
Towards Reliable Neural Specifications

Chuqin Geng * 1 2 Nham Le * 3 Xiaojie Xu 1 2 Zhaoyue Wang 1 2 Arie Gurfinkel 3 Xujie Si 2 4

Abstract

Having reliable specifications is an unavoidable
challenge in achieving verifiable correctness, ro-
bustness, and interpretability of AI systems. Ex-
isting specifications for neural networks are in
the paradigm of data as specification. That is,
the local neighborhood centering around a ref-
erence input is considered to be correct (or ro-
bust). While existing specifications contribute
to verifying adversarial robustness, a significant
problem in many research domains, our empir-
ical study shows that those verified regions are
somewhat tight, and thus fail to allow verifica-
tion of test set inputs, making them impractical
for some real-world applications. To this end,
we propose a new family of specifications called
neural representation as specification. This form
of specifications uses the intrinsic information of
neural networks, specifically neural activation pat-
terns (NAPs), rather than input data to specify the
correctness and/or robustness of neural network
predictions. We present a simple statistical ap-
proach to mining neural activation patterns. To
show the effectiveness of discovered NAPs, we
formally verify several important properties, such
as various types of misclassifications will never
happen for a given NAP, and there is no ambi-
guity between different NAPs. We show that by
using NAP, we can verify a significant region of
the input space, while still recalling 84% of the
data on MNIST. Moreover, we can push the veri-
fiable bound to 10 times larger on the CIFAR10
benchmark. Thus, we argue that NAPs can poten-
tially be used as a more reliable and extensible
specification for neural network verification.

*Equal contribution 1McGill University 2Mila Quebec AI Insti-
tute 3University of Waterloo 4University of Toronto. Correspon-
dence to: Chuqin Geng <chuqin.geng@mail.mcgill.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
The advances in deep neural networks (DNNs) have brought
a wide societal impact in many domains such as transporta-
tion, healthcare, finance, e-commerce, and education. This
growing societal-scale impact has also raised some risks
and concerns about errors in AI software, their suscepti-
bility to cyber-attacks, and AI system safety (Dietterich &
Horvitz, 2015). Therefore, the challenge of verification and
validation of AI systems, as well as, achieving trustwor-
thy AI (Wing, 2021), has attracted much attention of the
research community. Existing works approach this chal-
lenge by building on formal methods – a field of computer
science and engineering that involves verifying properties
of systems using rigorous mathematical specifications and
proofs (Wing, 1990). Having a formal specification — a pre-
cise, mathematical statement of what AI system is supposed
to do is critical for formal verification. Most works (Katz
et al., 2017; 2019; Huang et al., 2017; 2020; Wang et al.,
2021) use the specification of adversarial robustness for clas-
sification tasks that states that the NN correctly classifies
an image as a given adversarial label under perturbations
with a specific norm (usually L8). Generally speaking, ex-
isting works use a paradigm of data as specification — the
robustness of local neighborhoods of reference data points
with ground-truth labels is the only specification of correct
behaviors. However, from a learning perspective, this would
lead to overfitted specification, since only local neighbor-
hoods of reference inputs get certified and the generalization
to unseen data points may not be guaranteed.

As a concrete example, Figure 1 illustrates the fundamental
limitation of such overfitted specifications. Specifically, a
testing input like the one shown in Figure 1a can hardly
be verified even if all local neighborhoods of all training
images have been certified using the L8 norm. This is be-
cause adversarial examples like Figure 1c fall into a much
closer region compared to testing inputs (e.g., Figure 1a),
as a result, the truly verifiable region for a given reference
input like Figure 1b can only be smaller. All neural network
verification approaches following such data-as-specification
paradigm inherit this limitation regardless of their underly-
ing verification techniques. In order to avoid such a limita-
tion, a new paradigm for specifying what is correct or wrong
is necessary. The intrinsic challenge is that manually giving
a proper specification on the input space is no easier than

1

Towards Reliable Neural Specifications

(a) A testing image from MNIST,
classified as 1

(b) The closest training image in
MNIST, whose L8 distance to
Fig. 1a is 0.5294

(c) An adversarial example mis-
classified as 8, whose L8 dis-
tance to Fig. 1b is 0.2

(d) A testing image, on which
our verified NAP (for digit 1) dis-
agrees with the ground truth (i.e.,
7)

Figure 1. The limitation of “data-as-specification”: First three images show that a test input can be much further away (in L8) from its
closest train input compared to adversarial examples (the upper bound of a verifiable local region). The last image shows that even data
itself can be imperfect.

directly programming a solution to the machine learning
problem itself. We envision that a promising way to address
this challenge is developing specifications directly on top
of, instead of being agnostic to, the learned model.

We propose a new family of specifications, neural represen-
tation as specification, where neural activation patterns form
specifications. The key observation is that inputs from the
same class often share a neural activation pattern (NAP) – a
carefully chosen subset of neurons that are expected to be ac-
tivated (or not activated) for the majority of inputs in a class.
Although two inputs are distant in a certain norm in the
input space, the neural activations exhibited when the same
prediction is made are very close. For instance, we can find
a single NAP that is shared by nearly all training and testing
images (including Figure 1a and Figure 1b) in the same
class but not the adversarial example like Figure 1c. We
can further formally verify that all possible inputs following
this particular NAP can never be misclassified. Specifica-
tions based on NAP enable successful verification of a broad
region of inputs, which would not be possible if the data-as-
specification paradigm were used. For the MNIST dataset, a
verifiable NAP mined from the training images could cover
up to 84% testing images, a significant improvement in con-
trast to 0% when using neighborhoods of training images
as the specification. To our best knowledge, this is the first
time that a significant fraction of unseen testing images have
been formally verified.

This unique advantage of using NAPs as specification is
enabled by the intrinsic information (or neural representa-
tion) embedded in the neural network model. Furthermore,
such information is a simple byproduct of a prediction and
can be collected easily and efficiently. Besides serving as
reliable specifications for neural networks, we foresee other
important applications of NAPs. For instance, verified NAPs

may serve as proofs of correctness or certificates for pre-
dictions. We hope our initial findings shared in this paper
would inspire new interesting applications. We summarize
our contribution as follows:

• We propose a new family of formal specifications for
neural networks, neural representation as specification,
which use activation patterns (NAPs) as specifications.
We also introduce a tunable parameter to specify the
level of abstraction of NAPs.

• We propose a simple yet effective approximate method
to mine NAPs from neural networks and training
datasets.

• We show that NAPs can be easily checked by out-
of-the-box neural network verification tools used in
VNNCOMP – the annual neural network verification
competition, such as Marabou.

• We conduct thorough experimental evaluations from
both statistical and formal verification perspectives.
Particularly, we show that a single NAP is sufficient
for certifying a significant fraction of unseen inputs.

2. Background
2.1. Neural Networks for Classification Tasks

In this paper, we focus on feed-forward neural networks for
classification (including convolutional neural nets). A neu-
ral network N of L layers is a set tpW i, biq | 1 ď i ď Lu,
where W i and bi are the weight matrix and the bias for layer
i, respectively. The neural network N defined a function
FN : Rd0 Ñ RdL (d0 and dL represent the input and out-
put dimension, respectively), defined as FN pxq “ zLpxq,
where z0pxq “ x, zipxq “ W iσpzi´1pxqq ` bi and σ is

2

Towards Reliable Neural Specifications

the activation function. Neurons are indexed linearly by
v0, v1, ¨ ¨ ¨ . In this paper we focus only on the ReLU acti-
vation function, i.e., σpxq “ maxpx, 0q element-wise, but
the idea and techniques can be generalized for different acti-
vation functions and architectures as well. The ith element
of the prediction vector FN pxqris represents the score or
likelihood for the ith label, and the one with the highest
score (argmaxi FN pxqris) is often considered as the pre-
dicted label of the network N . We denote this output label
as ON pxq. When the context is clear, we omit the subscript
N for simplicity.

