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Abstract
Agents that can build temporally abstract repre-
sentations of their environment are better able
to understand their world and make plans on ex-
tended time scales, with limited computational
power and modeling capacity. However, existing
methods for automatically learning temporally
abstract world models usually require millions
of online environmental interactions and incen-
tivize agents to reach every accessible environ-
mental state, which is infeasible for most real-
world robots both in terms of data efficiency and
hardware safety. In this paper, we present an ap-
proach for simultaneously learning sets of skills
and temporally abstract, skill-conditioned world
models purely from offline data, enabling agents
to perform zero-shot online planning of skill se-
quences for new tasks. We show that our approach
performs comparably to or better than a wide ar-
ray of state-of-the-art offline RL algorithms on
a number of simulated robotics locomotion and
manipulation benchmarks, while offering a higher
degree of adaptability to new goals. Finally, we
show that our approach offers a much higher de-
gree of robustness to perturbations in environmen-
tal dynamics, compared to policy-based methods.

1. Introduction
Reinforcement learning, despite its success on many com-
plex sequential decision-making problems, still struggles
with long-horizon tasks. As a potential solution, recent deep
RL methods have focused on temporal abstraction, wherein
the agent’s original action space is replaced by a set of tem-
porally extended behavioral primitives, i.e., skills, which
allow the agent to make decisions on a coarser time granu-
larity (Sutton et al., 1999; Ajay et al., 2020; Pertsch et al.,

1Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 2Mechanical Engineering Department, National University
of Singapore, Singapore. Correspondence to: Benjamin Freed
<bfreed@cs.cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2021; Sharma et al., 2020b;a; Achiam et al., 2018; Baumli
et al., 2021; Eysenbach et al., 2018; Shankar & Gupta, 2020).
Most approaches to skill learning are based on model-free
reinforcement learning, in which a skill-selection policy
is directly learned from data, without explicitly forming
a model of how skills influence the state of the environ-
ment (Ajay et al., 2020; Pertsch et al., 2021; Zhou et al.,
2021; Achiam et al., 2018; Baumli et al., 2021; Eysenbach
et al., 2018; Shankar & Gupta, 2020). However, without
an explicit model of the effect of skills, there is no straight-
forward way for agents to rapidly transfer their policy to
new tasks, without a lengthy retraining process. On the
other hand, existing model-based approaches to temporal
abstraction require skills to be run repeatedly online in the
environment (Sharma et al., 2020b;a). This lengthy trial-and-
error process is particularly ill-suited to learning in physical
environments, where training online on hardware may result
in unreasonable wear and tear, and can be hazardous. In this
work, we introduce (OPOSM), a novel approach to simulta-
neously decompose a given dataset of demonstrations into a
space of parameterized skills, while also extracting a tem-
porally abstract world model that enables online planning
of skill sequences for downstream tasks without retraining
(Fig. 1). OPOSM outperforms or performs comparably to all
relevant model-based and model-free offline RL baselines
on a number of standard benchmarks, including simulated
robot navigation and manipulation tasks, while allowing
zero-shot transfer to new goals. Finally, we show that our
iterative, model-based re-planning approach provides natu-
ral robustness to perturbations in environmental dynamics,
which to our knowledge is unique in the space of offline RL
algorithms.

Similar to our approach, previous model-free offline
skill learning algorithms, e.g., OPAL (Ajay et al., 2020),
PLAS (Zhou et al., 2021), and SPiRL (Pertsch et al., 2021),
extract a set of skills from an offline dataset using a varia-
tional inference (VI)-based approach (Blei et al., 2017). In
all three approaches, skills are treated as latent variables,
and an evidence lower bound (ELBO) is maximized to learn
a skill-conditioned low-level policy, describing the map-
ping from skills (and possibly states) to actions. Unlike
our approach, in these offline model-free skill learning algo-
rithms, a policy was subsequently learned to select among
skills given the state of the environment using a model-
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Figure 1. Overview of Online Planning with Offline Skill Models (OPOSM). Our approach simultaneously extracts a set of skills, and
a skill-conditioned temporally abstract world model (TAWM) from purely offline data. The TAWM predicts the state transitions resulting
from executing a given skill, enabling the agent to extend its effective planning horizon by planning sequences of temporally extended
skills, rather than base-level actions.

free RL algorithm. This policy is suitable for one task,
and requires re-training to handle new tasks. This work
also shares similarities with online model-based skill learn-
ing approaches, namely DADS (Sharma et al., 2020b) and
Off-DADS (Sharma et al., 2020a), which simultaneously
extract a set of skills and a dynamics model that predicts
the long-term state transition, resulting from the execution
of a particular skill. This dynamics model was then used
for zero-shot planning on downstream tasks. Unlike our
approach, the model was built by repeatedly running skills
online in the environment, and training a model to predict
the long-term state transitions they induced. The set of skills
was trained to enable the agent to reach the most diverse set
of states possible.

Our proposed approach, which we call online planning with
offline skill Models (OPOSM), simultaneously extracts a set
of skills, and a skill-conditioned temporally abstract world
model (TAWM), purely from offline data. The primary chal-
lenge that our approach overcomes is in learning a causal
skill-conditioned world model, when online experimenta-
tion is not possible. In the offline setting, deducing the true
causal effect of skills on the state of the environment is
challenging because one cannot repeatedly deploy skills in
the environment to observe their effect (Pearl, 2009). In
fact, we show that a naive VI-based approach similar to
that taken by OPAL, PLAS, and SPiRL is not guaranteed to
correctly model these causal relationships, instead leading
the agent to overestimate its influence on the environmental
state. We propose a principled method to fix this issue with
a modified VI approach, in which the approximate posterior
is constrained to match the true causal structure of the en-
vironment. We show that the performance of OPOSM far
exceeds that of a standard model-based planning approach,
while making planning up to 60x faster, on a number of chal-
lenging long-horizon D4RL benchmarks. Additionally, we
show that we perform comparably to or outperform a wide
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Figure 2. Environmental Causal Structure.. State transitions
depend on the previous state and action, according to the state-
transition distribution p(st+1|st, at). Actions depend on the cur-
rent state, and the current skill z that is being executed for a given
time horizon, according to the skill-conditioned low-level policy
πθ(at|st, z). Dotted arrows indicate that the skill selected at a
given timestep may depend on the state at that timestep. States in
which skills begin/terminate execution are highlighted in red; these
are also the states predicted by the temporally abstract dynamics
model.

range of offline RL algorithms on these D4RL benchmarks.
While typical offline RL algorithms essentially “overfit” to
one specific goal on D4RL tasks, we show that OPOSM
is able to solve D4RL tasks with randomly selected goals,
without any retraining. Finally, we show that OPOSM pro-
vides a far higher degree of robustness to perturbations in
environmental dynamics compared to a model-free expert,
indicating that our approach is better able to generalize to
novel environments.

2. Model-Based Temporal Abstraction
The primary contributions of this work are 1) an approach to
simultaneously learning a skill-conditioned low-level policy
and a skill-conditioned temporally abstract world model
(TAWM) purely from offline data, and 2) the use of this
TAWM for zero-shot planning on a downstream task.

Similar to past works, skills are represented by a skill-
conditioned low-level policy πθ(at|st, z), parameterized
by θ, where at ∈ A is the current action selected by the
agent, st ∈ S is the current state, and each z ∈ Z is an
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abstract skill variable that encodes a specific skill. We as-
sume skills execute for a fixed time horizon H; however,
in principle these fixed termination conditions can be re-
placed with learned termination conditions, similar to the
approach taken by Shankar & Gupta (2020). The induced
causal structure of the environment is depicted in Fig. 2.

