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Abstract
Agents that are aware of the separation between
themselves and their environments can leverage
this understanding to form effective representa-
tions of visual input. We propose an approach for
learning such structured representations for RL
algorithms, using visual knowledge of the agent,
such as its shape or mask, which is often inexpen-
sive to obtain. This is incorporated into the RL
objective using a simple auxiliary loss. We show
that our method, Structured Environment-Agent
Representations (SEAR), outperforms state-of-
the-art model-free approaches over 18 different
challenging visual simulation environments span-
ning 5 different robots.

1. Introduction
Proprioception, i.e. the knowledge of one’s own self, is
heavily used by biological entities enabling them to perform
various real-world tasks such as walking, manipulation, and
navigation. Awareness of the position and movement of
their body, and perceiving the environment as external to
themselves, enables forming efficient representations of
the observed input (Shapiro, 2010). In contrast, most con-
temporary methods in visual reinforcement learning (RL)
often learn combined representations in an end-to-end man-
ner (Kalashnikov et al., 2021; Arulkumaran et al., 2017;
Kalashnikov et al., 2018; Levine et al., 2016; Peters et al.,
2010) and require large amounts of data as a result. Inspired
by the concept of the interface between the “inner” and
“outer” environments, we study the following question: is
there a natural way to build a representation that can disen-
tangle a robotic agent from its environment, and does that
improve learning efficiency for RL?

We argue that knowledge of the agent allows RL algorithms
to focus on more interesting aspects of the visual input, such
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Figure 1: SEAR learns structured representations for visual
control, by leveraging knowledge of the robot.

as objects in the environment. Thus, by explicitly forcing
the learning algorithm to disentangle agent-centric repre-
sentations, we also implicitly create environment-centric
ones. This allows for visual RL approaches to not only learn
faster but makes the representations interpretable. Consider
a policy trained on a door-opening task with one type of
robot. If it is aware of the agent-environment distinction,
then it will be able to adapt a lot faster when deployed on
a new robot, or a new task like opening a drawer, since it
will not need to relearn visual appearance and it can focus
just on dynamics. How can we incorporate this into an RL
training setup?

Our solution is simple: we augment the RL loss with an
agent-centric auxiliary loss. Naively doing so using propri-
oceptive data like joint angles or end-effector positions does
not result in the desired representations, as these are not
grounded in the visual observation space, and do not con-
tain information about the robot’s appearance. We find that
the most grounded forms of supervision are agent masks.
If some information is known about the agent, it is often
quite practical to obtain (even rough) masks for agents, for
example, by training a segmentation model.

Our approach, Structured Environment-Agent
Representations (SEAR), formulates the agent-environment
representation learning problem as an auxiliary loss to the
RL objective. This loss is the sum of the reconstruction loss
of the agent mask and the full image as shown in Figure 2.
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Figure 2: Overview of SEAR. We use the mask of the agent
to learn structured representations.

We mathematically formulate the representation learning
problem using variational inference and show that it leads
to improved control.

Our approach is complementary to the prior works that aim
to improve RL sample efficiency by adding auxiliary losses
to the representations learned by the policy, drawing inspira-
tion from advances in self-supervised learning in computer
vision. This includes using inpainting losses (Pathak et al.,
2016; He et al., 2022), contrastive learning (He et al., 2020;
Chen et al., 2020; Chen & He, 2021; Grill et al., 2020;
Laskin et al., 2020b), large-scale video pre-training (Nair
et al., 2022) or simple yet effective image augmentation
(Yarats et al., 2021a; Laskin et al., 2020a) to make the net-
work more robust. Such implicit inductive biases allow
for useful representations, but they don’t take advantage
of the fact that there exists a lot of untapped knowledge of
the agent. Access to such knowledge is remarkably inex-
pensive as the agent morphology or joints are often known
beforehand.

Empirically, we find that SEAR outperforms state-of-the-
art model-free approaches for RL on a large suite of 18
different challenging environments, spanning 5 different
robots, including the sawyer, franka and adroit-hand robots.

2. Related Work
RL from pixels Model-based approaches (Hafner et al.,
2019; 2020; Ebert et al., 2017) learn an efficient latent space
dynamics model to learn a policy for visual control tasks.
Model-free algorithms such as RAD (Laskin et al., 2020a)
and DrQ (Kostrikov et al., 2020) make use of image aug-
mentations to provide additional inductive biases. Some
methods have focused on improving the representations

learned for visual control through auxillary tasks, such as
contrastive learning (Laskin et al., 2020b). Perhaps most
similar to our algorithm, SAC-AE (Yarats et al., 2021b)
uses an autoencoder, in addition to losses from the critic
in SAC (Haarnoja et al., 2018), to train an image encoder
used for visual control. However, unlike our algorithm,
SAC-AE (Yarats et al., 2021b) only uses a single decoder,
and does not attempt to make any explicit distinction be-
tween agent and environment. DrQv2 (Yarats et al., 2021a)
is a state-of-the-art model-free reinforcement learning al-
gorithm for visual continuous control, using random shift
image augmentations and n-step returns for improved sam-
ple efficiency.

