uncertainties over the state values are reasonably well cal-
ibrated, i.e., the quantiles of the model predictive distri-
bution at a given point includes the truth the appropriate
fraction of the time. In principle, there are two sources of
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C(x) > 1.5. Notably the unconditional model distribution captures the outliers. (b) Statistic values on samples produced by our method
of tail sampling vs actual extreme events vs naive approach to enforce the constraints. (c) Unconditional trajectory samples from both
the data and model distributions. (d) Example event conditional samples compared to actual events. When conditioning on the event
defined by the statistic value E = [C(x) > 0], the model is able to conditionally sample from the distribution, unlike for the naive
approach to incorporate the constraints.

uncertainty with the model when trained on these dynami-
cal systems: uncertainty associated with the chaotic growth
of error that introduces defacto randomness, and the epis-
temic uncertainty of the model fit, both of which can be
captured by the model. In Figure 3 (left, middle) we show
the 20-80th percentile of the state value of the 2nd compo-
nent (x2) of the Lorenz system per point as produced by our
model in the shaded regions vs a ground truth trajectory,
showing that the trajectory lies within the prediction inter-
val and that it correctly captures that the state may venture
to the other arm of the attractor (having larger x2 value). In
Figure 3 (right) we show that the model’s uncertainties are
calibrated quantitatively, by binning the empirical quantiles
of the output samples per point and measuring the rate at
which the actual values fall into those quantiles.

5.2. Conditional Samples

We showcase the ability to sample unlikely and extreme
events with our method, by sampling extreme events in
the Fitzhugh-Nagumo system described previously. Over
the time-horizon considered, the neuron spiking events oc-
curs in only in roughly 1/30 of the trajectories, which are
qualitatively very different from the average trajectories.
These unusual trajectories are shown in Figure 1 (right)
and Figure 4 (d). We define an event through the quantity
C(x) = maxτ (x1(τ) + x2(τ))/2− 2.5, E = [C(x) > 0].
The statistics of C for the ground truth unconditional and
conditional distributions are shown in Figure 4 (a) and (c)
respectively. Note the unusual neuron fires out past value
4, which are also produced occasionally when sampling
the trained model. When conditioning on this nonlinear
inequality constraint using our method, we can sample di-
rectly from this cluster of outliers producing event samples
(Figure 4 b) that mirror true events, and match the statistic

values (Figure 4 c). We compare our method (Conditional
Diffusion in the figure) to a more naive approach (Naive
Constraints) of using p(E|xt) ≈ Φ( stσt

(C(x̂0)− y)) which
doesn’t make use of the 2nd order Tweedies formula infor-
mation of the conditional covariance. Unlike our method,
this approach is not as effective at sampling from the tail.

Next, we perform the same tail sampling for the Lorenz
system. We separate trajectories in a region of the state
space where switching between the two arms of the attrac-
tor is common vs where it is not. For this purpose we define
the nonlinear statistic C(x) = 0.6− ∥F [x− x̄]∥1 where F
is the Fourier transform applied to the trajectory time τ and
∥∥1 is the 1-norm taken over both the Fourier components
and the 3 dimensions of the state, and x̄ is just the average
value of x over τ . As shown in Figure 5, this statistic sep-
arates the distribution into two populations. We condition
on this inequality constraint C(x) > 0 and we generate
samples satisfying the inequality constraint and that do not
change arms, as shown in Figure 5. With both systems, the
conditional samples preserve the diversity in the distribu-
tion, rather than collapsing to a conditional mode as one
would have with optimization based methods.

5.3. Convergence of the Gaussian Approximation

Here, we study the accuracy of our approximation
p(C(x0)|xt) ≈ N (C(x̂0),∇C⊤Σ̂∇C) which combines
Gaussian moment matching on x0|xt with a linearization of
the constraints around the mode of the Gaussian. We show
that our approximation becomes increasingly exact as the
time variable and hence the noise goes to 0, and the asymp-
totics of the error with σt are quantified in Appendix B.

