
Specializing Smaller Language Models towards Multi-Step Reasoning

Yao Fu 1 Hao Peng 2 Litu Ou 1 Ashish Sabharwal 2 Tushar Khot 2

Abstract
The surprising ability of Large Language Models
(LLMs) to perform well on complex reasoning
with only few-shot chain-of-thought prompts is
believed to emerge only in very large-scale mod-
els. We show that such abilities can, in fact, be
distilled down from GPT-3.5 (≥ 175B) to T5 vari-
ants (≤ 11B). We propose model specialization, to
specialize the model’s ability towards a target task.
The hypothesis is that large models (commonly
viewed as larger than 100B) have strong modeling
power such that they can perform a large spec-
trum of tasks. Small models (commonly viewed
as smaller than 10B) have limited model capacity,
but if we specialize their capacity towards a target
task, the model can achieve decent performance
improvements. We use multi-step math reasoning
as our testbed because it is a very typical emergent
ability. We show two important aspects of model
abilities: (1) balancing language model’s perfor-
mance on multiple tasks is a delicate matter, as
improvements on one task may compromise other
tasks; (2) yet by intentionally paying the price of
decreased generic ability, we can clearly improve
across different model scales smaller than 10B
towards a specialized multi-step math reasoning
ability. We further give comprehensive discus-
sions about important design choices for better
generalization, including the data format mixture
and the start model checkpoint. We hope our prac-
tice and discoveries can serve as an important
attempt towards specialized smaller models in the
new research paradigm set by LLMs.

1. Introduction
Recently, the field of NLP is significantly impressed by
large language models’ strong abilities (Brown et al., 2020;

1University of Edinburgh 2Allen Institute for AI. Cor-
respondence to: Yao Fu <yao.fu@ed.ac.uk>, Tushar Khot
<tushark@allenai.org>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Chowdhery et al., 2022). Wei et al. (2022a) discuss the emer-
gent abilities of large language models – abilities that only
exist in large models (more than 100B parameters), but not
in smaller ones. A typical example (also the first-discovered
one) is the ability to perform multi-step reasoning on math
word problems with chain-of-thought (CoT) prompting (Wei
et al., 2022b) where the authors let the model generate a
step-by-step reasoning chain to help get the final answer.
The existence of such abilities has a profound impact: on
the positive side, such abilities open countless opportuni-
ties for new research directions; on the negative side, very
few organizations have the compute to even fine-tune 100B-
scale models, making such abilities less accessible. It would
be ideal if smaller models can also obtain emergent abili-
ties like math CoT reasoning, so they can be accessed by
a larger range of researchers and practitioners. However,
preliminary results of Wei et al. (2022a) show that if the
model scale is small (empirically less than 100B parame-
ters), CoT exhibits flat, sometimes even near zero scaling
curve (Wei et al., 2022b): the model CoT performance bene-
fits little from scaling up, until a certain threshold is reached.
Later smaller models’ scaling curve is partially improved
in Chung et al. (2022), but they still underperform large
models. These results so far are rather pessimistic since they
suggest improving CoT performance for smaller models
can be challenging. At the current stage, the community is
eager to know to what extent such abilities can be further
improved in smaller models.

This paper addresses the problem of CoT reasoning for
smaller models by model specialization. Our hypothesis is
that large models (≥ 100B) have strong modeling power
but are spread over a large spectrum of tasks. Small models
(≤ 10B) have limited model capacity, but if we “concen-
trate” their capacity on a target task (improving one tar-
get task at the cost of decreased capability on other tasks),
the model can achieve decent performance improvements.
There exists promising preliminary work on smaller models’
chain-of-thought abilities such as UL2 (Tay et al., 2022)
and FlanT5 (Chung et al., 2022), but their approaches risk
spreading the models’ limited capacity across many differ-
ent datasets, hurting their performance in tasks involving
complex reasoning. In our experiments, we show that we
can improve the scaling trend of CoT reasoning on small
FlanT5 models (250M, 760M, and 3B) by a large margin

1



Specializing Smaller Language Models towards Multi-Step Reasoning

(an average +10 accuracy gain) on a suite of 4 math reason-
ing tasks (1 in-distribution and 3 out-of-distribution). This
might come at a cost of decreased performance in other
benchmark tasks (specifically in this paper, worse perfor-
mance on the BigBench Hard suite Suzgun et al., 2022).
This means that we can indeed move the model’s power
from generic abilities to concentrate on the target math CoT.

Our approach is to fine-tune an instruction-tuned model
(FlanT5) by distilling chain-of-thought reasoning paths of
the GSM8K data from a large teacher model (GPT-3.5 code-
davinci-002 Chen et al., 2021), then do a model selection on
the average performance of three held-out math reasoning
data to ensure the model’s out-of-distribution generalization.
Although distillation per se is a well-studied area, there are
multiple caveats in our process, as we will demonstrate: (1)
the teacher model (code-davinci-002) and our student model
FlanT5 use different tokenizers, we address the tokenizer
alignment problem by dynamic programming. (2) Distilla-
tion induces different performance on an instruction-tuned
checkpoint (in our case, FlanT5) and the raw pretrained
checkpoint (T5), where specialized FlanT5 performs better
but specialized T5 achieves more accuracy gain. (3) at the
late training stage, the model’s in-distribution and out-of-
distribution (OOD) performance fluctuates differently, so if
one wants better OOD generalization, the model selection
should be performed on held-out math datasets, rather than
the validation portion of the tuning data. (4) multiple trade-
offs happen during the distillation/ specialization process:
as we start distillation, on BigBench Hard test suite (the
measure of generic ability), the model immediately loses
all its CoT prompting abilities, and gradually loses a large
portion (but not all) of answer-only prompting abilities. The
data format we use for tuning is also closely related to model
ability: in-context examples enable both in-context and zero-
shot performance, but zero-shot examples lose the model’s
in-context ability for increased zero-shot ability.