In addition to learning a set of skills, we also seek to learn a
skill-conditioned temporally abstract world model (TAWM)
pψ(s

′|s, z), parameterized by ψ, which models the distribu-
tion of states the agent will find itself in upon termination
of the current skill z, given that it began executing z in state
s. We do not train on rewards; instead, the TAWM is used
downstream for planning, for an arbitrary reward function
provided at execution time.

2.1. Learning Causal Temporally Abstract World
Models from Offline Data

The primary challenge of learning a TAWM from offline
data is ensuring that the TAWM accurately captures the true
causal influence of skills on long-term state transitions. A
naive approach to learning πθ and pψ would be to treat skills
as latent variables, and optimize the following evidence
lower bound (ELBO), derived in Sec. A of the appendix:

L(θ, ψ, ϕ, ω) = EτT∼D

[
Eqϕ(z|τT )

[
log πθ (⃗a|s⃗, z)

+ log pψ(sT |s0, z)
]
−DKL(qϕ(z|τT )||pω(z|s0))

]
,

(1)

where τT is an T-length sub-trajectory uniformly sampled
from the offline dataset D, s⃗ and a⃗ are the state and action
sequences that comprise τT , qϕ represents our posterior over
z given τT and parameterized by ϕ, and pω represents our
prior over z, given s0, and parameterized by ω. In this
work, we take T to be a fixed hyperperameter that is shorter
than the overall episode length, as has been done in most
related works (Ajay et al., 2020; Pertsch et al., 2021; Ey-
senbach et al., 2018; Sharma et al., 2020b; Baumli et al.,
2021; Achiam et al., 2018). The corresponding architecture
is shown in Fig. 3, and additional details are provided in
the supplemental material. The first two terms in Eq. (1)
correspond to the log-likelihood of demonstrator actions
and long-term state-transitions, respectively. The final term
represents the KL divergence between our skill posterior
and prior, and encourages learning a compressed represen-
tation of skills. The ELBO in Eq. (1) is similar to those
used by Ajay et al. (2020); Pertsch et al. (2021); Shankar &
Gupta (2020); Zhou et al. (2021) for offline skill learning,
except that it contains a term corresponding to the log like-
lihood of long time-horizon state transitions according to
pψ. However, naively optimizing L with respect to θ,ψ,ϕ,
and ω jointly is not guaranteed to learn the correct causal
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Policy Actions

State
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Figure 3. Skill Model Architecture. During offline training, sub-
trajectories τT are sampled from the dataset and fed into a skill
posterior qϕ, which learns to infer the skill z. This z is then used to
condition the predictions of the low-level skill-conditioned policy
πθ , and the temporally abstract dynamics pψ . The skill prior pω
infers z from the initial state of the sub-trajectory only.

relationship between skills and long-term state transitions.
Instead, our analysis indicates that the model may undesir-
ably learn to use the latent variable (z) to explain variations
in the long-term state transitions that are not under the con-
trol of the agent. We demonstrate this phenomenon in the
supplemental material with a simple example, and connect
it to causal theory (Pearl, 2009). We show that this issue can
cause the agent to be overly confident when predicting state
transitions, which in turn leads to overestimation of reward
and suboptimal decision-making.

The fundamental issue with the naive VI approach described
above is that the approximate posterior over skills qϕ does
not match the true causal structure of the environment,
which is depicted in Fig. 2. Based on this structure, for
a given low-level policy and skill prior, the true posterior
over skills is given by

p(z|s⃗, a⃗) = 1

η
πθ (⃗a|s⃗, z)pω(z|s0), (2)

which we derive in the supplemental material, where η is a
normalization constant. We therefore propose the following
incremental EM-style algorithm, which trains qϕ to match
the true posterior, for learning causal TAWMs from offline
data:

E Step: ϕ is updated with a gradient descent step so
as to minimize the expected KL divergence between qϕ
and the true posterior, which is equivalent to minimizing
EτT∼D

[
Ez∼qϕ

[
log

qϕ(z|s⃗,⃗a)
πθ(a⃗|s⃗,z)pω(z|s0)

]]
.

M Step: θ, ψ, and ω are updated with a gradient ascent
step to maximize the ELBO from Eq. (1).

Due to the tightness of the ELBO, and because the approx-
imate posterior is now trained to match the true posterior,
using this EM style approach should result in a TAWM
that correctly captures the causal influence of skills on state
transitions.
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3. Planning for Downstream Tasks Using
Temporally Abstract World Models

Once a world model has been learned and a reward func-
tion has been specified for a given task, our agent can plan
a sequence of skills to maximize its predicted cumulative
reward. Unlike past offline RL approaches (Kidambi et al.,
2020; Yu et al., 2020), we found it unnecessary to constrain
the agent behavior to be close to the dataset distribution,
because our agent plans over behaviors that are represented
in the dataset (Zhou et al., 2021). We use a cross entropy
method (CEM) planner (Rubinstein, 1999) to optimize the
skill sequence. However, rather than directly optimizing
a sequence of z vectors, we plan in a “whitened” version
of Z-space. Specifically, we optimize a sequence of ϵ vec-
tors, where the ith element of the plan ϵi ∈ E is related
to zi according to a shifting and scaling by the learned
skill prior mean µ0(si) and standard deviation σ0(si), i.e.,
zi = µ0(si) + σ0(si) · ϵi.

Planning in E-space essentially allows the agent to search in
the space of normalized biases away from the demonstration
policy’s mean action. This provides the agent with a well-
conditioned search space, where reasonable plan values lie
within a (roughly-)unit ball around the origin, regardless of
the state, rather than having different state-dependent means
and scales. Additionally, planning in E-space allows us to
easily warm-start the planning procedure, since our initial
plan can easily be sampled from the demonstrator policy,
i.e., ϵ0, ..., ϵK ∼ N (⃗0, I).

We take a model predictive control approach, wherein the
agent iteratively executes the first skill in the plan, and
subsequently re-optimizes a new plan. This iterative re-
planning improves robustness to errors in its world model.
The agent executes each skill in its plan by running the low-
level policy π(at|st, z) = N (µa(st, z), σa(st, z)), where
st and at refer to the current state and action respectively,
and z refers to the current skill.

4. Experimental Results
4.1. Visualization of Model Predictions

We hypothesize that our temporally abstract world model
should be more accurate over long time horizons, compared
to sequential predictions using a single-timestep model. We
assess this qualitatively in the antmaze-large environment
by visualizing the set of states that the agent predicts it
will visit, given an optimized skill sequence, according to
both our TAWM and a single-timestep dynamics model
(Fig. 4). We also visualize the distribution of trajectories
actually followed by the agent, during repeated executions
of the plan in the real environment, without re-planning.
We notice that in most cases, the predictions made by the
TAWM agree well with the true trajectories, as indicated

True Trajectories Single-Timestep Predictions

Initial State Goal StateTAWM Predictions

Figure 4. Visual Comparison of Temporally Abstract and
Single-Timestep Model Prediction Accuracy in Antmaze-large
Environment. The planner optimizes a skill sequence using the
TAWM. We then repeatedly execute the plan, and visualize the
resulting set of trajectories (shown above in red). We also visu-
alize the predictions made by the TAWM (green), and the single-
timestep low-level dynamics model (blue). We find that the pre-
dictions made by the TAWM agree well with the true trajectories,
as they typically intersect the high-density regions predicted by
the TAWM. On the other hand, the low-level dynamics predictions
tend to suffer from compounding errors and rapidly diverge from
the true trajectories.

by the fact that the true trajectories typically intersect the
high-density regions predicted by the TAWM. This enables
the agent to reach a location close to the goal, despite not
doing any re-planning. On the other hand, the low-level
dynamics predictions tend to suffer from compounding error
and diverge rapidly from the true trajectories. This often
leads to the low-level dynamics predicting that the agent
will travel through walls, which is physically impossible.