Theorem 1. Suppose C is an analytic function and
{p(xt)}t∈[0,1] is collection of smooth density functions with
a smooth dependence on t (associated to xt in equation 3),

7
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Figure 5: (a) Histograms of statistic values C(x) in the Lorenz system, for trajectories sampled unconditionally from from the dataset
and the model. The event describes trajectories which do not cross between the two arms of the strange attractor (in the limited time
horizon). Notably the unconditional model distribution captures the outliers. (b) Statistic values on samples produced by our method
of tail sampling vs actual extreme events vs naive approach to enforce the constraints. (c) Unconditional trajectories from the data
and model distribution. (d) Example event conditional samples compared to actual events. When conditioning on the event defined by
the statistic value E = [C(x) > 0], the model is able to conditionally sample from the distribution. Note that while the majority of
conditional samples satisfy the event, there are a few stragglers that do not satisfy the event shown by the population the left of C(x) = 0
in (b) and the purple trajectory in (d).
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Figure 6: The empirical distribution of the event statistic C(x0)
computed over distinct sample paths given the value xt at a partic-
ular noise level for the events chosen in the two datasets. The lin-
earized moment matching approximation loosely guides the gen-
eration at high noise levels, and becomes increasingly accurate as
the noise level decreases.

then the random variable (∇C⊤Σ̂∇C)−1/2
(
C(x0) −

C(x̂0)
)

(conditioned on xt) converges in distribution to a
multivariate normal as t→ 0,

(∇C⊤Σ̂∇C)−1/2(C(x0)− C(x̂0))→d N (0, I). (16)

Proof: See Appendix B.

To better understand the transition from high- to low-noise
regimes in terms of the convergence of the approximation,
we empirically evaluate the distribution p(C(x0)|xt) at dif-
ferent points and at various times between t = 1 and t = 0
for a trajectory conditioned on the event C(x0) > 0. We

compare this empirical distribution from sampling with our
linearized moment matching approximation in Figure 6.
For high noise levels (t > 0.5), the approximation only
loosely guides xt towards satisfying the constraint, how-
ever for low noise levels (t < 0.5) the approximation be-
comes increasingly accurate despite the highly nonlinear
function C. When the noise level is high, fine details of the
event gradients ∇xt

log p(E|xt) are less important since
they are drowned out by the noise; however, when these
fine details matter later on in the generation the constraint
approximation becomes increasingly accurate.

5.4. Computing Marginal Likelihoods of Events

Our method enables computation of the marginal probabil-
ity p(E) of the event according to the model, taking into
account the different ways the event can happen. In Ap-
pendix C we investigate estimating these likelihoods when
applied to predict whether or not a given initial condition
will produce an extreme event C(x) > 0 in the time win-
dow for the neuron firing in the Fitzhugh-Nagumo system.
We compare computing the event likelihood directly sam-
pling from the model, using the conditional likelihoods de-
scribed in subsection 4.5, as well as with importance sam-
pling. For the methods directly using the conditional likeli-
hoods, the difference in likelihoods log p(x0)−log p(x0|E)
is small enough that the two quantities need to be computed
extremely precisely, and small errors can produce large er-
rors in the estimated marginal probability p(E). On the
other hand, the model has captured the true event likeli-
hood well as evidenced by direct sampling.

8
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6. Conclusion
In this work, we successfully build diffusion models for the
probabilistic modeling of trajectories of chaotic dynamical
systems which are able to capture the dynamics of these
systems, and more importantly, provide calibrated uncer-
tainty estimates. We have developed a probabilistic ap-
proximation with theoretical guarantees that enables condi-
tioning the model on nonlinear equality and inequality con-
straints without retraining the model. With the approach,
we are able to sample directly from the tails of the distribu-
tion. We discuss limitations of our method in Appendix J.

While in this work we considered ODEs, the applicability
of diffusion models extends far beyond that, and we envi-
sion a future where a handful of extremely large diffusion
models are employed for spatiotemporal weather predic-
tion. We hope that inference time conditioning capabili-
ties will enable querying the model in different ways, such
as predicting and anticipating extreme temperatures or ad-
verse events. As the capabilities of these models grow, and
the distributions they model become more multifaceted and
diverse, exhaustive direct sampling becomes infeasible and
retraining to specialize for a given type of conditioning is
prohibitive both in terms of compute and data. Addition-
ally, we hope that marginal likelihood computations can be
refined in future work, which can be extremely valuable for
estimation of extreme events.
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A. Tweedie’s Covariance
Consider the noise relation x = z+σϵ where ϵ ∼ N (0, I).
We write the Gaussian x|z in exponential family form:

p(x|z) = exp
[
z⊤T (x)−A(z)

]
h(x) (17)

where h(x) = e−x⊤x/2σ2

/(2πσ2)
d/2, A(z) = z⊤z/2σ2,

and T (x) = x/σ2 is the sufficient statistic.

