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Abstract

Passive observational data, such as human videos,
is abundant and rich in information, yet remains
largely untapped by current RL methods. Perhaps
surprisingly, we show that passive data, despite
not having reward or action labels, can still be
used to learn features that accelerate downstream
RL. Our approach learns from passive data by
modeling intentions: measuring how the likeli-
hood of future outcomes change when the agent
acts to achieve a particular task. We propose a
temporal difference learning objective to learn
about intentions, resulting in an algorithm similar
to conventional RL, but which learns entirely from
passive data. When optimizing this objective, our
agent simultaneously learns representations of
states, of policies, and of possible outcomes in
an environment, all from raw observational data.
Both theoretically and empirically, this scheme
learns features amenable for value prediction for
downstream tasks, and our experiments demon-
strate the ability to learn from many forms of
passive data, including cross-embodiment video
data and YouTube videos.

1. Introduction
In many reinforcement learning (RL) domains, there is a
sea of data untapped by our current algorithms. For human-
assistive robots, there are thousands of hours of videos of hu-
mans doing chores; for dialogue agents, expansive web cor-
pora of humans conversing with each other; for self-driving
cars, countless hours of logs of human drivers. Unfortu-
nately, this data cannot directly be ingested by conventional
RL methods, as it often depicts agents with different embod-
iments, with different goals, and in different scenarios from
the agent we wish to control. Nonetheless, such datasets are
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diverse and abundant, and might offer a path for RL agents
to learn more efficiently and generalize more broadly.

How can an RL agent learn from passive observational ex-
perience, such as videos of humans? When learning from
active data, the learning signal for most RL methods comes
from modeling the value function, which measures how the
expected cumulative reward changes when a counterfactual
action is taken. With the absence of actions and rewards in
passive data, it is neither clear what quantity should be esti-
mated (in lieu of future rewards) nor what counterfactuals
should be estimated (in lieu of actions).

In this work, we propose to replace both of these miss-
ing components with a learned representation of intentions,
where intentions correspond to different outcomes a policy
may seek to achieve. Rather than estimating the counter-
factual effect of taking an action, we can model the effect
of following a counterfactual intention from a given state;
in lieu of predicting future rewards, we can estimate the
likelihood of achieving any given outcome. By leverag-
ing passive data to learn the effects of a diverse range of
intentions, we can learn state representations useful for mod-
eling the value function for any task an agent may seek to
optimize downstream using active data.

To instantiate this idea, we train an intention-conditioned
value function V (s, s+, z), which models the likelihood of
achieving some future outcome s+, when we start at state
s and act according to some latent intention z. This mim-
ics the conventional value function in RL, and we show
how it may similarly be trained using temporal-difference
objectives on passive data. We estimate this value using a
multi-linear model that is linear in a representation of state
ϕ(s), a representation of future outcome ψ(s+), and repre-
sentation of intention. We prove that if perfectly optimized,
the learned state representations can represent optimal value
functions for any reward function.

The primary contribution of this paper is a pre-training
scheme for RL from passive data, which models the effect
of agents that act with various intentions or seek to realize
various objectives. Our approach learns from passive data
via RL-like temporal difference backups utilizing two main
ideas, prediction of possible outcomes (future states) as the
learning objective in lieu of rewards, and the use of learned
latent representations of intentions in lieu of actions. We
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Figure 1. We seek to extract a general knowledge of how an agent may act to influence its environment by pre-training on passive data.
Our approach models the effects of acting with intention: jointly learning a latent space of agent intentions and an intention-conditioned
value function that estimates the likelihood of witnessing any given outcome in the future when acting according to some latent intention.

show both formally and empirically that the representations
learned through pre-training on passive data for representing
downstream RL value functions. Our experiments demon-
strate the ability to learn useful features for downstream
RL from a number of passive data sources, including learn-
ing from videos of different embodiments in the XMagical
benchmark, and learning from raw YouTube videos for the
offline Atari benchmark.

2. Problem Formulation
We study pre-training from passive observational experience
to improve the performance of downstream RL. We formal-
ize this problem in the notation of Markov control processes,
environments parameterized as M := (S,A, P, ρ) with
state space S, action space A, transition kernel P (s′|s, a),
and initial state distribution ρ(s0).

We consider a two-stage process: a pre-training stage in
which the agent trains only on passive data, followed by a
downstream RL stage in which the agent must solve some
specified task. The goal during the pre-training phase will
be to acquire state representations generally useful for future
tasks that may be assigned downstream to the agent.

During this pre-training phase, the learning algorithm gets
access to sequences of observations

(
(si0, s

i
1, . . . , )

)n
i=1

col-
lected by some behavioral policy πβ(a|s) acting in an
Markov control process M. In comparison to the typical
“active” experience, this passive data cannot be directly used
for an RL task, since it lacks both action annotations and
reward signal. Rather, we use this passive data to learn a
state representation ϕ(s) ∈ Rd for a downstream RL agent.

Downstream, the algorithm is tasked with learning a policy
π(a|s) that acts to maximize expected discounted return:
Eπ[

∑
t γ

tr(st)] for some task reward r(s). For simplicity
in exposition, we will assume that the downstream agent
acts in the same MDP M, but in our experiments, we will
show that our method also works when the action space

and transition dynamics deviate from the environment used
to collect the passive data. While a state representation
ϕ(s) learned on passive data may be used in many ways for
downstream RL (exploration bonuses, curriculum learning),
we focus on using the learned representation as a feature
basis, for example for estimating the agent’s value function.

3. Reinforcement Learning using Passive Data
We would like to pre-train on passive experience in a way
that results in useful features for solving downstream RL
tasks. Perhaps surprisingly, we can learn such features by
running a form of “reinforcement learning” on the passive
data, despite this data having neither reward nor action
labels. We will see that rewards and actions can be replaced
with more generic abstractions that are more amenable to
the passive data setting.

When learning from active experiential data, conventional
value-based RL methods learn by modeling the state-action
value function Q(s, a) = E[

∑∞
t=0 γ

tr(st)|s0 = s, a0 = a],
the future discounted return of a policy after following an
action a for one time-step from the state s. The Q-function
embeds knowledge about upcoming rewards and how they
vary depending on the counterfactual action chosen, relevant
quantities when acting to maximize accumulated reward.

