
Graph Reinforcement Learning for Network Control
via Bi-Level Optimization

Daniele Gammelli 1 James Harrison 2 Kaidi Yang 3 Marco Pavone 1 Filipe Rodrigues 4 Francisco C. Pereira 4

Abstract
Optimization problems over dynamic networks
have been extensively studied and widely used
in the past decades to formulate numerous
real-world problems. However, (1) traditional
optimization-based approaches do not scale to
large networks, and (2) the design of good heuris-
tics or approximation algorithms often requires
significant manual trial-and-error. In this work,
we argue that data-driven strategies can automate
this process and learn efficient algorithms without
compromising optimality. To do so, we present
network control problems through the lens of rein-
forcement learning and propose a graph network-
based framework to handle a broad class of prob-
lems. Instead of naively computing actions over
high-dimensional graph elements, e.g., edges, we
propose a bi-level formulation where we (1) spec-
ify a desired next state via RL, and (2) solve a
convex program to best achieve it, leading to dras-
tically improved scalability and performance. We
further highlight a collection of desirable features
to system designers, investigate design decisions,
and present experiments on real-world control
problems showing the utility, scalability, and flex-
ibility of our framework.

1. Introduction
Many economically-critical real-world systems are well
framed through the lens of control on graphs. For instance,
the system-level coordination of power generation systems
(Dommel & Tinney, 1968; Huneault & Galiana, 1991; Bien-
stock et al., 2014); road, rail, and air transportation systems
(Wang et al., 2018; Gammelli et al., 2021); complex manu-
facturing systems, supply chain, and distribution networks
(Sarimveis et al., 2008; Bellamy & Basole, 2013); telecom-
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munication networks (Jakobson & Weissman, 1995; Flood,
1997; Popovskij et al., 2011); and many other systems can
be cast as controlling flows of products, vehicles, or other
quantities on graph-structured environments.

A collection of highly effective solution strategies exist for
versions of these problems. Some of the earliest applications
of linear programming were network optimization problems
(Dantzig, 1982), including examples such as maximum flow
(Hillier & Lieberman, 1995; Sarimveis et al., 2008; Ford &
Fulkerson, 1956). Within this context, handling multi-stage
decision-making is typically addressed via time expansion
techniques (Ford & Fulkerson, 1958; 1962). However, de-
spite their broad applicability, these approaches are limited
in their ability to handle several classes of problems effi-
ciently. Large-scale time-expanded networks may be pro-
hibitively expensive, as are stochastic systems that require
sampling realizations of random variables (Birge & Lou-
veaux, 2011; Shapiro et al., 2014). Moreover, nonlinearities
may result in intractable optimization problems.

In this paper, we propose a strategy for simultaneously ex-
ploiting the tried-and-true optimization toolkit associated
with network control problems while also handling the dif-
ficulties associated with stochastic, nonlinear, multi-stage
decision-making. To do so, we present dynamic network
problems through the lens of reinforcement learning and for-
malize a problem that is largely scattered across the control,
management science, and optimization literature. Specif-
ically, we propose a learning-based framework to handle
a broad class of network problems by exploiting the main
strengths of graph representation learning, reinforcement
learning, and classical operations research tools (Figure 1).

The contributions of this paper are threefold1:

• We present a graph network-based bi-level, RL ap-
proach that leverages the specific strengths of direct
optimization and reinforcement learning.

• We investigate architectural components and design
decisions within our framework, such as the choice of
graph aggregation function, action parameterization,
how exploration should be achieved, and their impact
on system performance.

1Code available at: https://github.com/DanieleGa
mmelli/graph-rl-for-network-optimization
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Figure 1: Many real-world systems (left) such as supply chain networks and mobility systems can be cast as controlling quantities within
graph-structured environments (center-left). We present a framework that leverages graph networks (center) within a bi-level formulation.
Instead of naively computing actions over graph elements, we first specify a desired next state through RL (center-right), and then solve a
convex program to compute the graph actions that can best achieve it (right).

• We show that our approach is highly performant, scal-
able, and robust to changes in operating conditions
and network topologies, both on artificial test prob-
lems, as well as real-world problems, such as supply
chain inventory control and dynamic vehicle routing.
Crucially, we show that our approach outperforms clas-
sical optimization-based approaches, domain-specific
heuristics, and pure end-to-end reinforcement learning.

2. Related Work
Many real-world network control problems rely heavily on
convex optimization (Boyd & Vandenberghe, 2004; Hillier
& Lieberman, 1995). This is often due to the relative sim-
plicity of constraints and cost functions; for example, ca-
pacity constraints on edges may be written as simple linear
combinations of flow values, and costs are linear in quan-
tities due to the linearity of prices. In particular, linear
programming (as well as specialized versions thereof) is
fundamental in problems such as flow optimization, match-
ing, cost minimization and optimal production, and many
more. While algorithmic improvements have made many
convex problem formulations tractable and efficient to solve,
these methods are still not able to handle (i) nonlinear dy-
namics, (ii) stochasticity, or (iii) the curse of dimensionality
in time-expanded networks. In this work, we aim to ad-
dress these challenges by combining the strengths of direct
optimization and reinforcement learning.

Nonlinear dynamics typically requires linearization to yield
a tractable optimization problem: either around a nominal
trajectory, or iteratively during solution. While sequential
convex optimization often yields an effective approximate
solution, it is expensive and practically guaranteeing con-

vergence while preserving efficiency may be difficult (Dinh
& Diehl, 2010). Stochasticity may be handled in many
ways: common strategies are distributional assumptions
to achieve analytic tractability (Astrom, 2012), building in
sufficient buffer to correct via re-planning in the future (Pow-
ell, 2022), or sampling-based methods, often with fixed re-
course (Shapiro et al., 2014). Addressing the curse of dimen-
sionality relies on limiting the amount of online optimiza-
tion; typical approaches include limited-lookahead meth-
ods (Bertsekas, 2019) or computing a parameterized policy
via approximate dynamic programming or reinforcement
learning (Bertsekas, 1995; Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998). However, these policies may be
strongly sub-optimal depending on representation capacity
and state/action-space coverage. In contrast to these meth-
ods, we leverage the strong performance of optimization
over short horizons (in which the impact of nonlinearity and
stochasticity is typically limited) and exploit an RL-based
heuristic for future returns which avoids the curse of di-
mensionality and the need to solve non-convex or sampled
optimization problems.

Our proposed approach results in a bi-level optimization
problem. Bi-level optimization—in which one optimization
problem depends on the solution to another optimization
problem, and is thus nested—has recently attracted substan-
tial attention in machine learning, reinforcement learning,
and control (Finn et al., 2017; Harrison et al., 2018; Agrawal
et al., 2019a;b; Amos & Kolter, 2017; Landry et al., 2019;
Metz et al., 2019). Of particular relevance to our frame-
work are methods that combine principled control strategies
with learned components in a hierarchical way. Examples in-
clude using LQR control in the inner problem with learnable
cost and dynamics (Tamar et al., 2017; Amos et al., 2018;
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Agrawal et al., 2019b), learning sampling distributions in
planning and control (Ichter et al., 2018; Power & Beren-
son, 2022; Amos & Yarats, 2020), or learning optimization
strategies or goals for optimization-based control (Sacks &
Boots, 2022; Xiao et al., 2022; Metz et al., 2019; 2022; Lew
et al., 2022).

Numerous strategies for learning control with bi-level for-
mulations have been proposed. A simple approach is to
insert intermediate goals to train lower-level components,
such as imitation (Ichter et al., 2018). This approach is
inherently limited by the choice of the intermediate objec-
tive; if this objective does not strongly correlate with the
downstream task, learning could emphasize unnecessary
elements or miss critical ones. An alternate strategy, which
we take in this work, is directly optimizing through an inner
controller, thus avoiding the problem of goal misspecifica-
tion. A large body of work has focused on exploiting exact
solutions to the gradient of (convex) optimization problems
at fixed points (Amos et al., 2018; Agrawal et al., 2019b;
Donti et al., 2017). This allows direct backpropagation
through optimization problems, allowing them to be used as
a generic component in a differentiable computation graph
(or neural network). Our approach leverages likelihood ra-
tio gradients (equivalently, policy gradient), an alternate
zeroth-order gradient estimator (Glynn, 1990). This enables
easy differentiation through lower-level optimization prob-
lems without the technical details required by fixed-point
differentiation.

3. Problem Setting: Dynamic Network Control
To outline our problem formulation, we first define the linear
problem, which yields a classic convex problem formula-
tion. We will then define a nonlinear, dynamic, non-convex
problem setting that better corresponds to real-world in-
stances. Much of the classical flow control literature and
practice substitute the former linear problem for the latter
nonlinear problem to yield tractable optimization problems
(Li & Bo, 2007; Zhang et al., 2016; Key & Cope, 1990).
Let us consider the control of Nc commodities on graphs -
for example, vehicles in a transportation problem. A graph
G = {V, E} is defined as a set V of Nv nodes, and a set E of
Nϵ ordered pairs of nodes (i, j) called edges, each described
by a travel time tij . We use N+(i),N−(i) ⊆ V for the set
of nodes having edges pointing away from or toward node
i, respectively. We use xti(k) ∈ R to denote the quantity of
commodity k at node i and time t2.