Using Bayes rule, p(z|x) = p(x|z)p(z)/p(x), we can
rewrite p(z|x) and also express it in exponential family
form:

p(z|x) = exp
(
z⊤T (x)−A(z)

)
h(x)p(z)/p(x) (18)

p(z|x) = exp
(
x⊤z/σ2 − log p(x)

h(x)

)
[p(z)e−A(z)]

= exp
(
x⊤T̄ (z)− Ā(x)

)
h̄(z), (19)

where h̄(z) = p(z)e−A(z), and Ā(x) = log p(x)
h(x) , and

T̄ (z) = z/σ2. Despite the fact that the distribution p(z) is
not known, p(z|x) is guaranteed to be in exponential fam-
ily.

A convenient fact is that for exponential families, Ā(x) is
the cumulant generating function for T̄ (z), and derivatives
produce the cumulants:

E[T̄ (z)|x] = ∇Ā(x) = ∇ log p(x)−∇ log h(x) (20)

Cov[T̄ (z)|x] = ∇2Ā(x) = ∇2 log p(x)−∇2 log h(x)
(21)

and so forth for higher order cumulants (here ∇2 denotes
the hessian).

Plugging in h(x) = e−x⊤x/2σ2

/(2πσ2)
d/2 and T̄ (z) =

z/σ2, and moving the σ2 to the other side, we get

E[z|x] = σ2(∇ log p(x) + x/σ2) (22)

Cov[z|x] = σ4(∇2 log p(x) + I/σ2) (23)

Finally, with the noise relation in the diffusion models xt =
stx0 + σtϵ we can substitute in z → stx0 and x → xt to
get

E[x0|xt] = (xt + σ2
t∇ log p(xt))/st (24)

Cov[x0|xt] =
σ2
t

s2t
(I + σ2

t∇2 log p(xt)), (25)

which proves the relation that we use in the main text.

B. Convergence of the Moment Matching and
Linearization Approximations

In this section we show that the linearized moment-
matching approximation becomes exact in the limit as the
noise scale approaches 0. First consider the moment match-
ing approximation by itself.

Theorem 2. Suppose that {p(xt)}t∈[0,1] is a family of
smooth probability density functions that depends smoothly
on t and where xt is given by equation 3. Then the variable
Σ̂−1/2(x0 − x̂0) (conditioned on xt) converges in distribu-
tion to a standard multivariate Gaussian, in the limit as
t→ 0 (or equivalently as σt → 0):

Σ̂−1/2(x0 − x̂0)→d N (0, I), (26)

where x̂0 = E[x0|xt] and Σ̂ = Cov[x0|xt].

Proof. To determine the convergence of u := Σ̂−1/2(x0 −
x̂0), it is sufficient to show that the expectation converges
to 0, the covariance converges to I , and the higher order
moments converge to 0 (Janson, 1988).

To start, we can derive the higher order cumulants of the
conditional distribution x0|xt by taking additional deriva-
tives of the cumulant generating function Ā.

Applying the same substitution as in Appendix A, we ob-
tain the n-th order cumulant for n ≥ 3 given by

kn(x0|xt) :=
σ2n
t

snt
∇⊗n log p(xt), (27)

where ∇⊗n = ∇⊗ · · · ⊗ ∇︸ ︷︷ ︸
n

and ⊗ is the tensor product.

Now, consider the cumulants of the random variable u :=
Σ̂−1/2(x0 − x̂0), which has 0 mean and a constant scale.

k1(u) = E[u] = 0 (28)

k2(u) = Cov[u] = Σ̂−1/2Σ̂Σ̂−1/2 = I (29)

kn(u) = σn
t (

σt

st
Σ̂−1/2∇)⊗n log p(xt) for n ≥ 3 (30)

Investigating the limiting behavior of kn(u), we can make
use of two important facts: firstly

lim
t→0

σt

st
Σ̂−1/2 =

(
lim
σt→0

I + σ2
t∇2 log p(xt)

)−1/2
= I

and secondly limt→0∇⊗n log p(xt) = ∇⊗n log p(x0)
since log p(x0) is smooth.

Therefore we see that limt→0 kn(u) =
∇⊗n log p(x0)(limt→0 σ

n
t ) = 0, the higher order cu-

mulants converge to 0 at a rate of σn
t , whereas the mean

and variance are fixed. Therefore according to (Janson,
1988), u converges in distribution to a multivariate normal
u→d N (0, I).