These findings deepen our understanding of language model
chain-of-thought reasoning behavior in multiple aspects: (1)
the previous hypothesis is that CoT has near-flat scaling
curves on a small scale, we show that we can lift up the scal-
ing curve (i.e., improve model performance across scale) by
“concentrating” the model’s capacity on a target ability. This
shows that although for pretrained checkpoints, CoT might
be a capability that only exists in large models, after special-
ization, smaller models’ scaling curves become log-linear,
just like large models (Kaplan et al., 2020; Hoffmann et al.,
2022). (2) previous observation of LLM behaviors indicates
complex tradeoffs and balances of model ability across mul-
tiple tasks, we give a detailed description of how we move
the model’s power from generic abilities to a target ability,
clearly showing what can be gained at what cost. (3) com-
mon practice selects the model on the validation split of the
same dataset, we select the model based on the performance

of different math reasoning datasets, to alleviate overfitting
on a single dataset. We hope our practice and discoveries
can serve as an example attempt towards strong specialized
smaller models. Our code is at https://github.com/
FranxYao/FlanT5-CoT-Specialization

2. Background
Large Language Models’ Abilities Large language
models have significantly changed the research paradigm
in NLP by showing strong abilities on multiple dimen-
sions (Brown et al., 2020; Hoffmann et al., 2022; Chowdhery
et al., 2022; Wei et al., 2022a). Currently, the new recipe
for training LLMs is to first train a base model (e.g., GPT-
3, PaLM, OPT), then elicit the abilities of the base model
by instruction tuning (e.g., GPT-3 → InstructGPT Ouyang
et al., 2022; PaLM → FlanPaLM Chung et al., 2022, OPT
→ OPT-IML Iyer et al., 2022, also see Fig. 1A step 1 and 2).
For the base model, initially, Wei et al. (2022b) shows that
the chain-of-thought performance curve is near-zero if the
model size is smaller than 100B. Later Chung et al. (2022)
updated this hypothesis by showing CoT can be unlocked
if CoT data is included as one particular type of instruc-
tion, but their model’s performance is not as good because
their model’s ability is spread over multiple dimensions.
This work shows that CoT performance can be significantly
lifted if we concentrate model’s power toward a target ability
(Fig. 1A, step 3).

Specialized Language Models Although modern lan-
guage models show strong generic abilities on multiple
directions, recent analysis (Fu et al., 2022) shows models
do have different focuses (e.g., code-davinci-002 for code
and text-davinci-003 for text). Ability tradeoff happens at
all scale: for large models, such a tradeoff does not have
to be all or nothing: code-davinci-002, although special-
ized for code, can still solve a lot of text problems; for
small models, due to limited model capacity, they have to
trade all generic abilities for one special ability. One ex-
ample is GitHub Copilot, which supposedly is a 12B small
model (Thakkar, 2022). The actual practice of specialization
is simply finetuning: to specialize a model towards a target
ability, one simply tunes the model using the related data,
which is the practice of concurrent work about smaller mod-
els’ CoT ability (Magister et al., 2022; Shridhar et al., 2022;
Ho et al., 2022). The problem here is how to generalize
beyond the tuning data, as small models may simply overfit
the tuning distribution but struggle to generalize when the
distribution shifts (Liu et al., 2022; Si et al., 2022). So far
the community’s hypothesis of OOD generation involves
two important aspects: (1). model scale (Chowdhery et al.,
2022); (2). instruction tuning (Chung et al., 2022), which
we will also study. These factors mark the differences be-
tween our work and the concurrent distillation work: we

2

https://github.com/FranxYao/FlanT5-CoT-Specialization
https://github.com/FranxYao/FlanT5-CoT-Specialization


Specializing Smaller Language Models towards Multi-Step Reasoning

show how the model trades generic abilities for the target
ability, and how model scale and instruction tuning help the
model gain better in-distribution and OOD performance.

Distillation and Data Augmentation Our approach of
using data generated from code-davinci-002 to tune smaller
FlanT5 can be viewed as either distillation (Tan et al., 2019)
or data augmentation (Li et al., 2022). Here we note that
we merely use the generated data as the tool for model
specialization, and the specialization data can also be from
other sources like human annotation. Our focus is to study
the ability tradeoff during specialization, but not directly
contribute to the distillation or data augmentation literature.

Most closely related works There are two threads of
most related works: (1). FlanT5 (Chung et al., 2022) and
UL2 (Tay et al., 2022) which is the first work discussing
smaller models’ CoT ability, but they focus on generic CoT
while we trade generic ability for math CoT. (2). language
model self-improvement (Huang et al., 2022) which also use
CoT data augmentation, but they only consider large models
and do not show the tradeoff between model abilities. Here
we focus on small models and clearly show the price for
ability improvements.