4.2. D4RL Benchmark Tasks

We compare the performance of OPOSM with that of several
other offline RL algorithms (Ajay et al., 2020; Kumar et al.,
2019; Ghasemipour et al., 2021; Kumar et al., 2020; Zhou
et al., 2021; Sharma et al., 2020b; Yu et al., 2021; Sharma
et al., 2020a) on multiple tasks from the D4RL benchmark
suite (Fu et al., 2020). The algorithms we compare to are
summarized below:

Conservative Q-Learning+OPAL (CQL+OPAL): Pro-
posed in (Ajay et al., 2020), CQL+OPAL is a skill-based
model-free offline RL algorithm. Similar to OPOSM,
CQL+OPAL extracts temporally extended skills from an
offline dataset. Unlike OPOSM, CQL+OPAL uses CQL
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to learn a high-level policy to select skills given the cur-
rent state, rather than using a dynamics model for online
planning.

Offline Behavior Cloning+OPAL (BC+OPAL): Similar
to CQL+OPAL, BC+OPAL starts by extracting temporally
extended skills from an offline dataset. Behavior cloning
is them used to learn a high-level skill policy, rather than
CQL. This is done by partitioning the offline dataset into suc-
cessful and unsuccessful episodes, and training a high-level
policy to predict the skills associated with subtrajectories
from successful episodes. This algorithm is very similar to
the BC+OPAL algorithm proposed in (Ajay et al., 2020), al-
though we do not provide additional examples of successful
trajectories, but instead extract successful trajectories from
the offline dataset.

Behavior Cloning (BC): A policy is trained to predict
the actions conditioned on states from successful episodes
(Pomerleau, 1988).

Bootstrapping Error Accumulation Reduction (BEAR):
introduced in (Kumar et al., 2019), BEAR is a Q-learning
algorithm that attempts to reduce the bootstrapping error
from actions that lie outside of the training data distribu-
tion. BEAR reduces bootstrapping error by incorporating a
distribution-constrained backup operator, which constrains
the policy search to policies with the same support as the
offline dataset (Kumar et al., 2019).

Conservative Q-Learning (CQL) : introduced in (Ku-
mar et al., 2020), CQL mitigates the problem of overestima-
tion of values induced by the distributional shift between
the dataset and the learned policy, common in off-policy
RL methods. CQL attempts to overcome value overesti-
mation error by learning a conservative Q-function that
lower-bounds the true values.

Expected-Max Q-Learning (EMaQ): introduced in
(Ghasemipour et al., 2021), EMaQ derives a novel backup
operator that smoothly interpolates between performing pol-
icy evaluation on the data-collection policy, and a typical
Q-learning backup. EMaQ explicitly considers the support
of the offline dataset, and reduces the number of function
approximators and hyperparameters necessary compared to
previous related approaches.

CQL+Off-DADS: An offline variant of the off-policy
dynamics-aware discovery of skills (off-DADS) (Sharma
et al., 2020a) algorithm, used as a baseline for comparison in
(Ajay et al., 2020). Similar to OPOSM, CQL+Off-DADS ex-
tracts temporally-extended skills from an offline dataset. It
does so by learning a latent representation of behaviors (i.e.,
the skills) that maximizes mutual information between skills

and trajectories. CQL+Off-DADS differs from OPOSM in
that it uses a model-free offline RL algorithm (CQL) to learn
a high-level policy over skills, whereas OPOSM performs
online planning over skills.

Policy in Latent Action Space (PLAS): Similar to
OPOSM, PLAS (Zhou et al., 2021) learns a latent space that
models the distribution of actions seen in the offline dataset,
similar to our skill space. Unlike OPOSM, PLAS does not
perform temporal abstraction (skills are single-timestep be-
haviors); nor does PLAS learn a dynamics model or perform
planning. Instead, PLAS learns a policy over latent actions
using Q-learning.

Conservative Offline Model-Based Policy Optimization
(COMBO): proposed in (Yu et al., 2021), COMBO is
an offline model-based RL algorithm that computes conser-
vative value estimates for state-action pairs that are out of
the support of the dataset. COMBO accomplishes this by
training a value function using both the offline dataset, and
simulated rollouts from a model, while additionally regu-
larizing the value function on out-of-support state-actions
generated by the model. Similar to OPOSM, COMBO is
model-based; however, COMBO does not perform temporal
abstraction or online planning.

Low-Level Planning (LLP): a simple model-based plan-
ning approach, in which a traditional single-timestep action-
conditioned model is learned and used to plan sequences
of actions, while constraining actions to be similar to an
imitation-learned policy.

We chose to test our approach on the maze2d, antmaze, and
kitchen tasks due to their long horizons, which causes tradi-
tional model-based planning to fail, as demonstrated by our
results. Additionally, these tasks seem to possess a natural
hierarchy wherein low-level primitives (such as navigating
to a specific location in the case of maze2d and antmaze, or
picking and placing objects in kitchen) can be identified and
leveraged to solve the task, making them an ideal testbed
for temporal abstraction. In all experiments, independent
episodes of OPOSM and LLP were run until confidence in-
tervals were smaller than 10 %, typically requiring 250-300
episodes for Maze and Antmaze tasks, and 50-100 episodes
for Kitchen tasks.

Maze2d: We test on two variants of the maze2D task:
medium and large. In both variants, a point-mass agent
moves around a 2-dimensional maze. The goal of the task
is for the agent to navigate from one corner of the maze to
the opposite corner. The size of the maze differs between
the two environments, with large using the larger of the two.
In both cases, our agent was trained on the corresponding
task dataset provided by D4RL, which contain a single long
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state-action sequence of the agent moving about the maze,
towards randomly-chosen waypoints. An episode is consid-
ered a success if the agent comes within a 0.5-unit radius of
the goal. The cost assigned to a predicted trajectory during
planning is the negative L2 distance between the goal and
the nearest predicted state to the goal. Rewards are therefore
sparse in the sense that an entire trajectory is assigned one
scalar reward value; no per-timestep rewards are used. We
find that both OPOSM and LLP are able to perfectly solve
both tasks; however, OPOSM requires up to 60x less time
to find a plan1, requiring on average only 0.051± 0.0014s,
while LLP required 3.02 ± 0.245s. Visualizations of the
plans generated by OPOSM and LLP are included in the sup-
plemental material. We leave it to future work to determine
what fraction of this speed increase is due to the decreased
search-space size enabled by temporal abstraction, versus
planning in the better-conditioned E-space.

Antmaze: a Mujoco-simulated quadruped robot (the
“ant”) is tasked with navigating from one corner to the op-
posite corner of a fixed, 2-dimensional maze. Antmaze
is a nice testbed for skill learning and temporal abstrac-
tion because the problem offers a natural control hierarchy,
wherein skills corresponding to low-level locomotion con-
trollers, e.g., walking in a straight line or turning around
a corner, can be sequenced to solve a higher-level naviga-
tional task, e.g., navigate to the upper right-hand corner of
the maze. Antmaze is challenging because in addition to
the nontrivial task of learning to locomote from offline data,
the agent must also string together these locomotion behav-
iors over hundreds of timesteps to navigate the maze. We
consider two variants of the antmaze environment: antmaze-
medium-diverse and antmaze-large-diverse, which differ in
maze size. Similar to the maze2d environments, the antmaze
environments are associated with a dataset of the ant robot
moving about the maze in an undirected fashion. Our re-
sults are reported in Table 1. Boxes filled with “-” indicate
experiments we were unable to run due to lack of publically
available code. To the best of our knowledge, OPOSM is
the first model-based offline RL algorithm to achieve this
level of performance in the antmaze environments. We find
that our approach performs very similarly to OPAL, and
exceeds the performance of the other baselines we consider
by a wide margin, including an offline version of DADS
(CQL+Off-DADS), described in (Ajay et al., 2020).