Next we consider the full approximation, including the lin-
earization of the constraint as described in subsection 4.3.
The constraint is linearized from the Taylor expansion

C(x0) = C(x̂0)

+∇C⊤(x0 − x̂0) + (x0 − x̂0)
⊤∇2C(x0 − x̂0)/2,
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(with additional higher order terms omitted for brevity).
For simplicity we have used notation for scalar function C,
but the result below holds for vector C analogously. Now
we state the convergence result for our approximation

p(C(x0)|xt) ≈ N
(
C(x̂0),∇C⊤Σ̂∇C

)
. (31)

Theorem 3. Suppose that C is analytic and p(xt) is a
smooth function then as σt → 0, the random variable
(∇C⊤Σ̂∇C)−1/2

(
C(x0)−C(x̂0)

)
converges in distribu-

tion to a multivariate normal:

(∇C⊤Σ̂∇C)−1/2(C(x0)− C(x̂0))→d N (0, I). (32)

Proof. To start, we note that limσt→0
s2t
σ2
t
∇C⊤Σ̂∇C =

∇C⊤∇C, so if we can prove that for the random variable
v = st

σt

(
C(x0) − C(x̂0)

)
converges to N (0,∇C⊤∇C)

then we have proven the claim.

For convenience, define A = (st/σt)Σ̂
1/2, keeping in

mind that limσt→0 A = I

Recalling the random variable u = Σ̂−1/2(x0 − x̂0), we
can rewrite v using the Taylor series as

v = ∇C⊤Au+ 1
2

(
σt

st

)
u⊤A⊤∇2CAu+O(

(
σt

st

)2
). (33)

Notably, A, u, u⊤∇2Cu, and higher order terms converge
to a fixed scale as σ → 0 (since C is assumed to be twice
continuously differentiable and u converges to a normal).

Writing out the cumulants of this random variable we see a
similar pattern as before:

k1(v) = E[v] = O(
(
σt

st

)
)

k2(v) = Cov[v] = ∇C⊤ACov[u]A⊤∇C +O(
(
σt

st

)
)

kn(v) = σn
t (∇C⊤A∇)⊗n log p(xt) +O(

(
σt

st

)
) for n ≥ 3.

Note that limσt→0(∇C⊤A∇)⊗n log p(xt) =
(∇C⊤∇)⊗n log p(x0) since p is smooth. In the limit
as t→ 0, the cumulants become

lim
t→0

k1(v) = 0

lim
t→0

k2(v) = ∇C⊤∇C

lim
t→0

kn(v) = 0 for n ≥ 3.

Therefore, according to (Janson, 1988), v converges in dis-
tribution to N (0,∇C⊤∇C).

In contrast with the mere moment matching Gaussian ap-
proximation the convergence rate is considerably slower

however, with higher order cumulants only decaying as
O(

(
σt

st

)
) and depending on the smoothness of C. Nev-

ertheless, as the noise scale gets smaller, the combined
linearization and moment matching approximation (infor-
mally stated)

p(C(x0)|xt) →
t→0
N
(
C(x̂0),∇C⊤Σ̂∇C

)
(34)

becomes exact.

C. Marginal Likelihood Estimation
In estimating the marginal event likelihood p(E), there are
multiple ways of extracting this quantity from the model.
The simplest, and least scalable to extremely low like-
lihood events is extensively sample from the model and
compute the fraction which satisfy the event p(E) =
Ex∼p(x)[1[x ∈ E]]. Second is to use the method we in-
troduce in Equation 13, and compute the average increase
in the log likelihood

p(E) = exp (Ex∼p(x|E)[log p(x)− log p(x|E)]). (35)
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Figure 7: Calibration of different estimators of the marginal event
likelihood for Fitzhugh-Nagumo extreme event. True rate is com-
puted over sampling from the original dataset and model rate is
computed over samples from the diffusion model. Direct estima-
tion uses Equation 35 and importance sampling uses the impor-
tance sampled version of the estimator, both are computed using
3 samples from x ∼ p(x|E). Likelihood based estimators are not
well calibrated to the true rate of 1/30, but the model rate is.

The potential downside of this approach is that its validity
depends on the quality of the approximation used to com-
pute p(x|E). Alternatively, we can instead drop this re-
quirement and view p(x|E) = q(x) merely as a strong pro-
posal distribution for importance sampling. Sampling from
q, p(E) =

∫
1[x ∈ E]p(x)dx = Ex∼p(x|E)[p(x)/p(x|E)]

giving a very closely related estimator to Equation 35, but
that has no requirements on p(x|E) other than it covers
the event space. In Figure 7, we evaluate the predictions
of these three estimators on the FitzHugh-Nagumo neuron
spiking event, and compare to the ground truth event rate.