3. Specializing Multi-Step Reasoning
Our objective is to study what it takes to improve
smaller models’ chain-of-thought math reasoning. We use
GSM8K (Cobbe et al., 2021) as our seed dataset because it
is one of the datasets with most diverse math reasoning prob-
lems, but test the model’s performance of three additional
math datasets (MultiArith, ASDiv, and SVAMP Wei et al.,
2022b) to show the model generalizes to OOD data. We
further use BigBench Hard to test to model’s generic reason-
ing ability, demonstrating the tradeoff between generic and
target abilities. We use T5 (raw pretrained checkpoint) and
FlanT5 (instruction tuned checkpoint) as our base model,
and use code-davinci-002 to generate distillation/ special-
ization data.

Distillation from Code-Davinci-002 Given a training
question corpora, we use code-davinci-002 to generate 40
new CoT solutions then take the ones that lead to the correct
answers as our training data. One solution consists of an
answer and a chain of thought explaining the intermediate
steps towards the answer. In addition to the standard fine-
tuning setting where one uses the question as the input and
use the [CoT, answer] pair as the output (Fig. 1 B4), we fur-
ther consider three additional data formats: (1). in-context
answer-only (Fig. 1 B1), where we do not use the CoT data
(hence the name “answer-only”) and prepend 4 in-context
examples before the question (hence the name “in-context”).
The reason we prepend the in-context example is that previ-
ous work shows tuning with in-context examples improves

the model’s in-context learning ability (Min et al., 2022).
(2). in-context chain-of-thought (Fig. 1 B2), where we add
CoT to both the in-context example and the output. (3).
zero-shot answer-only, where we directly input the question
and output the answer. Using answer-only data is because
previous work shows they improve performance. In our
experiments, we will show that in-context data induces zero-
shot ability but zero-shot data sacrifice in-context learning
ability. We note that there also exist techniques like adding
a calculator (Cobbe et al., 2021) or self-consistency decod-
ing (Wang et al., 2022) that can further improve the perfor-
mance. These techniques are orthogonal to the distillation
we use and can definitely be integrated to our work for better
performance. Since our focus is the balance of the models’
special and generic abilities, we leave the integration of
these orthogonal techniques to future work.

In terms of training objectives, in the distillation literature,
there are typically two types of distillation approaches: (1).
sample matching, where one trains the student model on the
data generated by the teacher. In our case, sample match-
ing means we directly optimize the student’s likelihood on
the data generated by code-davinci-002. (2). distribution
matching, where one minimizes the KL divergence between
the student’s output distribution (in our case, the per-step
autoregressive distribution) and the teacher’s. Usually, dis-
tribution matching is shown to achieve faster convergence
and better performance than sample matching, so we use
distribution matching as our training objective. However,
the OpenAI API only grants access to the 5 most probable
tokens at each decoding step, but not the probability distri-
bution over the entire vocabulary. This is not necessarily
a bad thing: although the per-step distribution only covers
the top 5 tokens, most of the time their probability sum is
close to 1, being a good enough approximation of the full
vocabulary distribution. We set to zero the probabilities of
tokens not in the top 5. Note that even if one could access
the full-vocabulary distribution, storing them on disk will
be nontrivial as the full-vocabulary distribution takes about
10k times larger space.

Aligning tokenizers by dynamic programming One
problem when matching the two distributions is the mis-
alignment between the GPT tokenizer and the T5 tokenizer.
We solve this problem by dynamic programming. Specif-
ically, given two sequences of tokens (s1:L, t1:N ), our ob-
jective is to find an alignment that minimizes the total cost
of editing one sequence to the other. Our dynamic program
is a slight tweak of the textbook dynamic programming
algorithms used in bioinformatics for sequence alignment
(such as the Needleman–Wunsch algorithm (Needleman &
Wunsch, 1970)) and in signal processing (such as dynamic

3



Specializing Smaller Language Models towards Multi-Step Reasoning

B. Four types of data format we useA. General recipe for model specialization C. Tokenizer alignment via dynamic programming

1. Pretraining

Base Pretrained Model (T5)

2. Instruction-tuning

Generic Model w. Multiple Abilities (FlanT5)

3. Specialization

Specialized Model w. Target Abilities (Ours)
1. In-context answer-only 2. In-context chain of thought

3. Zero-shot answer-only 4. Zero-shot chain-of-thought

Question 1

Answer 1

...

Question 4

Answer 4

Question 5

Encoder

Answer 5Decoder

Question 1

Chain-of-thought 1

Answer 1

...

