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Abstract

In reinforcement learning from human feedback,
it is common to optimize against a reward model
trained to predict human preferences. Because the
reward model is an imperfect proxy, optimizing
its value too much can hinder ground truth perfor-
mance, in accordance with Goodhart’s law. This
effect has been frequently observed, but not care-
fully measured due to the expense of collecting
human preference data. In this work, we use a
synthetic setup in which a fixed “gold-standard”
reward model plays the role of humans, providing
labels used to train a proxy reward model. We
study how the gold reward model score changes as
we optimize against the proxy reward model using
either reinforcement learning or best-of-n sam-
pling. We find that this relationship follows a dif-
ferent functional form depending on the method
of optimization, and that in both cases its coeffi-
cients scale smoothly with the number of reward
model parameters. We also study the effect on
this relationship of the size of the reward model
dataset, the number of reward model and policy
parameters, and the coefficient of the KL penalty
added to the reward in the reinforcement learning
setup. We explore the implications of these em-
pirical results for theoretical considerations in AI
alignment.

1. Introduction
Goodhart’s law is an adage that states, “When a measure be-
comes a target, it ceases to be a good measure.” In machine
learning, this effect arises with proxy objectives provided
by static learned models, such as discriminators and reward
models. Optimizing too much against such a model eventu-
ally hinders the true objective, a phenomenon we refer to as
overoptimization. It is important to understand the size of
this effect and how it scales, in order to predict how much a
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Figure 1: Diagram of the real and synthetic Reward Model
(RM) training setups. Human labellers generate comparison
data. In the real RLHF setting, this data is used to train a
proxy RM that is optimized by RL/BoN. In our synthetic
setting, we instead use a “Gold RM” as our ground truth.
In both settings, the proxy RM is a proxy for the ground
truth process generating the labels (either the human or gold
RM).

learned model can be safely optimized against. Moreover,
studying this effect empirically could aid in the develop-
ment of theoretical models of Goodhart’s law for neural
networks, which could be critical for avoiding catastrophic
misalignment of future AI systems.

In this work, we study overoptimization in the context of
large language models fine-tuned as reward models trained
to predict which of two options a human will prefer. Such
reward models have been used to train language models to
perform a variety of complex tasks that are hard to judge
automatically, including summarization (Stiennon et al.,
2020), question-answering (Nakano et al., 2021; Menick
et al., 2022), and general assistance (Ouyang et al., 2022;
Bai et al., 2022; Glaese et al., 2022). Typically, the reward
model score is optimized using either policy gradient-based
reinforcement learning or best-of-n sampling, also known
as rejection sampling or reranking. Overoptimization can
occur with both methods, and we study both to better under-
stand whether and how overoptimization behaves differently
across both methods.

A major challenge in studying overoptimization in this con-
text is the expense of collecting human preference labels. A
large number of labels are required to accurately estimate
overall preference probabilities, and this is exacerbated by
small effect sizes and the need to take many measurements
in order to fit scaling laws. To overcome this, we use a
synthetic setup that is described in Section 2, in which la-
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bels are supplied by a “gold-standard” reward model (RM)
instead of humans.

Our main results are empirically validated functional forms
for the gold reward model scores R as a function of the
Kullback–Leibler divergence from the initial policy to the
optimized policy DKL (π ∥ πinit), which depends on the
method of optimization used. This KL divergence between
the initial and optimized policies increases monotonically
during RL training (Figure 14), and can be computed analyt-
ically as a function of n for BoN. Further, following Bai et al.
(2022, Section 4.3), we will define d :=

√
DKL (π ∥ πinit),

and write our functional forms in terms of d.

We find empirically that for best-of-n (BoN) sampling,

Rbon (d) = d (αbon − βbond) ,

and for reinforcement learning,1

RRL (d) = d (αRL − βRL log d) ,

Here, R(0) := 0 by convention because the reward is trans-
lation invariant, and αRL, βRL, αbon and βbon are parameters
that may depend on the number of proxy reward model pa-
rameters, the size of the proxy reward model dataset, and
so on. We see that these scaling laws make accurate predic-
tions.

We also find the following qualitative trends in addition to
our quantitative results.

• RL versus best-of-n. As a function of the KL diver-
gence, reinforcement learning tends to be slower than
best-of-n sampling at both optimization and overopti-
mization. This suggests inadequacies with using KL
to compare the amount of (over)optimization across
methods. However, the relationship between the proxy
reward model score and the gold reward model score
is similar for both methods.