In the absence of rewards and actions, we can generalize
the state-action value function through the use of intentions
and outcomes. An intention z corresponds to a policy acting
to optimize a specific objective, for example maximizing
some pseudo-reward (Sutton et al., 2011) or reaching a
specific goal state (Schaul et al., 2015). Just like actions, we
can use intentions as counterfactual queries, by asking how
the environment would change if we acted to optimize the
objective corresponding to the intention z.

Formally, we define Z to be a space of intentions, where
each intention z corresponds to an reward function rz : s 7→
r that defines the objective for an agent pursuing intention
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z. An agent acts according to intention z when the agent’s
induced state transition distribution corresponds to acting
optimally to maximize expected cumulative pseudo-reward
rz(s), which we write as Pz(s

′|s) := Pπ∗
rz (s′|s)). The

intention-conditioned value function (ICVF) is defined as

V (s, s+, z) = Est+1∼Pz(·|st)

[∑
t
γt1(st = s+)|s0 = s

]
,

(1)
the un-normalized likelihood of witnessing an outcome
s+ ∈ S in the future when the agent acts according to
intention z starting from a state s.

The ICVF answers queries of the form “How likely am I
to see if I act to do from this state?”. This gen-
eralizes both rewards and actions in a conventional value
function; rather than predicting expected future reward, we
instead predict the chance of seeing a future outcome. In-
stead of estimating the counterfactual “what happens in the
environment when I take an action a”, we instead model the
counterfactual “what happens in the environment when I
follow an intention z”.

The ICVF forms a successor representation (Dayan, 1993),
which means that although it only models the likelihood of
seeing future states s+, the function can be used to compute
expected return for any reward signal.

Remark 3.1. For any reward signal r : S → R, we can
express V z

r (s) = EPz
[
∑

t γ
tr(st)|s0 = s], the future ex-

pected return when acting with intent z using the ICVF:

V z
r (s) =

∑
s+∈S

r(s+)V (s, s+, z) (2)

This property means that intention-conditioned value func-
tions describe not only how to achieve specific goal out-
comes, but rather more generally performing any task in
an environment. This generality, combined with the fact
that ICVFs are not tied to any action abstraction, makes
the ICVF an appealing target for pre-training from passive
observational experience. Temporal abstractness is partic-
ularly important when learning from passive data; even if
the downstream agent’s dynamics do not match the passive
data locally, the general relationships between states, future
outcomes, and possible intentions encoded by an ICVF may
still transfer downstream.

4. Learning Representations from ICVFs
The intention-conditioned value function encodes general
knowledge about how agents may behave in an environment,
but as a black-box function of three inputs, it is not obvi-
ous how this knowledge should be used downstream. We

See Appendix A for didactic visualizations of the ICVF in a
gridworld domain.

consider attempting to extract the knowledge in an ICVF
into a state representation ϕ(s) to provide for a downstream
RL task. We seek two desiderata: 1) state representations
should be easy to extract from our learned model, and 2)
these state representations should be useful for representing
value functions of task rewards we might face downstream.

We motivate our approach by investigating the structure
underlying an intention-conditioned value function. Since
an ICVF describes a successor representation, we can write
the value for a state s, intention z and future outcome s+ in
vector notation as

V (s, s+, z) = e⊤s (I − γPz)
−1es+ ,

where (I − γPz)
−1 = Mz is the successor representation

(Dayan, 1993) for the agent acting according to the intention
z, and es, es+ refer to standard basis vectors in R|S|. This
means that the ICVF is linear separately in three inputs: a
state representation ϕ(s) = es, an outcome representation
ψ(s+) = es+ , and a representation of the counterfactual in-
tention T (z) =Mz . We propose to learn an approximation
that also respects this multilinear structure, letting

V̂θ(s, s+, z) = ϕθ(s)
⊤Tθ(z)ψθ(s+),

where we replace the three canonical representations
with learned latent representations: es with ϕθ(s) ∈ Rd,
es+ with ψθ(s+) ∈ Rd and Mz with Tθ(z) ∈ Rd×d.

Perhaps surprisingly, the state representation ϕ(s) will sat-
isfy both criterion we laid out. The first is met by con-
struction, since we are now explicitly learning a state rep-
resentation ϕ(s) that can be passed to a downstream RL
algorithm. For the second, we will show that if our multilin-
ear model can learn a good approximation to the ICVF, then
our learned state representation ϕ(s) will be able to linearly
approximate value functions for any downstream task.

Proposition 4.1 (Downstream value approximation). Sup-
pose ϕ, ψ, T form an approximation to the true ICVF with
error ϵ, that is ∀z ∈ Z ,∑

s,s+∈S
(V (s, s+, z)− ϕ(s)⊤T (z)ψ(s+))

2 ≤ ϵ.

For all rewards r(s) and intentions z ∈ Z , ∃θzr ∈ Rd s.t.∑
s∈S

(V z
r (s)− ϕ(s)⊤θzr )

2 ≤ ϵ
∑
s+∈S

r(s+)
2. (3)

This statement connects accuracy in modelling the ICVF for
an intention set Z to the accuracy to which we can modelling
downstream value functions when acting to pursue these
intentions. Intuitively, if we can use passive data to learn a
multilinear ICVF for a large set of intentions, we effectively
learn a state representation equipped to properly estimate
downstream value functions we may be tasked to model.
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Algorithm 1 Learning Intent-Conditioned Value Functions from Passive Data

Receive passive dataset of observation sequences D =
(
(si0, s

i
1, . . . , )

)n
i=1

Choose intention set Z to model, e.g. the set of goal-reaching tasks
Initialize networks ϕ : S → Rd, ψ : S → Rd, T : Z → Rd×d

Define ICVF Vθ(s, s+, z) = ϕ(s)⊤T (z)ψ(s+) and derived value model Vθ(s, z, z) = ϕ(s)⊤T (z)ψ(rz)
repeat

Sample transition (s, s′) ∼ D, potential future outcome s+ ∼ D, intent z ∈ Z
Determine whether transition s⇝ s′ corresponds to acting with intent z by measuring advantage

A = rz(s) + γVθ(s
′, z, z)− Vθ(s, z, z)