Question 4

Chain-of-thought 4

Answer 4

Question 5

Encoder

Chain-of-thought 5

Answer 5Decoder

AnswerDecoder Chain-of-thought

AnswerDecoder

QuestionEncoder QuestionEncoder

Good
good

0.95

well
good⌴

⌴good

0.02
0.02
0.005
0.005

Good
good

0.95

well
good_
_good

0.02
0.02
0.005
0.005

atmos-
atom

atom-
atm-
atms

0.02
0.02
0.005
0.005

0.99

-phere
phere
-phe-
-pher-

-phe

0.05
0.05
0.04
0.04

0.82

atomsphere 1.0

GPT Tokenization T5 Tokenization

Obtain a strong 
base model

Elicit model abilities

Trade generic abilities for 
specialized abilities

Figure 1. A. Model specialization process. Pretraining gives a strong base model (Raffel et al., 2020; Chowdhery et al., 2022), instruction
tuning elicits the model ability (Chung et al., 2022), then specialization (this work’s focus) moves model abilities to a target direction. In
this work, we trade the model’s generic abilities (as measured by BigBench Hard) for the model’s multi-step math reasoning abilities.
B. Four data formats we consider for tuning the model. We will show tuning with in-context chain-of-thought examples is particularly
important for the model’s CoT ability. C. Aligning GPT tokenization to T5 tokenization by dynamic programming. If a T5 token has a
one-to-one alignment to a GPT token, we reuse the GPT’s top 5 probability as the target distribution. If there the mapping is one-to-many/
many-to-one, we treat the T5 token’s distribution as one-hot.

time wrapping (Senin, 2008)). The recursion function is:

f(i, j) = min{f(i− 1, j) + c(si, tj), (1)
f(i, j − 1) + c(si, tj), (2)
f(i− 1, j − 1) + c(si, tj)} (3)

where f(i, j) denotes the total cost aligning s1:i and t1:j
and c(si, tj) is the predefined string edit distance between
token si and tj . Our algorithm does not enforce one-on-one
matching between tokens in the two sequences, and one
token in s might align with multiple in t and vice versa.
Fig. 1C gives an example alignment. If there exists a one-to-
one mapping between a GPT token and a T5 token, we use
the GPT distribution as the T5 distribution. If the mapping
is not one-to-one, e.g., two T5 tokens map to one GPT token,
or two GPT tokens map to one T5 token (Fig. 1 C lower
part), we do not use the corresponding GPT distribution and
set the T5 distribution to be one-hot. We further note that
aligning sequences generated by different tokenizers is a
generic problem of contemporary NLP, yet we are not aware
of any existing libraries approaching it. In our open-sourced
code, we also release the implementation of our dynamic
program and hope it can be useful for future research.

4. Experiments
The objective of the experiments is to see to what extent we
can lift up the scaling curve of smaller models’ math CoT
performance and what is the price of it. We conduct model
specialization on two model families: the raw pretrained
checkpoints, and their instruction-tuned checkpoints (recall
that the instruction-tuned checkpoints are generally more ca-
pable than the raw pretrained checkpoints, Fig 1A). Specif-

ically, we consider the raw pretrained T5 Base (250M)/
Large (760M)/ XL (3B)/ XXL (11B), and the instruction-
tuned FlanT5s. In Sec. 4.1, we validate our main hypothesis
that large models can perform well on a wide range of tasks
while smaller model’s ability can be moved from generic
abilities to a specialized target ability. Specifically, we show
model specialization can indeed improve CoT math perfor-
mance for FlanT5-Base/ Large/ XL/ XXL, while paying the
price of generic abilities, i.e., losing all CoT abilities on Big-
Bench Hard and a large portion of answer-only (AO) abili-
ties. In Sec. 4.2, we study the scaling behavior of smaller
models and show how specialization lifts up the scaling
curve for both T5 and FlanT5. This modifies the previous
belief that smaller models exhibit a flat scaling curve (Wei
et al., 2022b); we show that their scaling curve becomes log-
linear after specialization, but not flat. In Sec 4.3, we show
the dynamics and the generalization behavior of specializa-
tion: the model’s target performance increases gradually but
generic abilities decrease gradually during tuning, and there
exists tradeoffs between in-distribution v.s. OOD perfor-
mance and in-context v.s. zero-shot performance.

4.1. Overall Performance Tradeoff

We test the models’ math reasoning ability and generic
ability and show their tradeoffs. For the math reasoning
ability, we use the code-davinci-002 augmented GSM8K
dataset (Cobbe et al., 2021) as our tuning dataset. The
GSM8K has 7K training questions, for each question we ask
the large model to generate 40 different solutions, taking the
correct ones from the generation, we have 130K tuning data
points in total. We test the model’s out-of-distribution per-
formance on MultiArith, ASDiv, and SVAMP (collectively

4



Specializing Smaller Language Models towards Multi-Step Reasoning

Table 1. Overall test set performance. We specialize Flan-T5’s ability from the generic tasks (BigBench Hard) to math reasoning tasks.
After paying the cost of BigBench Hard performance (the model loses all the CoT prompting ability and a large portion of the Answer-only
(AO) prompting ability), we see the specialized T5 models have improved in-distribution (GSM8K) performance (where our 3B and 11B
models outperform concurrent works) as well as out-of-distribution (MultiArith, ASDiv and SVAMP) performance, showing that we
can move the model’s ability from generic tasks (BBH) to a specific target task (math reasoning). Magister22: Magister et al. (2022);
Shridhar22: Shridhar et al. (2022); Ho22: Ho et al. (2022).