Agent-Environment Centric Learning Previous ap-
proaches have directly structured the representation space
using forward or inverse dynamics (Zhang et al., 2019; Wat-
ter et al., 2015), but these methods do not scale well to chal-
lenging image-based manipulation tasks. Hu et al. (2022)
learn a factorized visual dynamics model, using the analyt-
ical forward kinematics of the robot and a learned world
model. While this enables transfer of the world model to
new robots with a similar action space, it doesn’t exploit
agent knowledge while training. Previous works have also
implicitly trained policies aware of robot morphology, us-
ing the transferablility of the policies as signal (Yu et al.,
2018; Duan et al., 2017; Dasari & Gupta, 2021; Finn et al.,
2017). Some methods directly train separate robot and task
modules, and attempt to transfer to new combinations of
these modules (Neumann et al., 2014; Devin et al., 2017).
It is also possible to construct a policy where each node is
represented as a joint and each link is an edge (Wang et al.,
2018; Huang et al., 2020), allowing for efficient general-
ization to new morphologies. Decoupling environment and
agent learning has also been popular in exploration-based
approaches (Parisi et al., 2021; Hu et al., 2022; Bahl et al.,
2022; Mendonca et al., 2023). Unlike work which learns
self-perception, we assume access to a self-perception mod-
ule to provide access to robot segmentation masks, and then
investigate how such a model can be incorporated to im-
prove policy learning. As we show in Appendix D, such
self-perception modules can be easily obtained.

3. Background
Reinforcement Learning Formally, the RL problem
is defined by a Markov decision process (MDP)
(S,A, T ,S0,R, γ), where S is the state space, A is the
action space, T (st+1|st, at) is the unknown state transition
function, S0(s) is the initial state distribution,R(st, at) is
the reward function, and γ ∈ (0, 1) is the discount fac-
tor. An agent acts according to some policy π(a|s) and
the learning objective is to maximize the expected return,
Est,at∼π [

∑
t γ

tR(st, at)].
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Representation Learning and RL Learning effective
control policies directly from raw image observations with-
out instrumented setups to detect the states of different ob-
jects in the world is quite challenging. One approach to
address this is to learn low dimensional representations for
control (Zhu et al., 2020; Nair et al., 2018; Yarats et al.,
2021b; Laskin et al., 2020a), bringing the setting closer to
state-based control. These approaches often model the state
at each timestep as a latent z, and learn an encoder qθ and
decoder pϕ by maximizing the evidence lower bound on the
log likelihood of the image X:

log p(X) ≥ Ez∼qθpϕ(X|z)−DKL(qθ(z|X)||p(z)) (1)

4. Structured Latents for Control
4.1. Learning Structured Latents

Figure 3: Graphical Models
for prior approaches (left), vs
SEAR (right).

In the approaches
described above, the
learned latent z mod-
els the entire image,
consisting of both the
robot and the objects
in the environment. Is
there a way we can
learn more structured
latent representations,
given access to visual
information pertaining to the robot XR? In addition to
learning variable z which encodes the entire image, we also
model zR, which corresponds to salient information in XR

for control. zR can be thought of as a processed version
of z which only contains agent-relevant information, as
opposed to information of the entire scene. To build the
full dependency graph between variables X,XR, z, zR, we
state the following desired property:
Proposition 4.1. If z effectively encodes X , then zR
and X should be conditionally independent given z, i.e
p(zR, X|z) = p(zR|z).p(X|z)

We enforce this variable dependency by implementing the
graphical model in Figure 3. The joint probability distribu-
tion resulting from the model is :

p(X,XR, z, zR) = p(z).p(zR|z).p(X|z).p(XR|zR) (2)

In order to learn z, zR, we maximize J = log p(X,XR),
and learn a variational approximation qθ(z, zR|X) to the
posterior, which leads to the following lower bound (deriva-
tion in Appendix A.1):

L = E
z,zR∼q

[log p(X|z)] + E
z,zR∼q

[log p(XR|zR)]

−DKL(q(z, zR|X))||(p(z, zR))
(3)

Breaking each term down, we first want to maximize
Ez∼qθ log p(X|z). This is the standard reconstruction
loss of the Variational Autoencoder (VAE) (Kingma &
Welling, 2013; Rezende et al., 2014). The second term,
Ez∼qθ log p(XR|zR) reconstructs the provided robot visual
information XR from zR, and the final term regularizes the
posterior distribution just like in regular VAEs.

4.2. Effectiveness for Control

Given these structured latent representations, do they enable
better sample efficiency and faster training for policies?
We propose the following thought experiment as a starting
point. Under the graphical model described in Proposition
4.1, consider a value function V (z) that can, without loss of
generality, be written as:

V (z) = VR(zR) + VC(z) (4)

VR is a function only dependent on the agent (the robot
in our case) and VC is a coupling term for the value func-
tion, for the case where the agent is directly interacting with
the environment. We argue that this formulation can repre-
sent a large class of value functions, especially under our
disentangled representation space.

Our main insight is that in contact rich tasks, there are many
uncertainties in modeling the environment. Furthermore,
the first step in many such tasks is control of the robot to
move it to some target location before it can then engage
in contact. Thus, for a large percentage of t ∈ (1, T ), there
will be a large emphasis on the first term of Equation 4,
which is the value function dependent on the agent directly.
By explicitly modelling zR, we expect that it will be easier
for the agent to learn basic robot control. After the agent
can perform basic control of the robot, and capture some
reward only relevant to the motion of the robot, it can then
move on to manipulating the environment, which is better
captured with the second term of Equation 4.