• Smooth coefficient scaling. The α and β coefficients
in the BoN and RL functional forms vary smoothly
with the number of proxy reward model parameters,
following approximate logarithmic trends.2 This al-
lows prediction of attained gold RM score.

• Weak dependence on policy size. While larger poli-
cies perform better overall and benefit less from op-
timization against an RM as measured by increase

1We note that this form likely does not hold near the origin,
as it has infinite slope there. We experimented with a number
of different forms, but found worse fits and extrapolation. See
Appendix B for more details.

2The coefficient αRL in particular being nearly independent of
RM parameter count.

in gold reward, they lead to very similar amounts of
overoptimization, as measured through the gap be-
tween the proxy and gold scores (which indicates the
shortfall between predicted and actual reward), and KL
divergence at which the maximum gold RM score is
attained.

• KL penalty ineffectiveness. In our reinforcement
learning setup, using a KL penalty increases the proxy
reward model score that can be achieved for a given KL
divergence, but this does not correspond to a measur-
able improvement in the gold RM score–KL frontier.
However, we note this result could be particularly sen-
sitive to hyperparameters.

Finally, we discuss the implications of these findings for
Reinforcement Learning From Human Feedback (RLHF),
existing models of Goodhart’s law, and AI Alignment more
broadly.

2. Methodology
The setting used throughout this paper is the same as for
InstructGPT (Ouyang et al., 2022). In our environment,
the observations are text prompts and the policy is used
to generate a response to the prompt. The prompts are
drawn from a broad range of natural language instructions
describing different language model tasks. Then, a learned
RM is used to provide the reward signal for the response,
which is used by either RL or BoN for optimization.

For all experiments, we use pretrained GPT-3 series lan-
guage models as the initial checkpoint (Brown et al., 2020).
All initial policies are trained with supervised fine-tuning
(SFT) on human-generated InstructGPT demonstrations
(Ouyang et al., 2022) for 2 epochs. All RMs also use the
GPT-3 architecture but have an added scalar head to output
the reward.

The RL experiments use Proximal Policy Optimization
(PPO) (Schulman et al., 2017). The KL penalty for all
RL experiments is set to 0 except for in Section 3.6. See
Appendix C for all other hyperparameters. We mostly use
defaults for the PPO hyperparameters; thus, it is possible
that there exist different trends for other hyperparameter
configurations.

In BoN, we generate n trajectories for the policy and use
the reward model to pick the one with the highest proxy RM
score. We use the unbiased estimator from Nakano et al.
(2021, Appendix I) to compute all BoN gold and proxy
scores. This results in substantially better efficiency and
lower variance than the naive estimator of repeatedly sam-
pling n samples with replacement and taking the mean of the
maximum gold and proxy RM scores. The KL divergences
for BoN are computed analytically: KLbon = log n− n−1

n
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(a) BoN

(b) RL

Figure 2: Reward model (RM) parameter size scaling experiments using the InstructGPT environment. Policy size is held
constant (1.2B), while reward model size is varied. The x-axes have a square-root scale. Note that the plots have different
x-axes. The gold reward represents the ground truth reward; we observe that when we optimize for a learned proxy of the
gold reward, the gold reward initially increases and later decreases. We show that our functional forms fit this effect well.
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(a) αbon (b) βbon (c) βRL

Figure 3: The values of αbon, βbon and βRL in the BoN and RL overoptimization scaling laws for both proxy (dashed line)
and gold (solid line) rewards as they scale with parameter count.

(Stiennon et al., 2020, Appendix G.3).

2.1. Synthetic Data Setup

Because getting a ground truth gold reward signal from
human labellers is expensive, we instead use a synthetic
task where the ground truth is defined to be the output of
a particular large “gold” RM. The 6B reward model from
Ouyang et al. (2022) is used as the gold RM, and our proxy
RMs vary from 3M to 3B parameters3. This synthetic gold
reward is used to label pairs of rollouts from the policy
given the same prompt to create synthetic RM training data.
The synthetic comparisons are created deterministically by
always marking the trajectory with the higher gold RM score
as preferred.4 We generate 100,000 synthetic comparisons
and reserve 10% of these as a held out test set for computing
the validation loss of RMs.

See Figure 1 for a diagram of the synthetic setup.