Regress Vθ(s, s+, z) to 1(s = s+) + γVtarget(s
′, s+, z) when advantage of s⇝ s′ is high under intent z

L(Vθ) = E(s,s′),z,s+ [|α− 1(A < 0)| (Vθ(s, s+, z)− 1(s = s+)− γVtarget(s
′, s+, z))

2
]

until convergence
Return ϕ(s) as a state representation for use in downstream RL

Why do the learned representations have this nice prop-
erty? Consider the simpler setting where we are able to
learn ϕ, ψ, and T with no approximation error, that is
V (s, s+, z) = ϕ(s)⊤T (z)ψ(s+). Since downstream value
functions V z

r can be expressed using an ICVF (Remark 3.1),
we can decompose the downstream value function as,

V z
r (s) =

∑
s+∈S

r(s+)V (s, s+, z) (4)

= ϕ(s)⊤T (z)(
∑

s+∈S
r(s+)ψ(s+)). (5)

Overloading notation ψ(r) =
∑

s+∈S r(s+)ψ(s+),

V z
r (s) = ϕ(s)⊤T (z)ψ(r). (6)

This proves the desired result, that downstream value func-
tions can be expressed as linear functions of ϕ(s) (using
parameter θzr = T (z)ψ(r)).

Looking closer at the derivation reveals a few interesting
details about the multi-linear ICVF. While ψ is explicitly
defined as a representation of future outcome states (i.e. of
ψ(s+)), through the overloading, it implicitly also provides
a latent representation for reward functions ψ(r). That
is, when learning an multi-linear ICVF, we are concur-
rently learning a space of latent intentions, where reward
functions rz : S → R get mapped to latent intentions
z = ψ̂(rz) ∈ Rd. The formal properties of such a learned
latent intention space are studied in greater depth by Touati
& Ollivier (2021). A second consequence is that our ICVF
approximation defines an estimate for V ∗

z (s), the optimal
value function for an intent z: V ∗

z (s) ≈ ϕ̂(s)⊤T̂ (z)ψ̂(rz),
which we write henceforth as V̂ (s, z, z). As we will see
next, these estimates will play a role in a temporal difference
learning loop to learn an ICVF from passive data.

5. Learning ICVFs from Passive Data
Having established learning (multi-linear) intention-
conditioned value functions as a useful pre-training objec-
tive for downstream RL, we now develop a practical method
for learning these value functions from passive data. Our
method learns a multi-linear ICVF via temporal difference
learning; the resulting process looks very similar to a stan-
dard RL algorithm, and indeed our approach to pre-training
on passive data might be best described as an RL approach
to representation learning.

We begin our derivation assuming that we have access to a
dataset of action-labelled transition data D = {(s, a, s′)}.
Later, we will drop the dependence on actions, making it
compatible with passive data. The general recipe for training
value functions is to perform a temporal difference update
towards a fixed point, which for ICVFs is defined as :
Remark 5.1. The true ICVF satisfies the following Bellman
equation for all s, s+ ∈ S, z ∈ Z:

V (s, s+, z) = Ea∼π∗
z
[1(s = s+) + γEs′ [V (s′, s+, z)]],

where π∗
z = argmaxa rz(s) + γEs′ [V (s′, z, z)].

This form of fixed-point motivates the training of ICVFs
using value-learning methods stemming from value itera-
tion. We choose to adapt IQL (Kostrikov et al., 2021), a
simple and empirically stable value learning objective which
softens the maximum operator into that of an expectile. For
an expectile α ∈ [ 12 , 1], this yields the following objective
for any intent z ∈ Z and future outcome s+ ∈ Z:

minE(s,a,s′)∼D[|α− 1(A < 0)|︸ ︷︷ ︸
weighting

(Vθ(s, s+, z)︸ ︷︷ ︸
current estimate

−

1(s = s+)− γVtarget(s
′, s+, z)︸ ︷︷ ︸

target estimate

)2] (7)

4



Reinforcement Learning from Passive Data via Latent Intentions

where A = rz(s) + γEs′∼P (s,a)[V (s′, z, z)] − V (s, z, z)
is the current estimated advantage of s ⇝ s′ when acting
according to intention z. This expression re-weighs the TD-
learning backup to be focus more on state transitions that
are favorable under z (when A > 0), and to ignore state
transitions that do not correspond to acting optimally to z.
This update inherits the same convergence guarantees as
IQL, meaning the learned value converges to the true value
when the expectile is taken to the limit α→ 1.

Notice that this objective depends mainly on s and s′, with
the only dependency on a in the expected next state value
in the definition of A. To make the objective action-free,
we propose to estimate this expectation with the single
sample estimator: Â = rz(s) + γV (s′, z, z)− V (s, z, z).
Roughly, this approximation estimates whether a transition
(s, s′) is likely to have been generated by following an in-
tention z, by measuring whether the predicted value for
z is higher at the new state s′ than it was at the original.
The single-sample approximation is unbiased under deter-
ministic dynamics and exogenous noise but known to be
susceptible to an optimism bias in stochastic environments
(Paster et al., 2022). In our experiments, we found this bias
to not be a major nuisance, but we note that other (more com-
plicated) techniques can correct the biased approximation
even under stochastic dynamics (Yang et al., 2022; Villaflor
et al., 2022).

Summary: As a representation learning objective, we learn
a multi-linear intent-conditioned value function Vθ(s, s+, z)
from a passive dataset of observation transitions D =
{(s, s′)}. To instantiate the algorithm, we must choose a set
of intentions to model. In our experiments, we choose the
generic set of goal-reaching tasks in the dataset, so each in-
tention corresponds to a reward rz(s) = 1(s = sz) for some
desired state sz ∈ D. Since the outcome representation ψ(·)
we learn also implicitly defines a latent representation of
intentions, we can associate the task of reaching sz with the
latent intention z = ψ(rz) := ψ(sz).

We train our multi-linear ICVF end-to-end using a temporal-
difference learning objective based on the IQL value update
(see Algorithm 1). Each step, the method samples a tran-
sition (s, s′), an arbitrary future outcome state s+, and an
arbitrary desired outcome state sz (intention z = ψ(sz)),
and optimizes Equation 7. This objective uses the advan-
tage estimator to determine whether s⇝ s′ corresponds to
acting optimally under the intention z. If deemed so, the es-
timate at the next state V (s′, s+, z) is used to bootstrap the
estimate for the current state V (s, s+, z). After training has
converged, the learned state representation ϕ is extracted
and passed onto a downstream RL algorithm to use as a
feature basis for downstream value learning.