CoT Reasoning on Maths Word Problems BigBench-Hard

GSM8K MultiArith ASDiv SVAMP AO CoT

Models #Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

code-davinci-002 ≥175B 63.1 - 95.8 - 80.4 - 76.4 - 56.6 - 73.9 -
LaMDA 137B 14.8 - 45.0 - 46.6 - 37.5 - - - - -
PaLM 60B 29.9 - 75.0 - 61.9 - 46.7 - 37.4 - 43.0 -
UL2 20B 4.4 - - - 16.9 - 12.5 - - - - -

Concurrent Works with Knowledge Distillation
Magister22, T5 11B 21.9 - - - 42.1 - - - ? - ? -
Shridhar22, GPT 6B 21.0 - - - - - - - ? - ? -
Ho22, GPT 6B 6.8 - 33.3 - - - - - ? - ? -

Our Specialized Models Compared with Baselines
FlanT5-XXL 11B 16.1 - 51.7 - 36.5 - 39.7 - 47.4 - 41.8 -

+ Specialized 11B 27.1 +11.0 63.0 +11.3 37.6 +1.1 35.6 -4.1 19.6 -27.8 0.0 -41.8

FlanT5-XL 3B 13.5 - 24.0 - 20.7 - 17.7 - 39.9 - 35.8 -
+ Specialized 3B 22.4 +8.9 42.3 +18.3 28.4 +7.7 23.8 +6.1 3.2 -36.7 0.0 -35.8

FlanT5-Large 760M 6.9 - 13.0 - 10.1 - 6.8 - 30.3 - 30.9 -
+ Specialized 760M 20.2 +13.3 38.5 +25.5 23.8 +13.7 20.4 +13.6 6.5 -23.8 0.3 -30.6

FlanT5-Base 250M 3.0 - 7.0 - 4.2 - 3.8 - 24.2 - 25.9 -
+ Specialized 250M 13.4 +10.4 29.7 +22.7 20.9 +16.7 14.2 +10.4 3.1 -21.1 0.1 -25.8

denoted as M-A-S) datasets (Wei et al., 2022b). None of
the datasets has official train-dev-test splits, so we randomly
sample 500 instances as the validation set from the training
set, and use the remaining instances (800 for GSM8K, 400
for MultiArith, 18K for ASDiv, 500 for SVAMP) as the test
set. The difference between M-A-S and GSM8K is that they
are all primary school level arithmetic reasoning problems,
but the entities involved in the datasets are different. For
example, GSM8K may consider arithmetic reasoning on
foods (e.g, 5 apples + 8 bananas = 13 fruits) and MultiArith
may consider animals (e.g., 2 dogs + 3 cats = 5 animals).
This type of out-of-distribution generalization is usually re-
ferred to as lexical-level compositional generalization (i.e.,
both are addition, but the lexicons are different, see Liu
et al., 2022). For the generic ability, we use BigBench
Hard (BBH, Suzgun et al., 2022) test suite, a list of 26
challenging dataset testing the model’s reasoning abilities
from multiple dimensions (e.g., date understanding, causal
judgement, referential game, .etc). Because of its difficulty
and wide-coverage, BBH makes an ideal benchmark testing
models’ generic ability.

For the baseline models, we consider generic large mod-
els and concurrent smaller distilled models, specifically:
(1). generic large models, ranked according to scale: code-
davinci-002 (our teacher model, presumably larger or equal
to 175B); LaMDA 137B (Thoppilan et al., 2022) and PaLM
60B (Chowdhery et al., 2022), both are strong generic mod-
els for chain-of-thought reasoning; UL2 (Tay et al., 2022),
a 20B model with good CoT ability. We will show that
specialized FlanT5 11B outperforms UL2 20B and becomes
close to PaLM 60B and LaMDA 137B on the target math
reasoning task. (2). concurrent works with knowledge dis-
tillation from Magister et al. (2022); Shridhar et al. (2022);
Ho et al. (2022). We will show that our specialized FlanT5
clearly outperform all of them on the distillation data (with
the cost of BBH performance), mostly because we use an
instruction-tuned checkpoint (FlanT5) as the base model
rather than the raw pretrained checkpoint (T5).

Trading generic abilities for math CoT reasoning
From Table 1 we see the performance tradeoff. Overall,
after tuning on the seed GSM8K augmented data, all FlanT5
models have improved math reasoning performance with

5



Specializing Smaller Language Models towards Multi-Step Reasoning

B. Specialized T5 exhibit log-linear scaling curve C. Specialization lifts up FlanT5 log-linear curve

G
SM

8K
 D

ev
. A

cc
.

A. GPT phase change curve, almost flat in small scale

Figure 2. X-axis means log of model scale, y-axis means validation accuracy on GSM8K. A: Previously, the community believe that small
models has flat curve for both AO and CoT prompting and only when models become large enough the performance will have a “phase
change” and suddenly increase. B: we show that after training on CoT, the model exhibits log-linear curves where both AO and CoT
increase with model scale. C: for instruction-tuned models (FlanT5) that already exhibit CoT, specialization lifts up the scaling curve, and
the two curves are again, log-linear shaped. All the log-linear curves indicate that chain-of-thought may not be an emergent ability which
is marked by the flat-then-phase-change curve. Here we show the curve in small scale is not flat but actually log-linear, and continuously
increasing model scale leads to continuously increased accuracy (no sudden phase change).