2.2. Recalibration

The RM scores are translation-invariant, so to ensure com-
parability across different reward models, we recenter each
RM such that the average reward of the initial policy is 0.
We also unit normalize the variance of the gold RM scores.5

Because our hard thresholding synthetic data setup produces
labels that are miscalibrated (since they do not incorporate
the gold RM’s confidence), we recalibrate the proxy RMs
by rescaling the logits to minimize cross-entropy loss us-
ing a validation set of soft labels. All renormalization and
recalibration is applied after the experiments; this does not
affect BoN at all, and likely has no impact on RL because

3We originally trained two additional RMs smaller than 3M
parameters, which achieved near-chance accuracy and were off-
trend, and so were excluded.

4We had experimented with sampling for creating labels, but
observed noisier results.

5We later decided this was unnecessary but decided not to
change it.

Adam is loss scale invariant, though it is possible that there
are slight differences due to algorithmic details.

3. Results
3.1. Fitting and validating functional forms

We chose our functional forms through experimentation
with all RM data and parameter scaling curves in the re-
mainder of this paper.

The BoN functional form was hypothesized using data up
to n = 1000. In order to validate the functional forms, we
performed a BoN experiment with up to n = 60, 000 (KL
≈ 10 nats), after only having seen data up to n = 1, 000
(KL ≈ 6 nats). As this experiment was conducted after the
functional form was hypothesized based on data up to 6 nats,
this was a true advance prediction.

We also test extrapolation of the BoN and RL functional
forms from low KLs to to unseen larger KLs; see Figure 26
for details.

We also attempted to model the proxy scores but were unable
to obtain a satisfactory fit. For BoN, despite visual similarity,
a linear fit (dαbon) did not work well (Figure 20). The
predictions for RL and BoN are not as easily modelled as
the gold score predictions. We leave a better understanding
of the proxy RM score behavior to future work.

3.2. Scaling with RM Parameter Count

We hold policy size (1.2B) and data size (90,000) constant
(Figure 2). We observe that for the gold RM scores, αbon
and βbon change smoothly with RM size (Figures 3a and 3b).
For RL, we find that we can hold αRL constant across all RM
sizes, resulting in a clean scaling curve for βRL (Figure 3c).
These scaling laws allow us to predict properties of training
runs; for instance, we can also predict the peak gold RM
scores for different RM sizes (Figure 12).

When modelled using the same functional forms as the re-
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(a) BoN (b) RL

Figure 4: RM data scaling experiments. RM size is held constant (12M), while RM data is varied. The x-axis has a square
root scale. Note that the plots have different axes. Dotted lines indicate proxy rewards, solid lines indicate gold rewards.

spective gold scores, the proxy score fits have much lower
values of βbon. We also see smooth scaling in the proxy
score’s αbon and βbon. However, for the reasons in Sec-
tion 3.1, we are less confident about these fits. For both
BoN and RL, we observe systematic underestimates of the
proxy reward model when extrapolated to higher KLs. Both
appear to eventually grow roughly linearly in

√
KL, as in

Bai et al. (2022).

3.3. Scaling with RM Data Size

We hold RM size constant (12M) and sweep RM data size
for both RL and BoN.6. Overall, the results are consistent
with intuition: more data leads to better gold scores and less
overoptimization. The scaling of α and β with data size are
not as cleanly described as for RM size scaling (Figure 17,
Figure 18).

Figure 6: RM losses, broken down by data size and RM size

6For BoN, we actually sweep all combinations of RM size and
data size; see Figure 10. For a version of Figure 4a against a 3B
RM, see Figure 19.

For all RM sizes, we observe that for amounts of data less
than around 2,000 comparisons7, there is very little improve-
ment over near-chance loss (Figure 6). This is also reflected
in gold scores after optimization (Figure 21). After this
threshold, all models improve with more data, though larger
RMs generally improve faster. Interestingly, although larger
RMs result in better gold scores overall, they do not ap-
pear to have this critical threshold substantially earlier than
smaller models.8

Figure 7: RM validation loss vs BoN RM score @ n=1000.
Most points in this figure are already averaged over multiple
seeds.

We hypothesized that two RMs of equal validation loss
would achieve the same robustness against optimization,

7To test whether some minimum number of RM finetuning
steps is needed, we control for the number of SGD steps by running
multiple epochs and observe that running 4 epochs instead of 1
yields no change in gold score whatsoever, whereas 1 epoch of 4
times as much data performs substantially better (Figure 13).