6. Related Work
Learning from passive data: A number of prior works
have approached pre-training on prior data as a problem of
representation learning or prediction. The former leads to re-
construction objectives with autoencoders (Nair et al., 2018;
Seo et al., 2022a; Xiao et al., 2022) or augmentation-driven
contrastive objectives (Srinivas et al., 2020). Such objectives
are general and widely used but do not capture any infor-
mation about environment dynamics. In the latter category,
prior works have proposed objectives that pair current states
with future ones via contrastive learning (Sermanet et al.,
2017; Nair et al., 2022), predict the next state from the cur-
rent one (Seo et al., 2022b), or learn distances between states
and goals (Ma et al., 2022). Among these approaches, Ma
et al. (2022) also learns a value function, but differs in that
they do not model arbitrary counterfactual outcomes and use
BRM over the more conventional temporal-difference learn-
ing. These methods fall under the umbrella of behavioral
prediction, modeling the future of the environment when the
agent acts according to the policy used to collect the passive
data. In contrast, our method models environment futures
for many different policies with different intentions, not just
the data-collection policy. Modeling a range of intentions
allows us to capture more control-relevant features, and we
verify in our experiments that ICVF representations lead to
improved downstream RL over these approaches.

In lieu of pre-training, another approach is to train on pas-
sive data alongside incoming active experience during the
downstream task. In third-person imitation learning, agents
learn from videos of expert demonstrations, for example by
adversarially training to distinguish between states in pas-
sive and active data (Stadie et al., 2017; Torabi et al., 2018b)
or direct reward learning (Edwards & Isbell, 2019). Another
common approach is to train an inverse model on active
agent data, and use it to generate fake action and reward
annotations for the passive data for downstream RL (Torabi
et al., 2018a; Schmeckpeper et al., 2020; Baker et al., 2022;
Chang et al., 2022). This limits the agent to learning only
from passive data similar to that of the downstream agent,
as otherwise, the inverse model cannot generate appropriate
labels. Other approaches train value functions by synthesiz-
ing In general, joint-training is oft limited by the amount of
active experiental data, and the computational requirements
downstream scale poorly with passive data size compared
to pre-training approaches.

Successor features and GCRL: Our intent-conditioned
value function is conceptually related to successor represen-
tations and universal value functions. The successor repre-
sentation encodes environment futures under a fixed policy,
from the original tabular setting (Dayan, 1993) to more gen-
eral function approximation schemes (Barreto et al., 2016;
Kulkarni et al., 2016; Machado et al., 2017). Universal
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Figure 2. D4RL Antmaze tasks: We compare ICVF representations pre-trained on passive data from antmaze-large-diverse-v2
to representations from other methods for downstream RL performance (left) and for fidelity of value approximations (middle). Ablating
our approach, we find both components of our ICVF method to be important for performance: learning future outcomes from many
intents, and the use of the multi-linear decomposition (middle). (Additional Antmaze tasks in Table 1 and D.1.

value functions represent value functions for many policies,
such as a pre-defined set (Sutton et al., 2011) or the set of
optimal goal-reaching policies (Schaul et al., 2015). Borsa
et al. (2018) and Touati & Ollivier (2021) combine these two
ideas to learn the value of many rewards for many policies.
Their approaches are analogues to the ICVF in the active
experiential data setting. Our multilinear representation is
closest to the bilinear one proposed by Touati & Ollivier
(2021), who use active data to learn a joint representation of
states, actions, and intents, F (s, a, z) and a representation
of outcomes B(s+).

7. Experiments
Our evaluation studies ICVFs as a pre-training mechanism
on passive data, focusing on the following questions:

• Can we learn ICVFs from passive data?
• How well can the extracted representations represent

value functions for downstream RL tasks?
• How do our representations compare to other ap-

proaches for pre-training on passive data?

To encompass the many forms of passive data that we
may wish to pre-train on, we evaluate on passive data
from the D4RL benchmark (Fu et al., 2020), videos
of agents with different embodiments in the XMagical
benchmark (Toyer et al., 2020; Zakka et al., 2021), and
scraped Youtube videos of Atari 2600 games (Bellemare
et al., 2013). Accompanying code can be found at
https://github.com/dibyaghosh/icvf release

7.1. Experimental setup and comparisons

We focus on the offline RL setting, where the agent first
pre-trains on a large dataset of action-less reward-less se-
quences of observations, before performing offline RL on a

much smaller dataset of standard active experience, which
includes actions and the task reward. During the finetuning
phase, we run a standard value-based offline RL algorithm,
initializing the parameters of the value function V (s) us-
ing the learned representation and adding the representation
loss as an regularizing penalty to prevent the representation
from deviating far from the pre-trained one. See Appendix
C for full details about the experimental setup, including
architecture and hyperparameter choices.

We compare the representations learned through the ICVF
to standard representation learning methods that are com-
patible with learning from actionless data. We compare to
CURL (Srinivas et al., 2020), which matches state repre-
sentations between two augmentations of the same versions
of the same state; Contrastive RL (CPC) (van den Oord
et al., 2018; Eysenbach et al., 2022), which matches state
representations with those of future states in the same tra-
jectory; APV (Seo et al., 2022b), which estimates next
states using a latent stochastic model; and VIP (Ma et al.,
2022), which learns representations by estimating distances
between states using a Fenchel dual value function, and
has previously been proposed as a way to learn from pas-
sive data. We also compare to RLV (Schmeckpeper et al.,
2020), which trains an inverse model on the downstream
actionful data, and labels the passive data with fake action
labels for the downstream RL algorithm to ingest. Note that
the assumptions for RLV are significantly different from
our method (and the other comparisons), since RLV cannot
train on the passive data without already having access to
actionful data.