2.2. Adversarial Attacks against Neural Networks and
the Robustness Verification Problem

Given a neural network N , the aim of adversarial attacks
is to find a perturbation υ of an input x, such that x and
x ` υ are “similar” according to some domain knowledge,
yet Opxq ‰ Opx ` υq. In this paper, we use the common
formulation of “similarity” in the field: two inputs are sim-
ilar if the L8 norm of υ is small. Under this formulation,
finding an adversarial example can be defined as solving the
following optimization problem:1

min||υ||8 s.t. Opxq ‰ Opx ` υq (1)

In practice, it is very hard to formally define “similar”:
should an image and a crop of it be “similar”? Should
two sentences differ by one synonym be the same? We
refer curious readers to the survey (Xu et al., 2020) for a
comprehensive review of different formulations.

One natural defense against adversarial attacks, called ro-
bustness verification, is to prove that min ||υ||8 must be
greater than some user-specified threshold ϵ. Formally,
given that Opxq “ i, we verify

@x1 P Bpx, ϵq ¨ @j ‰ i ¨ F px1qris ´ F px1qrjs ą 0 (2)

where Bpx, ϵq is a L8 norm-ball of radius ϵ centered at x:
Bpx, ϵq “ tx1 | ||x ´ x1||8 ď ϵu. If Equation (2) holds, we
say that x is ϵ-robust.

3. Neural Activation Patterns
In this section, we discuss in detail neural activation patterns
(NAPs), what we consider as NAPs and how to relax them,
and what interesting properties of NAPs can be checked
using neural network verification tools like Marabou (Katz
et al., 2019).

1While there are alternative formulations of adversarial robust-
ness (see Xu et al. (2020)), in this paper, we use adversarial attacks
as a black box, thus, stating one formulation is sufficient.

3.1. NAPs and Their Relaxation

In our setting (Section 2), the output of each neuron is passed
to the ReLU function before going to neurons of the next
layer, i.e., zipxq “ W iσpzi´1pxqq ` bi. We abstract each
neuron into two states: activated (if its output is positive)
and deactivated (if its output is non-positive). Clearly, for
any given input, each neuron can be either activated or
deactivated.

Definition 3.1 (Neural Activation Pattern). A Neural Ac-
tivation Pattern (NAP) of a neural network is a tuple
P :“ pA,Dq, where A and D are two disjoint subsets of
activated and deactivated neurons, respectively. Note that
P excludes the neurons that could be either activated or
deactivated. An example is shown in Table 2. Hence A

Ť

D is only a subset of all neurons in a neural network.

Definition 3.2 (Partially ordered NAP). For any given two
NAPs P̄ :“ pĀ, D̄q and P :“ pA,Dq. We say P̄ subsumes
P iff A,D are subsets of Ā, D̄ respectively. Formally, this
can be defined as:

P̄ ď P ðñ Ā Ě A and D̄ Ě D (3)

Moreover, two NAPs P̄ and P are equivalent if P̄ ď P and
P ď P̄ .

Definition 3.3 (NAP Extraction Function). A NAP Extrac-
tion Function E takes a neural network N and an input x as
parameters, and returns a NAP P :“ pA,Dq where A and
D represent all the activated and deactivated neurons of N
respectively when passing x through N .

With the above definitions in mind, we are able to describe
the relationship between an input and a specific NAP. An
input x follows a NAP P of a neural network N if:

EpN , xq ď P (4)

For a given neural network N and an input x, it is possible
x follows multiple NAPs. In addition, there are some trivial
NAPs such as pH,Hq that can be followed by any input.
From the representational learning point of view, these triv-
ial NAPs are the least specific abstraction of inputs, which
fails to represent data with different labels. Thus, we are
prone to study more specific NAPs due to their rich represen-
tational power. Moreover, an ideal yet maybe impractical
scenario is that all inputs with a specific label follow the
same NAP. Given a label ℓ, and let S be the training dataset,
and Sℓ be the set of data labeled as ℓ, Formally, this scenario
can be described as:

@x P Sℓ ¨ EpN , xq ď Pℓ ðñ Opxq “ ℓ (5)

This can be viewed as a condition for perfectly solving clas-
sification problems. In our view, Pℓ, the NAP with respect
to ℓ, if exists, can be seen as a certificate for the prediction

3

Towards Reliable Neural Specifications

Algorithm 1 NAP Mining Algorithm

Input: relaxing factor δ, neural network N , dataset Sℓ

Initialize a counter ck for each neuron vk
for x P Sℓ do

compute EpN , xq

if vk is activated then
ck `“ 1

end if
end for
Aℓ Ð tvk |

ck
|Sℓ|

ě δu, Dℓ Ð tvk |
ck

|Sℓ|
ď 1 ´ δu

Pδ
ℓ Ð pAℓ, Dℓq

of a neural network: inputs following Pℓ can be provably
classified as ℓ by N . However, in most cases, it is infeasible
to have a perfect Pℓ that captures the exact inputs for a given
class. On the one hand, there is no access to the ground
truth of all possible inputs; on the other hand, DNNs are
not guaranteed to precisely learn the ideal patterns. Thus, to
accommodate standard classification settings in which Type
I and Type II Errors are non-negligible, we relax Pℓ in such
a way that only a portion of the input data with a specific
label ℓ follows the relaxed NAP. The formal relaxation of
NAPs is defined as follows.

Definition 3.4 (δ-relaxed NAP). We introduce a relaxing
factor δ P r0, 1s. We say a NAP is δ-relaxed with respect
to the label ℓ, denoted as Pδ

ℓ :“ pAδ
ℓ , D

δ
ℓ q, if it satisfies the

following condition:

DS1
ℓ Ď Sℓ s.t.

|S1
ℓ|

|Sℓ|
ě δ and @x P S1

ℓ, EpN , xq ď Pδ
ℓ (6)

Intuitively, the δ-relaxed factor controls the level of abstrac-
tion of NAP. When δ “ 1.0, not only Pδ“1.0 is the most
precise (as all inputs from Sℓ follow it) but also the least
specific. In this sense, Pδ“1.0 can be viewed as the highest
level of abstraction of the common neural representation of
inputs with a specific label. However, being too abstract
is also a sign of under-fitting, this may also enhance the
likelihood of Type II Errors for NAPs. By decreasing δ,
the likelihood of a neuron being chosen to form a NAP
increases, making NAPs more specific. This may help alle-
viate Type II Errors, yet may also worsen the recall rate by
producing more Type I Errors.

In order to effectively mine δ-relaxed NAPs, we propose a
simple statistical method shown in Algorithm 1 2. Table 1
reports the effect of δ on the precision recall trade-off for
mined δ-relaxed NAPs on the MNIST dataset. The table
shows how many test images from a label ℓ follow Pδ

ℓ ,

2Note that this algorithm is an approximate method for mining
δ-relaxed NAP, whereas δ should be greater than 0.5, otherwise,
Aδ

ℓ

Ş

Dδ
ℓ ‰ H. We leave more precise algorithms for future

work.

together with how many test images from other labels that
also follow the same Pδ

ℓ . For example, there are 980 images
in the test set with label 0 (second column). Among them,
967 images follow Pδ“1.0

ℓ“0 . In addition to that, there are
20 images from the other 9 labels that also follow Pδ“1.0

ℓ“0 .
With the decrease of δ, we can see that in both cases,

both numbers decrease, suggesting that it is harder for an
image to follow Pδ“.99

ℓ“0 without being classified as 0 (the
NAP is more precise), at the cost of having many images
classified as 0 fail to follow Pδ“.99

ℓ“0 (the NAP recalls worse).
In short, the usefulness of NAPs largely depends on their
precision-recall trade-off. Thus, choosing the right δ or the
right level of abstraction becomes crucial in using NAPs as
specifications in verification. We will discuss this matter
further in Section 4.