2We consider several reduced views over these quantities: we
write xt

i ∈ RNc to denote the vector of all commodities, xt(k) ∈
RNv to denote the vector of commodity k at all nodes, and xi(k) ∈
RT to denote commodity k at node i for all times t.

3.1. The Linear Network Control Problem

Within the linear model, our commodity quantities evolve
in time as

xt+1
i = xti + f ti + eti, ∀i ∈ V (1)

where f ti denotes the change due to flow of commodities
along edges and eti denotes the change due to exchange
between commodities at the same graph node. We refer to
this expression as the conservation of flow. We also accrue
money as

mt+1 = mt +mt
f +mt

e, (2)

where mt
f ,m

t
e ∈ R denote the money gained due to flows

and exchanges respectively. Our overall problem formula-
tion will typically be to control flows and exchanges so as
to maximize money over one or more steps subject to addi-
tional constraints such as, e.g., flow limitations through a
particular edge.

Flows. We will denote flows along edge (i, j) with f tij(k).
From these flows, we have

f ti =
∑

j∈N−(i)

f tji −
∑

j∈N+(i)

f tij , ∀i ∈ V (3)

which is the net flow (inflows minus outflows). As discussed,
associated with each flow is a cost mt

ij(k). Note that given
this formulation, the total flow cost for all commodities can
be written as mt

ij · f tij = (mt
ij)

⊤f tij . Thus, we can write
the total flow cost at time t as

mt
f = −

∑
i∈V

 ∑
j∈N−(i)

mt
ji · f tji +

∑
j∈N+(i)

mt
ij · f tij

 .

(4)

Exchanges. To define our exchange relations and their
effect on commodity quantities and costs, we will write
the effect that exchanges have on money for each node;
we write this as mt

i. Thus, we have mt
e =

∑
i∈V m

t
i. We

assume there are Ne(i) exchange options at each node i.
The exchange relation takes the form[

eti
mt

i

]
= Et

iw
t
i (5)

where Et
i ∈ R(Nc+1)×Ne(i) is an exchange matrix and w ∈

RNe(i) are the weights for each exchange. Each column
in this exchange matrix denotes an (exogenous) exchange
rate between commodities; for example, for i’th column
[−1, 1, 0.1]⊤, one unit of commodity one is exchanged for
one unit of commodity two plus 0.1 units of money. Thus,
the choice of exchange weights wt

i uniquely determines
exchanges eti and money change due to exchanges, mt

e.

Convex constraints. We may impose additional convex
constraints on the problem beyond the conservation of flow
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we have discussed so far. There are a few common exam-
ples that one may use in several applications. A common
constraint is the non-negativity of commodity values, which
we may express as

xti ≥ 0, ∀i, t. (6)

Note that this inequality is defined element-wise. We may
also limit the flow of all commodities through a particular
edge via

Nc∑
k=1

f tij(k) ≤ f
t

ij , (7)

where this sum could also be weighted per commodity.
These linear constraints are only a limited selection of some
common examples and the particular choice of constraints
is problem-specific.

3.2. The Nonlinear Dynamic Network Control Problem

The previous subsection presented a linear, deterministic
problem formulation that yields a convex optimization prob-
lem for the decision variables—the chosen flows and ex-
change weights. However, the formulation is limited by the
assumption of linear, deterministic state transitions (among
others), and is thus limited in its ability to represent typical
real-world systems (please refer to Appendix A for a more
complete treatment). In this paper, we focus on solving the
nonlinear problem (reflecting real, highly-general problem
statements) via a bi-level optimization approach, wherein
the linear problem (which has been shown to be extremely
useful in practice) is used as an inner control primitive.

4. Methodology
In this section, we first introduce a Markov decision process
(MDP) for our problem setting in Section 4.1. We further
describe the bi-level formulation that is the primary contri-
bution of this paper and provide insights on architectural
considerations in Sections 4.2 and 4.3, respectively.

4.1. The Dynamic Network MDP

We consider a discounted MDP M = (S,A, P,R, γ). Here,
st ∈ S is the state and at ∈ A is the action, both at time t.
The dynamics, P : S × S × A → [0, 1] are probabilistic,
with P (st+1 | st, at) denoting a conditional distribution
over st+1. Finally, we use R : S × A → R to denote the
reward function and γ ∈ (0, 1] the discount factor.

State and state space. Real-world network control prob-
lems are typically partially-observed and many features of
the world impact the state evolution. However, a small num-
ber of features are typically of primary importance, and the
impact of the other partially-observed elements can be mod-
eled as stochastic disturbances. Our formulation requires, at
each timestep, the commodity values xt. Furthermore, the

constraint values are required, such as costs, exchange rates,
flow capacities, etc. If the graph topology is time-varying,
the connectivity at time t is also critical. More precisely,
the state elements that we have discussed so far are either
properties of the graph nodes (commodity values) or of the
edges (such as flow constraints). This difference is of critical
importance in our graph neural network architecture.

Generally, the choice of state elements will depend on the
information available to a system designer (what can be
measured) and on the particular problem setting. Possi-
ble examples of further state elements include forecasts of
prices, demand and supply, or constraints at future times.

Action and action space. As discussed in Section 3, an
action is defined as all flows and exchanges, at = (f t, wt).
In the following subsections, we accurately describe the
action parametrization under the bi-level formulation.

Dynamics. The dynamics of the MDP, P , describe the
evolution of state elements. We split our discussion into
two parts: the dynamics associated with commodity and
non-commodity elements.

The commodity dynamics are assumed to be reasonably
well-modeled by the conservation of flow (1), subject to the
constraints; this forms the basis of the bi-level approach that
we describe in the next subsection.

The non-commodity dynamics are assumed to be substan-
tially more complex. For example, buying and selling prices
may have a complex dependency on past sales, current de-
mand, current supply (commodity values), as well as ran-
dom exogenous factors. Thus, we place few assumptions on
the evolution of non-commodity dynamics and assume that
current values are measurable.

Reward. We assume that our reward is the total dis-
counted money earned over the problem duration. This re-
sults in a stage-wise reward function that corresponds to the
money earned in that time period, or R(st, at) = mt

e+m
t
f .

4.2. The Bi-Level Formulation

The previous subsection presented a general MDP formu-
lation that represents a broad class of relevant network op-
timization problems. The goal is to find a policy π̃∗ ∈ Π̃
(where Π̃ is the space of realizable Markovian policies)
such that π̃∗ ∈ argmaxπ̃∈Π̃ Eτ [

∑∞
t=0 γ

tR(st, at)], where
τ = (s0, a0, s1, a1, . . .) denotes the trajectory of states and
actions. This formulation requires specifying a distribution
over all flow/exchange actions, which may be an extremely
large space. We instead consider a bi-level formulation

π∗ ∈ argmax
π∈Π

Eτ

[ ∞∑
t=0

γtR(st, at)

]
(8)

s.t. at = LCP(ŝt+1, st), (9)
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where we compute at by replacing a single policy that maps
from states to actions (i.e., st → at) with two nested poli-
cies, mapping from states to desired next states to actions
(i.e., st → ŝt+1 → at). As a consequence of this formu-
lation, the desired next state ŝt+1 acts as an intermediate
variable, thus avoiding the direct parametrization of an ex-
tremely large action space, e.g., flows over edges in a graph.
This desired next state is then used in a linear control prob-
lem (LCP(·, ·)), which leverages a (slightly modified) one-
step version of the linear problem formulation of Section 3
to map from desired next state to action. Thus, the resulting
formulation is a bi-level optimization problem, whereby
the policy π̃ is the composition of the policy π(ŝt+1 | st)
and the solution to the linear control problem. Specifically,
given a sample of ŝt+1 from the stochastic policy, we select
flow and exchange actions by solving

argmin
at

d(ŝt+1, st+1)−R(st, at) (10a)

s.t. Conservation of flow (1);Net flow (3); (10b)
Reward (4);Exchange conditions (5); (10c)
Other constraints, e.g. (6) or (7) (10d)

where d(·, ·) is a convex metric which penalizes deviation
from the desired next state. The resultant problem is con-
vex and thus may be easily and inexpensively solved to
choose actions at, even for very large problems. Please see
Appendix B.2, C for a broader discussion.

As is standard in reinforcement learning, we will aim to
solve this problem via learning the policy from data. This
may be in the form of online learning (Sutton & Barto, 1998)
or via learning from offline data (Levine et al., 2020). There
are large bodies of work on both problems, and our presen-
tation will generally aim to be as-agnostic-as-possible to the
underlying reinforcement learning algorithm used. Of criti-
cal importance is the fact that the majority of reinforcement
learning algorithms use likelihood ratio gradient estimation
(Williams, 1992), which does not require path-wise back-
propagation through the inner problem.