7.2. Learning from the same embodiment

We first study the Antmaze tasks from the D4RL benchmark
(Fu et al., 2020), a domain that is easy to visualize, and
where optimal policies and value functions can be computed

6
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Table 1. Performance of IQL trained on 250k actionful transi-
tions on D4RL AntMaze tasks after representation pre-training
on dataset of 1M observation-only transitions with each of the
representation learning methods in our comparison, as well as an
oracle baseline that receives action and reward labels for the entire
passive dataset. Results with 5 seeds.

antmaze-medium-* antmaze-large-*
Diverse Play Diverse Play

No Pretraining 0.45 ±0.05 0.45 ±0.10 0.18 ±0.11 0.26 ±0.07

CURL 0.44 ±0.30 0.22 ±0.28 0.16 ±0.08 0.03 ±0.03

Contrastive RL (CPC) 0.57 ±0.04 0.42 ±0.05 0.06 ±0.01 0.29 ±0.02

RLV 0.46 ±0.25 0.75 ±0.05 0.33 ±0.03 0.35 ±0.07

ICVF (ours) 0.66 ±0.06 0.75 ±0.02 0.32 ±0.11 0.35 ±0.02

Oracle 0.75 ±0.01 0.75 ±0.06 0.42 ±0.07 0.41 ±0.03

for reference. During pre-training, the agent receives a
passive dataset of state-observation sequences of the agent
moving to different locations in a maze (1 × 106 frames),
which we construct by stripping all annotations from the
publically available dataset. Downstream, the agent receives
a smaller dataset (2.5 × 105 transitions) with reward and
action information, and must learn a policy to reach the
top-right corner of the maze.

To understand how well the ICVF state representation can
represent the optimal value function for the downstream task,
we train a linear probe on the representation to regress to
V ∗(s) given the representation as input (errors visualized in
Figure 2). The ICVF representations reduces value estima-
tion error more than any of the alternative representations in
our comparison, although CPC also performs competitively.
This also translates to better downstream performance of
the learned RL policy: in all four evaluated settings, our
approach leads to the highest final performance (Table 1), in
some cases with performance similar to an oracle baseline
that does has access to the true action and reward labels for
the entire passive dataset. RLV is also competitive for this
domain. This is to be expected since the active data comes
from exactly the same distribution as the passive data, the
ideal case for such an inverse model.

To understand what components of the ICVF lead to im-
proved downstream performance, we ablate the two core
components: the modelling of many different intents, and
the representation of the ICVF using a multi-linear ap-
proximation. When we model only a single intent (the
behavioral policy generating the dataset), performance de-
creases on the antmaze-large-* tasks, but not on the
antmaze-medium-* tasks; we hypothesize this is be-
cause it is harder to capture long-horizon reasoning in more
complex environments when not modelling intent-driven
behavior. In our second ablation, we compare to represent-
ing the ICVF as a black box function of some state repre-
sentation V (s, g, z) = f(ϕ(s), g, z); this model is able to
approximate the ICVF better, but the consequent representa-

Figure 3. YouTube videos of Atari games include corruptions such
as color and angle shifts, lighting differences, and text overlays.
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Figure 4. XMagical: (top) A visualization of the different agent
embodiments. (bottom) Downstream performance on the Gripper
embodiment after pretraining from passive same-embodiment or
cross-embodiment data. ICVF representations lead to the highest
downstream performance amongst all comparisons.

tions are not amenable for downstream control. In Appendix
D.1, we perform a further probe of the qualities of the ICVF
representation, in particular, measuring how well it can rep-
resent various optimal goal-reaching value functions, and
visualizing value functions for the various intentions.

7.3. Learning from different embodiments

In many settings, passive experience comes from an agent
with a different embodiment (for example, a robot learning
from human videos). To understand how ICVFs handle such
embodiment gaps, we evaluate our method on tasks from
XMagical, a benchmark for third-person imitation (Zakka
et al., 2021; Toyer et al., 2020). This domain has four types
of agents, with differing shapes, appearances, and action
spaces (see Figure 4). In all cases, agents receive a top-down
image as observation, and are tasked with maneuvering the
three blocks to the goal zone indicated in pink, receiving par-
tial reward for each item cleared. Using the video datasets
released by Zakka et al. (2021), we evaluate two settings:
the same-embodiment setting and the cross-embodiment

7



Reinforcement Learning from Passive Data via Latent Intentions

20

10

0

10

Do
wn

st
re

am
 R

et
ur

n
Pong

0

10

20

30
Breakout

0

100

200

300

400
Seaquest

0

2500

5000

7500

10000
Qbert

ICVF (Ours) VIP CPC CURL APV RLV No video

Figure 5. Atari 2600 with YouTube Videos: Final performance of QRDQN-CQL agent initialized with representations learned from our
YouTube video dataset. In three of four games, ICVF representations lead to improved performance by large margins.

setting, where the passive data consists of videos of only
other embodiments.

Even when learning from images, we find that our algorithm
is able to learn ICVFs from the video dataset that lead to
good downstream performance. We find that methods like
VIP and CPC are able to learn useful representations from
videos of the same embodiment, but only ICVFs are able
to learn representations that lead to good performance from
cross-embodied videos. Investigating the representations
learned by contrastive learning or next-state prediction, we
see that they occasionally fail to focus on the position of the
agent, leading to poor control performance.

We note that RLV, which re-labels passive data with an
inverse model, performs decently from video of the same
embodiment, but fails completely when training on video of
different embodiments, indicating the deficiencies of such
approaches when learning from diverse sources of passive
data.

7.4. Atari 2600: Learning from YouTube videos

Finally, to test how well our approach works on more uncu-
rated banks of passive experience, we consider pre-training
for Atari 2600 games from Youtube videos. For the four
Atari games evaluated by Kumar et al. (2020), we scrape a
dataset of videos from Youtube, with minor pre-processing
(cropping, resizing, and grayscaling) to match the format of
the simulated environment (Bellemare et al., 2013). Despite
this preprocessing, the Youtube videos still differ visually
from the downstream simulation, as it includes data from
different game modes, corruptions like color shifts, light-
ing differences, and text overlays , and even one video
recorded with a cell-phone pointed at the screen (see Figure
3). In total, we collected about 90 minutes of video for
each game (exact numbers vary between games). See Ap-
pendix C.4 for a full description of the processing pipeline
and a list of Youtube videos used. Downstream, we train
the CQL+QRDQN agent from Kumar et al. (2020) on an

Pong Breakout Seaquest Qbert
Game

0.0

0.5

Pr
ob

e 
Ac

cu
ra

cy

ICVF (Ours)
VIP
CPC
CURL
APV
Random 

Figure 6. ICVF representations on YouTube video are better able
to predict actions of an QRDQN agent trained with 100× more
data, as measured by a linear probe. Value probe in Appendix D.3

actionful dataset 30 minutes in length (1 × 105 frames),
chosen by subsampling uniformly from the DQN replay
dataset (Agarwal et al., 2020). We found that augmenting
the Youtube dataset via random cropping and color jitters
improved performance across the board, so we include it for
all comparisons (details in C.5).