3.2. Interesting NAP Properties

We expect that NAPs can serve as the key component in
more reliable specifications of neural networks. As the first
study on this topic, we introduce here three important ones.

The non-ambiguity property of NAPs We want our NAPs
to give us some confidence about the predicted label of
an input, thus a crucial sanity check is to verify that no
input can follow two different NAPs of two different labels.
Formally, we want to verify the following:

@x ¨ @i ‰ j ¨ EpN , xq ď Pℓ“i ùñ EpN , xq ď́ Pℓ“j (7)

Note that this property doesn’t hold if either Aℓ“i

Ş

Dℓ“j

or Aℓ“j

Ş

Dℓ“i is non-empty as a single input cannot acti-
vate and deactivate the same neuron. If that’s not the case,
we can encode and verify the property using verification
tools.

NAP robustness property The intuition of using neural
representation as specification not only accounts for the
internal decision-making process of neural networks but
also leverages the fact that NAPs themselves map to re-
gions of our interests in the whole input space (Hanin &
Rolnick, 2019a;b). In contrast to canonical ϵ-balls, these
NAP-derived regions are more flexible in terms of size and
shape. We explain this insight in more detail in Section 3.3.
Concretely, we formalize this NAP robustness verification
problem as follows: given a neural network N and a NAP
Pℓ“i, we want to check:

@x P R ¨ @j ‰ i ¨ F pxqris ´ F pxqrjs ą 0 (8)

in which

R “ tx | EpN , xq ď Pℓ“iu (9)

NAP-augmented robustness property Instead of only hav-
ing the activation patterns as specification, we can still spec-
ify ϵ-balls in the input space for verification. This conju-
gated form of specification has two advantages: First, it

4

Towards Reliable Neural Specifications

Table 1. The number of the test images in MNIST that follow a given NAPδ . For a label i, i represents images with labels other than i yet
follow NAPδ

ℓ“i. The leftmost column is the values of δ. The top row indicates how many images in the test set are of a label.

0 1 2 3 4 5 6 7 8 9
(980) (1135) (1032) (1010) (982) (892) (958) (1028) (974) (1009)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

1.00 967 20 1124 8 997 22 980 13 959 25 874 32 937 26 1003 28 941 22 967 12
0.99 775 1 959 0 792 4 787 2 766 3 677 1 726 4 809 2 696 3 828 4
0.95 376 0 456 0 261 1 320 0 259 0 226 0 200 0 357 0 192 0 277 0
0.90 111 0 126 0 43 0 92 0 76 0 24 0 45 0 144 0 44 0 73 0

focuses on the verification of valid test inputs instead of
adversarial examples. Second, the constraints on NAPs are
likely to make verification tasks effortless by refining the
search space of the original verification problem, in most
cases, allowing the verification on much larger ϵ-balls. We
formalize the NAP-augmented robustness verification prob-
lem as follows: given a neural network N , an input x, and a
mined Pℓ“i, we check:

@x1 P B`px, ϵ,Pℓ“iq ¨ @j ‰ i ¨ F px1qris ´ F px1qrjs ą 0
(10)

in which Opxq “ i and

B`px, ϵ,Pℓ“iq “ tx1 | ||x ´ x1||8 ď ϵ, EpN , x1q ď Pℓ“iu

(11)

Working with NAPs using Marabou In this paper, we use
Marabou (Katz et al., 2019), a dedicated state-of-the-art
NN verifier. Marabou extends the Simplex (Nelder & Mead,
1965) algorithm for solving linear programming with special
mechanisms to handle non-linear activation functions. Inter-
nally, Marabou encodes both the verification problem and
the adversarial attacks as a system of linear constraints (the
weighted sum and the properties) and non-linear constraints
(the activation functions). Same as Simplex, at each itera-
tion, Marabou tries to fix a variable so that it doesn’t violate
its constraints. While in Simplex, a violation can only hap-
pen due to a variable becoming out-of-bound, in Marabou a
violation can also happen when a variable doesn’t satisfy its
activation constraints.

NAPs and NAP properties can be encoded using Marabou
with little to no changes to Marabou itself. To force a neuron
to be activated or deactivated, we add a constraint for its
output. To improve performance, we infer ReLU’s phases
implied by the NAPs, and change the corresponding con-
straints3.For example, given a ReLU vi “ maxpvk, 0q, to
enforce vk to be activated, we remove the constraint from
Marabou and add two new ones: vi “ vk, and vk ě 0.

3Marabou has a similar optimization, but the user cannot con-
trol when or if it is applied.

3.3. Case Study: Visualizing NAPs of A Simple Neural
Network

(a) Linear regions in different colors are determined by weights and
biases of the neural network. Points colored either red or green
constitute the training set.

(b) NAPs are more flexible than L8 norm-balls (boxes) in terms of
covering verifiable regions.

Figure 2. Visualization of linear regions and NAPs as specifications
compared to L8 norm-balls.

We show the advantages of NAPs as specifications using a
simple example of a three-layer feed-forward neural network
that predicts a class of 20 points located on a 2D plane.
We trained a neural network consisting of six neurons that

5

Towards Reliable Neural Specifications

achieves 100% accuracy in the prediction task. The resulting
linear regions as well as the training data are illustrated in
Figure 2a. Table 2 summarizes the frequency of states of
each neuron based on the result of passing all input data
through the network, and NAPs for labels 0 and 1. Figure 2b
visualizes NAPs for labels 0 and 1, and the unspecified
region which provides no guarantees on data that fall into
it. The green dot is so close to the boundary between Pℓ“0

and the unspecified region that some L8 norm-balls (boxes)
such as the one drawn in the dashed line may contain an
adversarial example from the unspecified region. Thus,
what we could verify ends up being a small box within
Pℓ“0. However, using Pℓ“0 as a specification allows us
to verify a much more flexible region than just boxes, as
suggested by the NAP-augmented robustness property in
Section 3.2. This idea generalizes beyond the simple 2D
case, and we will illustrate its effectiveness further with a
critical evaluation in Section 4.3.

Table 2. The frequency of each ReLU and the NAPs for each la-
bel. Activated and deactivated neurons are denoted by ` and ´,
respectively, and ˚ denotes an arbitrary neuron state.

Label Neuron states #samples NAP

0 (Green) p`,´,´,`,´,`q 8
p`, ˚,´,`,´,`q

p`,`,´,`,´,`q 2

1 (Red)
p`,`,´,´,`,´q 7

p˚,`,´,`,´, ˚qp´,`,´,´,`,´q 2
p`,`,´,´,`,`q 1

4. Evaluation
In this section, we validate our observation about the dis-
tance between inputs, as well as evaluate our NAPs and NAP
properties on networks and datasets from VNNCOMP-21.