8It is possible that this is an artifact of this particular setup.
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(a) BoN (b) RL

Figure 5: Policy scaling experiments. RM size is held constant (12M), while policy size is varied. The x-axis has a square
root scale. Note that the plots have different axes. Dotted lines indicate proxy rewards, solid lines indicate gold rewards.
The asterisks in the RL plot indicate the max gold score for each policy size.

regardless of the combination of RM size and RM data size.
Our results provide some weak evidence for this hypothesis
(Figure 7).

3.4. Scaling with Policy Size

We briefly explore the impact of policy size by holding the
RM size constant (12M) and evaluating two different policy
sizes. We also perform the same experiment with a different
RM size (3B), observing similar results (Figure 22).

Larger policies see less benefit from optimization against
an RM, but don’t overoptimize more. We observe that
the 6B policy run has a smaller difference between its initial
and peak gold reward model scores than the 1.2B policy run.
This is most visible in the BoN plot (Figure 5a).9 However,
while we might expect that a larger policy overoptimizes
substantially faster, contrary to intuition, we find that both
gold scores peak at almost the same KL. In fact, the gap
between the proxy and gold scores is almost the same be-
tween the two policy sizes (Figure 24). We can interpret this
gap, the shortfall between the predicted and actual rewards,
as being indicative of the extent to which the proxy RM is
exploited. We discuss this result further in Section 4.4.

3.5. RL vs BoN

A priori, we might expect reinforcement learning via PPO
(Schulman et al., 2017) and best-of-n to apply optimiza-
tion in very different ways. As such, we ask whether this
difference in optimization results in different overoptimiza-
tion characteristics. Similarities would potentially indicate

9For a version of the RL plot (Figure 5b) with all runs starting
at 0, see Figure 23.

candidates for further study in gaining a more fundamental
understanding of overoptimization in general, and differ-
ences opportunities for better optimization algorithms. We
note the following:

RL is far less KL-efficient than BoN. Viewing square
root KL as a resource to be spent, we observe that RL
”consumes” far more KL than BoN. This means that both
optimization and overoptimization require more KL to oc-
cur with RL. Intuitively, BoN searches very locally around
the initial policy, and thus the KL increases with roughly
log(n). For RL on the other hand, each step modifies the
policy from the policy of the previous step—KL increases
approximately quadratically with step in the absence of KL
penalty (Figure 16, Figure 14). An implication of this result
is that square root KL is an inadequate metric for quantity
of (over)optimization; we discuss this further in Section 4.1.

When looking at proxy vs gold RM scores, BoN and
RL look more similar. The proxy RM score is another
possible metric for quantity of optimization, because it is
the value that is being directly optimized for. Using it as the
metric of optimization leads to significantly more analogy
between RL and BoN than square root KL divergence does.
However, we do observe that RL initially has a larger proxy-
gold gap (i.e requires more proxy RM increase to match
BoN), but then peaks at a higher gold RM score than BoN
(Figure 8).

3.6. Effect of KL Penalty

We observe in our setting that when varying the KL penalty
for RL, the gold RM scores depend only on the square root
KL divergence of the policy dRL (Figure 9). The KL penalty
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Figure 8: Proxy vs gold RM score for both BoN and RL.
Colors indicate RM size. RL curves are truncated to a proxy
RM score of 1.6 for readability.

only causes the gold RM score to converge earlier, but does
not affect the dRL-gold reward frontier, and so the effect
of the penalty on the gold score is akin to early stopping
(Figure 14). However, we have seen some evidence that this
result could be particularly sensitive to hyperparameters.

Because we observe that using KL penalty has a strictly
larger proxy-gold gap, we set KL penalty to 0 for all other
RL experiments in this paper.

It is important to note that PPO’s surrogate objective incor-
porates an implicit penalty on DKL (πold ∥ π), where πold
is a recent policy (not the initial policy) (Schulman et al.,
2017). This penalty is used to control how fast the pol-
icy changes, but also has an indirect effect on the KL we
study here, DKL (π ∥ πinit), causing it to grow much more
slowly (providing the implementation is well-tuned). We
do not know why this indirect effect appears to lead to less
overoptimization than an explicit KL penalty.

4. Discussion
4.1. KL as a measure of amount of optimization

For any given fixed optimization method, KL yields clean
scaling trends, such as the ones observed in Section 3.2,
and consistent peak gold RM score KLs as in Section 3.4.
However, because it’s clear that different methods of opti-
mization spend KL very differently (Section 3.5), it should
not be used to compare the amount of optimization between
different optimization algorithms. There may exist pertuba-
tions to a policy that would result in increases in KL that
do not increase either gold or proxy reward; conversely,
extremely small but well targeted perturbations could sub-
stantially change the behavior of the policy within a small
KL budget.