Overall, we hypothesize that modelling zR enables agents
to be much more efficient in learning policies, which is
supported by our experimental analysis. We provide more
details and analysis on this in Appendix A.2, and showcase
this intuition in a toy experiment in Appendix A.3.

4.3. Visually Grounded Agent Representations

Now that we have seen how to learn agent-centric represen-
tations and that they are effective for learning policies, how
do we obtain the agent-relevant observations XR required
for representation learning? While proprioceptive data such
as end-effector positions or joint angles are easily accessible,
they are not visually grounded, and may not convey the full
information needed to model how the robot appears in the
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image observations. Thus, we try to predict the visual robot
observation in the image. One approach for this is to use
a segmentation model of the agent to obtain a robot mask.
This is reasonable to obtain for robots since the shape and
appearance of the robot does not change across tasks, and
obtaining the mask model is a one-time cost. Furthermore,
they do not need to be fully accurate, and we show that our
method can still learn effective control policies when using
noisy or approximate masks.

Given an image of the full scene X , we set XR to be a
segmentation of the robot, M , where Mi,j = 1 for every
pixel that is occupied by the agent and 0 otherwise. Using
a visual encoder qθ(.), we get y = qθ(X), which is then
split into 2 vectors to obtain zR and z. The encoder we
use is similar to that of Yarats et al. (2021a). zR is used
as input to a decoder, Pϕ(M |zR) which tries to predict the
robot mask. This decoder is trained using a binary cross-
entropy loss, as shown in equation 5. Posing the agent-
centric reconstruction as a classification problem allows for
more efficient learning.

Lmask = M logPϕ(M |zR)+(1−M) log (1− Pϕ(M |zR))
(5)

Following Equation 3, z is used to approximate p(X|z), by
using a neural network decoder Pψ, which tries to recon-
struct the input image, X . This is trained using a mean
squared error reconstruction loss, as shown in equation 6.

Lrecon = ∥X − Pψ(z)∥22 (6)

We empirically found that setting the last term of Equation 3
to be very low or 0 had much better results.

While we use DrQv2 from Yarats et al. (2021a) as our base
reinforcement learning algorithm, it is possible to apply
SEAR to any other reinforcement learning algorithm that
utilizes a visual encoder, both for on or off-policy methods.
We apply the same random shift to both the robot masks
and input image observations as part of data augmentation.
The mask decoder, reconstruction decoder, critic, and en-
coder are trained concurrently using a joint loss function,
shown in Equation 7, with coefficients weighing the relative
importance of the three component losses.

L = Lcritic + c1Lrecon + c2Lmask (7)

The overall architecture is shown in figure 2. As with the
DrQv2 algorithm, we do not let actor losses backpropagate
into the encoder. Overall, SEAR introduces 4 additional
hyperparameters to a reinforcement learning algorithm: two
learning rates corresponding to two decoders, and two coef-
ficients for the reconstruction and mask losses. To simplify

Algorithm 1 SEAR: Structured Environment and Agent
Representations for Control

1: for t = 1 . . . T do
2: Collect transition (xt,mt, at, R(xt, at), xt+n)
3: D ← D ∪ (xt,mt, at, R(xt, at), xt+1)
4: UPDATECRITICANDDECODERS(D)
5: UPDATEACTOR (Yarats et al., 2021a)
6: end for
7: function UPDATECRITICANDDECODERS(D)
8: (xt,Mt, at, rt:t+n−1, xt+n) ∼ D
9: Sample augmentation A1

10: zt ← qθ(A1(xt))
11: [z1t ; z

2
t ]← zt

12: Lmask ← Lent(Pϕ(z
1
t ), A1(Mt))

13: Lrecon ← ||Pψ(z2t )−A1(xt))||22
14: Compute Lcritic (Yarats et al., 2021a)
15: Ltotal ← Lcritic + c1Lrecon + c2Lmask
16: Update θenc, θcritic, θmask, θrecon using Ltotal
17: end function

hyperparameter tuning, we used the same learning rate as
the critic for the two decoders. Our approach can be seen in
Algorithm 1.

5. Experiments
In our experiments we seek to test the effectiveness of our
structured representations in the following settings : 1) RL
for manipulation with robot arms 2) RL for dexterous ma-
nipulation 3) Control in visually distracting environments
4) Transfer learning/finetuning. We also demonstrate some
preliminary results in 5) multi-task learning. In this section,
we describe our experimental setup, evaluations, baselines
and results.

Figure 4: Environments used in the evaluation of SEAR.
From left to right: Meta-World, Hand Manipulation Suite,
Franka Kitchen, Distracting Control Suite
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Figure 5: Environment RGB images with their correspond-
ing robot segmentation masks.

Environments: We use the following Mujoco-simulated
(Todorov et al., 2012) environment suites:

• Meta-World (Yu et al., 2020) - Table-top manipula-
tion tasks performed by a Sawyer robot arm.

• Franka Kitchen (Gupta et al., 2019) - Manipulat-
ing objects in a realistic kitchen with a Franka arm.

• Hand Manipulation Suite (Rajeswaran et al.,
2017) - Manipulating objects with an Adroit hand.

• Distracting Control Suite (Stone et al.,
2021) - A variant of the DM Control suite (Tassa et al.,
2018) with distractions added.