We find that initializing value functions using representa-
tions learned using ICVF leads to significantly improved per-
formance over other methods (Figure 5) on three of the four
games, with ICVFs being significantly above the second
highest-performing method, next-state prediction (APV).
To understand whether this performance improvement mani-
fests in other ways, we perform linear probes on the learned
representations towards “oracle” quantities generated from
an oracle agent trained with 100× more data, and find that
the ICVF is able to more closely model these quantities. We
also visually analyze the learned ICVF (Figure 16 in Ap-
pendix D.3); although the ICVF is not very precise locally,
it correctly captures long-horizon dependencies between
states, suggesting that the learned representations do cap-
ture long-horizon features.
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8. Conclusion
In this paper, we propose to pre-train on passive datasets
to model the effect of an agent acting according to differ-
ent intentions. Our method jointly learns a latent space of
agent intentions and an intention-conditioned value func-
tion, which estimates the likelihood of witnessing any given
outcome in the future, conditional on the agent acting to
realize some latent intention. We showed that this value
function encodes general counterfactual knowledge of how
the agent may influence an environment, and that when we
learn it using a multilinear approximation, the consequent
state representations are well-suited to predict downstream
value functions. We design an algorithm for learning these
intention-conditioned value functions from passive data, and
showed that the representations learned using such objec-
tives are well-suited for downstream control.

Our paper constitutes one approach in understanding how
RL may serve as a pretraining mechanism from passive
data. From an empirical perspective, scaling the method
beyond small-scale video datasets to larger corpora of hu-
man video (Grauman et al., 2021) and dialogue may lead
to more useful actionable representations for downstream
control. From a theoretical perspective, there is much left to
understand about intention-conditioned value functions; de-
veloping more principled approaches to train them beyond
our single sample heuristic, and discovering better ways of
leveraging the structure of such models, may provide us
with powerful ways of modeling and representing the world
from passive data.
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A. Didactic Example of ICVF
Recall that the intention-conditioned value function (ICVF) is the function V (s, s+, z) with three inputs:

• The current state of the agent s
• A future outcome s+, which we would like to evaluate the likelihood of seeing in the future,
• An desired intention z (a task) that defines the policy being used to act.

Intuitively, we can read this expression as,

“If I start at state s, what is the likelihood that I will see s+ in the process of acting to achieving some goal z?”

The formal definition of the ICVF is provided in Equation 1 as the expected discounted sum of indicator functions; this turns
out to also have a nice probabilistic interpretation:

V (s, s+, z) =
1

1− γ
P (sT = s+|πz, s0 = s), T ∼ Geom(1− γ)

We visualize the ICVF in the Locked Doors domain, a discrete Gridworld environ-
ment (visualized on the right) where the intention-conditioned value function can
be computed analytically. The first visualization, in Figure 7, plots the likelihood
of seeing different outcome states, conditional on a specific state s and a spe-
cific target sz marked in red. This means that the ICVF contains the information
necessary to distinguish which states fall along the path from s to sz .

The ICVF, through Remark 3.1, is able to not only express the future state visitation
probabilities, but also the value function for the tasks z themselves. In Figure
8, we plot the value functions for the intents derived from the ICVF, using the
decomposition V (s, z, z) =

∑
s+∈S rz(s+)V (s, s+, z). This means that the ICVF can be used to also measure whether an

agent is making progress towards some task / intention z.

s

sz

s

sz

s
sz

s
sz

V(s, s + , z) varying s + , visualized for 4 different intents sz

Figure 7. Using the ICVF to measure the state visitation distribution from a state s when optimizing a task z: V (s, s+ = ·, z). Visualized
for 4 different tasks.

sz sz

sz sz

V(s, z, z) varying s, visualized for 4 different intents sz

Figure 8. Using the ICVF to measure how likely an agent is to achieve the task z when acting to achieve this task: V (s = ·, z, z).
Visualized for 4 different tasks.

11



Reinforcement Learning from Passive Data via Latent Intentions

B. Proofs of Statements
Proposition B.1 (Downstream value approximation). Suppose ϕ, ψ, T form an approximation to the true ICVF with error ϵ,
that is ∀z ∈ Z , ∑

s,s+∈S
(V (s, s+, z)− ϕ(s)⊤T (z)ψ(s+))

2 ≤ ϵ.

For all rewards r(s) and intentions z ∈ Z , ∃θzr ∈ Rd s.t.∑
s∈S

(V z
r (s)− ϕ(s)⊤θzr )

2 ≤ ϵ
∑
s+∈S

r(s+)
2. (8)

Proof. The proof follows immediately from the relationship between V ∗(s, s+, z) and V z
r . Let us write V z

r (s) =∑
s+
r(s+)V (s, s+, z) and let θ = T (z)

∑
s+
r(s+)ψ(s+).

∑
s∈S

(V z
r (s)− ϕ(s)⊤θzr )

2 =
∑
s∈S

(
∑
s+

r(s+)V (s, s+, z)− ϕ(s)⊤T (z)
∑
s+

r(s+)ψ(s+))
2

=
∑
s∈S

∑
s+

r(s+)(V (s, s+, z)− ϕ(s)⊤T (z)ψ(s+))

2

The result follows from an application of Cauchy-Schwarz

≤
∑
s∈S

(∑
s+

r(s+)
2
)∑

s+

(
V (s, s+, z)− ϕ(s)⊤T (z)ψ(s+)

)2
=

(∑
s+

r(s+)
2
)( ∑

s,s+∈S

(
V (s, s+, z)− ϕ(s)⊤T (z)ψ(s+)

)2)

= ϵ

∑
s+

r(s+)
2



C. Experimental Setup
C.1. General setup

The general workflow for pre-training and finetuning is shared across all the domains and tasks. The representations are
trained on passive data only for N timesteps (N varies by domain); after training, the learned parameters of the state
representation are copied into the value network (if encoder parameters are shared between the value network and the actor
or critic network, then the representation encoder parameters are also shared with this other network.