Kitchen: a robotic manipulation task in which a simulated
Franka robotic arm interacts with items in a kitchen. The
goal of the task is to place the items in a specific configu-
ration. We train our skill model on three different datasets,
referred to as mixed, partial, and complete. The mixed

1Planning in both OPOSM and LLP was terminated when the
predicted plan reward exceeded a threshold.

dataset consists of non-task-directed demonstrations, and
is typically considered the hardest to learn from. The par-
tial dataset consists of partially task-directed demonstra-
tions, while the complete dataset contains fully task-directed
demonstrations.
Our results are reported in Table 2. To the best of our knowl-
edge, OPOSM is the first model-based offline RL algorithm
to perform well across all three variants. OPOSM also sig-
nificantly outperforms PLAS (Zhou et al., 2021), which is
similar to our approach in the sense that it extracts skills
from an offline dataset using VI. However, PLAS does not
use a temporally abstract world model for planning, high-
lighting how this contribution yields significant improve-
ment over a highly-related approach. Additionally, OPOSM
achieves comparable rewards to SPiRL 2, despite the fact
that SPiRL has the benefit of training online in addition to
using offline data.
On the other hand, we find that OPOSM is outperformed by
EMaQ and CQL+OPAL on the kitchen-mixed and kitchen-
partial tasks. Further work is required to determine why
this is the case. Surprisingly, OPOSM is outperformed by
LLP on the kitchen-complete task, but outperforms the other
baselines, suggesting that perhaps temporal abstraction is
not necessary for this particular task.

4.3. Comparison to Naive Variational Inference

In Sec. 2.1, we argued that a naive VI approach may learn
inaccurate skill models, because the model may predict that
skills have an erroneously high degree of influence over
state transitions. To determine whether this issue degrades
performance in online planning, we compare planning suc-
cess rates using the naive VI method to our proposed EM
algorithm in the antmaze-medium and -large tasks (Table 3).
The results agree with our analysis, as we find that our pro-
posed EM algorithm outperforms the naive VI method on
both tasks.

4.4. D4RL Tasks with Randomized Goals

In the standard usage of the maze2d, antmaze, and kitchen
tasks, the goals for each of these tasks are fixed across
episodes, or vary only very slightly, such that the same
learned policy can be effective for every episode. However,
this is unrealistic for many real-world robotic tasks, where
goals may change rapidly; for example, in an autonomous
vehicle or warehouse automation scenario, where a robot
may be required to navigate to arbitrary locations which it
has never visited before. One of the strengths of OPOSM is
that our TAWM is not specific to any particular reward func-
tion, allowing it to handle a near-arbitrary range of goals,

2The results for SPiRL are not shown in this table because exact
numeric results were not available. Additionally, it is an online
algorithm and therefore not directly comparable to OPOSM.
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Table 1. Success Rates for Antmaze Environments. Success rate is measured as the fraction of episodes in which the agent reaches its
goal. OPOSM performs comparably to CQL+OPAL, while outperforming all other baseline algorithms.

Task OPOSM LLP CQL+OPAL BC+OPAL BC BEAR EMaQ CQL CQL+Off-DADS COMBO
Medium 78.29 ± 4.32 31.2 ± 5.74 81.1 ± 3.1 24.0 ± 4.8 0.0 8.0 0.0 53.7 ± 6.1 59.6 ± 2.9 17.3 ± 4.3

Large 70.2 ± 4.6 14.4 ± 4.35 70.3 ± 2.9 53.0 ± 5.65 0.0 0.0 0.0 14.9 ± 3.2 - 5.0 ± 2.5

Table 2. Average Rewards for Kitchen Environments. In kitchen-complete, OPOSM outperforms all model-free baselines, and is
outperformed only by low-level planning. In kitchen-mixed and kitchen-partial, OPOSM is outperformed by CQL+OPAL and EMaQ, and
outperforms the other baselines.

Task OPOSM LLP CQL+OPAL BC BEAR EMaQ CQL PLAS COMBO
Mixed 54.5 ± 4.125 46.0 ± 3.8 69.3 ± 2.7 47.5 47.2 70.8 ± 2.3 52.4 ± 2.5 40 2.3 ± 0.82
Partial 65.25 ± 2.85 39.00 ± 4.57 80.2 ± 2.4 33.8 13.1 74.6 ± 0.6 50.1 ± 1.0 45 24.3 ± 2.04

Complete 47.325 ± 2.725 66.68 ± 5.03 - 27.2 ± 3.2 0.0 36.9 ± 3.7 43.8 34.8 0.0 ± 0.0

Table 3. Comparison of Proposed EM Skill Learning to Naive
VI. We report success rate in antmaze, and reward in kitchen
environments. We find that, in agreement with our analysis, our
proposed EM skill learning algorithm outperforms a naive VI-
based approach.

EM (ours) Naive VI
Antmaze-medium 78.29± 4.32 74.4± 4.4
Antmaze-large 70.2± 4.6 58.3± 5.6
Kitchen-partial 65.25± 2.85 21.4± 5.7
Kitchen-complete 47.325± 2.725 2.0± 2.725
Kitchen-mixed 54.5± 4.125 51.4± 5.7

while model-free methods require re-training to adapt to new
goals (reward functions). While multi-task learning may
enable existing model-free methods to deal with changing
goals, this approach is still limited in that it requires the al-
gorithm designers to prescribe in advance the compete set of
tasks for which the policy will be trained. Multi-task learn-
ing typically only enables generalization to tasks within this
pre-specified set, and likely requires larger-capacity policies
for larger task distributions. We believe that a model-based
approach is a far more natural way to flexibly and rapidly
transfer knowledge from past experience to new tasks while
keeping the model size relatively small.

For this reason, we test our approach on a new variant of
the D4RL tasks that we consider above, by randomizing
the goal at the beginning of each episode. Specifically, for
the maze2d and antmaze tasks, a goal location is selected
uniformly at random from the set of locations present in the
training set. In the case of the kitchen environments, we
randomly select a set of 4 objects to reconfigure out of all
of the 7 objects present in the environment. We compare
OPOSM to LLP, as well as a goal-conditioned variant of
OPAL with behavior cloning (GC-BC+OPAL). Specifically,
we randomly sampled many 2D goal locations from the
set of locations visited in the dataset, and learned a pol-
icy over OPAL skills by performing behavior cloning on
sub-trajectories from the dataset that were able to reach
these goals. We did not compare to a multi-goal version
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Figure 5. Robustness to Perturbed Dynamics. We evaluate the
robustness of OPOSM, BC+OPAL, and a model-free expert policy
to changes in robot mass in the antmaze-large environment. Plotted
above is relative change in success rate, compared to the original
environment, as robot mass is varied. We find that the performance
of OPOSM diminishes far less compared to the baselines, for
masses other than the original, indicating that OPOSM is more
robust to changes in environmental dynamics.

of CQL+OPAL because we were unable to reproduce the
reproduce the results obtained reported in (Ajay et al., 2020)
or to obtain a working implementation from the authors. We
report our results in Table 4. In general, we find that the per-
formance of OPOSM degrades very little on random goal
tasks, compared to its single-goal performance (reported
in tables 1 and 2). On the other hand, GC-BC+OPAL suf-
fers a large degradation in performance, compared to its
single-goal counterpart. These findings indicate that the
zero-shot planning capabilities OPOSM provides a more
natural mechanism for transferring skills across tasks, com-
pared to policy-based approaches.