We also note that our formulation assumes access to a model
(the linear problem) that is a reasonable approximation of
the true dynamics over short horizons. This short-term
correspondence is central to our formulation: we exploit
exact optimization when it is useful, and otherwise push
the impacts of the nonlinearity over time to the learned
policy. We assume this model is known in our experiments—
which we feel is a reasonable assumption across the problem
settings we investigate—but it could be learned from state
transitions or as learnable parameters in policy learning.

4.3. Architectural Considerations

After having introduced the problem formulation and a gen-
eral framework to control graph-structured systems from
experience, here and in Appendix B.1, we broaden the dis-

cussion on specific algorithmic components.

Network architectures. We argue that graph networks
represent a natural choice for network optimization prob-
lems because of three main properties. First, permutation in-
variance. Crucially, non-permutation invariant computations
would consider each node ordering as fundamentally differ-
ent and thus require an exponential number of input/output
training examples before being able to generalize. Second,
locality of the operator. GNNs typically express a local para-
metric filter (e.g., convolution operator) which enables the
same neural network to be applied to graphs of varying size
and connectivity and achieve non-parametric expansibility.
This is a property of fundamental importance for many real-
world graph control problems, which will be dynamic or
frequently re-configured, and it is desirable to be able to use
the same policy without re-training. Lastly, alignment with
the computations used for network optimization problems.
As shown in (Xu et al., 2020), GNNs can better match the
structure of many network optimization algorithms and are
thus likely to achieve better performance.

Action parametrization. Let us consider the problem
of controlling flows in a network. We are interested in
defining a desired next state ŝt+1 that is ideally (i) lower
dimensional, (ii) able to capture relevant aspects for control,
and (iii) as-robust-as-possible to domain shifts. At a high
level, we achieve this by avoiding the direct parametriza-
tion of per-edge desired flow values and compute per-node
desired inflow quantities. Concretely, given the total avail-
ability M of commodity units in the graph, we define
ŝt+1 = {q̂t+1

i }i∈V ,
∑

i q̂
t+1
i = M as a desired per-node

number of commodity units. We do so by first determining
q̃t+1
i = {q̃t+1

i }i∈V , where q̃t+1
i ∈ [0, 1] defines the percent-

age of currently available commodity units to be moved to
node i in time step t, and

∑
i∈V q̃

t+1
i = 1. We then use

this to compute q̂t+1
i = ⌊q̃t+1

i ·M⌋ as the actual number
of commodity units. In practice, we achieve this by defin-
ing the intermediate policy as a Dirichlet distribution over
nodes, i.e., π(ŝt+1|st) = q̃t+1 ·M, q̃t+1 ∼ Dir(q̃t+1|st).
Crucially, the representation of the desired next state via
q̂i (i) is lower-dimensional as it only acts over nodes in the
graph, (ii) uses a meaningful aggregated quantity to control
flows, and (iii) is scale-invariant by construction as it acts
on ratios opposed to raw commodity quantities. Addition-
ally, for problems that require a generation of commodities
(e.g., products in a supply chain), we define the desired
next state via the exchange weights introduced in Eq (5),
ŝt+1 = {wt+1

i }i∈V , w
t+1
i ∈ N+, with wt+1

i representing
the number of commodity units to generate. In practice, this
can be achieved by defining the intermediate policy as a
Gaussian distribution over nodes (followed by rounding),
i.e., π(ŝt+1|st) = round(wt+1), wt+1 ∼ N (wt+1|st).
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Table 1: Percentage of oracle performance on different minimum cost flow scenarios.

Random MLP-RL GCN-RL GAT-RL MPNN-RL Oracle

2-hops 9.9% ±4.8% 60.2% ±2.1% 31.3% ±1.3% 22.9% ±1.1% 89.7% ±0.9% -
3-hops 50.3% ±8.4% 53.8% ±1.6% 68.7% ±2.0% 62.4% ±1.9% 89.5% ±1.1% -
4-hops 63.1% ±3.9% 67.8% ±2.5% 71.4% ±1.7% 68.2% ±2.3% 87.1% ±1.2% -
Dynamic travel time -23.4% ±4.3% -0.7% ±1.7% 18.7% ±2.0% 17.1% ±1.6% 99.1% ±1.3% -
Dynamic topology 42.5% ±6.8% N/A 53.4% ±2.8% 43.4% ±3.1% 83.9% ±1.0% -
Multi-commodity 22.5% ±8.2% 41.7% ±3.2% 33.8% ±2.1% 33.0% ±1.7% 72.0% ±1.6% -
Capacity (Success Rate) 62.6% (82%) 62.7% (82%) 65.2% (87%) 62.9% (80%) 89.8% (87%) - (88%)

5. Experiments
In this section, we first consider an artificial minimum cost
flow problem as a simple graph control problem that illus-
trates the basic principles of our formulation and investigates
architectural components (Section 5.1). We further assess
the versatility of our framework by applying it to two distinct
real-world network problems: the supply chain inventory
management problem (Section 5.2) and the dynamic vehicle
routing problem (Section 5.2). Specifically, these problems
represent two instantiations of economically-critical graph
control problems where the task is to control flows of quan-
tities (i.e., packages and vehicles, respectively), generate
commodities (i.e., products within a supply chain), or both.

Experimental design. While the specific benchmarks
will necessarily depend on the individual problem, in all
real-world experiments, we will always compare against the
following classes of methods: (i) an Oracle benchmark char-
acterized as an MPC controller which has access to perfect
information of all future states of the system and can thus
plan for the perfect action sequence, (ii) a Domain-driven
Heuristic, i.e., algorithms which are generally accepted as
go-to approaches for the types of problems we consider,
and (iii) a Randomized heuristic to quantify a reasonable
lower-bound of performance within the environment.

5.1. Minimum Cost Flow

Let us consider an artificial minimum cost flow problem
where the goal is to control commodities from one or more
source nodes to one or more sink nodes, in the minimum
time possible. We assess the capability of our formulation to
handle several practically-relevant situations. Specifically,
we do so by comparing different versions of our method
against an oracle benchmark to investigate the effect of
different neural network architectures. Results in Table 1
and in Appendix D.1.3, show how graph-RL approaches are
able to achieve close-to-optimal performance in all proposed
scenarios while greatly reducing the computation cost com-
pared to traditional solutions (Figure 2 and Appendix C.2)3.
Among all formulations (please refer to Appendix D.1 for
additional details), MPNN-RL is clearly the best perform-

3All methods used the same computational CPU resources,
namely a AMD Ryzen Threadripper 2950X (16-Core, 32 Thread,
40M Cache, 3.4 GHz base).

Figure 2: Comparison of computation times between learning-
based (blue) and control-based (orange) approaches. Green trian-
gles represent the percentage performance of our RL framework
compared to the oracle model.

ing architecture, achieving 86.7% of oracle performance,
on average. As discussed in Section 4.3, this highlights the
importance of the algorithmic alignment (Xu et al., 2020)
between the neural network architecture and the nature of
the computations needed to solve the task. Crucially, results
show how our formulation is able to operate reliably within
a broad set of situations, ranging from scenarios character-
ized by dynamic travel times (Dyn. travel time), dynamic
topologies, i.e., with nodes and edges that can be removed
or added during an episode (Dyn. topology), capacitated-
networks (Capacity) with different depth (2-hop, 3-hop,
4-hop), and multi-commodity problems (Multi-commodity).

5.2. Supply Chain Inventory Management (SCIM)

In our first real-world experiment, we aim to optimize the
performance of a supply chain inventory system. Specifi-
cally, this describes the problem of ordering and shipping
product inventory within a network of interconnected ware-
houses and stores in order to meet customer demand while
simultaneously minimizing storage and transportation costs.
A supply chain system is naturally expressed via a graph
G = {V, E}, where V = VS ∪ VW is the set of both store
VS and warehouse VW nodes, and E the set of edges con-
necting stores to warehouses. Demand dti materializes in
stores i ∈ VS at each period t. If inventory is available at
the store, it is used to meet customer demand and sold at a
price p. Unsatisfied orders are maintained over time and are
represented as a negative stock (i.e., backorder). At each
time step, the warehouse orders additional units of inventory
wi from the manufacturers and stores available ones. As
commodities travel across the network, they are delayed by
transportation times tij . Both warehouses and storage facil-
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Table 2: System performance on real-world SCIM experiments.

Avg. Prod. S-type Policy End-to-End RL (MLP/GNN) Graph-RL (ours) Oracle

1F 2S -20,334 (± 4,723) -4,327 (± 251) -1,832 (± 352) / -17 (± 89) 192 (± 119) 852 (± 152)
% Oracle 0.0% 75.5% 87.3% / 95.8% 96.8% 100.0%
1F 3S -53,113 (± 7,231) -5,650 (± 298) -4,672 (± 258) / -810 (± 258) 997 (± 109) 3,249 (± 102)
% Oracle 0.0% 84.2% 85.9% / 92.7% 96.0% 100.0%
1F 10S -114,151 (± 4,611) -14,327 (± 365) -587,887 (± 5,255) / -568,374 (± 5,255) 890 (± 288) 1,358 (± 460)
% Oracle 0.0% 86.4% N.A. / N.A. 99.5% 100.0%

ities have limited storage capacities ci, such that the current
inventory qi cannot exceed it. The system incurs a number
of operations-related costs: storage costs mS

i , production
costs mO

i , backorder costs mB
i , transportation costs mT

ij .