For the finetuning stage, in our early experiments, we found that freezing the representation to the pre-trained representation
often led to divergence in value estimation. To avoid this, in our finetuning setup, we allow for the representation to be
finetuned, but add a constraint EDdownstream [Ldownstream] + αEDpretrain [Lpretrain] to ensure that the representation remains close to
the original pre-trained representation. We did not experiment very closely with the choice of regularization, and it is feasible
that simpler regularization penalties (e.g. ℓ2 penalties) may yield the same effect. We perform the coarse hyperparameter
sweep α ∈ [1, 10, 100] for each representation and domain to choose α, since the scales of the downstream losses can vary
between domains, and the scales of the representation loss can vary between different methods. For our method, we set the
expectile parameter for our method to α = 0.9 for all the tasks, and train using temporal difference learning with a target
network lagging via polyak averaging with rate λ = 0.005.

C.2. D4RL Antmaze Benchmark

The D4RL Antmaze domain is an offline RL task that requires an ant quadruped agent to locomote in a maze environment
to a target destination in the top right, by learning from an offline dataset of 1M frames of varying diversity. The state
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Antmaze XMagical Atari
ICVF 100 10 10
VIP 10 10 10
CPC 1 1 10
CURL 1 1 10
APV 1000 1 10

Table 2. Choices for regularization constant α for each representation and domain

dimension is 29 and the action dimension is 8. Since we are interested in learning from passive data, we create a synthetic
passive dataset by removing action and reward labels from the entire dataset, resulting in a dataset of observation sequences
with 1 million transitions. For the downstream finetuning task, we create a smaller offline RL dataset by subsampling
trajectories from the released offline dataset summing to 2.5× 105 transitions (roughly 250 trajectories). No data is shared
between different D4RL datasets.

Since the environment is state-based, we trained fully separate networks for each representation (e.g. no sharing between
ϕ and ψ, modelling each as a 2 layer MLP with 256 hidden units each. Pre-training proceeds for 250k timesteps for all
methods, which we found sufficient to lead to convergence for all the representation learning algorithms. We perform the
downstream offline RL component using IQL (Kostrikov et al., 2021), since the vanilla algorithm performs highly on the
standard Antmaze tasks. During finetuning, we copy the pre-trained representation as the first 2 layers of the value MLP
V (s) for IQL, leaving the network for the critic Q(s, a) and for the policy un-altered. We use the hyperparameters for IQL
from (Kostrikov et al., 2021), running for 1M steps, and measuring final performance.

C.3. XMagical Benchmark

The x-magical suite is a benchmark extension of the MAGICAL Suite from Toyer et al. (2020) testing cross-embodiment
learning. This suite consists of one task (sweeping all three debris to the goal zone) and four different embodiments (Gripper,
Shortstick, MediumStick, Longstick). The environment is from images, natively rendered at 384 × 384, although we
subsample to 64× 64. We build on the dataset of video released by Zakka et al. (2021), which contains approximately 50000
transitions of each agent acting optimally. To increase the size of the video dataset, we additionally trained a BC policy
on the released data (which is not optimal, unlike the original video data) and collect 100000 more transitions per agent.
The finetuning task we set for the agent is to solve the task with the Gripper embodiment given access to 10000 actionful
transitions sampled uniformly from these 150000 frames. We consider two passive data settings, first the same-embodiment
setting, where the passive data consists of the 150000 frames from the Gripper embodiment, and the cross-embodiment
setting, where the passive data joins together the frames from the ShortStick, Mediumstick, and Longstick embodiments.
We use CQL (Kumar et al., 2020) as the downstream offline RL algorithm, and use the Impala visual encoder (Espeholt
et al., 2018). The encoder features are shared across the value, critic, and actor networks, but as in (Kostrikov et al., 2020),
do not allow the actor loss to modify the encoder weights.

C.4. Atari 2600 with Youtube Videos

We use the same Atari 2600 setup as Agarwal et al. (2020), focusing on the games Pong, Breakout, Seaquest, and QBert,
– please see there for full details about the experimental setup. The video dataset we pretrain on is a manually scraped
collection of Youtube videos of these games; the protocol for scraping and processing these videos is described in the next
subsection. For the finetuning phase, we use a uniform subsample of 100000 transitions from the replay buffer of a DQN
agent released by Agarwal et al. (2020). We take the same downstream offline RL algorithm as in Kumar et al. (2020), a
QRDQN agent with the CQL regularizer.

C.4.1. YOUTUBE DATASET CURATION

In this section, we discuss how we collect and process Youtube videos for our Atari experiments.

We selected videos of the Atari 2600 versions of our games, avoiding other versions such as Atari 7800. Included videos
feature slight differences in color, angle, speed, and game play but we excluded videos with significant modifications (such
as ball steering, breaking through multiple bricks, or invisible bricks in Breakout) or glitches (e.g. collision glitches in
Seaquest). Videos were downloaded into webm, mkv, and mp4 formats.
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Figure 9. Breakout sample video frames shown above include color and speed differences, frame shifts, and even YouTube channel logos.

Figure 10. Pong sample video frames shown above feature color differences and speed differences.

When cropping, we attempted to include the same information and borders as the window in Atari gym environments and
cut to include only game play. In our dataset, we inserted terminal flags at the end of each video but did not split up videos
into episodes by inserting terminals at every restart.

In preprocessing frames, we imitated the strategy of the AtariPreprocessing gym wrapper with frame skipping, max pooling,
gray scaling, and resizing to 84× 84. For each video, we chose a frame skip of 1, 2, or 4 frames to roughly match the frame
rate of the Atari gym environment. As in Atari environments, observations stack 4 consecutive images at a time.

We show example frames in 9, 10, 11, and 12

14
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Figure 11. Qbert sample video frames shown above include angle and frame shifts, blur, font differences, and even reflections such as
phone screens.