Note that we used implementations of the Hand Manipula-
tion Suite and Franka Kitchen from the D4RL benchmark
(Fu et al., 2020). Images of these four environments are
shown in figure 4.

Setup: We obtain agent masks from the simulator directly.
Ground truth segmentation masks were generated using
Mujoco’s rendering API, which has a flag for rendering
segmented images. Pixel values from these segmentation
renders correspond to geometric IDs. We then create binary
masks based on geometric IDs known to correspond to the
robot for a given environment. Example masks from each
suite are shown in Fig. 5. Note that one could also use
a segmentation model for these. The agent receives an
RGB image as input, and a mask as supervision for the
representation learning (all of which are 84x84). For each
environment, a frame stack of 3 was used. For Meta-World
and Distracting Control tasks, an action repeat of 2 was
used, whereas an action repeat of 1 was used for Hand
Manipulation Suite and Franka Kitchen tasks. In the Franka
Kitchen setup, we used a sparse reward of 1 for each of
the individual tasks. For the multi-task version, we add the
sparse reward from each subtask achieved.

We compare to the following baselines in our experiments -

• DrQ - DDPG (Lillicrap et al., 2015) with image aug-
mentations, shown to be state of the art in many visual
RL settings. We use the code and setup from Yarats
et al. (2021a), and implement SEAR on top of this
base.

• DrQ-AE - Uses the same encoder as SEAR, but with-
out the mask decoder. Has a single decoder operating
on the entire latent vector in order to reconstruct the
original input image. This is a version of SAC-AE
(Yarats et al., 2021b). We run this to test if agent-
environment disentangling is helping or if any form of
reconstruction will have the same effect.

• DrQ-MAE - Reconstructing randomly masked patches
in the images. Such methods have shown to be robust
in self-supervised learning and control settings (Xiao
et al., 2022; Radosavovic et al., 2022; He et al., 2022).

• CURL - State-of-the-art self-supervised visual learning
for RL approach (Laskin et al., 2020b), which has
been shown to be a useful auxiliary loss. Performs
momentum contrastive learning (He et al., 2020) on
the input images during the RL loop.

5.1. Analysis and Ablations
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Figure 6: Analysis of robustness of SEAR with noisy and
approximate robot masks.

Figure 7: Noisy Mask (left) and Approximate Mask (right).
Implementation described in Appendix C.6

Robustness to inaccuracies in robot masks: In real
world scenarios, we do not have direct access to robot seg-
mentation masks and may need to either have a trained
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Figure 8: Meta-World: Success rate for different methods on 10 different tasks from the Meta-World suite. SEAR
outperforms or matches prior approaches on all tasks.

model or use robot proprioception data. While SEAR does
use additional information, which is the robot mask data,
we argue that this information is not difficult to obtain or
approximate. To test this, we run multiple ablations of our
model and analyze these. Firstly, we confirm that adding
even an approximate amount of agent information helps
in the case of learning. This is done via two experiments
shown in Figure 6. Agents were trained on two separate
Meta-World tasks. We artificially introduce noise into the
masks to evaluate the robustness of our approach (shown
in orange). Another option is to use proprioceptive data to
get an approximate mask. We mimic this by generating a
large patch of pixels around the joints to get some mask
that has a somewhat similar shape to the robot. This curve
is shown in magenta in Figure 6. With both, we see that
the performance does not decrease by much, almost being
similar to SEAR with a perfect mask, even when a large
amount of noise is added. Such masks can be seen in Fig-
ure 7. This experiment allows us to conclude that when
training in the real world, a segmentation model of the robot
can be used, even if it has inaccuracies. In Appendix D,
we further qualitatively show that a simple masking model
fine-tuned on 100 images (including those collected on our
robots, and internet images) can give good robot masks for
many out-of-distribution images.

Implicit Representations: Concluding that incorporat-
ing the robot information is important, we analyze other
ways to learn zR from the robot mask, for example in an
implicit manner. Thus, we run a simple ablation (green)
with DrQ-RGBM. This approach uses the DrQ-v2 algorithm
trained on observations consisting of RGB images concate-
nated with robot masks. We see that this performance on

both environments in Figure 6 is worse than that of our ap-
proach. We also see that SEAR is robust to hyperparameters
such as c1 and c2, the loss coefficients for the reconstruction
and mask (Appendix E). In Appendix F, we further show
that there is a performance drop if the mask loss is added as
an auxillary loss without splitting the latent vector.

5.2. Continuous Control Experiments

For the continuous control experiments, we evaluate SEAR
on various challenging environments, tasks and benchmarks,
where the agent varies greatly in morphology, ranging from
a 7-DoF robot arm to a hand or an embodied two dimen-
sional walker, all in MuJoCo (Todorov et al., 2012). We
firstly evaluated our agent on 10 different visually chal-
lenging tasks from the Meta-World benchmark (Yu et al.,
2020), as well as on three hand manipulation suite tasks,
three Franka Kitchen tasks, and two Distracting Control
tasks. We measure and report either episode success or total
reward, at test time.