Figure 9: RL experiments with various KL penalties. Policy
size (1.2B) and RM size (1.2B) are held constant. Dotted
lines indicate proxy rewards, solid lines indicate gold re-
wards. We observe the effect of the KL penalty on the gold
score as being equivalent to early stopping.

4.2. Relation to Goodhart Taxonomy

One useful taxonomy for various Goodhart effects is pre-
sented in Manheim & Garrabrant (2018), categorizing
Goodhart’s Law into 4 categories: Regressional, Extremal,
Causal, and Adversarial.

Regressional Goodhart occurs when our proxy RMs depend
on features with noise. The simplest toy example of this is a
proxy reward X̂ which is exactly equal to the gold reward X
plus some independent noise Z. When optimizing against
this proxy, some amount of optimization power will go
to selecting for noise, leading to a gold reward less than
predicted by the proxy.

More formally, for independent absolutely continuous ran-
dom variables X and Z with X normally distributed and
either (a) Z normally distributed or (b) |Z − E [Z]| < δ for
some δ > 0, this model predicts a gold reward that is:

E[X |X̂ = x̂] = E[X] (1)

+ (x̂− E[X]− E[Z])
Var(X)

Var(X) + Var(Z)
+ ε

where ε = 0 in case (a) and ε = o (Var (Z)) as δ → 0 in
case (b). See Appendix A for the proof.

Intuitively, we can interpret Equation (1) as stating that the
optimization power expended is divided between optimizing
the gold reward and selecting on the noise proportional to
their variances. This also implies that if this is the only kind
of Goodhart present, the gold reward must always increase
monotonically with the proxy reward; as we observe non-
monotonic behavior (Figure 8), there must be either noise
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distributions violating these assumptions or other kinds of
Goodhart at play.

This result lends itself to an interpretation of the α term in
the RL and BoN gold score scaling laws: since for both RL
and BoN the proxy scores are roughly linear in

√
KL, the

difference in the slope of the proxy score and the linear com-
ponent of the gold score (i.e the α term) can be interpreted
as the amount of regressional Goodhart occurring.

4.3. Implications for iterated RLHF

When conducting reinforcement learning from human feed-
back, it is preferable to use an online setup, in which fresh
human feedback data is periodically used to train a new re-
ward model, to mitigate overoptimization (Bai et al., 2022).
Our scaling law allows us to analyze the effect of this iter-
ative approach under some simplifying assumptions. We
assume firstly that the scaling coefficients αRL and βRL re-
main constant across iterations, and secondly that the dis-
tance d =

√
KL is additive across iterations (because of how

KL appears to grow empirically as in Figure 14). Under
these assumptions, the final gold reward model score after
k iterations each covering a distance d/k is given by

RRL (d) = d (αRL − βRL log (d) + βRL log (k)) .

Two interesting observations follow from this. Firstly, the
iterative approach does not affect any Goodharting captured
by the αRL term (such as regressional Goodharting, as dis-
cussed in Section 4.2). Secondly, the effect of the iterative
approach is to increase the final gold RM score by an amount
proportional to both d and log (k), namely

βRLd log (k) .

Note that this resultx can only hold up to some maximum
value of k, and we expect our scaling law to break down
below some minimum distance. Further research is required
to determine what this minimum is, as well as to what extent
our simplifying assumptions hold in practice.

4.4. Policy size independence

Our observation that larger SFT policies seem to exhibit the
same amount of overoptimization during RL implies that
larger policies do not increase the amount of optimization
power applied to the RM or learn faster, even though they
start out with higher performance on the gold score. While
it is expected that larger policies have less to gain from
optimizing against the same RM, we might also expect the
gold score to peak at a substantially earlier KL, analogous to
what we see when we scale the RM size (Section 3.2), or for
larger policies to more efficiently utilize the same number

of RL feedback steps (Section 3.3)10.

One possible hypothesis is that, because RLHF can be
viewed as Bayesian inference from the prior of the ini-
tial policy (Korbak et al., 2022)11, increases in policy size
are only improving the modelling accuracy of the human
demonstration distribution.