approximately +10 average accuracy gain. We note that
our smaller 3B model outperforms the current 11B and
6B distillation models on the GSM8K test set. Despite
multiple confounders like different data processing and
training hyperparameters, we believe our 3B model gets
a better performance mostly because the base model is an
instruction-tuned FlanT5, rather than the raw pretrained
T5. Later we will show that instruction-tuned checkpoint
consistently outperforms pretrained checkpoint after spe-
cialization (Sec. 4.2), showing the importance of the choice
of the base model. Also, although not performing well as
the teacher model code-davinci-002, our specialized 11B
model performance improves to be on par with LaMDA
137B and slightly below PaLM 60B, showing it is indeed
possible to make smaller models expert for the particular
math reasoning task. The price is also very clear: all spe-
cialized models suffer from performance drop on BigBench,
specifically, they lose all the CoT prompting abilities on
BBH, and a large portion of AO prompting performance.
This observation validates our hypothesis: large models can
perform well on a wide range of tasks (here PaLM 60B per-
form well on both math reasoning and BBH), versus smaller
model’s ability can be moved from generic tasks (BBH)
to a specialized target ability (math reasoning), such that
their performance on the target task can still match models
that are larger than them, e.g., the average performance on
the four math datasets LaMDA 137B 35.9 v.s. specialized
FlanT5 11B 40.8.

4.2. Scaling Behavior of Smaller Models’ CoT Ability

Now we look the scaling behavoir to smaller models. We
compare the scaling curve of: (1). GPT family small vari-
ants (Ada, Babbage, Curie and code-davinci-002); (2). raw
pretrained T5 of different scales and their specialized ver-

Table 2. GSM8K validation performance. Instruction-tuned mod-
els generally performs better than the raw pretrained checkpoints.

Before Acc After Acc

FlanT5 3B 13.5 Specialized 23.8
T5 3B 0.73 Specialized 20.6

FlanT5 760M 6.9 Specialized 21.8
T5 760M 0.85 Specialized 16.2

FlanT5 250M 3.0 Specialized 15.2
T5 250M 1.8 Specialized 14.2

sions; (3). the instruction-tuned FlanT5 of different scales
and their specialized versions; The results are shown in
Fig. 2 where x-axis denotes the model scale in terms of
the number of parameters and y-axis denotes the validation
accuracy on the GSM8K dataset.

Smaller models have log-linear, but not flat scaling curve
Initially, in the original CoT paper Wei et al. (2022b) and the
subsequent emergent abilities paper (Wei et al., 2022a), CoT
prompting is believed to be an emergent property that only
large models exhibit. Smaller model’s CoT performance
(like smaller GPT variants) was believed to be a flat scaling
curve: model performance does not improve with model
scale, as is shown in Fig. 2A left part. Later this belief is up-
dated by the FlanT5 paper (Chung et al., 2022), as they show
that although the pretrained checkpoint does not have CoT
ability, if the model has gone through instruction tuning,
smaller models can still exhibit CoT on generic tasks. Our
work shows that directly trained on CoT data can also lift
up the flat scaling curve of the raw T5 checkpoints (Fig. 2B)
to be log-linear. In Fig. 2C, we consider specialization for
the instruction-tuned FlanT5, and show that specialization

6



Specializing Smaller Language Models towards Multi-Step Reasoning

A1. Model specialization curve for FlanT5 3B A2. Model specialization curve for FlanT5 Base
B. Convergence curve 

distribution matching v.s. sample matching 

Figure 3. A1 and A2: model specialization curve of FlanT5. At the beginning of specialization (e.g., A1 step 10K), the model immediately
loses all BBH CoT ability, and a large portion of BBH AO ability. As tuning goes on (e.g., A1 epoch 1), the model’s in-distribution
performance (GSM8K) and out-of-distribution performance (MultiArith-ASDiv-SVAMP, M-A-S) gradually increases. At the later stage
of tuning (e.g., A1 epoch 2), the model’s math performance fluctuates and better in-distribution performance does not indicate better
out-of-distribution performance. Smaller models need to see the data more times than larger models (A2 has 3 epochs and A1 has 2). B:
differences between two distillation approaches. Distribution matching gives faster and lower loss convergence than sampling matching.

significantly lifts up the scaling curve of FlanT5, and both
curves are also log-linear. All the log-linear curves we ob-
served in Fig. 2 means that the chain-of-thought behavoir of
smaller models are not flat, but actually log-linear. This fur-
ther indicates that chain-of-thought may not be an emergent
ability which is marked by the flat-then-phase-change curve,
but they have the log-linear curve just like large models
(Kaplan et al., 2020; Hoffmann et al., 2022).

Instruction-tuning leads to better specialized CoT mod-
els Furthermore, comparing Fig. 2B and Fig. 2C, we
see that FlanT5 generally perform better than T5 after spe-
cialization. The exact validation performance in shown in
Table 2. We also believe that, despite there exist multiple
confounders, a major reason that our performance in Table 1
(FlanT5 11B GSM8K accuracy 27.1) is better than concur-
rent distillation methods (Magister22 T5 11B, acc. 21.9)
is mostly because we use the FlanT5 as our base model
versus they use the raw pretrained T5. Concurrent works
also observe that models after finetuning on Flan perform
better then their raw pretrained checkpoint (Longpre et al.,
2023; Shen et al., 2023) The intuitive explanation is because
instruction-tuning elicits the model’s full ability while raw
pretrained models’ ability are not fully released (concep-
tually see Fig. 1A, also see Fu et al., 2022; Chung et al.,
2022). So for better performance, we recommend using
instruction-tuned models in practice.