Meta-World We compared our agents performance, mea-
sured as episode success rate, to baselines on single-task
manipulation tasks available in the Meta-World benchmark.
Due to compute and time constraints, we only ran experi-
ments on 10 tasks, which we chose because they seemed
like the most contact-rich. The results are shown in figure 8.
We observed greater sample efficiency on many of the tasks.
These are all visually diverse and relatively challenging set-
tings. Furthermore, on three of the tasks, SEAR achieved
the highest episode reward by the end of training. On button-
press-wall and door-close, SEAR did not outperform all the
baselines, but it still matched the best ones. We found the
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Figure 9: Franka Kitchen & Adroit: Success for different methods on 3 different tasks from the FrankaKitchen suite (top)
and from the Adroit-hand suite (bottom). SEAR outperforms or matches prior approaches on all tasks.

auto-encoding baseline DrQ-AE to be a strong one, while
contrastive learning (CURL) had difficulty. How does SEAR
scale to different types of robots, for example, a Franka?

Franka Kitchen We evaluated our agent on the Franka
Kitchen benchmark, a diverse and visually challenging en-
vironment, where a task is defined by a set of objects in the
scene that have to be moved to pre-specified goal locations.
We looked at three different, single item-tasks: kettle, light,
and slider. A reward of 1 is given for successfully moving a
task item to its pre-specified goal location. Results, given
as total episode reward, are shown in figure 9. SEAR beat
all baselines on light, and matched the best baseline on the
other two tasks. Note that the best baseline was different
between these two tasks (kettle and slide), suggesting that
while there is high inter-task variance in the performance of
the various algorithms, SEAR tends to match or surpass the
performance of the best baseline for a given task.

Adroit Hand Manipulation We evaluated episode suc-
cess rate of our agent on three different tasks within the
Adroit Hand Manipulation Suite: Pen, Hammer, and Door.
Results are shown in figure 9. SEAR outperformed base-
lines on two of the tasks, and matched the best baseline on
the other task. We also ran experiments on the Relocate task,
but all of the agents failed to learn, and thus we have not
included it. We found that CURL was unable to solve any
of the Adroit Hand Manipulation tasks, even with > 1.5M
environment steps.

Distracting Control If our hypothesis of SEAR learning
environment-agent disentangling representations was cor-
rect, we would see a strong performance in cases where
control completely disentangles environment from agent.
Thus we conducted an experiment on two challenging envi-
ronments from the Distracting Control environments: (Stone
et al., 2021) the ball-in-cup catch and walker-walk, where
each episode, a random image is shown in the background.
Total episode reward results are shown in Fig 10. By the end
of training, SEAR achieved a higher total episode reward
on both tasks compared to all other baselines. This suggests
that SEAR learns useful disentangled representations when
controlling a robot in visually distracting environments.
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Figure 10: Distracting Control: Reward for different meth-
ods, SEAR outperforms all the baselines.

Transfer Learning In transfer learning environments,
while the task may be different, the agent is often the same.

7



Efficient RL via Disentangled Environment and Agent Representations

0.00 0.25 0.50 0.75 1.00 1.25 1.50
×106

0.0

0.2

0.4

0.6

0.8

1.0

Basketball

0.00 0.25 0.50 0.75 1.00 1.25 1.50
×106

0.0

0.2

0.4

0.6

0.8

1.0

Bin-picking

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
×106

0.0

0.2

0.4

0.6

0.8

1.0

Box-close

0.0 0.1 0.2 0.3 0.4 0.5
×106

0.0

0.2

0.4

0.6

0.8

1.0

Door-lock

Ours

DrQ-AE

DrQ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
×106

0.0

0.2

0.4

0.6

0.8

1.0

Peg-insert

0.0 0.2 0.4 0.6 0.8 1.0
×106

0.0

0.2

0.4

0.6

0.8

1.0

Unplug

0.0 0.1 0.2 0.3 0.4 0.5 0.6
×106

0.0

0.2

0.4

0.6

0.8

1.0

Hammer

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×106

0.0

0.2

0.4

0.6

Soccer

Figure 11: Transfer: Success for finetuning a multi-task policy pretrained on the Meta-World MT-10 suite to 8 different
unseen tasks. SEAR transfers representations much better than prior methods.

This leads us to expect that making an agent-environment
distinction in representation learning will lead to improved
performance during transfer learning. To test this, we pre-
trained agents on a multi-task setting (MT10 suite), and then
fine-tuned on new Meta-World tasks not part of the original
MT10 tasks. We also fine-tuned on Peg-Insert, which the
agents failed to learn in the multi-task setting (Potentially af-
fected by a poor camera angle). Results for transfer learning
are shown in figure 11. SEAR outperformed the baselines
on many of the tasks, and matched the best baseline on
the rest. Overall, the results suggest that SEAR learns a
representation that performs well in transfer learning set-
tings. We leave it to future work to investigate to what extent
transfer learning performance is attributable to better trans-
ferability vs the better performance that SEAR has shown
in single-task learning.

Visualizing Feature Maps To gain more insight into the
difference in representations learned by SEAR, we examine
the activation maps of the encoder on one task each from
three of our robotics environments. This activation map is
the ReLU activations after the last encoder convolutional
layer. Within the encoder, such activation maps would pass
though an additional pooling and projection layer to form
the latent vector. These activation maps are resized to the
input image size, normalized to [0,1], and then blended with
the original image after being mapped through a color map.
We examine these activations since it is easier to visualize
their spatial correlation with the input image, compared to
visualizing the latent vector. Figure 12 contains a few ex-
ample maps, where we can see that SEAR has more activity
in regions around the robot in some maps and a lot more
activity around objects in other maps. This is particularly
salient in the Franka-Kitchen and Meta-World environments.