SCIM Markov decision process. To apply the method-
ologies introduced in Section 4, we formulate the SCIM
problem as an MDP characterized by the following elements
(please refer to Appendix D.2.2 for a formal definition):

Action space (A): we consider the problem of determining
(1) the amount of additional inventory wi to order from
manufacturers in all warehouse nodes i ∈ VW , and (2) the
flow fij of commodities to be shipped from warehouses to
stores, such that at = {wt

i}i∈VW
∪ {f tij}(i,j)∈E .

Reward (R(st, at)): we select the reward function in the
MDP as the profit of the inventory manager, computed as
the difference between sales revenues and costs.

State space (S): the state space describes the current status
of the supply network, via node and edge features. Node
features contain information on (i) current inventory, (ii)
current and estimated demand, (iii) incoming flow, and (iv)
incoming orders. Edge features are characterized by (i)
travel time tij , and (ii) transportation cost mT

ij .

Bi-Level formulation. In what follows and in Appendix
D.2.4, we illustrate a specific instantiation of our framework
for the SCIM problem. We define the desired outcome
ŝt+1 as being characterized by two elements: (i) the desired
production in warehouse nodes ŵt+1

i ,∀i ∈ VW , and (ii) a
desired inventory in store nodes q̂t+1

i ,∀i ∈ VS .

The LCP selects flow and production actions to best achieve
ŝt+1 via distance minimization between desired and actual
inventory levels. The LCP is further defined by domain-
related constraints, such as ensuring that the inventory in
store and warehouse nodes does not exceed storage capac-
ity and that shipped products are non-negative and upper
bounded by inventory.

Inventory management via graph control. For the
SCIM problem, we define the domain-driven heuristic as
a prototypical S-type (or “order-up-to”) policy, which is
generally accepted as an effective heuristic (Van Roy et al.,
1997). Appendix D.2 provides further experimental details.

Concretely, we measure overall system performance on
three different supply chain networks characterized by in-

Figure 3: Aggregate behavior of the Graph-RL policies on a test
episode for the 1F2S SCIM environment.

creasing complexity. Results in Table 2 show that our frame-
work achieves close-to-optimal performance in all tasks.
Specifically, Graph-RL achieves 96.8% (1F2S), 96% (1F3S),
and 99.5% (1F10S) of oracle performance. Qualitatively,
Figure 3 highlights how Graph-RL learns to control the
production and shipping policies to match consumer de-
mand while maintaining low inventory storage. More subtly,
Figure 3 shows how policies learned through Graph-RL
manage to anticipate demand so that products are promptly
available in stores by taking production and shipping time
under consideration. Results in Table 2 also show how S-
type policies, despite being explicitly fine-tuned for all tasks,
are largely inefficient and thus incur unnecessary costs and
revenue losses, resulting in a profit gap of approximately
15% compared to Graph-RL, on average.

LCP as inductive bias for network computations. As a
further analysis, we compare with an ablation of our frame-
work, which, as in the majority of literature, is defined
as a purely end-to-end RL agent that avoids the LCP and
directly maps from environment states to production and
shipping actions through either MLPs (Peng et al., 2019;
Oroojlooyjadid et al., 2022) or GNNs. Results in Figure
4 clearly highlight how the bi-level formulation exhibits
significantly improved sample efficiency and performance
compared to its end-to-end counterpart, which is either sub-
stantially slower at converging to good-quality solutions or
does not converge at all, as in Figure 4 (c). We argue that
this behavior is due to two main factors: (1) the bi-level
agent operates on a lower-dimensional and well-structured
representation via ŝt+1, and (2) the bi-level formulation
provides an implicit inductive bias towards feasible, high-
quality solutions via the definition of the LCP. Together,
these two properties define an RL agent that exhibits im-
proved efficiency and performance.
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Table 3: System performance on real-world DVR experiments.

Random Evenly-balanced System End-to-end RL Graph-RL (ours) Oracle

New York -10,778 (± 659) 9,037 (± 797) -6,043 (± 2,584) 15,481 (± 397) 16,867 (± 547)
% Oracle 0.0% 71.6% 17.2% 94.9% 100.0%
Shenzhen 19,406 (± 1,894) 29,826 (± 706) 18,889 (± 1,207) 36,918 (± 616) 40,332 (± 724)
% Oracle 0.0% 50.1% -0.02% 83.8% 100.0%

Zero Shot NY→SHE - - 18,568 (± 1,358) 36,100 (± 657) -
Zero Shot SHE→NY - - -4,083 (± 1,278) 14,495 (± 426) -

(a) (b) (c)

Figure 4: Learning curve comparison between an RL agent trained end-to-end (blue) and via our bi-level formulation (orange) on the
SCIM task (a) 1F2S (b) 1F3S, and (c) 1F10S

5.3. Dynamic Vehicle Routing

In the second real-world experiment, we apply our frame-
work to the field of mobility. Specifically, we focus on the
dynamic vehicle routing (DVR) problem, which describes
the task of finding the least-cost routes for a fleet of vehicles
such that it can satisfy the demand of a set of customers
geographically dispersed in a dynamic, stochastic network.
Towards this aim, we consider a transportation network
G = {V, E} with M single-occupancy vehicles, where V
represents the set of stations (e.g., pickup or drop-off loca-
tions) and E represents the set of links in the transportation
network (e.g., roads), each characterized by a travel time
tij and cost mij . At each time step, customers arrive at
their origin stations and wait for idle vehicles qi to transport
them to their destinations. The trip from station i ∈ V to
station j ∈ V at time t is characterized by a demand dtij
and a price pij , passengers not served by any vehicle will
leave the system and revenue from their trips will be lost.
The system operator coordinates a fleet of vehicles to best
serve the demand for transportation while minimizing the
cost of operations. Concretely, the operator achieves this by
controlling the passenger flow f tij,P (i.e., vehicles deliver-
ing passengers to their destination) and the rebalancing flow
f tij,R (i.e., vehicles not assigned to passengers and used, for
example, to anticipate future demand) at each time step t.
Please refer to Appendix D.3 for further details.

DVR Markov decision process. We formulate the DVR
MDP through the following elements:

Action space (A): we compute the rebalancing flow f tij,R,
such that at = {f tij,R}(i,j)∈E . Without loss of generality,
we assume the passenger flow is assigned through some
independent routine, although the ideas described in this

section can be extended to include also passenger flows.

Reward (R(st, at)): we select the reward function in the
MDP as the operator profit, computed as the difference
between trip revenues and operation-related costs.

State space (S): the transportation network is described via
node features such as the current and projected availabil-
ity of idle vehicles in each station, current and estimated
demand, and provider-level information, e.g., trip price.

Bi-Level formulation. We further describe an additional
instantiation of our bi-level framework for the DVR problem.
First, we define the desired next state ŝt+1 to represent the
desired number of idle vehicles in all stations q̂ti ,∀i ∈ V .
The second step further entails the solution of the LCP to
transform the desired number of idle vehicles into feasible
environment actions (i.e., rebalancing flows). At a high
level, the LCP aims to minimize rebalancing costs while
satisfying domain-related constraints such as ensuring that
the total rebalancing flow from a region is upper-bounded by
the number of idle vehicles in that region and non-negative.
Please refer to Appendix D.3.4 for further details.

Vehicle routing via network flow. We evaluate the al-
gorithms on two real-world urban mobility scenarios based
on the cities of New York, USA, and Shenzhen, China. Re-
sults in Table 3 show how Graph-RL is able to achieve
close-to-optimal performance in both environments. Specifi-
cally, the vehicle routing policies learned through Graph-RL
achieve 94.9% (New York) and 83.8% (Shenzhen) of ora-
cle performance, while showing a 23.3% (New York) and
33.7% (Shenzhen) increase in operator profit compared to
the domain-driven heuristic, which attempts to preserve
equal access to vehicles across stations in the transporta-
tion network. As observed for SCIM problems, the results
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Table 4: Impact of implicit planning via desired next states.

Greedy
(i.e., argminat −R(st, at))

Graph-RL
(i.e., argminat d(ŝt+1, st+1)−R(st, at))

SCIM

1F2S Reward -102,919 (± 2,767) 192 (± 119)
%Oracle N.A. 96.8%

1F3S Reward -169,433 (± 2,880) 997 (± 109)
%Oracle N.A. 96.0%

1F10S Reward -587,661 (± 3,862) 890 (± 288)
%Oracle N.A. 99.5%

DVR

New York
Reward 13,978 (± 391) 15,481 (± 397)
Served Demand 1,357 (± 92) 1,824 (± 87)
%Oracle 90.13% 94.9%

Shenzhen
Reward 35,996 (± 499) 36,918 (± 616)
Served Demand 2,881 (± 98) 3,310 (± 92)
%Oracle 79.27% 83.9%

confirm that end-to-end RL approaches struggle with high-
dimensional action spaces (75 and 90 edges in New York
and Shenzhen environments, respectively) and fail to learn
effective routing strategies. Lastly, to assess the transferabil-
ity and generalization capabilities of Graph-RL, we study
the extent to which policies can be trained on one city and
later applied to the other without further training (i.e., zero-
shot). Table 3 shows that routing policies learned in one
city exhibit a promising degree of portability to novel en-
vironments, with only minimal performance decay. As
introduced in Section 4.3, this experiment further highlights
the importance of the locality of graph network-based poli-
cies: by learning a shared, local operator, policies learned
through graph-RL can potentially be applied to arbitrary
graph topologies. Crucially, policies with structural transfer
capabilities could enable system operators to re-use previ-
ous experience, thus avoiding expensive re-training when
exposed to new problem instances.