While the sampling based method p(E) =
Ex∼p(x)[1[x ∈ E]] (Model rate in the figure) well ap-
proximates the true model event rate, unfortunately neither
of the likelihood based methods (Direct estimation and
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Importance sampling) for estimate p(E) appear to be
calibrated when estimated over a small number of samples
p(x0|E), even though theoretically they should produce
the value consistent with the model distribution. We
suspect this has to do with the accumulation of numerical
errors in the estimation of the Jacobian log determinants
for p(x|E) which needs to be estimated very precisely
because log p(x|E) is typically on the order of 1000 and
should differ from log p(x) only by a few tenths of a
percent.

D. Probabilistic Origin of Constraint
Projection

In this section we investigate how the additional con-
straint projection steps used in Chung et al. (2022c;b) can
arise in our probabilistic framework when applied to linear
constraints, but performing one additional approximation.
Consider the goal of imposing the set of linear constraints
Cx = y onto samples from the diffusion model for a given
constraint matrix C ∈ Rr×d and y ∈ Rr. We seek to sam-
ple x ∼ p(x|Cx = y) using a diffusion models.

Without loss of generality, we can orthogonalize the linear
constraints. Decomposing C with the SVD into the right
nullspace of C and its complement:

C =
[
U V

] [Σ 0
0 0

] [
Q⊤

P⊤

]
. (36)

Here the matrix Q ∈ Rd×r and P ∈ Rd×d−r correspond
to the subspace of x that is determined by the constraint,
and the orthogonal complement which is linearly indepen-
dent of the constraint. We can now rewrite the constraint
Cx = y as UΣQ⊤x = y or equivalently: Q⊤x = u where
u = Σ−1U⊤y. We can decompose x in these two compo-
nents: its projection onto the row space of C and onto its
orthogonal complement, x = Qu+ Pv, where v := P⊤x.
In contrast with the derivation in section 4, we will split up
the diffusion process into these two subspaces.

In order to sample conditionally, we need the conditional
scores

∇xt
log p(xt|Cx0 = y) = ∇xt

log p(xt|Q⊤x0 = u0).
(37)

We can express the gradients with respect to xt as the sum
of the projected gradients with respect to ut and with re-
spect to vt using the chain rule: ∇xt

= Q∇ut
+ P∇vt . To

see this, let O = [Q,P ] ∈ Rd×d be the concatenation of Q
and P that forms a full rank orthogonal matrix (O⊤O = I).
Let

zt :=

[
ut

vt

]
= O⊤xt, (38)

which can be inverted to get Ozt = xt. Applying the chain

rule, it follows that

∇xt = O∇zt = Q∇ut + P∇vt . (39)

Therefore, we can split up the conditional scores into gra-
dients with respect to the two variables ut and vt:

∇xt log p(xt|u0) = Q∇ut log p(xt|u0) (40)
+ P∇vt log p(xt|u0). (41)

So far, this equation merely expresses section 4 in a differ-
ent form. The additional approximation needed to produce
the explicit constraint projection is to replace or approxi-
mate ∇ut log p(xt|u0) with ∇ut log p(ut|u0). Despite be-
ing closely related they are different: ∇ut log p(xt|u0) =
∇ut

log p(ut|u0) +∇ut
log p(vt|ut, u0). If we use this ap-

proximation, then this first term can be easily computed
from the forward noising process ut ∼ N (stu0, σ

2
t I) and

therefore

∇ut
log p(ut|u0) =

stu0 − ut

σ2
t

. (42)

For the second term, one may verify from Bayes rule that

p(xt|u0) = p(vt|ut)p(u0|xt)p(ut|u0)/p(u0|ut)
(43)

∇vt log p(xt|u0) = ∇vt log p(vt|ut) +∇vt log p(u0|xt),
(44)

as all but these two terms do not depend on vt. The first
term can be identified as simply the scores of the uncondi-
tional network projected onto the unknown subspace:

∇vt log p(vt|ut) = ∇vt log p(vt, ut) = P⊤sθ(xt, t).
(45)