4.1. Experiment Setup

Our experiments are based on benchmarks from VN-
NCOMP (2021) – the annual neural network verification
competition. We use 2 of the datasets from the competi-
tion: MNIST and CIFAR10. For MNIST, we use the two
largest models mnistfc 256x4 and mnistfc 256x6,
a 4- and 6-layers fully connected network with 256 neurons
for each layer, respectively. For CIFAR10, we use the con-
volutional neural net cifar10 small.onnx with 2568
ReLUs. Experiments are done on a machine with an Intel(R)
Xeon(R) CPU E5-2686 and 480GBs of RAM. Timeouts for
MNIST and CIFAR10 are 10 and 30 minutes, respectively.

4.2. L2 and L8 Maximum Verified Bounds

We empirically find that the L2 and L8 maximum verifiable
bounds are much smaller than the distance between real
data, as illustrated in Figure 1. We plot the distribution of

0 1 2 3 4 5 6 7 8 9
class

2

4

6

8

10

12

14

di
st

an
ce

 (L
2 n

or
m

)

(a) The distribution of L2-norms between any two images from
the same label. Images of digit (label) 1 are much similar than that
of other digits.

0.990

0.992

0.994

0.996

0.998

1.000

0 1 2 3 4 5 6 7 8 9
class

0.00

0.05

0.10
di

st
an

ce
 (L

 n
or

m
)

(b) The distribution of L8-norms between any two images from
the same label. The red line is drawing at 0.05 – the largest ϵ used
in VNNCOMP (2021).

Figure 3. Distances between any two images from the same label
(class) are quite significant under different metrics of norm.

distances in L2
4 and L8 norm between all pairs of images

with the same label from the MNIST dataset, as shown in
Figure 3. For each class, the smallest L8 distance of any
two images is significantly larger than 0.05, which is the
largest perturbation used in VNNCOMP (2021).

This suggests that the data as specification paradigm (i.e.,
using reference inputs with perturbations bounded in L2 or
L8 norm) is not sufficient to verify test set inputs or unseen
data. The differences between training and testing data of
each class are usually significantly larger than the perturba-
tions allowed in specifications using L8 norm-balls.

4.3. The NAP Robustness Property

We conduct two sets of experiments with MNIST and CI-
FAR10 to demonstrate the NAP and NAP-augmented ro-
bustness properties. The results are reported in Tables 3 to 5.
For label ℓ from 0 to 9, ‘Y’ (‘N’) indicates that the network
is (not) robust (i.e., no adversarial example of label ℓ exists).

4The L2 metric is not commonly used by the neural network
verification research community as it is less computationally effi-
cient than the L8 metric.

6

Towards Reliable Neural Specifications

Table 3. Robustness of the illustrative example in Figure 1

0 1 2 3 4 5 6 7 8 9
ϵ “ 0.2, no NAP N - N T/o T/o T/o T/o T/o N T/o
ϵ “ 0.2, δ “ 1.0 N - N Y T/o T/o Y T/o N N
ϵ “ 0.2, δ “ 0.99 Y - Y Y Y Y Y Y Y Y
ϵ “ 1, δ “ 0.99 Y - Y Y Y Y Y Y Y Y(NAP robustness property)

Table 4. Inputs that are not robust can be augmented with a NAP
to be robust. With δ “ 0.99, all inputs can be verified to be robust
at ϵ “ 0.05 – the largest checked ϵ in VNNCOMP-21(not shown)

0 1 2 3 4 5 6 7 8 9
Opx0q “ 0
ϵ “ 0.05, δ “ 1.0 - Y Y Y Y Y Y Y Y Y
ϵ “ 0.3, δ “ 0.99 - Y Y Y Y Y Y Y Y Y
Opx1q “ 1
ϵ “ 0.05, δ “ 1.0 Y - Y Y Y Y Y Y N Y
ϵ “ 0.3, δ “ 0.99 Y - Y Y Y Y Y Y Y Y
Opx2q “ 0
ϵ “ 0.05, δ “ 1.0 - T/o T/o Y T/o T/o Y N T/o T/o
ϵ “ 0.3, δ “ 0.99 - Y Y Y Y Y Y Y Y Y
Opx3q “ 7
ϵ “ 0.05, δ “ 1.0 N T/o Y Y T/o T/o Y - N T/o
ϵ “ 0.3, δ “ 0.99 Y Y Y Y Y Y Y - Y Y
Opx4q “ 9
ϵ “ 0.05, δ “ 1.0 T/o Y Y Y Y Y N Y N -
ϵ “ 0.3, δ “ 0.99 Y T/o T/o Y N Y T/o T/o T/o -
Opx5q “ 1
ϵ “ 0.05, δ “ 1.0 Y - N Y Y Y Y N N N
ϵ “ 0.3, δ “ 0.99 Y - Y Y Y Y Y Y Y Y
Opx6q “ 9
ϵ “ 0.05, δ “ 1.0 T/o T/o T/o T/o T/o T/o T/o T/o T/o -
ϵ “ 0.3, δ “ 0.99 Y Y Y Y Y Y Y Y Y -
(mnistfc 256x6)

‘T/o’ means the verification of robustness timed out.

MNIST with fully connected NNs In Figure 1, we show an
illustrative image I (of digit 1) and its adversarial example
within the distance of L8 “ 0.2. As shown in Table 3, three
different kinds of counter-example can be found within this
distance. In contrast, the last row shows that all input images
in the entire input space following the mined NAP speci-
fication Pδ“0.99

ℓ“1 can be safely verified. It is worth noting
that this specification covers 84% (959/1135) of the test set
inputs (Table 1). To our best knowledge, this is the first spec-
ification for MNIST dataset that covers a substantial fraction
of testing images. To some extent, it serves as a reasonable
machine-checkable definition of digit 1 in MNIST.

The second and third rows of Table 3 show the robustness
of combining L8 norm perturbation and NAPs as the speci-
fication. The third row is well expected as the last row has
shown that the network is robust against NAP itself (with-
out L8 norm constraint). It is interesting to see that when
we increase δ to 1.0, the mined NAP specification Pδ“1.0

ℓ“1

becomes too general and covers a much larger region that in-
cludes more than 99% (1124/1135) testing images as shown
in Table 1. As a result, together with L8 “ 0.2 constraint,
only two classes of adversarial examples can be safely veri-

Table 5. Augmented robustness with CIFAR10 and CNN.
ϵ 0.012 0.024 0.12
δ 0.99 0.95 0.9 0.99 0.95 0.9 0.99 0.95 0.9

Opx0q “ 8 Y Y Y N T/o Y T/o Y Y
Opx1q “ 6 T/o N Y N N Y N N Y
Opx2q “ 0 Y Y Y Y Y Y N N N
Opx3q “ 1 N N N N N N N N N
Opx4q “ 9 N Y Y N N N N N N
Opx5q “ 7 Y Y Y N T/o Y N Y Y
Opx6q “ 3 Y Y Y Y Y Y N N N

fied, which is still better than only using L8 “ 0.2 pertur-
bation as the specification.

We further study how NAP-augmented specification helps
to improve the verifiable bound. Specifically, we collect
all px, ϵq tuples in VNNCOMP-21 MNIST benchmarks
that are known to be not robust (an adv. example is
found in Bpx, ϵq). Among them, the first six tuples cor-
respond to mnistfc 256x4 and the last one corresponds
to mnistfc 256x6. Table 4 reports the verification re-
sults with NAP augmented specification.

For the first six instances, using the NAP augmented spec-
ifications B`p¨, ϵ “ 0.05,Pδ“1.0q enables the verification
against more labels, outperforming using only L8 pertur-
bation as the specification. By slightly relaxing the NAP
(δ “ 0.99) , all of the chosen inputs can be proven to be
robust. Furthermore, with δ “ 0.99, we can verify the ro-
bustness for 6 of the 7 inputs (Table 4) with ϵ “ 0.3, which
is an order of magnitude bigger bound than before. Note
that decreasing δ specifies a smaller region, usually allow-
ing verification with bigger ϵ, but a smaller region tends to
cover fewer testing inputs. Thus, choosing an appropriate δ
is crucial for having useful NAPs.