4.5. Robustness to Perturbed Environmental Dynamics

We hypothesize that OPOSM’s iterative replanning ap-
proach may provide greater robustness, compared to ap-
proaches that deploy a static policy, because iterative re-
planning allows the agent to compute plans that are optimal
(according to the learned dynamics model) from any state
within the support of the dataset. While it is true that plans
will be suboptimal if the dynamics model is inaccurate, at
least planning attempts to generate a high-performing plan
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Table 4. Results on D4RL Tasks with Random Goals. Unlike
model-free RL algorithms, OPOSM enables zero-shot model-
based planning for new tasks. To demonstrate this capability,
we test OPOSM and our low-level planning (LLP) baseline on vari-
ants of D4RL tasks with randomized goals. Our results show that
OPOSM retains high performance, and continues to outperform
LLP.

Task OPOSM (Ours) LLP GC-BC+OPAL
Maze2d-medium 100 ± 0 95.67 ± 2.55 -

Maze2d-large 99.4 ± 1.1 86.67 ± 4.97 -
Antmaze-medium 72.6 ± 4.7 32.8 ± 5.82 52.0 ± 5.67

Antmaze-large 65.07 ± 4.96 30.0 ± 5.68 36.33 ± 5.44
Kitchen-partial 56.25 ± 4.90 43.07 ± 4.50 -
Kitchen-mixed 53.125 ± 4.00 35.5 ± 4.475 -

from any state the agent may find itself in. Past work has
shown that iterative replanning can impart a high degree of
robustness to changes in environmental dynamics (Pereira
et al., 2018). This is in contrast to a static policy, which has
no guarantee of optimality outside of its (potentially very
narrow) state visitation distribution, and in practice tend
to generalize poorly to unseen states or dynamics (Cobbe
et al., 2019). We therefore hypothesize that OPOSM may be
better equipped to deal with perturbations in the dynamics
of the environment, which will change the state visitation
distribution of an optimal policy.

To test this hypothesis, we run our approach on a range
of modified versions of the antmaze-large-diverse environ-
ment, in which the mass of the agent is varied greatly. No
attempt is made to adapt our agent to these differing envi-
ronmental dynamics; we use the same model on all variants,
trained on the original unaltered dataset provided by D4RL.
We compare our approach to an expert model-free policy,
taken from the Deep Offline Policy Evaluation benchmark
suite (Fu et al., 2021). We found that this policy outper-
formed all the offline approaches we considered on the
unperturbed antmaze-large task. We find that our method
is far less sensitive to changes in the mass of the agent, and
still achieves a relatively high success rate, even when the
mass of the agent is increased by a factor of 5, for which
the expert policy fails completely (Fig. 5). Typical offline
RL algorithms struggle with subtle shifts in state-visitation
distribution between offline datasets and online execution,
even when executed in environments with the same dynam-
ics as they were trained on. To the best of our knowledge,
this is the first offline RL algorithm to demonstrate a high
degree of natural robustness to changes in environmental
dynamics between training dataset and online execution.

5. Related Work
OPOSM builds on top of the options framework proposed
by Sutton et al. (1999). The options framework mathemati-
cally formalizes the notion of temporal abstraction in MDPs,
by extending the action space to include options, which are
essentially skills in our terminology. An option is composed

of a policy, a termination condition, and an initiation set
that defines what state an option can be initiated from. A
set of options defined over an MDP constitute a semi-MDP,
wherein actions take variable lengths of time. Similar to
many past works (Ajay et al., 2020; Sharma et al., 2020b;a;
Pertsch et al., 2021; Baumli et al., 2021; Achiam et al.,
2018; Eysenbach et al., 2018), our work can be viewed as an
options discovery algorithm, wherein the low-level policy
conditioned on a particular z can be viewed as the option
policy, the skill prior can be viewed as a soft initiation set,
and options have a fixed-length termination condition. In
addition to discovering a set of options, our method also
uses the TAWM to represent the dynamics of the semi-MDP
induced by those options, purely from offline data.

Of the many existing learning-based approaches to options
discovery, the approaches most relevant to our work are the
so-called variational options discovery algorithms, which
treat skills as latent variables, and attempt to learn skills
by maximizing a variational objective. These algorithms
include Diversity Is All You Need (Eysenbach et al., 2018),
Variational Intrinsic Control (VIC) (Baumli et al., 2021),
Variational Autoencoding Learning of Options by Rein-
forcement (VALOR), Dynamics Aware Discovery of Skills
(DADS, Off-DADS) (Sharma et al., 2020b;a), and Skill-
Prior RL (SPiRL).

DIAYN, VIC, and VALOR all frame skill learning as an
online, model-free RL problem, wherein the reward function
encourages learning a diverse set of skills. These approaches
then learn high-level policies that select among skills (rather
than base-level actions), again using online model-free RL,
to accomplish downstream tasks. Unlike these approaches,
OPOSM requires no online interaction with the environment,
and is model-based, thus allowing it to plan zero-shot for
downstream tasks (provided a reward function) with no re-
training.

DADS is an online, on-policy, model-based skill learning
algorithm that uses repeated online trial and error to build
up a set of skills, and a dynamics model over the skills, with
a reward function that incentives a high mutual information
between skills and future states. Similar to our approach,
DADS uses its skill-conditioned dynamics model for zero-
shot planning on downstream tasks. The primary difference
between our work and DADS is that we do not require online
interaction to discover skills or learn our dynamics model,
which we instead learn from purely offline data. Off-DADS
is similar to DADS, but makes use of off-policy (online) RL
to improve data efficiency, and has been shown to effectively
learn skills on real robots. Off-DADS still requires online
interaction with the environment.

Similar to our approach, SPiRL uses offline data to learn a
set of skills, and a prior over those skills. It then uses that
skill prior to help guide an online RL algorithm to learn a
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policy over skills for a downstream task. Unlike SPiRL, our
approach requires no online training for downstream tasks.

Offline Primitives for Accelerating offline reinforcement
Learning (OPAL), like our approach, extracts skills and
learns how to use those skills to solve a task, purely from of-
fline data. The principle difference between OPAL and
OPOSM is that OPOSM is model-based, and relies on
model-based planning to find sequences of skills, rather
than using model-free RL to learn a policy over skills, to
solve a downstream task. Therefore, OPOSM enables online
zero-shot planning for any objective, whereas OPAL would
require a lengthy retraining process should the downstream
objective change.

This work was developed concurrently with Skill-Based
Model-Based RL (SkiMo) (Shi et al., 2022), which, similar
to our work, extracts skills and temporally abstract dynamics
models from offline data. The primary difference between
SkiMo and our work is that SkiMo uses skills strictly for
online learning on downstream tasks, whereas we focus on
offline learning. As we point out in Sec. 2.1, pure offline
learning creates difficulties in inferring the causal effect
of skills, which a naive VI approach fails to address. An
additional difference between our work and SkiMo is that
SkiMo’s skills are not reactive to the current state, essen-
tially making them action sequences rather than policies.