Performing moment matching on p(u0|xt) like before, we
can approximate the distribution with a multivariate Gaus-
sian which shares its true mean and covariance:

p(u0|xt) ≈ N (Q⊤x̂0, Q
⊤Σ̂Q). (46)

With the combination of the two approximations, the con-
ditional scores become:

∇xt
log p(xt|u0) = Q

[
stu0 − ut

]
/σ2

t + P∇vt log p(xt|u0)
(47)

where

∇vt log p(xt|u0) ≈ P⊤sθ(xt, t)

+∇vt logN (u0;Q
⊤x̂0, Q

⊤Σ̂Q) (48)

Substituting Σ̂ = 2αI to match Chung et al. (2022b)
(which neglects the scaling with σt/st), and applying the
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chain rule to convert derivatives with respect to vt to deriva-
tives with respect to xt,

∇vt logN (u0;Q
⊤x̂0, 2αI) = −αP⊤∇xt

∥Q⊤x̂0 − u0∥2.
(49)

Finally, assembling the terms, we have

s̄(xt, t) = Q
[
stu0 − ut

]
/σ2

t

+ PP⊤[s(xt, t)− α∇xt
∥Q⊤x̂0 − u0∥2], (50)

where s̄(xt, t) denotes the approximation for
∇xt

log p(xt|u0) when using these additional assumptions.
The three terms can be understood as: (1) the analytically
known diffusion in the known subspace, (2) the projection
of the unconditional score function to the unknown sub-
space, and (3) the Gaussian correction term projected into
the unknown subspace.

We can identify each of the terms in this equation directly
with equations 7 and 8 in Chung et al. (2022b) where the
terms are renamed as follows. Their variable names cor-
respond to the following quantities: y ← u0 = R−T y,
P ← Q⊤, and A = I−P⊤P ← I−QQ⊤ = PP⊤. While
here we have the results expressed in terms of the score
function rather than a denoising step, the two are consis-
tent. If framed as a denoising step, Q

[
stu0−ut

]
/σ2

t would
become the b term: b← Qϵ where ϵ ∼ N (stu0, σ

2
t I). The

only difference is the W matrix which is not fully speci-
fied in their method (they only provide a couple examples
where it is suggested what it should be).

Therefore we see that while the constraint projections of
Chung et al. (2022b) is not equivalent to our derivation
in section 4 for the linear case with identity covariance, it
naturally arises when making the additional replacement
∇ut

log p(xt|u0) 7→ ∇ut
log p(ut|u0). Intuitively speak-

ing, this additional assumption assumes that we can evolve
the noised version of the known values ut without consid-
ering the unknown values.

E. Conditional Score Convergence in
Continuous Time

When considering equality constraints, both Manifold
Constrained Gradients (MCG) (Chung et al., 2022b) (linear
constraints only) and Diffusion Posterior Sampling (DPS)
(Chung et al., 2022a) (nonlinear equality constraints with
or without noise) can be used for inference time condi-
tional sampling. While these two approaches are effective
in this setting, they are not well suited to the continuous
time ODE formulation, a requirement for computing like-
lihoods through the change of variables formula.

The difference can be summarized on a one dimensional
constraint c⊤x = y, for which the approach of Chung et al.
(2022a) would give the conditional scores as:
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Figure 8: Convergence of conditional samples with varying num-
bers of ODE integrator steps. Due to the missing scaling factors
of MCG (Chung et al., 2022b), the method requires many more
integration steps to converge.

∇xt
log p(xt|y) = sθ(xt, t)− α∇xt

∥c⊤x̂0 − y∥2, (51)

whereas our method yields the scores

∇xt
log p(xt|y) = sθ(xt, t)−∇xt

∥c⊤x̂0 − y∥2√
c⊤Σ̂c

. (52)

The Σ̂ matrix scales as σ2
t /s

2
t which varies by many or-

ders of magnitude. While MCG and DPS include the tune-
able parameter α, it has one fixed value, and cannot match
the σ2

t /s
2
t scale inside Σ̂. As a result, when incorporating

Equation 51 into adaptive step size integrators, the scales at
different times of the integration will either be too small or
too large in comparison to sθ(xt, t). We see this in practice
that with MCG or DPS and an adaptive step size integrator,
the integration fails to converge.

In Figure 8 we demonstrate that this is a problem even for
fixed step size integrators too, by evaluating the conver-
gence of the an ODE integrated trajectory sampling from a
linear equality constraint with c = 1/d and y = 0.08 on the
FitzHugh model. We measure the relative error between the
conditional sample produced with 4000 uniformly spaced
ODE integrator steps and the conditional sample produced
with smaller numbers of integrator steps. As shown in the
figure, our conditional score functions lead to a much more
rapidly converging solution.