Figure 12. Seaquest sample video frames shown above include text overlays, logos, and frame shifts.

15



Reinforcement Learning from Passive Data via Latent Intentions

Game Video Link Clip Window Start Frame End Frame Frame Skip
https://youtu.be/... (x1, y1, x2, y2)

BREAKOUT Cr6z3AyhRr8 6,16,3077,2149 100 25650 2
mBCr3zLn-p0 2,27,1277,703 100 7250 2
QcjDqSQrflU 6,39,1279,674 100 2500 2
4CBjkD-Kbw8 4,38,1275,708 0 12950 2
zluH 4eSmPs 242,32,1680,996 100 9700 2
Be6yDh xKok 2,52,1277,706 100 13441 2
tT70Tv6D41o 5,5,2394,1428 3100 39800 2
qx5dGzNVpyo 96,8,1189,664 250 2550 1
1oATuwG dsA 68,70,576,388 300 3100 2
IJWrq01B3gM 4,43,1273,703 50 5250 2

PONG p88R2 3yWPA 1,1,398,222 50 3985 1
XmZxUl0k8ew 215,12,1707,1079 150 4700 1
YBkEnBqZBFU 1,32,639,449 100 9600 1
CxgaZenhngU 34,77,686,414 50 7500 1
jiFCgAcM2tU 259,7,1663,1079 200 11200 1
moqeZusEMcA 0,1,159,208 50 3447 1
T9zJmcR047w 1,1,159,207 50 3450 1

QBERT QVuAJFDydDU 141,5,1118,715 50 12600 4
pAK9-l2mLAA 4,4,1918,1076 500 2700 4
PdnYB9o3IWU 0,1,553,359 50 5200 4
AnKkbQh6a0k 69,4,594,415 0 56350 4
W-gTlZYWkYM 0,1,545,360 0 1852 4
Jq0DGEoZEQY 452,27,1178,576 3100 12150 4
zGt-i0cL1tQ 171,36,663,328 600 46748 4
DhzgJQF wuU 2,1,493,358 0 3625 4
vkZhWsiHCqM 144,7,1784,1076 150 8250 4
CeTClJT5BvU 76,41,548,413 50 12037 4
opQ6qdAee0U 4,5,1279,701 150 5650 4
tjsVgdAxFY 21,51,462,359 0 18897 4

SEAQUEST A9GNDwad27E 68,72,574,392 150 3450 2
Ir1t57ItCpw 83,3,1160,719 350 44800 2
V2ShNbzhN E 176,45,1122,655 650 6550 2
j3d1eZGqDoU 2,1,1279,717 50 10350 2
QK9wa-6hd6g 155,7,1688,1079 8600 16800 2
ZeRGJk7HQGc 1,2,483,343 300 13150 2
PBsLzxvYUYM 144,15,2877,2145 150 61500 2
Y1yASa4j2wk 21,20,639,460 250 60800 2

C.5. Video Augmentation

To increase the quantity of video data and bridge the gap to Atari environment frames, we randomly augment our video
frames via random crops, contrast jittering, and brightness jittering. After padding frames by a pad width p, we crop U(0, 2p)
pixels off the width and height dimensions. Then, we multiply demeaned images by uniform random contrast jitter, add
uniform random brightness jitter, and add the resulting noise to the original image.
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Figure 13. Performance curves through downstream finetuning on all Antmaze environments.

D. Additional Experiments
D.1. D4RL Antmaze

Analysis:

Figure 14. Visualization of V̂ (s, z, z) for different sampled inten-
tions z in the Antmaze.

We performed a simple analysis of the ICVF representa-
tion in the Antmaze domain, examining three components:
1) how well it can represent different downstream value
functions, 2) what aspects of the state it attends to, and 3)
what ICVF value functions look like for different sampled
latent intentions z. In the table below, we measure how
well the ICVF representation can represent the optimal
value functions for various goal-reaching rewards. We
learn value functions by performing SARSA with a lin-
ear head on top of a frozen representation, and measure
absolute value error (|V ∗ − V̂ |) and gradient alignment
((∇sV

∗)⊤(∇sV̂ ) > 0). To examine which components
of state the ICVF focuses on, we train a decoder to re-
construct the original state from the representation ϕ(s).
The ICVF representation primarily captures the XY co-
ordinates of the Ant (2% relative error), with more lossy
representations of joint angles (15% error) or joint veloc-
ities (40% error). Finally, in Figure 14, we visualize the
ICVF value functions for sampled intentions during the training process.

|V ∗ − V— Value Gradient Alignment Value Gradient Alignment near Goal
ICVF 11.9 ± 0.9 74% ± 2% 81% ± 2%
CURL 12.9 ± 1.0 64% ± 1% 73% ± 2%
VIP 13.8 ± 1.1 70% ± 2% 78% ± 2%
CPC 12.9 ± 0.9 63% ± 1% 71% ± 1%

Table 3. Accuracy of value functions finetuned on each representation, averaged across 10 randomly sampled goal-reaching tasks.

d = 4 d = 32 d = 256 d = 2048
antmaze-medium-diverse-v2 0.48 ± 0.12 0.64 ± 0.08 0.66 ± 0.06 0.68 ± 0.08
antmaze-large-diverse-v2 0.02 ± 0.02 0.20 ± 0.10 0.32 ± 0.11 0.3 ± 0.10

Table 4. Ablating dimensionality of the representation in the multilinear ICVF
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D.2. Example XMagical ICVF

Cross ICVF Same ICVF

Figure 15. Comparison of learned ICVFs on XMagical data in the same embodiment versus the one trained on a different embodiment.
Notice that despite being trained on different embodiments, the cross-embodiment ICVF nonetheless learns a good value function.
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D.3. Example Atari ICVF

YouTube ICVF Sim ICVF

Figure 16. Comparison of learned ICVFs on Atari YouTube data vs. on Atari environment data. We train two ICVFs, one on simulated
data and the other on Youtube video, and evaluate V (s, z, z) for the goal-reaching tasks to the highlighted frames and show the results in
16. The ICVF trained with Youtube data is not locally smooth, but has the correct global structure, indicating that the representation is
able to correctly model long-horizon components.
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