In Appendix G, we present a comparison of all 32 channels
for both SEAR and DrQ. While they don’t show full dis-
entanglement (since the linear projection can map them in
arbitrary combinations), we found it interesting that activa-
tions from the SEAR encoder tend to have more filters that
fire on either the robot or the environment (Figures 18 and
20), or focus on more diverse parts of the environment (ket-
tle, burners, cabinet or microwave in Figure 19) compared
to DrQ filters which only fire on the kettle. We hope to study
this type of disentanglement in more detail in future work.

Figure 12: SEAR activation maps for select channels from
the last convolution layer in the encoder of SEAR.

Multi-Task Learning Multi-task environments often use
the same agent across multiple tasks. Thus, it is expected
that making a distinction between agent and environment
features will help multi-task learning as similar agent fea-
tures can be shared across different tasks. To test this hy-
pothesis, we utilized two small-scale multi-task environment
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Figure 13: Small-Scale Multi-task settings: Success for
different approaches for joint training on multiple tasks from
an environment suite.
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Figure 14: Larger-Scale Multi-task setting: Success for
different approaches for joint training on the Meta-World
MT50 set of tasks.

setups: a Meta-World setup with three tasks, and the Franka
Kitchen environment with multiple task objects and ran-
domized camera locations (shown in Appendix H). For each
of these, the only input is the raw image. The three Meta-
World tasks, button-press-topdown-wall, door-open, and
hammer, were selected due to being three visually distinct
tasks from our initial set of 10 contact-rich tasks. Results
are shown in figure 13. SEAR outperforms baselines in the
Meta-World setup and matches performance in the Franka-
Kitchen environment. We further evaluate SEAR in a larger
multi-task setup with the Meta-World MT50 set of tasks,
with results shown in figure 14. On this larger set of tasks,
SEAR matched but did not outperform the baselines. These
results are preliminary, and we leave a full investigation into
applying and adapting SEAR to multi-task environments as
future work.

6. Discussion and Limitations
In this paper, we hypothesize that building representations
which create a distinction between the agent and environ-
ment leads to more effective RL. We do so by formulating a
representation learning method that can incorporate agent
information directly and efficiently. We construct a learning
algorithm, SEAR, that encourages representations to learn
the agent-environment split by reconstructing the mask of
the agent. We argue that this form of supervision is a very
weak assumption, and in most cases is readily available
(even in an approximate form). We show strong results
against state of the art approaches in visual RL, on multiple
different types of agents (robot arms, hands or even walkers),
and in many different and challenging continuous control
environments. In our future work, we hope to build agent-
centric representations that can allow for building more
efficient visual dynamics model, and empower exploration.
Additionally, we would like to investigate disentangled rep-
resentations for multi-task learning, and real-world robotics
(a current limitation of SEAR).
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A. Theoretical Justification
A.1. Representation Objective

We describe how we obtain the training objective for the representation space from the graphical model shown in Figure 3.
In order to learn z, zR, we maximize J = log p(X,XR), and learn a variational approximation qθ(z, zR|X) to the posterior.
We have :

log p(X,XR) = log

∫
z,zR

p(z).p(zR|z).p(X|z).p(XR|zR)

≥
∫
z,zR

log(p(z, zR).p(X|z).p(XR|zR))

= E
z,zR∼q

[
log

(
p(z, zR).p(X|z).p(XR|zR)

q(z, zR|X)

)]
= E
z,zR∼q

[log p(X|z)] + E
z,zR∼q

[log p(XR|zR)]−DKL(q(z, zR|X))||(p(z, zR))

A.2. RL Performance

Consider the general value function described in Section 4:

V (zzzt) = VR(zzz
R
t ) + VC(ztztzt) (8)

Here zt is the concatenation of zzzRt and zzzEt . We can think of the following

zzzRt ∼ N (µR, σR)

zzzEt ∼ N (µE , σE)

Let us assume two cases, one where there is environment interaction and one where there is none. In the case where there is
very little or no interaction, we can think in this case that σR will be small, as there is less noise in the robot information,
as these features are more salient for the value function. Assuming that the value function can be written as a quadratic
function:

V (zzzt) = [zzzRt , zzz
E
t ]
TV [zzzRt , zzz

E
t ]

V (zzzt) = [zzzRt , zzz
E
t ]
T [V1, V2][zzz

R
t , zzz

E
t ]

V (zzzt) = (zzzRt )
TV1zzz

R
t + (zzzEt )

TV1zzz
E
t + 2(zzzRt )

TV2zzz
E
t

When fitting these parameters, due to the high noise in zzzEt , we find that singular values of V1 are much higher than those of
V2.

Now let us look at the observation X . This can be thought of as:

X = Qzzzt + ϵ (9)

Where Q is some matrix in SO(3) and ϵ ∼ N (0, 1). When learning zzzt from these, in the case of an autoencoder, we will fit
ẑzz to the top principal components of zzzEt , as σE > σR. However, in the case where we are explicitly reconstructing XR, the
model will fit ẑzz to a mix of top principal components of zzzRt and zzzEt , which means it is better at recovering the true zzzt.
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A.3. Toy Experiment

To showcase the intuition that it can be easier to learn the value function/policy if the latent representation directly decouples
the agent and environment state, we construct the following toy experiment. We create a 2D continuous point mass
environment with a changing obstacle position and a randomly sampled goal and initialization position. The ground truth
reward is made up of an attraction term (exponential distance to goal) and a repulsion term (exponential distance to obstacle).
The agent does not observe the ground truth state, but a high dimensional projection of a noisy latent state as mentioned in
equation 9. Furthermore, as in Appendix A.2, zzzRt and zzzEt are drawn from normal distributions, where µR is the position of
the agent and µE contains the position of the goal and the position and size of the obstacle.