6. Limitations
One limitation of the current definition of OPOSM is our
assumption of fixed-length skills. This is limiting because
for many tasks, the most natural decomposition may result
in subtasks (and thus skills) that require differing amounts
of time to complete. Additionally, depending on random
events may cause a subtask to take an unpredictable amount
of time to complete. One potential solution would be to learn
termination conditions for skills, similar to the approach
taken by Shankar & Gupta (2020), thus allowing skills to
execute until a natural stopping point is reached.

An additional limitation of our current approach is the as-
sumption of a reward function that depends only on states
in which skills begin or terminate. This assumption is made
because these are the only states predicted by our TAWM.
However, not all reward functions may be expressed this
way. One potential solution is to learn an abstract reward
function, which predicts the cumulative reward obtained dur-
ing the execution of a skill. This way, cumulative episode
reward can always be predicted, assuming the abstract re-
ward function is well approximated.

Another limitation of OPOSM (and other offline skill-
learning approaches) is that the quality of learned skills
depends on the quality of the demonstrations provided. We
currently have no way of biasing the learned skills towards

useful skills (e.g., skills that can guarantee a high reward
on a particular task). A potential solution to this limitation
would be to use an approach such as joint model-policy op-
timization (Eysenbach et al., 2021) instead of VI, wherein a
lower bound on reward is maximized as opposed to a lower
bound on log likelihood of the data, thus biasing the model
to learn high-reward skills. However, this solution comes
with a trade-off, as skills over-specialized to one task may
not generalize as well to a new task.

One final limitation of our approach is that currently, we do
nothing to explicitly constrain the skill plans generated by
OPOSM to remain within the support of the dataset. This
is a common feature of many offline RL algorithms, as it
prevents the agent from straying into parts of the state-space
where the dynamics are unknown. We hypothesize that
this limitation contributes to the relative weakness of our
approach on the kitchen-mixed and kitchen-partial tasks.

7. Conclusions and Future Work
We have proposed an approach for simultaneously learning
a set of skills, and a temporally abstract world model capa-
ble of predicting the long-term state transitions caused by
those skills, purely from offline data. Our approach exhibits
high performance on a wide range of long time-horizon
benchmarks, while enabling zero-shot generalization to new
downstream tasks and robustness to changes in environ-
mental dynamics. While our performance may not exceed
all existing offline RL algorithms at this point, we believe
that OPOSM opens exciting avenues for future advances
and robotics applications, mainly due to its high versatil-
ity. In particular, we believe that the model-based nature of
OPOSM will naturally yield additional advantages in future
work, such as increased data efficiency in an online setting,
and the ability to represent and utilize uncertainty estimates
in environmental dynamics (epistemic uncertainty).

Ongoing work includes expanding our approach to include
variable-length skills, as we hypothesize this will both im-
prove the performance of skills and our ability to predict
their outcomes. Additionally, we are investigating an on-
line variant of our approach, in which the data buffer is
augmented with online data to iteratively refine skills and
our TAWM. Finally, we are considering ways in which the
performance of our offline algorithm can be improved, for
example by incorporating epistemic uncertainty estimation
in our TAWM, enabling the agent to avoid regions of the
state space in which it is uncertain of the dynamics. Epis-
temic uncertainty estimation could additionally improve
safety on real robotic hardware by enabling our agent to be
risk-sensitive and avoid behaviors that result in uncertain
outcomes.
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A. Derivation of Naive Variational Method and Modified EM Algorithm
In order to learn a temporally abstract world model, one must assume that the state at some point in the future sT can be
directly predicted from an initial state s0 and a skill, without requiring the prediction of intermediate states and actions.
We therefore hypothesize the existence of a set of skills that causes sT to be conditionally independent of s1, ..., sT−1 and
a0, ..., aT , given s0 and z, leading to the graphical model shown in Fig. 6b. Our goal is to discover this set of skills (that
is, learn the set of skill-conditioned policies π(a|s, z)) that make our conditional independence assumption hold, and the
associated distribution p(sT |s0, z).

Taking a simple VI approach to derive the evidence lower bound corresponding to our skill model, we first consider the joint
density over latent and observed variables:

EτT∼D log p(sT , a0:T−1|s0:T−1) = EτT∼D log

∫
p(sT , a0:T−1, z|s0:T−1;ψ, ω, θ)dz, (3)

= EτT∼D log

∫
pψ(sT |s0, z)πθ (⃗a|s⃗, z)pω(z|s0)dz, (4)

(5)

Next, we introduce an approximate posterior (encoder network) over skills:

= EτT∼D log

∫
qϕ(z|τT )
qϕ(z|τT )

pψ(sT |s0, z)πθ (⃗a|s⃗, z)pω(z|s0)dz, (6)

= EτT∼D logEq
pψ(sT |s0, z)πθ (⃗a|s⃗, z)pω(z|s0)

qϕ(z|τT )
, (7)

(8)

Finally, we arrive at the ELBO by applying Jensen’s inequality:

≥ EτT∼D

[
Eqϕ(z|τT ) [log πθ (⃗a|s⃗, z) + log pψ(sT |s0, z)] , (9)

−DKL(qϕ(z|τT )||pω(z|s0))
]

(10)

= L(θ, ψ, ϕ, ω). (11)

This ELBO can be jointly maximized with respect to θ, ψ, ϕ, and ω. However, this leads to an issue in which the agent may
overestimate its causal influence over state transitions. A detailed example of how this may negatively impact decision-
making is given in Sec. B. The issue arises from the fact that the approximate posterior q, which we have so far assumed
to be any distribution over z conditioned on τT , does not reflect what we know to be true about the environment (namely,
that skills can only influence state transitions indirectly through the actions as depicted in Fig. 6a). Instead, the model
may learn that skills have a direct influence over state transitions. To better explain this, we consider a 1 timestep skill
model in which z influences the selection of a0, which in turn influences the state transition from s0 to s1. Assume also that
some external noise ϵ also influences s1 (Fig. 7a). In Pearl’s do notation from causal theory, we would like to ascertain
p(s1|s0, do(z)), i.e., the effect of the agent intervening on the environment by executing skill z from state s0. In the method
we’ve described thus far, the model may learn to lump ϵ into z (that is, use z to represent environmental stochasticity that
we do not have control over, such as an external disturbance force). In this case, the causal structure assumed by the agent
is given in Fig. 7b. Let za be the component of z that impacts a0, and let ϵ be the component of z that has a direct effect
on s1. The model may learn a statistically correct distribution p(s1|s0, z) = p(s1|s0, za, ϵ), by virtue of the fact that the
ELBO in Eq. (9) is minimized. However, if the agent uses this model to predict the causal influence of z on s1, the agent
will compute p(s1|s0, do(za), do(ϵ)), or in other words, the effect of executing the skill corresponding to za, and setting the
environmental noise to ϵ. Because the agent cannot in reality set the value of ϵ, it will predict that it has a higher degree of
influence over s1 than it actually does.
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(a) True causal structure of the environment. Actions influence state tran-
sitions, which are turn influenced by skills (z), with no direct influence of
skills on state transitions.

(b) Graphical model of environment given skills that
cause long-term state transitions to be conditionally
independent of intermediate states and actions, given
the initial state and skill.

Figure 6.

We avoid this issue by restricting the optimization over approximate posteriors to the set that matches the true causal structure
of the environment, shown in Fig. 6a, yielding our modified EM approach. Here, at each training step, q is regressed towards
the true posterior p(z|τT ) ∝ πθ (⃗a|s⃗, z)pω(z|s0), derived using the true causal structure of the environment depicted in
Fig. 6a. This is done by minimizing the KL divergenceDKL(q(z|τT )||p(z|τT )) = EτT∼D

[
Ez∼qϕ

[
log

qϕ(z|s⃗,⃗a)
πθ(a⃗|s⃗,z)pω(z|s0)

]]
+

c, where c = log η is a constant offset that does not affect the optimization.