4.3. Specialization Process and Generalization
Behaviors

Now we consider the specialization process. Intuitively,
during finetuning, the model’s ability does not suddenly
become the target ability, but will go through a process of
moving the models’ ability from generic directions to the
target. We save one checkpoint every 10K data points, then

evaluate the checkpoints on (1). in-distribution math perfor-
mance (GSM8K); (2). out-of-distribution math performance
(MultiArith, ASDiv, and SVAMP); (3). generic answer-
only prompting performance (BBH-AO); (4). generic chain-
of-thought prompting performance (BBH-CoT). We plot
the model’s performance across the fine-tuning process in
Fig. 3.

The dynamics of model specilization. At the beginning of
specialization (Figure A1 at step 10K and Figure A2 at step
20K), the model immediately loses all BBH CoT ability (ac-
curacy becomes 0), and a large portion of BBH AO ability
(accuracy drops from about 0.3 to about 0.1). As tuning
goes on (A1 epoch 1, A2 epoch 1 and 2), the model’s in-
distribution performance (GSM8K) and out-of-distribution
performance (MultiArith-ASDiv-SVAMP, M-A-S) gradu-
ally increases, meaning that the model can generalize to
three OOD datasets by tuning on GSM8K chain-of-thought
data. At the later stage of tuning (Figure A1 at epoch 2,
and Figure A2 at epoch 3), the model’s math performance
fluctuates and better in-distribution performance does not
indicate better out-of-distribution performance. The models’
BBH-AO performance drops a large portion. The models’
BBH-CoT performance just die completely. Comparing
A1 and A2, we also see that smaller models are more data-
hungry than larger models (Kaplan et al., 2020): FlanT5
3B’s math performance plateaus at about 90K data points,
versus FlanT5 Base’s performance continues increase until
epoch 3 (each epoch has 130K datapoints).

In-distribution and out-of-distribution tradeoffs Because
in Fig. 3 A, both in-distribution and out-of-distribution fluc-
tuates, choosing the best in-distribution checkpoint does not
necessarily lead to the best out-of-distribution checkpoint.
This observation is shown in Table 3 where if we select
the best model based on the GSM8K validation set, it does
cannot achieve the best validation performance on the M-

7



Specializing Smaller Language Models towards Multi-Step Reasoning

Table 3. Model selection method induces tradeoffs between in-
distribution and out-of-distribution performance.

Model Selection In-dist Out-of-dist

FlanT5 3B GSM8K Dev 23.8 33.2
M-A-S Dev 21.2 -2.6 35.0 +1.8

FlanT5 Large GSM8K Dev 21.8 28.7
M-A-S Dev 19.2 -2.6 30.5 +1.8

FlanT5 Base GSM8K Dev 15.2 21.7
M-A-S Dev 13.2 -2.0 22.0 +0.3

A. Training with in-context examples induces both in-context and 
zero-shot abilities during testing

B. Training with zero-shot examples sacrifices in-context ability 
and only induce zero-shot ability during testing

Figure 4. X-axis means tuning datapoints, y-axis means validation
accuray on GSM8K. Both figures use FlanT5 3B as the base model.
A: training with in-context examples automatically give the model
zero-shot ability. B: training with zero-shot examples sacrifices
in-context ability.

A-S OOD setting. Yet choosing the best model based on
the M-A-S validation performance leads to a smaller perfor-
mance drop in GSM8K. Given this observation, in practice,
we would recommend choosing the validation checkpoints
according to the specific goal: if the goal is in-distribution
generalization, use GSM8K, if the goal is OOD generaliza-
tion, users may want to use their own validation set (in our
case, the M-A-S datasets).

4.4. Further Design Choices Analysis

In this section, we study two more design choices we have
discussed before: (1). using distribution matching v.s. sam-
ple matching for distillation (recall distillation matching

minimizes the KL divergence between FlanT5’s per-step
autoregressive distribution and GPT’s autoregressive distri-
bution, versus sample matching maximizes the likelihood
of the reasoning paths generated by GPT); (2). the influence
of data formats, and how in-context/ zero-shot training data
induces different behaviors of the specialized model.

Distribution matching gives faster convergence than sam-
ple matching. Fig. 3 B shows the training loss of distri-
bution matching v.s. sample matching. We show that the
model converges faster under distribution matching, and
the corresponding loss is lower. In terms of validation per-
formance, these two approaches do not differ substantially.
Yet since distribution matching has a faster convergence, in
practice they may still be considered first especially when
the model becomes large and tuning becomes expensive.

In-context data preserves zero-shot ability; Zero-shot
data loses in-context ability This is actually a very
interesting observation. Specifically, in Fig. 4 A, we tune
the model with only in-context data (Format B1 and B2 in
Fig 1), then test the models in-context learning and zero-shot
generalization performance during validation. In Fig. 4 B,
we tune the model with only zero-shot data (no in-context
examples prepended, format B3 and B4 in Fig 1), the test
if the model can still do in-context learning. As is shown
in Fig. 4 A, when tuning with in-context data, the model
can do both in-context and zero-shot generalization during
validation, even the model is not trained with zero-shot data.
In comparison, in Fig. 4 B, when tuning with zero-shot
data, the model’s zero-shot performance increases, but grad-
ually losses its in-context learning ability. This result aligns
with the empirical observation on other large models, for
example, text-davinci-002 has better zero-shot performance
than code-davinci-002, but worse in-context learning perfor-
mance (Fu et al., 2022). This means that the model’s ability
tradeoff not only happens on math v.s. generic ability, but
also happens on zero-shot v.s. in-context learning ability.
In practice, we would recommend mix the different data
formats during tuning (this is why we mix the formats) to
maintain a balance between in-context and zero-shot abili-
ties, or adjusting the ratio of different formats according to
the specific use case.