When running SEAR, the agent additionally has access to the mask : XR = Q2zR.

We collect data in this environment to learn ẑ from X and ẑR from XR, which learn the overall structure of the data and the
agent-relevant structure respectively. We use this to train a predictive reward model: V (ẑ, ẑR), which is later used for MPC.
We test the performance of SEAR which models (ẑ, ẑR), to a baseline which directly models ẑ, using final distance to goal
as the metric, for different relative values of σR and σE , presenting the results in Table 1.

Table 1: Final distance to goal for varying relative values of agent and environment observation noise

V (ẑ) V (ẑ, ẑR)
σE > σR 1.35 1.09
σE = σR 1.09 1.08
σE < σR 1.40 1.36

Table 1 shows the distance to goal achieved for different noise levels by using V (ẑ) or V (ẑ, ẑR) for planning. We see
that when the noise in the environment observation is high, SEAR provides much more effective control, and that the
performance is roughly equal in all other cases.

B. Limitations and Broader Impacts
SEAR has a couple of different limitations. First, it’s performance on learning representations for multi-task learning is not
fully clear. We showed preliminary results on two small-scale multi-task settings and the Meta-World MT50 setting, but
further investigation is required. SEAR has not yet been tested on real-world environments.

SEAR was only tested with the DrQv2 algorithm, and so while SEAR can be deployed with any reinforcement learning
algorithm with an image encoder, future work still needs to explore the performance of using SEAR with other algorithms.

SEAR does not provide any benefit over other approaches in cases where the robot is not visible in the input image. Thus,
future work will need to investigate how to incorporate such visual observations, which may be common in cases where, for
example, the robot has a first-person view.

Another limitation of SEAR is that the representations learned by SEAR may not be closely aligned with human interests.
This becomes more relevant as visual control algorithms are deployed in greater numbers to perform a wider variety of tasks,
especially for tasks with a direct impact on humans.

Even if the representations learned are relatively well-aligned with the intentions of a designer using this algorithm, there
are no safe-guards against a designer purposefully using SEAR to learn visual control tasks that can cause harm to humans.

SEAR could also be used to aid the deployment of more general-purpose robots, which may affect people’s employment
and overall economic conditions.

C. Implementation Details
Here, we present additional details relevant to our implementation of SEAR.

C.1. Code

The code of ours can be found at https://sear-rl.github.io
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C.2. Hyperparameters

For SEAR, we used the DrQv2 algorithm (Yarats et al., 2021a) with a modified encoder, and added additional mask and
reconstruction decoders. A list of hyperparameters can be found in Table 2. Most hyperparameters have the same value as in
(Yarats et al., 2021a).

Compared to the original replay buffer size of 1e6, we used a smaller replay buffer size of 2.5e5. This change was made
mainly to reduce RAM usage for each experiment. For instance, a buffer of size 1e6 with a frame stack of 3 corresponds to
3e6 rgb images of size (84, 84). Given 3 bytes per pixel, this gives us a total RAM usage of about 63.5 GB. This problem
could be alleviated through tricks such as only storing each image once, instead of duplicating the image 3 times for a frame
stack of 3. However, we did not see any performance decrease during preliminary experiments when reducing the replay
buffer. We used this smaller replay buffer size as well when evaluating baselines.

Another difference in value between hyperparameters common to both DrQv2 and SEAR is action repeat. On the Franka
Kitchen and Hand Manipulation Suite environments, we set the action repeat to 1. We did not experiment with varying the
action repeat, but we did use the same action repeat in our comparison baselines.

SEAR has a couple of extra hyperparameters that are not present in DrQv2. One such hyperparameter is the learning rate
for the two decoders. For simplicity, we ended up using the same learning rate as the actor and critic. The other new
hyperparameters are the coefficients controlling the contribution of the reconstruction and mask decoders to the total loss,
relative to the critic loss. These correspond to coefficients c1 and c2 in equation 7. We observed that the cross entropy mask
loss tended to converge to a value about four times greater than the reconstruction loss, so we set the reconstruction loss
scaling coefficient to be four times the mask loss scaling coefficient. This kept the contribution of the decoders relatively
equal. From the ablation shown in 17, SEAR is relatively insensitive to the choice for c1.

C.3. Architecture

Our architecture differs from (Yarats et al., 2021a) with the addition of two decoders, and a modification to the encoder. The
architectures used for the actor and critic are the same.

Similar to (Yarats et al., 2021a), our encoder architecture contains a series of four convolutions with ReLU’s between them.
Each convolution has a kernel size of 3, and every convolution except the first one has a stride of 1. The first convolution has
a stride of 2. Every convolution has 32 feature maps. This transforms a stack of 84x84 rgb images into a 32x35x35 set of
activation maps. After the convolutions, we add a 2D average pooling layer with kernel size of 4 and stride of 4. This helps
reduce the overall dimensionality down, giving us 32x8x8 features. We flatten this set of feature maps, and pass this through
a linear layer, projecting the activations to a desired latent dimension. The encoder outputs the output from this linear layer.