5.4. Comparison to Greedy Planning

The role of the distance metric (and the generated desired
next state) in Eq. (10a) is to capture the value of future
reward in the greedy one-step inner optimization problem,
ultimately allowing for implicit long-term planning (please
refer to Appendix C.1 for a broader discussion). To quantify
this intuition, in Table 4 we compare the proposed bi-level
approach to a greedy policy that acts optimally with re-
spect to the one-step optimization problem. Concretely,
if on one hand the proposed bi-level approach attempts
to achieve as best as possible the desired next state (i.e.,
argminat d(ŝt+1, st+1)−R(st, at)), the greedy policy ig-
nores the distance term and optimizes solely short-term
reward (i.e., argminat −R(st, at))). Results in Table 4
highlight how the presence of the desired next state, and ul-
timately, of the bi-level approach, is instrumental in achiev-
ing effective long-term performance. Crucially, since both
producing a commodity (SCIM) and rebalancing a vehicle
(DVR) are only defined by negative rewards, these only indi-
rectly participate to long-term positive reward via a better (i)

product availability or (ii) positioning of vehicles, and thus
cannot be measured by the one-step optimization problem.
This results in the greedy policy (i) being unable to fulfill
any demand in the SCIM problem and (ii) achieving lower
profit in the DVR problem. It is important to highlight how,
in the DVR problem, the greedy policy achieves reasonably
good reward (i.e., profit) because the system can partially
self-sustain itself only through passenger trips. However,
greediness causes the number of served customers to be
considerably smaller, with Graph-RL achieving ≈ +35%
in New York and ≈ +15% in Shenzhen, thus clearly show-
ing the benefit of optimizing for long-term reward via the
minimization of the distance metric.

6. Conclusion
Research in network optimization problems, in both theory
and practice, is largely scattered across the control, manage-
ment science, and optimization literature, potentially hinder-
ing scientific progress. In this work, we propose a general
framework that could enable learning-based approaches to
help address the open challenges in this space: handling non-
linear dynamics and scalability, among others. Specifically,
instead of approaching the problem through pure end-to-end
reinforcement learning, we introduced a general bi-level
formulation that leverages the specific strengths of direct
optimization, reinforcement learning, and graph represen-
tation learning. Our approach shows strong performance
on all problem settings we evaluate, substantially outper-
forming both optimization-based and RL-based approaches.
In future work, we plan to investigate ways to exploit the
non-parametric nature of our approach and take a step in
the direction of learning generalist graph optimizers. More
generally, we believe this research opens several promising
directions for the extension of these concepts to a broader
class of large-scale, real-world applications.
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A. Dynamic Network Control
In this section, we make concrete our discussion on nonlinear problem formulations for network control problems.

Elements violating the linearity assumption Real-world systems are characterized by many factors that cannot be
reliably modeled through the linear problem described in Section 3. In what follows, we discuss a (non-exhaustive) list of
factors potentially breaking such linearity assumptions:

• Stochasticity. Various stochastic elements can impact the problem. Commodity transitions in Section 3.1 were defined
as being deterministic; in practice in many problems, there are elements of stochasticity to these transitions. For
example, random demand may reduce supply by an unpredictable amount; vehicles may be randomly added in a
transportation problem; and packages may be lost in a supply chain setting. In addition to these state transitions,
constraints may be stochastic as well: flow times or edge capacities may be stochastic, as when a road is shared with
other users, or costs for flows and exchange may be stochastic.

• Nonlinearity. Various elements of the state evolution, constraints, or cost function may be nonlinear. The objective
may be chosen to be a risk-sensitive or robust metric applied to the distribution of outcomes, as is common in financial
problems. The state evolution may have natural saturating behavior (e.g. automatic load shedding). Indeed, many real
constraints will have natural nonlinear behavior.

• Time-varying costs and constraints. Similar to the stochastic case, various quantities may be time-varying. However,
it is possible that they are time-varying in a structured way, as opposed to randomly. For example, demand for
transportation may vary over the time of day, or purchasing costs may vary over the year.

• Unknown dynamics elements. While not a major focus of discussion in the paper up to this point, elements of the
underlying dynamics may be partially or wholly unknown. Our reinforcement learning formulation is capapble of
addressing this by learning policies directly from data, in contrast to standard control techniques.

B. Methodology
In this section, we discuss network architectures and RL components more in detail.

B.1. Network Architecture

Specifically, we first introduce the basic building blocks of our graph neural network architecture. Let us define with
xi ∈ RDx and eji ∈ RDe the Dx-dimensional vector of node features of node i and the De-dimensional vector of edge
features from node j to node i, respectively.

We define the update function of node features through either:

• Message passing neural network (MPNN) (Gilmer et al., 2017) defined as

x
(k)
i =

⊕
j∈N−(i)

fθ

(
x
(k−1)
i ,x

(k−1)
j , eji

)
, (11)

where k indicates the k-th layer of message passing in the GNN with k = 0 indicating raw environment features, i.e.,
x
(0)
i = xi, and

⊕
denotes a differentiable, permutation invariant function, e.g., sum, mean or max.

• Graph convolution network (GCN) (Kipf & Welling, 2017) defined as

X′ = f(X,A) = σ
(
D̂− 1

2 ÂD̂− 1
2XW

)
, (12)

where X is the Nv ×Dx feature matrix, A is the adjacency matrix with Â = A+ I and I is the identity matrix. D̂
is the diagonal node degree matrix of Â, σ(·) is a non-linear activation function (e.g., ReLU) and W is a matrix of
learnable parameters.

We select the specific architecture based on the alignment with the problem characteristics. We note that these network
architectures can be used to define both policy and value function estimator, depending on the reinforcement learning
algorithm of interest (e.g., actor-critic (Konda & Tsitsiklis, 1999), value-based (Mnih et al., 2015), etc.). As an example, in
our implementation, we define two separate decoder architectures for the actor and critic networks of an Advantage Actor
Critic (A2C) (Mnih et al., 2016) algorithm. Below is a summary of the specific architectures used in this work:
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• Section 5.1. We use an MPNN as in (11), with a max aggregation function i.e.,
⊕

= max. We define the output of our
policy network to represent the concentration parameters α ∈ RNv

+ of a Dirichlet distribution, such that at ∼ Dir(at|α),
and where the positivity of α is ensured by a Softplus nonlinearity. On the other hand, the critic is characterized by a
global sum-pooling performed after K layers of MPNN.

• Section 5.2. We use an MPNN as in (11), with a sum aggregation function i.e.,
⊕

= sum. We define the output of our
policy network to represent the (1) concentration parameters α ∈ R|VS |

+ of a Dirichlet distribution for computing the
flow actions, and (2) mean µ ∈ R|VW | and standard deviation σ ∈ R|VW |

+ of a Gaussian distribution for the production
action. On the other hand, the critic is characterized by a global sum-pooling performed after K layers of MPNN.

• Section 5.2. We use a GCN as in (12). Actor and critic outputs are defined as in the minimum cost flow problem.

Handling dynamic topologies. A defining property of our framework is its ability to deal with time-dependent graph
connectivity (e.g., edges or nodes are added/dropped during the course of an episode). Specifically, our framework achieves
this by (i) considering the problem as a one-step decision-making problem, i.e., avoiding the dependency on potentially
unknown future topologies, and (ii) exploiting the capacity of GNNs to handle diverse graph topologies. Crucially, no matter
the current state of the graph, GNN-based agents are capable of computing a desired next state for the network, which will
then be converted into actionable flow decisions by the LCP.

B.2. RL Details

We further discuss practical aspects within our bi-level reinforcement learning approach.

Exploration. In practice, we choose large penalty terms d(·, ·) to minimize greediness. However early in training,
randomly initialized penalty terms can harm exploration. We found it was sufficient to down-weight the penalty term early
in training. As such, the inner action selection is biased toward short-term rewards, resulting in greedy action selection.
However, there are many further possibilities for exploiting random penalty functions to induce exploration, which we
discuss in the next section.

Integer-valued flows. For several problem settings, it is desirable that the chosen flows be integer-valued. For example,
in a transportation problem, we may wish to allocate some number of vehicles, which can not be infinitely sub-divided
(Gammelli et al., 2021; 2022). There are several ways to introduce integer-valued constraints to our framework. First,
we note that because the RL agent is trained through policy gradient—and thus we do not require a differentiable inner
problem—we can simply introduce integer constraints into the lower-level problem4. However, solving integer-constrained
problems is typically expensive in practice. An alternate solution is to simply use a heuristic rounding operation on the
output of the inner problem. Again, because of the choice of gradient estimator, this does not need to be differentiable.
Moreover, the RL policy learns to adapt to this heuristic clipping. Thus, we in general recommend this strategy as opposed
to directly imposing constraints in the inner problem.