CIFAR10 with CNN To show that our insights and meth-
ods can be applied to more complicated datasets and net-
work topologies, we conduct the second set of experiments
using convolutional neural nets trained on the CIFAR10
dataset. We extract all px, ϵq tuples in the CIFAR10 dataset
that are known to be not robust from VNNCOMP-21 (an
adv. example is found in Bpx, ϵq) and verify them us-
ing augmented NAP. For CIFAR10, Pδ“1.0 does not ex-
ist, thus we use Pδ“.99, Pδ“.95 and Pδ“.90. We follow
the scenario used in VNNCOMP-21 and test the robust-
ness against pcorrectLabel ` 1q mod 10, which is from
Marabou-cifar10 in VNN-COMP 2021. This property
checks whether an image with label N may be misclassified
as N ` 1 after undergoing some perturbation. The results
are reported in Table 5. As with MNIST, we observe that by
relaxing δ, we were able to verify more examples at every
ϵ. Even with ϵ “ 0.12 (10ˆ the verifiable bound, which
translates to an input space 103072ˆ bigger!), by slightly
relaxing δ to 0.9, we can verify 3 out of 7 inputs.

7

Towards Reliable Neural Specifications

Note there are both garbage and good images within this ep-
silon. This is the reason NAPs look at the activation pattern
first. If an input has no counterexamples in that epsilon it is
a strong indication of robustness (albeit limited to a given
activation pattern). On the other hand, a counterexample
of NAP can be either a good adversarial example (if it is a
good image), or an example to refine the NAP specification
itself (if it is a garbage image). We always aim to verify the
specification with the largest epsilon possible and decrease
the epsilon as necessary.

4.4. The Non-ambiguity Property of Mined NAPs

We evaluate the non-ambiguity property of our mined NAP
at different δs on MNIST. At δ “ 1.0, we can construct
inputs that follow any pair of NAP, indicating that Pδ“1.0s
do not satisfy the property. However, by setting δ “ 0.99,
we are able to prove the non-ambiguity for all pairs of NAPs,
through both trivial cases and invoking Marabou. This is
because relaxing δ leaves more neurons in NAPs, making it
more difficult to violate the non-ambiguity property.

The non-ambiguity property of NAPs holds an important
prerequisite for neural networks to achieve a sound clas-
sification result. Otherwise, the final prediction of inputs
with two different labels may become indistinguishable.
We argue that mined NAPs should demonstrate strong non-
ambiguity properties and ideally, all inputs with the same
label i should follow the same Pℓ“i. However, this strong
statement may fail even for an accurate model when the
training dataset itself is problematic, as what we observed in
Figure 1d as well as many examples in Appendix C. These
examples are not only similar to the model but also to hu-
mans despite being labeled differently. The experiential
results also suggest our mined NAPs do satisfy the strong
statement proposed above if excluding these noisy samples.

5. Related Work and Future Directions
5.1. Abstract Interpretation in Verifying Neural

Networks

The software verification problem is undecidable in general
(Rice, 1953). Given that a Neural Network can also be con-
sidered a program, verifying any non-trivial property of a
Neural network is also undecidable. Prior work on neural
network verification includes specifications that are linear
functions of the output of the network: Abstract Interpreta-
tion (AbsInt) (Cousot & Cousot, 1977) pioneered a happy
middle ground: by sacrificing completeness, an AbsInt ver-
ifier can find proof much quicker, by over-approximating
reachable states of the program. Many NN-verifiers have
adopted the same technique, such as DeepPoly (Singh et al.,
2019), CROWN (Wang et al., 2021), NNV (Tran et al.,
2021), etc. They all share the same insight: the biggest

bottleneck in verifying Neural Networks is the non-linear
activation functions. By abstracting the activation into linear
functions as much as possible, the verification can be many
orders of magnitude faster than complete methods such as
Marabou. However, there is no free lunch: Abstract-based
verifiers are inconclusive and may not be able to verify prop-
erties even when they are correct.5 On the other hand, the
neural representation as specification paradigm proposed in
this work can be naturally viewed as a method of Abstract
Interpretation, in which we abstract the state of each neuron
to only activated and deactivated by leveraging NAPs. We
would like to explore more refined abstractions of the values
of the neurons. For example, we could consider abstractions
such as p´8, 0s, p0, 1s, p1,`8q, which represent a more
detailed characterization of neuron values, in contrast to our
current NAPs that use the abstractions p´8, 0s, p0,`8q.
We leave the exploration of such refined abstractions for
future work.

5.2. Neural Activation Pattern in Interpreting Neural
Networks

There are many attempts aimed to address the black-box
nature of neural networks by highlighting important features
in the input, such as Saliency Maps (Simonyan et al., 2014;
Selvaraju et al., 2016) and LIME(Ribeiro et al., 2016). But
these methods still pose the question of whether the predic-
tion and explanation can be trusted or even verified. Another
direction is to consider the internal decision-making pro-
cess of neural networks such as Neural Activation Patterns
(NAP). One popular line of research relating to NAPs is to
leverage them in feature visualization (Yosinski et al., 2015;
Bäuerle et al., 2022; Erhan et al., 2009), which investigates
what kind of input images could activate certain neurons in
the model. Those methods also have the ability to visualize
the internal working mechanism of the model to help with
transparency. This line of methods is known as activation
maximization. While being great at explaining the predic-
tion of a given input, activation maximization methods do
not provide a specification based on the activation pattern:
at best they can establish a correlation between seeing a
pattern and observing an output, but not causality. More-
over, moving from reference sample to revealing neural
network activation pattern is limiting as the portion of NAP
uncovered is dependent on the input data. This means that
it might not be able to handle cases of unexpected test data.
Conversely, our method starts from the bottom up: from the
activation pattern, we uncover what region of input can be
verified. This property of our method grants the capability

5Methods such as alpha-beta CROWN (Wang et al., 2021)
claim to be complete even when they are Abstract-based because
the abstraction can be controlled to be as precise as the original
activation function, thus reducing the method back to a complete
one.

8

Towards Reliable Neural Specifications

to be generalized. Motivated by our promising results, we
would like to generalize our approach to modern deep learn-
ing models such as Transformers (Vaswani et al., 2017),
whose activation patterns have been proven to play a crucial
role in understanding the essence of given tasks, rather than
merely learning surface statistics (Li et al., 2023). Gopinath
et al. also focus on neural network explanation by studying
input properties and layer properties (Gopinath et al., 2019).
They collect the activations of all neurons in a specific layer
and use them as features to learn a decision tree, which
serves as a formal interpretation for that layer. In contrast,
our work aims to identify a dominant neural activation pat-
tern that captures a significant portion of desired inputs from
a specific class while excluding adversarial inputs.