F. Dataset Construction
For all datasets, we generate 4000 trajectories discretized
to 60 timesteps to be used for training, and hold out an
additional 500 trajectories for testing.

Lorenz Attractor We generate trajectories from the clas-
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sical dynamics

ẋ = 10(y − x) (53)
ẏ = x(28− z)− y (54)
ż = xy − (8/3)z (55)

Writing these components as the vector x = [x, y, z],
these dynamics can be written as ẋ = F (x) for the above
function F . Since these dynamics range over the scale
(−60, 60) we rescale the dynamics by defining a rescaled
version of the Lorenz dynamics: F̃ (x) = F (20x)/20,
which preserves the dynamics but scales down the values
into the range (−3, 3) which makes the learning of the
diffusion model and Neural ODE more stable. We sam-
ple the initial conditions from the standard normal x(0) ∼
N (0, I), we integrate for a total of 10 seconds and then dis-
card the first 3 seconds as burn-in to approximately reach
the strationary distribution. The trajectories are then dis-
cretized to 60 evenly spaced timesteps when training the
diffusion model.

FitzHugh Nagumo We follow Farazmand & Sapsis (2019)
in their choice of parameters to produce the rare events. We
sample initial conditions from x(0) ∼ .2N (0, I) on the 4-
dimensional system. We integrate for 4000 units of time
and discard the first 1500 units of time for burn-in, which
we find to be sufficient for the distribution to approximately
reach the stationary distribution.

Double Pendulum We use Hamiltonian from Finzi et al.
(2020) for the double pendulum in angular coordinates, and
then integrate the Hamiltonian dynamics, with a final post-
processing step of converting the canonical momenta back
into angular velocities. We set the mass and length param-
eters to 1 for simplicity and integrate for τ = 30 seconds.
We sample the initial from Gaussians. For the angles from
θ(0) we use standardard deviation σ = 1 and the initial
momenta we use σ = .2 for pθ1 and σ = .3 for pθ2 .

When fitting the system with the diffusion model, we only
proved the angle values, and we first embed the two angles
into the plane using cos θi and sin θi for the two angles
i = 1, 2. We performed this additional featurization since
some trajectories wrap the angles around many times, and
the large angle values can cause problems. For the Neural
ODE, we trained it in the usual way feeding in both θi and
θ̇i as done in Finzi et al. (2020).

When training the NeuralODE (Chen et al., 2018), for
each of the systems, we chunk the 4000 length 60 trajec-
tories into a total of 24000 chunks of length 10, which is a
standard practice to improve the stability and efficiency of
training (see e.g. (Finzi et al., 2020). We train using the
L1 loss on the prediction error on the 10 evaluation points
for each trajectory. The NeuralODE uses a simple 3-layer
MLP with swish nonlinearities and 128 hidden units.

G. Training and Hyperparameters
When training, we sample diffusion times t on a shifted
grid following Kingma et al. (2021) for reduced training
times. We optimize the score matching loss with ADAM
(Kingma & Ba, 2014) for 10000 epochs with lr 10−4 and bs
500. We use the variance exploding schedule for σt and st,
as described in Song et al. (2020). We evaluate all models
using the exponential moving average of the parameters at
the final epoch, where the EMA period is 2000 epochs.

H. Model
We use a convolutional UNet architecture similar to Saharia
et al. (2022) but scaled down, with the self attention layers
removed (we did not find them helpful at this scale), with a
modified embedding to handle continuous input times (the
method used in Song et al. (2020), and with 2D convolu-
tions replaced with 1D convolutions. At a high level, the
architecture can be summarized with the following table
with value c = 32, and d represents the input and output
dimension.

Convolutional UNet Architecture:
ResBlock(c) x4

Downsample(2)
ResBlock(2c) x8

Downsample(2)
ResBlock(4c) x8

SkipResBlock(4c) x8
Upsample(2)

SkipResBlock(2c) x8
Upsample(2)

SkipResBlock(c) x4
Conv(128)
Conv(d)

The resblock follows the standard structure, but with
GroupNorm instead of BatchNorm, using swish nonlin-
earities, and 1D convolutions. SkipResBlocks utilize skip

ResBlock(c):
GroupNorm(groups=c//4)
Swish
Conv(channels=3, ksize=3)
GroupNorm(groups=c//4)
Swish
Conv(channels=3, ksize=3)
SkipConnection

connections with the corresponding residual block in the
downsampling portion of the network, as done in typical
diffusion UNets such as in Karras et al. (2022).