C. Discussion and Algorithmic Components
In this section, we discuss various elements of the proposed framework, highlight correspondences and design decisions,
and discuss component-level extensions.

C.1. Distance metric as value function

The role of the distance metric (and the generated desired next state) is to capture the value of future reward in the greedy
one-step inner optimization problem. This is closely related to the value function in dynamic programming and reinforcement
learning, which in expectation captures the sum of future rewards for a particular policy. Indeed, under moderate technical
assumptions, our linear problem formulation with stochasticity yields convex expected cost-to-go (the negative of the value)
(Pereira & Pinto, 1991; Dumouchelle et al., 2022).

There are several critical differences between our penalty term and a learned value function. First, a value function in
a Markovian setting for a given policy is a function solely of state. For example, in the LCP, a value function would
depend only on st+1. In contrast, our value function depends on ŝt+1, which is the output of a policy which takes st as

4Note that several problems exhibit a total unimodularity property (Murota, 2009), for which the relaxed integer-valued problem is
tight.
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an input. Thus, the penalty term is a function of both the current and desired next state. Given this, the penalty term is
better understood as a local approximation of the value function, for which convex optimization is tractable, or as a form of
state-action value function with a reduced action space (also referred to as a Q function).

The second major distinction between the penalty term and a value function is particular to reinforcement learning. Value
functions in modern RL are typically learned via minimizing the Bellman residual (Sutton & Barto, 1998), although there is
disagreement on whether this is a desirable objective (Fujimoto et al., 2022). In contrast, our policy is trained directly via
gradient descent on the total reward (potentially incorporating value function control variates). Thus, the objective for this
penalty method is better aligned with maximizing total reward.

C.2. Computational efficiency

Consider solving the full nonlinear control problem via direct optimization over a finite horizon (T timesteps), which
corresponds to a model predictive control (Rawlings & Mayne, 2013) formulation. How many actions must be selected?
The number of possible flows for a fully dense graph (worst case) is Nv(Nv − 1). In addition to this, there are

∑
i∈V Ne(i)

possible exchange actions; if we assume Ne is the same for all nodes, this yields NvNe possible actions. Finally, we have
Nc commodities. Thus, the worst-case number of actions to select is TNcNv(Nv + Ne − 1); it is evident that for even
moderate choices of each variable, the complexity of action selection in our problem formulation quickly grows beyond
tractability.

While moderately-sized problems may be tractable within the direct optimization setting, we aim to incorporate the impacts
of stochasticity, nonlinearity, and uncertainty, which typically results in non-convexity. The reinforcement learning approach,
in addition to being able to improve directly from data, reduces the number of actions required to those for a single
step. If we were to directly parameterize the naive policy that outputs flows and exchanges, this would correspond to
NcNv(Nv+Ne−1) actions. For even moderate values ofNc, Nv, Ne, this can result in millions of actions. It is well-known
that reinforcement learning algorithms struggle with high dimensional action spaces (Van de Wiele et al., 2020), and thus
this approach is unlikely to be successful. In contrast, our bi-level formulation requires only Nc actions for the learned
policy, while additionally leveraging the beneficial inductive biases over short time horizons.

D. Additional Experiment Details
In this section, we provide additional details of the experimental set-up and hyperparameters. All RL modules were
implemented using PyTorch (Paszke et al., 2019) and the IBM CPLEX solver (IBM, 1987) for the optimization problem.

D.1. Minimum Cost Flow

We start by describing the properties of the environments in Section D.1.1. We further expand the discussion on model
implementation (Section D.1.2), and additional results (Section D.1.3).

D.1.1. ENVIRONMENT DETAILS

We select environment variables in a way to cover a wide enough range of possible scenarios, e.g., different travel times and
thus, different optimal actions.

Generalities. As discussed in Section 5, the environments describe a dynamic minimum cost flow problem, whereby
the goal is to let commodities flow from source to sink nodes in the minimum time possible (i.e., cost is equal to time).
Formally, given a graph G = {V, E}, the reward function across all environments is defined as:

R(st, at) = −
∑

(i,j)∈E

f tijtij + λf tsink,

where f tij and tij represent flow and travel time along edge (i, j) at time t, respectively, f tsink is the flow arriving at all sink
nodes at time t, and λ is a weighting factor between the two reward terms. In our experiments, the resulting policy proved to
be broadly insensitive to values of λ, with λ ∈ [15, 30] typically being an effective range.

2-hop, 3-hop, 4-hop. Given a single-source, single-sink network, we assume travel times to be constant over the episode
and requirements (i.e., demand) to be sampled at each time step as ρ = 10 + ψi, ψi ∼ Uniform[−2, 2]. Capacities cij are

15



Graph Reinforcement Learning for Network Control via Bi-Level Optimization

fixed to a very high positive number, thus not representing a constraint in practice. Cost mij is equal to the travel time
tij . An episode is assumed to have a duration of 30 time steps and terminates when there is no more flow traversing the
network. To present a variety of scenarios to the agent at training time, we sample random travel times for each new episode
as tij ∼ Uniform[0, 10] and use the topologies shown in Fig. 6. In our experiments, we apply as many layers of message
passing as hops from source to sink node in the graph, e.g., K = 2 and K = 3 in the 2-hops and 3-hops environment,
respectively.

Dynamic travel times To train our MPNN-RL, we select the 3-hops environment and generate travel times as follows for
every episode: (i) sample random travel times as tij ∼ Uniform[0, 10], (ii) for every time step, gradually change the travel
time as tij = tij + ψ,ψ ∼ Uniform[−1, 1].

Capacity constraints. In this experiment, we focus on the 3-hops environment and assume a constant value cij =
20,∀(i, j) ∈ E : j ̸= 7 while we keep a high value for all the edges going into node 7 (i.e., the sink node) which would
more easily generate infeasible scenarios. From an RL perspective, we add the following edge-level features:

• Edge-capacity {ctij}i,j)∈E at the current time step t.
• Accumulated flow {f tij}(i,j)∈E on edge (i, j)

Multi-commodity. Let Nc define the number of commodities to consider, indexed by k. From an RL perspective, we
extend the proposed policy to represent a Nc-dimensionsional Dirichlet distribution. Concretely, we define the output of the
policy network to represent the Nc ×Nv concentration parameters α ∈ RNc×Nv

+ of a Dirichlet distribution over nodes for
each commodity, such that at ∼ Dir{at|α}. In other words, to extend our approach to the multi-commodity setting, we
define a multi-head policy network characterized by one head per commodity. In our experiments, we train our multi-head
agent on the topology shown in Fig. 10 whereby we assume two parallel commodities: commodity A going from node
0 to node 10, and commodity B going from node 0 to node 11. We choose this topology so that the only way to solve
the scenario is to discover distinct behaviours between the two network heads (i.e., the policy head controlling flow for
commodity A needs to go up or it won’t get any reward, and vice-versa for commodity B).

Computational analysis. In this experiment, we generate different versions of the 3-hops environment, whereby different
environments are characterized by intermediate layers with increasing number of nodes and edges. The results are computed
by applying the pre-trained MPNN-RL agent on the original 3-hops environment (i.e., characterized by 8 nodes in the graph).
In light of this, Figure 2 showcases a promising degree of transfer and generalization among graphs of different dimensions.

D.1.2. MODEL IMPLEMENTATION

In our experiments, we implement the following methods:

Randomized heuristics. In this class of methods, we focus on measuring performance of simple heuristics.

1. Random policy: at each timestep, we sample the desired next state from a Dirichlet prior with concentration parameter
α = [1, 1, . . . , 1]. This benchmark provides a lower bound of performance by choosing desired next states randomly.

Learning-based. Within this class of methods, we focus on measuring how different architectures affect the quality of the
solutions for the dynamic network control problem. For all methods, the A2C algorithm is kept fixed, thus the difference
solely lies in the neural network architecture.

2. MLP-RL: both policy and value function estimator are parametrized by feed-forward neural networks. In all our
experiments, we use two layers of 32 hidden unites and an output layer mapping to the output’s support (e.g., a
scalar value for the critic network). Through this comparison, we highlight the performance and flexibility of graph
representations for network-structured data.

3. GCN-RL: In all our experiments, we use K layers of graph convolution with 32 hidden units, with K equal to the
number of sink-to-source hops in the graph, and a linear output layer mapping to the output’s support. See below for a
broader discussion of graph convolution operators.

4. GAT-RL: In all our experiments, we use K layers of graph attention (Veličković et al., 2018) with 32 hidden units, with
K equal to the number of sink-to-source hops in the graph, and single attention head. The output is further computed by
a linear output layer mapping to the output’s support. Together with GCN-RL, this model represents an approach based
on graph convolutions rather than explicit message passing along the edges (as in MPNNs). Through this comparison,
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we argue in favor of explicit, pair-wise messages along the edges, opposed to sole aggregation of node features among a
neighborhood. Specifically, we argue in favor of the alignment between MPNN and the kind of computations required
to solve flow optimization tasks, e.g., propagation of travel times and selection of best path among a set of candidates
(max aggregation).