6. Conclusion
We propose a new paradigm of neural network specifica-
tions, which we call neural representation as specification,
as opposed to the traditional data as specifications. Specifi-
cally, we leverage neural network activation patterns (NAPs)
to specify the correct behaviors of neural networks. We ar-
gue this could address two major drawbacks of “data as
specifications”. First, NAPs incorporate intrinsic properties
of networks which data fails to do. Second, NAPs could
cover much larger and more flexible regions compared to
L8 norm-balls centered around reference points, making
them appealing to real-world applications in verifying un-
seen data. Moreover, we introduce a relaxation factor that
specifies the abstraction level of NAPs, which plays an es-
sential role in determining the effectiveness of NAPs as the
specification. We also propose a simple method to mine
relaxed NAPs and show that working with NAPs can be
easily supported by modern neural network verifiers such as
Marabou. Through a simple case study and thorough valua-
tion on the MNIST and CIFAR benchmarks, we show that
using NAPs as the specification not only addresses major
drawbacks of data as specifications, but also demonstrates
important properties such as non-ambiguity and one order
of magnitude stronger verifiable bounds. We foresee that
NAPs have the great potential of serving as simple, reliable,
and efficient certificates for neural network predictions.

Acknowledgement
We thank the anonymous reviewers for their insightful com-
ments. This work was supported, in part, by Individual
Discovery Grants from the Natural Sciences and Engineer-
ing Research Council of Canada and the Canada CIFAR AI
Chair Program.

References
Bäuerle, A., Jönsson, D., and Ropinski, T. Neural acti-

vation patterns (naps): Visual explainability of learned
concepts, 2022. URL https://arxiv.org/abs/
2206.10611.

Cousot, P. and Cousot, R. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252, 1977.

Dietterich, T. G. and Horvitz, E. Rise of concerns about AI:
reflections and directions. Commun. ACM, 58(10):38–40,
2015.

Erhan, D., Bengio, Y., Courville, A. C., and Vincent, P.
Visualizing higher-layer features of a deep network. 2009.

Gopinath, D., Converse, H., Pasareanu, C. S., and Taly,
A. Property inference for deep neural networks. In
34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019, pp. 797–809. IEEE, 2019. doi:
10.1109/ASE.2019.00079. URL https://doi.org/
10.1109/ASE.2019.00079.

Hanin, B. and Rolnick, D. Complexity of linear regions in
deep networks, 2019a.

Hanin, B. and Rolnick, D. Deep relu networks have surpris-
ingly few activation patterns, 2019b.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety
verification of deep neural networks. In Majumdar, R. and
Kunčak, V. (eds.), Computer Aided Verification, pp. 3–29,
Cham, 2017. Springer International Publishing. ISBN
978-3-319-63387-9.

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun,
Y., Thamo, E., Wu, M., and Yi, X. A survey
of safety and trustworthiness of deep neural net-
works: Verification, testing, adversarial attack
and defence, and interpretability. Computer Sci-
ence Review, 37:100270, 2020. ISSN 1574-0137.
doi: https://doi.org/10.1016/j.cosrev.2020.100270.
URL https://www.sciencedirect.com/
science/article/pii/S1574013719302527.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In Majumdar, R. and Kunčak, V.
(eds.), Computer Aided Verification, pp. 97–117, Cham,
2017. Springer International Publishing. ISBN 978-3-
319-63387-9.

9

https://arxiv.org/abs/2206.10611
https://arxiv.org/abs/2206.10611
https://doi.org/10.1109/ASE.2019.00079
https://doi.org/10.1109/ASE.2019.00079
https://www.sciencedirect.com/science/article/pii/S1574013719302527
https://www.sciencedirect.com/science/article/pii/S1574013719302527

Towards Reliable Neural Specifications

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus,
C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljic, A.,
Dill, D. L., Kochenderfer, M. J., and Barrett, C. W. The
marabou framework for verification and analysis of deep
neural networks. In CAV (1), volume 11561 of Lecture
Notes in Computer Science, pp. 443–452. Springer, 2019.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task,
2023.

Nelder, J. A. and Mead, R. A simplex method for function
minimization. Computer Journal, 7:308–313, 1965.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should I
trust you?”: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pp. 1135–
1144, 2016.

Rice, H. G. Classes of recursively enumerable sets
and their decision problems. Transactions of the
American Mathematical Society, 74(2):358–366, 1953.
ISSN 00029947. URL http://www.jstor.org/
stable/1990888.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell,
M., Parikh, D., and Batra, D. Grad-cam: Why
did you say that? visual explanations from deep
networks via gradient-based localization. CoRR,
abs/1610.02391, 2016. URL http://arxiv.org/
abs/1610.02391.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image classifi-
cation models and saliency maps. In Bengio, Y. and Le-
Cun, Y. (eds.), 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Workshop Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6034.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proc. ACM Pro-
gram. Lang., 3(POPL), jan 2019. doi: 10.1145/3290354.
URL https://doi.org/10.1145/3290354.

Tran, H.-D., Pal, N., Musau, P., Lopez, D. M., Hamil-
ton, N., Yang, X., Bak, S., and Johnson, T. T. Robust-
ness verification of semantic segmentation neural net-
works using relaxed reachability. In Computer Aided
Verification: 33rd International Conference, CAV 2021,
Virtual Event, July 20–23, 2021, Proceedings, Part
I, pp. 263–286, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-81684-1. doi: 10.1007/
978-3-030-81685-8 12. URL https://doi.org/
10.1007/978-3-030-81685-8_12.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NIPS, pp. 5998–6008, 2017.

VNNCOMP. Vnncomp, 2021. URL https://sites.
google.com/view/vnn2021.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-CROWN: Efficient bound prop-
agation with per-neuron split constraints for complete
and incomplete neural network verification. Advances in
Neural Information Processing Systems, 34, 2021.

Wing, J. M. A specifier’s introduction to formal methods.
Computer, 23(9):8–24, 1990.

Wing, J. M. Trustworthy AI. Commun. ACM, 64(10):64–71,
2021.

Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., and Jain,
A. K. Adversarial attacks and defenses in images, graphs
and text: A review. International Journal of Automation
and Computing, 17:151–178, 2020.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H.
Understanding neural networks through deep visualiza-
tion, 2015. URL https://arxiv.org/abs/1506.
06579.

10

http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1312.6034
https://doi.org/10.1145/3290354
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
https://sites.google.com/view/vnn2021
https://sites.google.com/view/vnn2021
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1506.06579

Towards Reliable Neural Specifications

A. A running example
To help with illustrating later ideas, we present a two-layer feed-forward neural network XNET (Figure 4a) to approximate
an analog XOR function fpx0, x1q : rr0, 0.3s Y r0.7, 1ss2 Ñ t0, 1u such that fpx0, x1q “ 1 iff px0 ď 0.3 ^ x1 ě 0.7q or
px0 ě 0.7 ^ x1 ď 0.3q. The network computes the function

FXNETpxq “ W 1 maxpW 0
pxq ` b0, 0q ` b1

where x “ rx0, x1s, and values of W 0,W 1, b0, b1 are shown in edges of Figure 4a. Opxq “ 0 if FXNETpxqr0s ą

FXNETpxqr1s, Opxq “ 1 otherwise.