B. Causality Example
Here we provide an example of how a naive VI approach to skill learning may harm planning performance. Consider the
following 4-state, single-timestep MDP: an agent is initialized in state s = s0. It can then select between three actions,
a1, a2, and a3. If the agent selects a1, it transitions to state s′ = s1 with probability 1, and earns a reward of +10. If the
agent selects a2, then it either transitions to state s′ = s2 and earns reward +100 with probability 0.1, or transitions to state
s′ = s3 and earns reward −100 with probability 0.9. Finally, if the agent selects a3, then it transitions to state s3 with
probability 1, and earns a reward of −100. This MDP is depicted schematically in Fig. 8. Clearly, the optimal action is a1,
because this yields +10 reward, while a2 and a3 in expectation yield −89 and −100 reward, respectively.

In this MDP, there is no action the agent can select that will cause it to reliably transition to state s2 and achieve +100
reward. However, if the agent learns a set of skills and a skill-conditioned world model simply by optimizing the ELBO
derived in Sec. A, the agent may believe that it possesses a skill enabling it to transition to state s2. To illustrate this point,
we consider fitting tabular models with a discrete, finite skill set containing 3 skills, z ∈ {1, 2, 3}, to a large dataset of state
transitions resulting from the agent selecting random actions uniformly from its action-space. One possible skill model
the agent may learn is a skill-conditioned policy that maps skills directly to actions, and a TAWM that matches the true
dynamics of the environment, given the mapping from skills to actions. We will refer to this model as the “correct” mode, as
it correctly models the causal relationship between skills and state transitions. On the other hand, the agent may learn a set
of skills and a world model such that the model predicts that state transitions are deterministic, given a skill, causing the
agent to predict that it can freely choose to transition to states s1, s2, or s3 deterministically. We refer to this model as the
“incorrect” model, because this is not a physically realizable set of skills the agent could employ. Both models yield the
correct distribution p(sT , a0:T−1|s0:T−1 when skills are marginalized over, and both achieve the same value of the ELBO,
which we computed using the python script compute elbo.py (included in the supplemantal material) to be -1.20697,
meaning that the ELBO does not prefer the correct model over the incorrect model.

The distributions qϕ(z|s, a, s′), pψ(s′|s, z), π(a|s, z) and pω(z|s) for the correct model are summarized in the tables below.
Dependency on s is omitted, because s does not vary across episodes. Additionally, dependence of qϕ on s′ is omitted,
because it only depends on a:
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(a) Causal structure of environment, depicting influence of
noise ϵ that is independent of actions.

(b) Incorrect skill model, in which ϵ is part of z. Here the
agent learns that it has influence over the environmental noise
ϵ, which it in fact does not.

Figure 7.

The distributions for the incorrect model are summarized in the tables below. Here, dependence of qϕ on a is omitted,
because it only depends on s′:

Using the correct skill model, the agent can correctly reason that executing skill z = 1 is optimal (which corresponds
exactly to selecting action a1), and correctly estimates its expected future reward to be +10. However, if the agent learns the
incorrect skill model instead, it will falsely believe that executing skill z = 2 is optimal, and that this will yield an expected
reward of +100, because the agent believes that selecting skill z = 2 will cause the state to deterministically transition to
s′ = s2. However, in reality, selecting skill z = 2 corresponds to to selecting action a1, which yields an expected reward of
−89. We can therefore conclude that learning a skill model according to the ELBO derived in Sec. A leads to suboptimal
decision-making during planning.

This situation results from the fact that the approximate posterior does not respect the true causal structure of the environment
(Fig. 2 in main text), allowing it to essentially encode s′ into z. This wouldn’t be a problem if our goal is correctly modeling
p(sT , a0:T−1|s0:T−1, as both the correct and incorrect models accurately represent this distribution. However, we seek
to learn latent variables that have the correct causal influence on state transitions, meaning that our model should learn a
posterior that that respects the true causal structure of the environment. By Bayes rule, we can derive the true posterior over
z, p(z|s⃗, a⃗), given πθ, pψ , and pω and the causal structure in Fig. 2 in the main text:

p(z|s⃗, a⃗) = p(s1:T , a0:T−1|z, s0)pω(z|s0)
p(s1:T , a0:T−1|s0))

(12)

=
(
∏T−1
t=0 p(st+1|st, at)πθ(at|st, z))pω(z|s0)

p(s1:T , a0:T−1|s0)
. (13)

p(st+1|st, at) and p(s1:T , a0:T−1|s0) do not depend on z, and can therefore be lumped into a normalization constant η,
leaving us with
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Figure 8. Causality Example MDP.

p(z|s⃗, a⃗) = 1

η

(
T−1∏
t=0

πθ(at|st, z)

)
pω(z|s0). (14)

In our skill learning approach, we therefore train the approximate posterior to minimize the KL divergence between itself
and the true posterior, while training πθ, pψ , and pω to maximize the ELBO. Because the ELBO is maximized when the the
skill-conditioned policy and TAWM imply the same posterior over z as our approximate posterior qϕ, the TAWM learned
using an approximate posterior that matches the environmental causal structure should also match the structure.

C. Skill Model Implementation Details
Below we detail the implementation details of our model architecture (Fig. 9), learning procedure, and planning algorithm,
used to generate our results. Unless otherwise stated, all layers contain 256 neurons, and the dimension of z is 256.

C.1. Skill Posteriors

In all environments, skill posterior networks take as input a sequence of states and actions, and output a single mean vector
µq(τT ) and standard deviation vector σq(τT ) representing the inferred posterior over z, i.e., qϕ(z|τT ) = N (µq(τT ), σq(τT )).
The posterior network consist of a linear layer with a ReLU activation through which the states are passed, followed by a
single-layer bidirectional GRU, through which embedded states concatenated with actions are passed. The output of the
GRU is then passed through two networks, one for computing the mean and one for computing the standard deviation
over z. Both networks consists of 2 linear layers, with a ReLU activation after the first layer. The mean layer has no final
activation on its output, while the standard deviation layer has a softplus activation on its final output to make its output
strictly positive.
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Table 5. qϕ(z|a) for correct model.
z = 1 z = 2 z = 3

a = a1 1 0 0
a = a2 0 1 0
a = a3 0 0 1

Table 6. πθ(a|z) for correct model.
a = a1 a = a2 a = a3

z = 1 1 0 0
z = 2 0 1 0
z = 3 0 0 1

Table 7. pψ(s′|z).
s′ = s0 s′ = s1 s′ = s2 s′ = s3

z = 1 0 1 0 0
z = 2 0 0 0.1 0.9
z = 3 0 0 0 0.1

Table 8. pω(z) for correct model.
z = 1 z = 2 z = 3

1
3

1
3

1
3

C.2. Low-Level Skill-Conditioned Policies

The low-level skill-conditioned policy takes as input the current state of the environment and the skill, and outputs a mean
µπ(s, z) and standard deviation σπ(s, z) over the current action, i.e., πθ(a|s, z) = N (µπ(s, z), σπ(s, z)). The low-level
policy used for the maze2d and antmaze environments consists of a 2-layer shared network with ReLU activations, and is
followed by a separate mean and standard deviation network, both of which use the same architecture as those described in
Sec. C.1. However, for the franka tasks, we use an auto-regressive policy network similar to that described in (Ghasemipour
et al., 2021) and (Ajay et al., 2020), in which each element of the action vector has its own network, taking as input the
current state and skill, and all previously-sampled action elements. An action vector is sampled element-by-element, with
the most recently sampled element becoming an input to the network for the next element.