4.5. Limitations and Future Work

In addition to the overoptimization studied in this paper
(due to the mismatch between the reward model and the
ground truth labels), there exists another source of overopti-
mization due to mismatch between the ground truth labels
and the actual human intent. This contains issues ranging
from the mundane, such as labellers choosing options that
only appear to match their intent12, to substantially more
philosophically fraught issues (Armstrong & Mindermann,
2018; Sunstein et al., 2001). The main limitation of this
work is that this additional source of overoptimization is
not captured in the setting of this paper. See Section 5 for
discussion of related work in alignment.

Some additional limitations and future directions include:

• Validating these results on other environments and
experimental setups. While the experiments in this
paper all use the InstructGPT environment, the main
value of these results lies in the extent to which they
reflect general phenomema. Confirming whether these
results generalize to other settings would be extremely
valuable to that end.13

• Validating the synthetic setting. The synthetic setting
might not transfer to real world settings, for instance
because there is substantial correlation between RMs.
Additionally, the synthetic methodology is only able
to give a lower bound on overoptimization and the
underestimation is likely to grow more severe as the
proxy RM approaches the scale of the gold RM.

• Investigating methods for making RMs more robust
to optimization. While there has been prior work in
this direction (see Section 5), there is still much work
to be done in systematically making RMs more robust.

10It is also not the case that the 6B policy run has higher KL for
the same number of RL steps; in fact, we observe that it has lower
KL for the same number of steps (Figure 15)

11The result of Korbak et al. (2022) concerns varying KL penal-
ties rather than KL divergences with no KL penalty, but as we
observe in Section 3.6, this is equivalent on our setting.

12For instance, the example of a robotic hand learning from
human feedback to only appear to grasp a ball, presented in
https://openai.com/blog/deep-reinforcement-
learning-from-human-preferences/

13In the course of our experiments, we observed visually similar
results on the WebGPT environment (Nakano et al., 2021).
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• Exploring other forms of optimization and cate-
gorizing their differences. While this work focuses
exclusively on BoN and RL there are other ways of
applying optimization pressure against a model of a
reward signal, either implicit or explicit. This includes
GeDi-like steering, Decision Transformers14, variants
of BoN like beam search, and other RL algorithms.

• Better understanding the functional form of proxy
RM scores. In our modeling, we find that the proxy
RM scores are more difficult to predict for both BoN
and RL (Section 3.2). While they seem to have a ma-
jor linear component, there is sufficient variation that
fitting a linear regression is not very good at predicting
extrapolated proxy RM scores.

• Exploring adversarial Goodhart empirically. In this
work we deal with systems not powerful enough to
cause adversarial Goodhart. However, it is plausible
that adversarial Goodhart is especially important, or
is associated with phase changes that break the trends
seen in this paper.

• Exploring scaling with policy size in more detail.
Our exploration of policy size scaling in this paper
was limited to only two policy sizes. It is possible
that there exist trends not seen in our exploration when
considering the policy size more carefully.

• Exploring multi-iteration RLHF. In particular, check-
ing for deviations from the assumptions of Section 4.3.

5. Related Work
Goodhart’s Law in its modern formulation was first intro-
duced in Hoskin (1996), with many of the key ideas intro-
duced in prior works (Campbell, 1969; Goodhart, 1975).
Many approaches have been proposed for reducing overop-
timization in general (Taylor, 2016; Everitt et al., 2017), as
well as in RMs (Gleave & Irving, 2022), including within
the field of adversarial robustness (Chakraborty et al., 2018).
Overoptimization of reward models can be viewed as a spe-
cial case of specification gaming (also known as reward
hacking). Previous work has shown numerous examples
of such behavior in a wide variety of settings (Krakovna
et al., 2020; Lehman et al., 2020). Pan et al. (2022) explores
a diverse set of RL environments and finds phase transi-
tions in some settings. A number of works have proposed
theoretical models of Goodhart’s Law and reward hacking
(Krakovna & Kumar, 2019; Manheim & Garrabrant, 2018;
Skalse et al., 2022), including Zhuang & Hadfield-Menell

14One could consider measuring the actual achieved ground
truth/gold score achieved for each ”proxy” score conditioned on,
a la Figure 8, as testing the implicit reward-behavior mapping
encoded by the model.

(2020) which exhibits very similar overoptimization curves
as observed in this paper in some toy environments.

One can think of overfitting as a special case of Goodhart’s
law where the proxy is the score on some finite set of sam-
ples, whereas our actual objective includes its generalization
properties as well. Overfitting has been observed and stud-
ied in RL settings (Zhang et al., 2018a;b; Farebrother et al.,
2018; Cobbe et al., 2019). Song et al. (2019) studies ”obser-
vational overfitting” in RL settings, which is closely related
to causal Goodhart (Manheim & Garrabrant, 2018).