5. MPNN-RL: ours. We use K layers of message passing neural network (Gilmer et al., 2017) of 32 hidden units as
defined in Section B.1, with K equal to the number of sink-to-source hops in the graph, and a linear output layer
mapping to the output’s support.

MPC-based. Within this class of methods, we focus on measuring performance of MPC approaches that serve as state-of-art
benchmarks for the dynamic network flow problem.

6. Oracle: we directly optimize the flow using a standard formulation of MPC (Zhang et al., 2016). Notice that although
the embedded optimization is a linear programming model, it may not meet the computation requirement of real-time
applications (e.g., obtaining a solution within several seconds) for large scale networks. In this work, MPC is assumed
to have access to future state elements (e.g., future travel times, connectivity, etc.). Crucially, assuming knowledge
of future state elements is equivalent to assuming oracle knowledge of the realization of all stochastic elements in
the system. In other words, there is no uncertainty for the MPC (this is in contrast with RL-based benchmarks, that
assume access only to current state elements). In our experiments, the benchmark with the “Oracle” MPC enables us to
quantify the optimal solution for all environments, thus giving a sense of the optimality gap between the ground truth
optimum and the solution achieved via RL.

D.1.3. ADDITIONAL RESULTS

Minimum cost flow through message passing. In this first experiment, we consider 3 different environments (Fig. 6),
such that different topologies enforce a different number of required hops of message passing between source and sink
nodes to select the best path. Results in Table 1 (2-hop, 3-hop, 4-hop) show how MPNN-RL is able to achieve at least 87%
of oracle performance. Table 1 further shows how agents based on graph convolutions (i.e., GCN, GAT) fail to learn an
effective flow optimization strategy.

Dynamic travel times. In many real-world systems, travel times evolve over time. To approach this, in Fig. 7 and Table 1
(Dyn travel time) we measure results on a dynamic network characterized by two change-points, i.e., time steps where the
optimal path changes because of a change in travel times. Results show how the proposed MPNN-RL is able to achieve
above 99% of oracle performance.

Dynamic topology. In real-world systems, operations are often characterized by time-dependent topologies, i.e., nodes
and edges can be dropped or added during an episode, such as in roadblocks within transportation systems or the opening of
a new shipping center in supply chain networks. However, most traditional approaches cannot deal with these conditions
easily. On the other hand, the locality of graph network-based agents, together with the one-step implicit planning of RL,
enable our framework to deal with multiple time-varying graph configurations during the same episode. Fig. 8 and Table 1
(Dyn topology) show how MPNN-RL achieves 83.9% of oracle performance clearly outperforming the other benchmarks.
Crucially, these results highlight how agents based on MLPs result in highly inflexible network controllers that are limited to
the same topology they were exposed to during training.

Capacity constraints. Real-world systems are often represented as capacity-constrained networks. In this experiment,
we relax the assumption that capacities cij are always able to accommodate any flow on the graph. Compared to previous
sections, the lower capacities introduce the possibility of infeasible states. To measure this, the Success Rate computes the
percentage of episodes which have been terminated successfully. Results in Table 1 (Capacity) highlight how MPNN-RL is
able to achieve 89.8% of oracle performance while being able to successfully terminate 87% of episodes. Qualitatively, Fig.
9 shows a visualization of the policy for a specific test episode. The plots show how MPNN-RL is able to learn the effects
of capacity on the optimal strategy by allocating flow to a different node when the corresponding edge is approaching its
capacity limit.

Multi-commodity. Often, system operators might be interested in controlling multiple commodities over the same network.
In this scenario, we extend the current architecture to deal with multiple commodities and source-sink combinations. Results
in Table 1 (Multi-commodity) and Fig. 10 show how MPNN-RL is able to effectively recover distinct policies for each
commodity, thus being able to operate successfully multi-commodity flows within the same network.
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D.2. Supply Chain Inventory Management

We start by describing the properties of the environments in Section D.2.1. We further expand the discussion on MDP
definitions (Section D.2.2), model implementation (Section D.2.3), and specifics on the linear control problem (Section
D.2.4).

D.2.1. ENVIRONMENT DETAILS

In our experiments, all stores are assumed to have an independent demand-generating process. We simulate a seasonal
demand behavior by representing the demand as a co-sinusoidal function with a stochastic component, defined as follows:

dti =

⌊
dmax
i

2

(
1 + cos

(
4π(2i+ t)

T

))
+ U(0, dvari )

⌋
, (13)

where ⌊·⌋ is the floor function, dmax
i is the maximum demand value, U(0, dvari ) is a uniformly distributed random variable,

and T is the episode length.

Environment parameters are defined as follows:
Table 5: Parameters for the 1F2S environment

Parameter Explanation Value Parameter Explanation Value

dmax Maximum demand [2, 16] mS Storage cost [3, 2, 1]
dvar Demand variance [2, 2] mO Production cost 5
T Episode length 30 mB Backorder cost 21
tP Production time 1 mT Transportation cost [0.3, 0.6]
tij Travel time [1, 1] p Price 15
c Storage capacity [20, 9, 12]

Table 6: Parameters for the 1F3S environment

Parameter Explanation Value Parameter Explanation Value

dmax Maximum demand [1, 5, 24] mS Storage cost [2, 1, 1]
dvar Demand variance [2, 2, 2] mO Production cost 5
T Episode length 30 mB Backorder cost 21
tP Production time 1 mT Transportation cost [0.3, 0.3, 0.3]
tij Travel time [1, 1, 1] p Price 15
c Storage capacity [30, 15, 15, 15]

Table 7: Parameters for the 1F10S environment

Parameter Explanation Value Parameter Explanation Value

dmax Maximum demand [2, 2, 2, 2, 10, 10, 10, 18, 18, 18] mS Storage cost [1, 2 ∀i ∈ V/0]
dvar Demand variance [2]i∈V mO Production cost 5
T Episode length 30 mB Backorder cost 21
tP Production time 1 mT Transportation cost [0.3]i∈V
tij Travel time [1]i∈V p Price 15
c Storage capacity [100, 15 ∀i ∈ V/0]

D.2.2. MDP DETAILS

In what follows, we complement Section 5.2 with a formal definition of the SCIM MDP.

Reward (R(st, at)): we select the reward function in the MDP as the profit of the inventory manager, computed as the
difference between revenues and the sum of storage, production, transportation, and backorder costs:

R(st, at) =
∑
i∈VW

p ·min(dti, q
t
i)−

∑
i∈V

mS
i · qti +

∑
i∈VW

mO
i · wt

i +
∑

(i,j)∈E

mT
ij · f tij −

∑
i∈VS

mB
i ·min(0, qti)

 . (14)

State space (S): the state space contains information to describe the current status of the supply network, via the definition of
node and edge features. Node features contain information on (i) current inventory qi, (ii) current and estimated demand for
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the next T timesteps d̂t:t+T
i , (iii) incoming flow for the next T timesteps

∑
j∈V f

t:t+T
ji , and (iv) incoming orders for the next

T timesteps wt:t+T
i , such that xi = [qi, d̂

t:t+T
i ,

∑
j∈V f

t:t+T
ji , wt:t+T

i ]. Edge features are represented by the concatenation
of (i) travel time tij , and (ii) transportation cost mT

ij , such that eij = [tij ,m
T
ij ].

D.2.3. MODEL IMPLEMENTATION

In what follows, we provide additional details for the implemented baselines and models:

Randomized heuristics. In this class of methods, we focus on measuring the performance of simple heuristics.

1. Avg. Prod: at each timestep, we (1) select production wt
i to be the average episode demand across all stores, and (2)

sample the desired distribution from a Dirichlet prior with concentration parameter α = [1, 1, . . . , 1] to simulate a
random shipping behavior.

Domain-driven heuristics. Within this class of methods we measure the performance of heuristics generally accepted as
effective baselines.

2. S-type Policy: also referred to as “order-up-to” policy, this heuristic is parametrized by two values: a warehouse
order-up-to level and a store order-up-to level. At a high level, at each time step the inventory manager aims to order
inventory such that all inventory at and expected to arrive at the warehouse and at the stores is equal to the warehouse
order-up-to level and the store order-up-to level, respectively. Concretely, we fine-tune the S-type policy on each
environment individually by running an exhaustive search for the best order-up-to levels, as shown in Figure 11.

Learning-based approaches.

3. End-to-end RL: with this benchmark, we evaluate the performance of RL architectures that do not approach the problem
via the proposed bi-level formulation. Specifically, as traditionally done in RL, we define the policy network to
represent a direct mapping from states to environment actions. In our experiments, both policy and value function
estimator are parametrized by feed-forward neural networks with two layers of 64 hidden units followed by linear
layers mapping to either (i) mean and standard deviation parameters for the policy network, or (ii) a scalar value
function estimate for the critic. Among the three scenarios, we adjust the input layer based on the input dimensionality
(which is topology-dependent since we unroll all node and edge features into a vector representation of the graph).
Through this comparison, we highlight the benefits of the bi-level formulation for graph control problems.