C.3. Temporally Abstract World Models

Temporally abstract world models take as input the initial state, concatenated with z, and return a mean µsT (s0, z) and
standard deviation σsT (s0, z) over predicted terminal states, i.e., pψ(sT |s0, z) = N (µsT (s0, z), σsT (s0, z)). They consists
of a 2-layer shared network with ReLU activations, followed by a mean network and a standard deviation network. The
mean network is the same as that described in Sec. C.1. For maze2d and antmaze environments, the standard deviation is
also the same as that described in Sec. C.1. However, in the case of the kitchen environments, the standard deviation outputs
a single scalar standard deviation that is shared for all elements of the predicted terminal state.

C.4. Skill Priors

The skill prior takes as input the initial state in a subtrajectory, and outputs a mean µ0(s0) and standard deviation σ0(s0)
over z (i.e., pω(z|s0) = N (µ0(s0), σ0(s0))). The skill prior consists of a 2-layer shared network with ReLU activations,
followed by mean and standard deviation networks with identical architectures to those described in Sec. C.1.
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Table 9. qϕ(z|a) for incorrect model.
z = 1 z = 2 z = 3

s′ = s1 1 0 0
s′ = s2 0 1 0
s′ = s3 0 0 1

Table 10. πθ(a|z) for incorrect model.
a = a1 a = a2 a = a3

z = 1 1 0 0
z = 2 0 1 0
z = 3 0 9

19
11
19

Table 11. pψ(s′|z) for incorrect model.
s′ = s0 s′ = s1 s′ = s2 s′ = s3

z = 1 0 1 0 0
z = 2 0 0 1 0
z = 3 0 0 0 1

Table 12. pω(z) for incorrect model.
z = 1 z = 2 z = 3

1
3

1
30

19
30

C.5. Skill Model Training

To train a skill model, we alternate between the E step, in which one optimization step on the skill posterior is performed
according to the E loss, and the M step, in which one optimization step on the skill prior, low-level policy, and TAWM
is performed according to the M loss. The Adam (Kingma & Ba, 2014) optimizer was used in both the E and M steps.
Training hyperparameters are provided in Table 13.

E Loss Computation: To compute the E loss, a batch of B subtrajectories τ (i)T = [st,i, at,i, ..., st+T−1,i, at+T−1,i] for
i = 1, ..., B, are passed into the encoder. Each subtrajectory is of length T and is uniformly sampled from the dataset. For
each datapoint, and a z is sampled from the posterior using the reparameterization trick. That is, zi = µq(τ

(T )
i )+σq(τ

(T )
i )·ϵi,

where ϵi ∼ N (⃗0, I) (Kingma & Welling, 2013). Then, the loss is computed according to

LE = − 1

B

B∑
i=1

[
log πθ (⃗ai|s⃗i, zi) + log pω(zi|s0,i)− log qϕ(zi|τ (T )

i )
]
. (15)

M Loss Computation: To compute the M loss, the same procedure is followed for sampling z vectors from the encoder.
However, the M loss is computed according to

LM = − 1

B

B∑
i=1

[log πθ (⃗ai|s⃗i, zi) + log pψ(sT,i|s0,i, zi) + log pω(zi|s0,i)] . (16)

C.6. Planning Details

Skill plans are optimized using a CEM planner that plans in a “whitened” E-space. At each iteration of planning, a batch of
K L-length sequences of ϵ vectors is sampled (initially from a zero-mean, unit-variance Gaussian). Each sequence in the
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Figure 9. Skill model architecture. During offline training, sub-trajectories τT are sampled from the dataset and fed into a skill posterior
qϕ, which learns to infer the skill z. This z is then used to condition the predictions of the low-level skill-conditioned policy πθ , and the
temporally abstract dynamics pψ . The skill prior pω infers z from the initial state of the sub-trajectory only.

Task B T + 1 lrE lrM
Mazd2d-medium 100 40 5e− 5 5e− 5
Maze2d-large 100 40 5e− 5 5e− 5
Antmaze-medium 100 10 5e− 5 5e− 5
Antmaze-large 100 40 5e− 5 5e− 5
Kitchen-mixed 100 5 5e− 5 5e− 5
Kitchen-partial 100 5 5e− 5 5e− 5
Kitchen-complete 100 5 5e− 5 5e− 5

Table 13. Training hyperparameters for EM skill learning procedure.

batch is evaluated according to our TAWM and task reward function, given the current state of the environment. A diagonal
Gaussian is then fit to the top Nkeep ϵ-sequences, from which a new batch is sampled. This process is repeated for Niters, at
which point the best ϵ sequence is returned. The skill corresponding to the first element in this sequence ϵ0 is then executed,
by first converting it to a z according to z = µ0(s0) + σ0(s0) · ϵ0. The skill is then executed for τ timesteps before a new
optimal plan is computed. Parameters for the planning procedure are provided in Table 14. For Kichen tasks, skills were
replanned initially after 10 timesteps, then after 5 timesteps after the first two tasks were completed.

D. Visualization of Plans for Maze2d
To better understand the relative advantages of planning in skill-space using our TAWM compared to planning in raw
action-space using a traditional single-timestep dynamics model, we visualized plans generated by both approaches in
Fig. 10. We additionally visualize the trajectory taken by the agent executing the plan open-loop, without iterative replanning.
Here we notice that although both planning methods predict that the agent will reach the goal, the trajectories generated
by low-level planning are often physically impossible to execute, and tend to cut through walls. On the other hand, the
skill-sequence plans do not violate the physical constraints of the environment, and instead always predict that the agent will
travel through free space. The result is that the agent is able to consistently reach the goal when executing planned skill
sequences open-loop, without any replanning, but is not able to reach the goal when executing low-level action plans (as
indicated by the blue line colliding with walls and failing to reach the goal). We also notice that when the agent deviates from

18



Learning Temporally Abstract World Models without Online Experimentation

Task H K L Nkeep Niters τ
Maze2d-medium 40 100 10 50 100 40
Maze2d-large 40 100 10 50 100 40
Antmaze-Medium 40 1000 3 200 10 30
Antmaze-Large 40 100 10 50 100 10
Kitchen-Mixed 5 1000 10 100 10 10,5
Kitchen-Partial 5 1000 10 100 10 10,5
Kitchen-Complete 5 1000 10 100 10 10,5

Table 14. Parameters for Skill-Sequence Planning.

its planned trajectory while executing a skill sequence, it is able to recover, likely due to the fact that skills are essentially
policies which have the ability to perform closed-loop feedback. On the other hand, the agent fails to recover after it deviates
from its low-level action plan, likely because there is no feedback present in this situation and therefore no ability to correct
for deviations.

Executed traj(skill plan)

Executed traj(Low-level plan)
Planned traj(Abs dynamics)

Planned traj(Low-level planning)

Initial state

Goal state

Figure 10. Visualization of Low-Level vs. Abstract Plans. Green dots denote the predicted states that the agent will pass through while
executing its planned skill sequence, according to the TAWM. Red lines denote the trajectories actually followed while executing the skill
sequence. Pink lines denote the predicted trajectories that the agent will follow while executing its low-level action plans, according to the
low-level dynamics model. Blue lines denote the trajectory actually followed while executing the low-level action sequence. We notice
that the trajectories planned in low-level action space (pink lines) tend to violate physical constraints of the environment, while those
planned in skill-space do not. Additionally, the agent can reliably reach its goal by following a planned skill sequence even open-loop, but
often fails to reach its goal when following a planned low-level action sequence, when no iterative replanning is used.
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