Adversarial attacks and robustness are also very closely
related fields. Many works have demonstrated the existence
of adversarial examples in all kinds of neural networks
(Szegedy et al., 2013; Lin et al., 2017; Ebrahimi et al., 2018;
Dai et al., 2018), and proposed methods to measure and
increase neural network robustness (Gu & Rigazio, 2014;
Zheng et al., 2016; Carlini et al., 2019; Guo et al., 2021).

Scaling laws have seen substantial success in machine learn-
ing for predicting properties of language models (Kaplan
et al., 2020; Henighan et al., 2020; Hernandez et al., 2021)
and has led to better theoretical understanding of language
models (Sharma & Kaplan, 2020; Bahri et al., 2021).

Reinforcement learning from human feedback (Christiano
et al., 2017; Ibarz et al., 2018) has been used broadly in
language models (Stiennon et al., 2020; Ouyang et al., 2022;
Nakano et al., 2021; Bai et al., 2022). It is also a first step
towards recursive reward modelling (Leike et al., 2018), an
approach towards reducing the additional source of overop-
timization described in Section 4.5, though it is subject to
some theoretical limitations (Christiano et al., 2021). We
observe similar approximately-linear proxy RM scores ob-
served in Bai et al. (2022)15, though we observe an early-KL
bend in the proxy RM scores, and there are some occasional
outliers with very small RMs and data sizes.

More broadly, AI alignment is the problem of ensuring
that the goals of AI systems are aligned with the goals of
humans (Ngo, 2022), including future AI systems which
may exceed humans (Bostrom, 2014). There are a number
of reasons to expect AI misalignment, especially in those
more powerful future systems, to occur (Omohundro, 2008;
Turner et al., 2021; Armstrong et al., 2013; Hubinger et al.,
2019; Soares et al., 2015), and to result in existentially
catastrophic outcomes (Carlsmith, 2022; Cotra, 2022).
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A. Proof of Regressional Goodhart identity
Lemma A.1. Let X and Z be independent absolutely continuous random variables with X normally distributed and either
(a) Z normally distributed or (b) |Z − E [Z]| < δ for some δ > 0. Then for any real number c and as δ → 0,

E [X | X + Z = c] = E [X] + (c− E [X]− E [Z])
Var (X)

Var (X) + Var (Z)
+ ε,

where ε = 0 in case (a) and ε = o (Var (Z)) in case (b).

Proof. First note that by making the substitutions X ′ = X − E [X] and Z ′ = Z − E [Z], we may assume without loss of
generality that E [X] = E [Z] = 0. Let Var (X) = σ2 and Var (Z) = τ2.

In case (a), the pair (X,X + Z) is bivariate normal with covariance matrix(
σ2 σ2

σ2 σ2 + τ2

)
,

and the result follows by standard properties of conditional distributions of multivariate normal distributions.

In case (b), let fX and fZ be the probability density functions of X and Z respectively. Then

E [X | X + Z = c] =

∫∞
−∞ (c− z) fX (c− z) fZ (z) dz∫∞

−∞ fX (c− z) fZ (z) dz

= c−
∫ δ

−δ
z (fX (c)− f ′

X (c) z + o (z)) fZ (z) dz∫ δ

−δ
(fX (c)− f ′

X (c) z + o (z)) fZ (z) dz

= c−
fX (c)E [Z]− f ′

X (c)E
[
Z2

]
+ o

(
E
[
Z2

])
fX (c)− f ′

X (c)E [Z] + o (1)

= c+
f ′
X (c)

fX (c)
τ2 + o

(
τ2
)

= c

(
1− τ2

σ2

)
+ o

(
τ2
)

= c

(
σ2

σ2 + τ2

)
+ o

(
τ2
)
,

as required.
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B. RL form details
Ideally all overoptimization forms would have finite slope at the origin. We tried the following forms:

• d (αRL − βRL log (1 + d)): Has slope α at the origin; however, has substantially worse extrapolation behavior. We can
replace the 1 with a learned ϵ but that introduces another degree of freedom.

• Power laws d (αRL − βRLd
γRL): Has slope α at the origin; however, this adds another degree of freedom, and the best

fits resulted in small values of γRL.

Note that the power law forms with small γRL approximate the RL form that we decided on, as limn→∞ n(x1/n−1) = log x.