Note that the network is not arbitrary. We have obtained it by constructing two sets of 1 000 randomly generated inputs, and
training on one and validating on the other until the NN achieved a perfect F1-score of 1.

x0x1

v0

0.1
-0.6

v2

4.2
-4.2

v3

ReLU

v5

ReLU

y0

0.4

-4.7

y1

-0.4

4.6

v1

-4.34.4

-4.93.9

v4

ReLU

(a) XNET: A NN that com-
putes the analog XOR func-
tion.

v0 “ 0.1x0 ´ 0.6x1

v1 “ ´4.3x0 ` 4.4x1

v2 “ 4.2x0 ´ 4.2x1

v3 “ maxpv0, 0q

v4 “ maxpv1, 0q

v5 “ maxpv2, 0q

y0 “ 0.4v3 ´ 4.9v4 ` 3.9v5 ` 6.7

y1 “ ´0.4v3 ` 3.9v4 ` 4.6v5 ´ 7.4

x0 ď 0.1 ^ x0 ě 0.02

x1 ď 0.1 ^ x1 ě 0.02

0 ă y0 ´ y1

(b) Marabou’s system of constraints for verifying
that XNET is 0.04-robust at (0.06, 0.06)

v0 “ 0.1x0 ´ 0.6x1

v1 “ ´4.3x0 ` 4.4x1

v2 “ 4.2x0 ´ 4.2x1

v3 “ v0

v4 “ maxpv1, 0q

v5 “ 0

y0 “ 0.4v4 ´ 4.9v5 ` 3.9v6 ` 6.7

y1 “ ´0.4v4 ` 3.9v5 ` 4.6v6 ´ 7.4

x0 ď 0.3 ^ x0 ě 0

x1 ď 0.3 ^ x1 ě 0

v0 ě 0

v2 ď 0

(c) Check if Pℓ“1 “ ppz0q, pqq and Pℓ“0 “

ppq, pz2qq are non-ambiguous in the first quad-
rant using Marabou

Figure 4. Using Marabou to verify NAP properties of XNET.

B. Other Evaluations
B.1. L1-norms of distance

Figure 5 shows the distributions of L1-norms of all image pairs from the same class, similar to Figure 3, the distances
between image pairs from class 1 are much smaller compare to other classes.

B.2. Overlap ratio

Figure 6 shows the heatmap of the overlap ratio between any two classes for 6 δ values. For the grid in each column in a
heatmap, the overlap ratio is calculated by the number of overlapping neurons of the NAPs of the class labelled for the row
and the column divided by the number of neurons in the NAP of the class labelled for the column, which is why the values
in the heatmaps are not symmetric along the diagonal. Based on the shade of the colors in our heapmap, we can see that,
during the process of decreasing δ, the overlapping ratios decrease first and then increase in general, it might because that,
with the loose of restriction on when a neuron is considered as activated/inactivated, more neurons are included in the NAP,
which means more constrains, but at the same time, for two NAPs of any two classes, it is more likely that they have more
neurons appearing in both NAPs.

Table 6 shows the maximum overlap ratio for one class, that is, for one reference class, the maximum overlap ratio between
this reference class and any other class. This table is basically extracting the maximum values of each column other than the
1 on the diagonal in our heatmap in Figure 6, in the each column of our table, it also follows the pattern that the value of
overlap ratio decreases first and then increase with the decrease of δ.

11

Towards Reliable Neural Specifications

0 1 2 3 4 5 6 7 8 9
class

0

50

100

150

200

di
st

an
ce

 (L
1 n

or
m

)

Figure 5. The distribution of L1-norms of all image pairs for each class.

Table 6. The maximum overlap ratio for each label (class) on a given NAPδ for MNIST. Each cell is obtained by maxi |Nδ
col

Ş

Nδ
i |{|Nδ

col|

where Nδ
col is the set of neurons in the dominant pattern for the label (class) in the header of the column of the selected cell with the given

δ, Ni is the set of neurons in the dominant pattern for the label (class) i with the given δ.

0 1 2 3 4 5 6 7 8 9
1.00 0.959 0.928 0.963 0.966 0.972 0.973 0.930 0.965 0.957 0.981
0.99 0.844 0.834 0.911 0.901 0.881 0.898 0.895 0.884 0.880 0.908
0.95 0.864 0.885 0.909 0.904 0.915 0.908 0.899 0.897 0.890 0.893
0.90 0.877 0.900 0.910 0.901 0.921 0.910 0.890 0.899 0.900 0.901
0.85 0.876 0.904 0.904 0.900 0.919 0.913 0.893 0.907 0.904 0.900
0.75 0.893 0.922 0.913 0.912 0.928 0.925 0.905 0.916 0.916 0.913
0.50 0.903 0.905 0.925 0.923 0.926 0.923 0.907 0.918 0.927 0.927

C. Misclassification Examples
In this section, we display some interesting exmaples from the the MNIST test set that follow the NAP of some class other
than their ground truth, which means these images are misclassified. We consider these samples interesting because, instead
of misclassification, it is more reasonable to say that these images are given wrong ground truth from human perspective.

12

Towards Reliable Neural Specifications

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.92 0.96 0.96 0.97 0.97 0.93 0.96 0.95 0.98

0.92 1 0.94 0.97 0.96 0.95 0.89 0.96 0.95 0.96

0.81 0.8 1 0.84 0.83 0.84 0.79 0.83 0.82 0.84

0.88 0.88 0.91 1 0.91 0.94 0.85 0.91 0.92 0.93

0.94 0.93 0.95 0.96 1 0.96 0.91 0.97 0.94 0.98

0.9 0.88 0.92 0.95 0.92 1 0.87 0.92 0.92 0.94

0.96 0.92 0.96 0.96 0.97 0.97 1 0.96 0.96 0.98

0.92 0.92 0.94 0.96 0.96 0.95 0.89 1 0.93 0.97

0.86 0.85 0.87 0.9 0.88 0.89 0.83 0.87 1 0.9

0.9 0.88 0.91 0.93 0.93 0.93 0.87 0.92 0.92 1

Ratio of overlap - delta: 0.0

(a) δ “ 1.00

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.82 0.9 0.86 0.86 0.89 0.89 0.86 0.86 0.87

0.81 1 0.91 0.87 0.85 0.88 0.86 0.87 0.86 0.87

0.76 0.78 1 0.82 0.8 0.8 0.81 0.81 0.81 0.82

0.81 0.82 0.91 1 0.83 0.9 0.84 0.86 0.88 0.89

0.81 0.81 0.9 0.84 1 0.86 0.86 0.88 0.83 0.91

0.82 0.81 0.87 0.88 0.84 1 0.85 0.84 0.86 0.86

0.84 0.82 0.9 0.85 0.86 0.87 1 0.84 0.84 0.85

0.81 0.83 0.9 0.86 0.87 0.86 0.84 1 0.84 0.91

0.82 0.83 0.91 0.9 0.84 0.89 0.86 0.85 1 0.89

0.8 0.8 0.89 0.87 0.88 0.86 0.83 0.88 0.85 1

Ratio of overlap - delta: 0.01

(b) δ “ 0.99

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.82 0.86 0.85 0.84 0.88 0.87 0.84 0.85 0.84

0.79 1 0.87 0.84 0.84 0.84 0.84 0.84 0.84 0.82

0.82 0.86 1 0.85 0.84 0.84 0.86 0.83 0.85 0.82

0.84 0.87 0.9 1 0.85 0.9 0.87 0.86 0.89 0.87

0.82 0.85 0.86 0.83 1 0.86 0.86 0.86 0.84 0.89

0.84 0.83 0.85 0.86 0.84 1 0.86 0.83 0.86 0.85

0.84 0.83 0.87 0.83 0.85 0.86 1 0.81 0.85 0.82

0.83 0.86 0.87 0.86 0.88 0.86 0.84 1 0.86 0.89

0.86 0.89 0.91 0.9 0.87 0.91 0.9 0.87 1 0.89

0.85 0.86 0.87 0.88 0.92 0.89 0.86 0.9 0.89 1

Ratio of overlap - delta: 0.05

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) δ “ 0.95

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.84 0.87 0.85 0.86 0.87 0.87 0.86 0.87 0.86