The decoder architecture, used for both the mask and reconstruction decoders, starts with a linear layer with ReLU activation.
This maps the latent vectors to a 2048 dimensional vector, which we reshape into a 32x8x8 set of feature maps. We pass
these feature maps through 5 transpose convolutions. The first transpose convolution in the decoder is set up to mirror the
average pooling layer in the encoder. It has a kernel size and stride of 4. We used 16 channels for this convolution, as our
original encoder implementation had no linear projection, and so each half of the latent vector passed to each decoder only
came from 16 of the 32 channels output by the average pooling layer. After adding a linear projection to the encoder, each
half of the latent now comes from a combination of all 32 channels output by the average pooling layer, but we kept using
16 channels in the first layer of our decoder. Future work could change the first transpose convolution to use 32 channels,
although we do not expect such a change to make any significant impact on the overall performance of SEAR. The last four
transpose convolutions mirror the 4 convolutions in the encoder. They have 32 channels, except for the last convolution,
which has the same number of channels as the stack of rgb images for the reconstruction decoder, or the same number of
channels as the stack of masks for the mask decoder. They have a kernel size of 3, and a stride of 1, except for the last
transpose convolution which has a stride of 2. The output from the transpose convolutions is passed through an output
activation, which is the identity for the reconstruction decoder and a sigmoid for the mask decoder.

C.4. Training Details

We train each model using a mix of RTX6000, A5000, A6000 or 2080Ti GPUs. Each run takes about 3-7 hours of training
on these.
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Table 2: Hyperparameter Settings

Hyperparameter Value
Replay Buffer Size 2.5e5
Frame Stack 3
Action Repeat 2 - Meta-World; Distracting Control

1 - Kitchen; Hand Manipulation
Seed Frames 4000
Exploration Steps 2000
N-Step Return 3
Batch Size 256
Discount 0.99
Optimizer Adam
Actor, Critic Learning Rate 1e-4
Decoder Learning Rate 1e-4
Agent Update Frequency 2
Critic Q-function Soft-Update Rate τ 0.01
Actor, Critic Feature Dimensions 50
Latent Dimensions 4096 - Single-task

512 - Multi-task, Transfer
Exploration StdDev. Schedule linear(1.0,0.1,2e6) - Meta-World MT

linear(1.0,0.1,5e5) - otherwise
Exploration StdDev Clip 0.3
Observation Render Size (84, 84)
Reconstruction Loss Scaling Coefficient (c1) 0.01
Mask Loss Scaling Coefficient (c2) 0.0025
Camera Name/ID ”Corner” - Meta-World

”Fixed” - Hand Manipulation; Kitchen
0 - Distracting Control

Evaluation Frequency 1e4
Evaluation Episodes 10
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C.5. Robot Mask Preprocessing

For segmentation masks, single pixel wide artifacts were observed to render around the edges of some non-robot objects.
At a resolution of 84x84, some robot features were also on the order of a single pixel wide, which made filtering at such
a resolution more difficult. We observed that the artifacts remained one-pixel wide, even as the resolution was increased.
Thus, to filter out these artifacts, segmentation masks were rendered at a resolution of (252, 252), a morphological opening
was applied, and then the masks were downsampled to a resolution of (84, 84) before being passed to the agent.

C.6. Noisy and Approximate Mask Generation

Noisy masks were generated by taking the clean, filtered robot mask, and randomly setting robot labels to non-robot labels
with a user-specified probability. To generate an approximate mask, we take the original robot mask, downsample it, and
then upsample it back to its original size. We then apply gaussian blurring and threshold the image to get a new mask.

D. Real-World Robot Segmentation Model
In order to more directly test applicability to real robots, we train a segmentation model for a real Franka Panda robot. For
this setup, we finetune a Mask-RCNN model (He et al., 2017) on around 100 images of our own robot (Franka Panda) as
well as a few internet images, both of which we manually label. Figure 15 shows images of the masks obtained by running
our model on out-of-distribution robot images as well as new viewpoints. When paired with the results from 5.1, which
show that SEAR can work with noisy and approximate robot masks, we have hope that SEAR may also be applicable to
training in real-world settings.

Figure 15: Segmentation masks predicted on out-of-distribution images by a fine-tuned Mask-RCNN model (He et al.,
2017).
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E. Decoder Ablations
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Figure 16: Ablation of hyperparameters of SEAR such as the coefficients of the reconstruction loss: c1, c2.

F. Auxillary Mask Loss Without Latent Separation
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Figure 17: Ablation comparing SEAR to a model where you add an auxillary mask loss but do not split the latent vector.
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G. Encoder Activation Maps

Figure 18: Activation maps from the fourth convolution of the encoder, resized and overlaid on top of the corresponding
input image.
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Figure 19: Activation maps from the fourth convolution of the encoder, resized and overlaid on top of the corresponding
input image.
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Figure 20: Activation maps from the fourth convolution of the encoder, resized and overlaid on top of the corresponding
input image.
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H. Multi-Task Franka Kitchen Camera Locations

Figure 21: Set of 6 camera angles randomly selected from each episode in the Franka Kitchen multi-task setup
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