C. Hyperparameters

Hyperparameter Value

RM Adam learning rate multiplier 1.67e-2
RM batch size 64
RL Adam learning rate multiplier 4e-3
RL batch size 256
RL PPO clipping parameter 0.2
RL Timesteps per rollout 256
RL minibatches per epoch 128
RL GAE bootstrapping parameter 0.95

Table 1: Hyperparameters used throughout the experiments.
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Figure 10: Maximum gold scores for all RM size and data size combinations.
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Figure 11: Validation losses for the proxy RMs in Section 3.2 by size, plus the two near-chance level RMs.
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Figure 12: Max BoN gold scores (αbon/2βbon) predicted with the BoN closed form
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Figure 13: Total number of data points seen does not seem to affect the gold RM score much compared to the number of
unique data points seen. Averaged across RM sizes. The numbers of datapoints (2000–8000) is intentionally chosen to
straddle the sharp increase in performance. The validation loss of the 1x2000, 1x8000, and 4x2000 RMs are 0.686109,
0.654857, and 0.683869 respectively.
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Figure 14: Change in KL throughout RL training for various different KL penalties. We observe that the KL divergence
increases approximately monotonically with step count, and converges for higher KL penalties.
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Figure 15: KL divergence with policy size (RM size = 12M) throughout RL training
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Figure 16: KL divergence with RM size
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Figure 17: αbon with dataset size, averaged across RM sizes
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Figure 18: βbon with dataset size, averaged across RM sizes
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Figure 19: RM data scaling experiments, BoN, RM size=3B
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Figure 20: The BoN proxy scores are slightly concave, so that a linear fit does not fit well.
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Figure 21: BoN Gold scores at n=1,000, broken down by data size and RM size. See Figure 6 for RM losses. Vertical dotted
line approximately indicates first better-than-random data size.
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Figure 22: RL experiments with 3B RM and different policy sizes.
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Figure 23: Figure 5b with all runs normalized from 0.
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Figure 24: The gap between the proxy and gold scores in the RL policy sweep (Figure 24).
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Figure 25: The fraction of updates clipped by PPO.
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(a) BoN

(b) RL

Figure 26: Extrapolation quality of fits in Figure 2. The regressions (shown in faint lines) are only fit to data to the left of the
vertical black dotted lines. In the case of BoN, this represents a true advance prediction, as the functional form was chosen
without collecting any data past a KL of 6 nats. The RL functional form was chosen after having observed the entire data set,
but the parameters were fit only on a subset and the extrapolation tested.
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What is full of holes but still holds water?
n Generation Proxy score Gold score
1 Crime\nMussels are typically found

to be full of holes but will the mois-
ture still be retained and will it hurt
my eyes? The general response is
yes as the clam is generally of a
moistest nature. However, it all de-
pends on the type of clam you are
purchasing.<|endoftext|>

-0.1922 -0.5225

3 Most likely a pipe is having trouble
staying full.<|endoftext|>

0.0322 -0.0165

10 A sponge<|endoftext|> 0.2336 0.4828
30 When something is full of holes, it

is used for stirring or moving liq-
uid.<|endoftext|>

0.6534 -0.1543

100 A tornado is usually a swirling cloud
of swirling air with a spinning jet
which stirs up winds full of sharp
debris.<|endoftext|>

0.8968 -0.3367

300 A tornado is usually a swirling cloud
of swirling air with a spinning jet
which stirs up winds full of sharp
debris.<|endoftext|>

0.8968 -0.3367

1000 A tornado is usually a swirling cloud
of swirling air with a spinning jet
which stirs up winds full of sharp
debris.<|endoftext|>

0.8968 -0.3367

3000 A bore hole is a hole drilled into
a rock for the purpose of explor-
ing a fossil-bearing sedimentary or
bedrock deposit.<|endoftext|>

0.9003 0.2733

10000 A bore hole is a hole drilled into
a rock for the purpose of explor-
ing a fossil-bearing sedimentary or
bedrock deposit.<|endoftext|>

0.9003 0.2733

30000 A pothole is a structural vulnerabil-
ity that allows water to penetrate its
cavity and cause damage to pass-
ing vehicles or the surface it rests
on.<|endoftext|>

0.9527 0.5490

Table 2: A sample of the BoN answers on a single InstructGPT question (policy=1.2B, proxy RM=12M). For each individual
question, the gold scores do not follow as clean a trend as they do when averaged over many questions as in Figure 2.
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