5. Conclusion
In this work, we study the problem of specializing smaller
language models toward multi-step reasoning using chain-
of-thought prompting. We show that it is indeed possible
to concentrate the small models’ ability from generic direc-
tions to the target math reasoning task. After specialization,
we show that the model exhibits a log-linear scaling curve
where model performance increases smoothly as model
scale increases, this is a correction of the previous hypoth-
esis which believes small models have a flat scaling curve

8



Specializing Smaller Language Models towards Multi-Step Reasoning

that does not increase with model scale. We show the impor-
tance of using the instruction-tuned checkpoints as the base
model because their generalization performance is better
than the raw pretrained checkpoints. Mutiple tradeoff hap-
pens during model specialization, including the loss of BBH
performance, the balance between in-distribution and out-
of-distribution generalization, and the balance of in-context
learning and zero-shot generalization ability. We hope our
practice and discoveries can serve as an important attempt
towards specialized smaller models in the new research
paradigm set by LLMs

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Fu, Y., Peng, H., and Khot, T. How does GPT ob-
tain its ability? tracing emergent abilities of lan-
guage models to their sources. Yao Fu’s Notion,
Dec 2022. URL https://yaofu.notion.site/
b9a57ac0fcf74f30a1ab9e3e36fa1dc1.

Ho, N., Schmid, L., and Yun, S.-Y. Large language models
are reasoning teachers. arXiv preprint arXiv:2212.10071,
2022.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. arXiv
preprint arXiv:2210.11610, 2022.

Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig,
D., Yu, P., Shuster, K., Wang, T., Liu, Q., Koura, P. S.,
et al. Opt-iml: Scaling language model instruction meta
learning through the lens of generalization. arXiv preprint
arXiv:2212.12017, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, S., Chen, J., Shen, Y., Chen, Z., Zhang, X., Li, Z., Wang,
H., Qian, J., Peng, B., Mao, Y., et al. Explanations from
large language models make small reasoners better. arXiv
preprint arXiv:2210.06726, 2022.

Liu, L., Lewis, P., Riedel, S., and Stenetorp, P. Chal-
lenges in generalization in open domain question an-
swering. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pp. 2014–2029, Seat-
tle, United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-naacl.
155. URL https://aclanthology.org/2022.
findings-naacl.155.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. arXiv preprint arXiv:2301.13688,
2023.

Magister, L. C., Mallinson, J., Adamek, J., Malmi, E., and
Severyn, A. Teaching small language models to reason.
arXiv preprint arXiv:2212.08410, 2022.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
MetaICL: Learning to learn in context. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2791–2809, Seat-
tle, United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.naacl-main.
201. URL https://aclanthology.org/2022.
naacl-main.201.

Needleman, S. B. and Wunsch, C. D. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of molecular biology,
48(3):443–53, 1970.

9

https://yaofu.notion.site/b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://aclanthology.org/2022.findings-naacl.155
https://aclanthology.org/2022.findings-naacl.155
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201


Specializing Smaller Language Models towards Multi-Step Reasoning

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., Liu, P. J., et al. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Senin, P. Dynamic time warping algorithm review. 2008.

Shen, S., Hou, L., Zhou, Y., Du, N., Longpre, S., Wei,
J., Chung, H. W., Zoph, B., Fedus, W., Chen, X.,
et al. Flan-moe: Scaling instruction-finetuned language
models with sparse mixture of experts. arXiv preprint
arXiv:2305.14705, 2023.

Shridhar, K., Stolfo, A., and Sachan, M. Distilling multi-
step reasoning capabilities of large language models into
smaller models via semantic decompositions. arXiv
preprint arXiv:2212.00193, 2022.

Si, C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Graber,
J., and Wang, L. Prompting gpt-3 to be reliable. arXiv
preprint arXiv:2210.09150, 2022.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Tan, X., Ren, Y., He, D., Qin, T., and Liu, T.-Y. Multilingual
neural machine translation with knowledge distillation.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=S1gUsoR9YX.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Bahri, D.,
Schuster, T., Zheng, H. S., Houlsby, N., and Metzler, D.
Unifying language learning paradigms. arXiv preprint
arXiv:2205.05131, 2022.

Thakkar, P. Copilot explorer. thakkarparth007.github.io,
2022. URL https://thakkarparth007.
github.io/copilot-explorer/posts/
copilot-internals.html.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E.,
and Zhou, D. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., and Fedus, W. Emergent abilities of large
language models. Transactions on Machine Learning Re-
search, 2022a. URL https://openreview.net/
forum?id=yzkSU5zdwD. Survey Certification.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022b.

10

https://openreview.net/forum?id=S1gUsoR9YX
https://openreview.net/forum?id=S1gUsoR9YX
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