For gradients of the Gaussian CDF function, we instead
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use the logit approximation Φ(z) ≈ σ(1.6z) which is more
numerically stable.

I. Computing Likelihoods
While the two probabilities p(x0) and p(x0|E) can in prin-
ciple be computed by integrating the probability flow ODEs
(Equation 14) forwards in time with the continuous change
of variables formula used in FFJORD (Grathwohl et al.,
2018; Song et al., 2020), the variance of the likelihood esti-
mator is large (requiring a large number of probe variables)
and the integration times can be very long. The large vari-
ance is typically not a problem when averaging to form the
average log likelihoods of the entire dataset (which reduces
the variance) and also because only a small number of sig-
nificant digits are required for the metrics. On the other
hand, for our purposes where we need to compute the log
likelihood on a single data point very precisely, the estima-
tor variance is too large.

Instead of using the continuous change of variables ap-
proach, we instead use a fixed timestep 2nd order Heun in-
tegrator to control the compute time, and then consider this
integrator just as some deterministic and invertible function
xt+∆t = H(xt). While one cannot apply the continuous
change of variables formula with fixed timesteps, we can
instead simply compute the Jacobian of the ODE integra-
tor. With this Jacobian, we can compute the likelihoods
exactly without sampling and even when the timesteps are
large using the relation:

log pt=0(x0|E) = log pt=1(x1) +
∑
i

log detDH(xti),

(56)
where p(x1) = N (0, σ2

1). We compute the Jacobians ex-
actly which removes the need for sampling, however it’s
possible to replace this computation with Jacobian vector
products even for the discrete trajectory by using the matrix
logarithm expansion and Russian roulette estimator used
for Residual Flows (Chen et al., 2019).

J. Limitations
We introduced a general and principled method for sam-
pling conditionally on user defined events according to
nonlinear equality and inequality constraints. However, our
method has several limitations.

Scope: Our method was designed for deterministic events,
and while it is easy to extend to noisy measurements so
long as they have Gaussian observation noise, for non
Gaussian observation noise our approximation will not be
valid. Furthermore, more complex set based event con-
straints (such as the values being contained in a given re-
gion) may not be easily expressed as equality or inequality
constraints that are supported by our method.

Computational cost: Our second order approximation re-
quires computing Jacobian vector products with the diffu-
sion score function which can be expensive. If this cost is
prohibitive, we recommend using the cruder but still prin-
cipled approximation

p(C(x0)|xt) ≈ N (C(x̂0), (σt/st)
2∇C⊤∇C), (57)

when using our method. However, the costs of this ap-
proximation are still quadratic in the number of constraints
r. In situations where the constraints are very high di-
mensional and even computing ∇C⊤∇C is not possible,
we recommend falling back to the diagonal approxima-
tion p(C(x0)|xt) ≈ N (C(x̂0), λ(σt/st)

2I), a version of
Chung et al. (2022a) requiring the tunable λ parameter.

Likelihood evaluation is even more expensive, requiring
computation of the Jacobian log determinant of the ODE
integration step. This cost is O((md)3) and is prohibitive
for large signals such as images. In future work this can
be addressed such as by using the Russian roulette estima-
tor from Chen et al. (2019) which will reduce the cost to
O(md). Finally, the marginal likelihood computation p(E)
via the likelihoods is difficult to estimate accurately due to
the differencing of two similar values, we hope this can be
addressed in future work.

17


	Introduction
	Related Work
	Diffusion Model for Dynamical Systems
	A Posteriori Conditioning
	Moment-matching Based Approximation
	Linear Equality Constraints
	Nonlinear Equality Constraints
	Inequality Constraints
	Likelihoods of Events

	Results
	Unconditional Samples
	Conditional Samples
	Convergence of the Gaussian Approximation
	Computing Marginal Likelihoods of Events

	Conclusion
	Tweedie's Covariance
	Convergence of the Moment Matching and Linearization Approximations
	Marginal Likelihood Estimation
	Probabilistic Origin of Constraint Projection
	Conditional Score Convergence in Continuous Time
	Dataset Construction
	Training and Hyperparameters
	Model
	Computing Likelihoods
	Limitations