4. Graph-RL: ours. We use K = 2 layers of message passing neural network (Gilmer et al., 2017) of 32 hidden units with
sum aggregation function as defined in Section B.1 followed by a linear layer mapping to the output’s support.

D.2.4. LCP FORMULATION

Given a desired next state described by (i) the desired production in warehouse nodes ŵt+1
i ,∀i ∈ VW , and (ii) a desired

inventory in store nodes q̂t+1
i ,∀i ∈ VS , we define the following linear control problem as follows:

min
ft
ij ,w

t,ϵfi ,ϵ
w
i

∑
i∈VS

|ϵfi |+
∑
i∈VW

|ϵwi | (15a)

s.t.
∑

j∈N−(i)

f tji = q̂t+1
i + ϵfi , i ∈ VS (15b)

qti +
∑

j∈N−(i)

f tji − dti ≤ cti, i ∈ VS (15c)

∑
j∈N+(i)

f tij ≤ qti , i ∈ VW (15d)

qti + wt
i −

∑
j∈N+(i)

f tij ≤ cti, i ∈ VW (15e)

wt
i = ŵt

i + ϵwi , i ∈ VW (15f)

f tij ≥ 0, (i, j) ∈ E (15g)
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where, as introduced in Section 4, the objective function (15a) represents the distance metric d(·, ·) that penalizes the
deviation from the desired next states, the constraint (15b) ensures that the total incoming flow in store nodes is as close as
possible to the desired inventory, the constraint (15c) represents that the inventory in store nodes after shipping and demand
satisfaction does not exceed storage capacity, the constraint (15d) ensures that the shipped products are upper bounded by
inventory, constraint (15e) represents that the inventory in warehouse nodes after shipping and re-ordering does not exceed
storage capacity, constraint (15f) ensures that orders from manufacturers are close to the desired orders specified through
RL, and lastly that commodity flows are non-negative via (15g).

D.3. Dynamic Vehicle Routing

We start by describing the properties of the environments in Section D.3.1. We further expand the discussion on MDP
definition (Section D.3.2), model implementation (Section D.3.3), specifics on the linear control problem (Section D.3.4),
and additional results (Section D.3.5).

D.3.1. ENVIRONMENT DETAILS

We use two case studies from the cities of New York, USA, and Shenzhen, China, whereby we study a hypothetical
deployment of taxi-like systems to serve the peak-time commute demand in popular areas of Brooklyn and Shenzhen,
respectively. The cities are divided into geographical areas, each of which represents a station. The case studies in our
experiments are generated using trip record datasets, which we provide together with our codebase. The trip records are
converted to demand, travel times, and trip prices between stations. Here, we consider stochastic time-varying demand
patterns, whereby customer arrival is assumed to be a time-dependent Poisson process, and the Poisson rates are aggregated
from the trip record data every 3 minutes. We assume the stations to be spatially connected, whereby moving vehicles from
one station to the other requires non-trivial sequential actions (i.e., vehicles cannot directly be repositioned from one station
to any other station, rather they have to adhere to the available paths given by the city’s topology).

The following remarks are made in order. First, we assume travel times are given and independent of operator actions. This
assumption applies to cities where the number of vehicles in the fleet constitutes a relatively small proportion of the entire
vehicle population on the transportation network, and thus the impact on traffic congestion is marginal. This assumption
can be relaxed by training the proposed RL model in an environment considering the endogenous congestion caused by
controlled vehicles fleet. Second, without loss of generality, we assume that the arrival process of passengers for each
origin-destination pair is a time-dependent Poisson process. We further assume that such process is independent of the
arrival processes of other origin-destination pairs and the coordination of vehicles. These assumptions are commonly used
to model transportation requests (Daganzo, 1978).

D.3.2. MDP DETAILS

In what follows, we complement Section 5.2 with a formal definition of the SCIM MDP.

Reward (R(st, at)): we select the reward function in the MDP as the operator profit, computed as the difference between
revenues and operation-related costs:

R(st, at) =
∑

(i,j)∈E

f tij,P · (pij −mij)−
∑

(i,j)∈E

f tij,R ·mij (16)

State space (S): the state space contains information to describe the current status transportation network via the definition
of node features. Node features contain information on (i) the current availability of idle vehicles in each station qi, (ii)
current and estimated demand for the next T timesteps d̂t:t+T

i , (iii) projected availability for the next T timesteps q̂t:t+T
i ,

and (iv) provider-level information such as trip price pij and cost zij .

D.3.3. MODEL IMPLEMENTATION

In what follows, we provide additional details for the implemented baselines and models:

Randomized heuristics. In this class of methods, we focus on measuring the performance of simple heuristics.

1. Random: at each timestep, we sample the desired distribution from a Dirichlet prior with concentration parameter
α = [1, 1, . . . , 1]. This benchmark provides a lower bound of performance by choosing desired next states randomly.

20



Graph Reinforcement Learning for Network Control via Bi-Level Optimization

Domain-driven heuristics. Within this class of methods, we measure the performance of heuristics generally accepted as
reasonable baselines.

2. Equally-balanced System: at each decision, we take rebalancing actions so to recover an equal distribution of idle
vehicles across all areas in the transportation network. Concretely, the heuristic achieves this by solving the DVR
LCP with a fixed desired number of idle vehicles among all stations, i.e., given M available vehicles at time t,
q̂t+1 = {q̂t+1

i }i∈V = { M
|V|}i∈V .

Learning-based approaches.

3. End-to-end RL: both policy and value function estimator are parametrized by neural networks that mirror the architecture
of Graph-RL. While the critic has the exact same architecture, the actor differs in the last layer, which is characterized
by an edge convolution (consisting of 2 linear layers of 32 hidden units) that outputs mean and standard deviation
parameters of a Gaussian policy for each edge in the graph.

4. Graph-RL: ours. For both actor and critic networks, we use one layer of graph convolution (Kipf & Welling, 2017)
with 32 hidden units with sum aggregation function as defined in Section B.1 followed by 2 linear layers of 32 hidden
units and a final linear layer mapping to the respective output’s support.

D.3.4. LCP FORMULATION

Given a desired next state described by the desired number of idle vehicles across stations q̂t+1
i ,∀i ∈ V , we define the

following linear control problem as follows:

min
ft
ij,R

∑
(i,j)∈E

mt
ijf

t
ij,R (17a)

s.t.
∑
j ̸=i

(f tji,R − f tij,R) + qti ≥ q̂ti , i ∈ V (17b)

∑
j ̸=i

f tij,R ≤ qti , i ∈ V (17c)

f tij,R ≥ 0, (i, j) ∈ E (17d)

where the objective function (17a) represents the rebalancing cost, constraint (17b) ensures that the resulting number of
vehicles is close to the desired number of vehicles, and with constraints (17c), (17d) ensuring that the total rebalancing flow
from a region is upper-bounded by the number of idle vehicles in that region and non-negative.

D.3.5. ADDITIONAL RESULTS

Figure 5: Learning curve comparison between an RL agent trained end-to-end (blue) and via our bi-level formulation (orange) on the
DVR New York environment. The dotted line represents the converged performance for the end-to-end agent after 80,000 steps.

Results in Figure 5 highlight the sample efficiency of our bi-level approach compared to its end-to-end counterpart which
exhibits (i) much slower convergence and sample inefficiency, and (ii) worse overall performance.
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E. Additional Visualizations

Figure 6: Graph topologies used for the message passing experiments: 2-hops (left), 3-hops (center), 4-hops (right). The source and sink
nodes are represented by the left-most and right-most nodes, respectively. Values in the proximity of the edges represent travel times.

Figure 7: Visualization of a trained instance of MPNN-RL on an environment with dynamic travel times. We simulate a scenario where
the optimal path changes three times (left, middle, and right) over the course of an episode. Shaded edges represent actions induced by the
MPNN-RL.

Figure 8: Visualization of a trained instance of MPNN-RL on an environment with dynamic topology. We simulate a scenario where the
optimal path changes over the course of an episode because of the addition of a new path. Shaded edges represent actions induced by the
MPNN-RL.

22



Graph Reinforcement Learning for Network Control via Bi-Level Optimization

Figure 9: Visualization of the MPNN-RL policy on the capacity-constrained environment. (Top) The resulting flow fij on the edges
0 → 1, 0 → 2, 0 → 3. (Center) The accumulated flow on the same edges compared to the fixed capacity cij = 20, represented as a
dashed horizontal line. (Bottom) The desired distribution described by the MPNN-RL policy.

Figure 10: Visualization of the multi-commodity environment. (Left) The topology considered during our experiments. (Center) A
visualization of the policy for the first commodity A. (Right) A visualization of the policy for the second commodity B.
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(a) (b) (c)

Figure 11: Parameter tuning for the S-type policy on (a) 1F2S, (b) 1F3S, and (c) 1F10S environments.
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