0.8 1 0.87 0.85 0.84 0.84 0.85 0.84 0.85 0.83

0.85 0.88 1 0.87 0.86 0.85 0.87 0.85 0.87 0.85

0.85 0.89 0.9 1 0.86 0.9 0.86 0.88 0.89 0.88

0.84 0.87 0.87 0.84 1 0.87 0.88 0.87 0.86 0.9

0.85 0.85 0.85 0.88 0.86 1 0.87 0.85 0.87 0.87

0.84 0.86 0.87 0.83 0.87 0.86 1 0.83 0.85 0.84

0.85 0.87 0.87 0.87 0.88 0.87 0.85 1 0.87 0.88

0.88 0.9 0.91 0.9 0.88 0.91 0.89 0.88 1 0.9

0.87 0.88 0.88 0.89 0.92 0.9 0.88 0.9 0.9 1

Ratio of overlap - delta: 0.1

(d) δ “ 0.90

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.84 0.87 0.86 0.86 0.87 0.88 0.86 0.87 0.86

0.81 1 0.86 0.85 0.84 0.85 0.85 0.84 0.86 0.84

0.87 0.9 1 0.89 0.87 0.87 0.89 0.87 0.89 0.86

0.86 0.9 0.9 1 0.87 0.91 0.87 0.88 0.9 0.89

0.86 0.88 0.87 0.86 1 0.87 0.89 0.88 0.88 0.9

0.86 0.88 0.86 0.89 0.87 1 0.88 0.86 0.9 0.88

0.86 0.87 0.88 0.84 0.88 0.87 1 0.84 0.87 0.85

0.86 0.88 0.87 0.87 0.89 0.88 0.86 1 0.88 0.9

0.88 0.9 0.9 0.9 0.89 0.91 0.89 0.88 1 0.9

0.87 0.89 0.88 0.89 0.92 0.9 0.88 0.91 0.9 1

Ratio of overlap - delta: 0.15

(e) δ “ 0.85

0 1 2 3 4 5 6 7 8 9
label

0
1

2
3

4
5

6
7

8
9

la
be

l

1 0.86 0.9 0.88 0.88 0.89 0.89 0.88 0.9 0.88

0.86 1 0.9 0.9 0.89 0.89 0.87 0.89 0.91 0.9

0.9 0.9 1 0.92 0.91 0.91 0.91 0.9 0.92 0.91

0.88 0.9 0.92 1 0.89 0.92 0.89 0.89 0.91 0.91

0.88 0.89 0.91 0.89 1 0.89 0.9 0.9 0.91 0.93

0.89 0.89 0.91 0.92 0.89 1 0.9 0.89 0.92 0.92

0.89 0.87 0.91 0.89 0.9 0.9 1 0.87 0.91 0.9

0.88 0.89 0.9 0.89 0.9 0.89 0.87 1 0.91 0.92

0.9 0.91 0.92 0.91 0.91 0.92 0.91 0.91 1 0.93

0.88 0.9 0.91 0.91 0.93 0.92 0.9 0.92 0.93 1

Ratio of overlap - delta: 0.5

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(f) δ “ 0.50

Figure 6. Overlap ratio of the dominant pattern of two labels (classes) on a given NAPδ . Values in each grid are obtained by
|Nδ

col

Ş

Nδ
row|{|Nδ

col| where Nδ
col is the set of neurons in the dominant pattern for the label (class) of the column of the selected

grid with the given δ, Nrow is the set of neurons in the dominant pattern for the label (class) of the row of the selected grid with the given
δ.

delta=0.0, pred=0, gt=5

(a) A testing image from MNIST with
ground truth 5, classified as 0

delta=0.0, pred=0, gt=8

(b) A testing image from MNIST with
ground truth 8, classified as 0

delta=0.0, pred=0, gt=9

(c) A testing image from MNIST with
ground truth 9, classified as 0

Figure 7. Some interesting test images from MNIST that are misclassified as 0 and also follow the NAP of class 0.

13

Towards Reliable Neural Specifications

delta=0.0, pred=1, gt=6

(a) A testing image from MNIST with
ground truth 6, classified as 1

delta=0.0, pred=1, gt=7

(b) A testing image from MNIST with
ground truth 7, classified as 1

delta=0.0, pred=1, gt=9

(c) A testing image from MNIST with
ground truth 9, classified as 1

Figure 8. Some interesting test images from MNIST that are misclassified as 1 and also follow the NAP of class 1.

delta=0.0, pred=2, gt=1

(a) A testing image from MNIST with
ground truth 1, classified as 2

delta=0.0, pred=2, gt=3

(b) A testing image from MNIST with
ground truth 3, classified as 2

delta=0.0, pred=2, gt=7

(c) A testing image from MNIST with
ground truth 7, classified as 2

Figure 9. Some interesting test images from MNIST that are misclassified as 2 and also follow the NAP of class 2.

delta=0.0, pred=3, gt=5

(a) A testing image from MNIST with
ground truth 5, classified as 3

delta=0.0, pred=3, gt=7

(b) A testing image from MNIST with
ground truth 7, classified as 3

delta=0.0, pred=3, gt=9

(c) A testing image from MNIST with
ground truth 9, classified as 3

Figure 10. Some interesting test images from MNIST that are misclassified as 3 and also follow the NAP of class 3.

14

Towards Reliable Neural Specifications

delta=0.0, pred=4, gt=2

(a) A testing image from MNIST with
ground truth 2, classified as 4

delta=0.0, pred=4, gt=6

(b) A testing image from MNIST with
ground truth 6, classified as 4

delta=0.0, pred=4, gt=9

(c) A testing image from MNIST with
ground truth 9, classified as 4

Figure 11. Some interesting test images from MNIST that are misclassified as 4 and also follow the NAP of class 4.

delta=0.0, pred=5, gt=3

(a) A testing image from MNIST with
ground truth 3, classified as 5

delta=0.0, pred=5, gt=6

(b) A testing image from MNIST with
ground truth 6, classified as 5

delta=0.0, pred=5, gt=8

(c) A testing image from MNIST with
ground truth 8, classified as 5

Figure 12. Some interesting test images from MNIST that are misclassified as 5 and also follow the NAP of class 5.

delta=0.0, pred=6, gt=0

(a) A testing image from MNIST with
ground truth 0, classified as 6

delta=0.0, pred=6, gt=2

(b) A testing image from MNIST with
ground truth 3, classified as 6

delta=0.0, pred=6, gt=5

(c) A testing image from MNIST with
ground truth 5, classified as 6

Figure 13. Some interesting test images from MNIST that are misclassified as 6 and also follow the NAP of class 6.

15

Towards Reliable Neural Specifications

delta=0.0, pred=7, gt=2

(a) A testing image from MNIST with
ground truth 2, classified as 7

delta=0.0, pred=7, gt=3

(b) A testing image from MNIST with
ground truth 3, classified as 7

delta=0.0, pred=7, gt=9

(c) A testing image from MNIST with
ground truth 9, classified as 7

Figure 14. Some interesting test images from MNIST that are misclassified as 7 and also follow the NAP of class 7.

delta=0.0, pred=8, gt=1

(a) A testing image from MNIST with ground truth 1,
classified as 8

delta=0.0, pred=8, gt=3

(b) A testing image from MNIST with ground truth 3,
classified as 8

Figure 15. Some interesting test images from MNIST that are misclassified as 8 and also follow the NAP of class 8.

16

Towards Reliable Neural Specifications

delta=0.0, pred=9, gt=4

(a) A testing image from MNIST with ground truth 4,
classified as 9

delta=0.0, pred=9, gt=7

(b) A testing image from MNIST with ground truth 7,
classified as 9

Figure 16. Some interesting test images from MNIST that are misclassified as 9 and also follow the NAP of class 9.

17

