
GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets

Shubham Gupta * 1 Sahil Manchanda * 1 Sayan Ranu 1 Srikanta Bedathur 1

Abstract
Graph neural networks (GNNs), in general, are
built on the assumption of a static set of features
characterizing each node in a graph. This assump-
tion is often violated in practice. Existing meth-
ods partly address this issue through feature im-
putation. However, these techniques (i) assume
uniformity of feature set across nodes, (ii) are
transductive by nature, and (iii) fail to work when
features are added or removed over time. In this
work, we address these limitations through a novel
GNN framework called GRAFENNE. GRAFENNE
performs a novel allotropic transformation on the
original graph, wherein the nodes and features are
decoupled through a bipartite encoding. Through
a carefully chosen message passing framework
on the allotropic transformation, we make the
model parameter size independent of the number
of features and thereby inductive to both unseen
nodes and features. We prove that GRAFENNE
is at least as expressive as any of the existing
message-passing GNNs in terms of Weisfeiler-
Leman tests, and therefore, the additional induc-
tivity to unseen features does not come at the cost
of expressivity. In addition, as demonstrated over
four real-world graphs, GRAFENNE empowers
the underlying GNN with high empirical efficacy
and the ability to learn in continual fashion over
streaming feature sets.

1. Introduction and Related Work
Graph Neural Networks (GNNs) have witnessed immense
popularity in modeling topological data. GNNs have
produced state-of-the-art results in molecular property pre-
diction (Ying et al., 2021; Rampášek et al., 2022), protein
function prediction (Hamilton et al., 2017; Nishad et al.,

*Equal contribution 1Department of Computer Science
and Engineering, IIT Delhi. Correspondence to: Shub-
ham Gupta <shubham.gupta@cse.iitd.ac.in>, Sahil Manchanda
<sahil.manchanda@cse.iitd.ac.in>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2021; You et al., 2019), modeling of physical systems (Bhat-
too et al., 2023; Bishnoi et al., 2023; Thangamuthu et al.,
2022; Bhattoo et al., 2022), traffic forecasting (Gupta et al.,
2023; Jain et al., 2021), material discovery (Bihani et al.,
2023), learning combinatorial algorithms (Manchanda
et al., 2020; Ranjan et al., 2022; Chakraborty et al.,
2023; Manchanda & Ranu, 2023), and graph generative
modeling (Goyal et al., 2020; You et al., 2018; Gupta et al.,
2022; Vignac et al., 2023). The effectiveness of GNNs is
closely associated with the availability of high-quality input
node features (Rossi et al., 2021). An inherent assumption
in existing GNNs is the availability of all features for each
node in the graph. In practice, this assumption is often
violated producing heterogeneous and dynamic feature sets.
To motivate, we list two commonly occurring scenarios.

• Applicability of features: In graphs with heterogeneous
features, the feature set characterizing node v may not be
relevant for node u. As an example, consider a co-purchase
graph over items in an e-commerce database. While the
feature CPU clock-speed is relevant for smartphones, it
does not apply to smartphone covers. While one may
homogenize the features set across all nodes by attributing a
special value to denote non-relevant features, it significantly
enlarges feature dimensionality leading to inefficiencies in
the modeling, computational and storage components.
• Feature set refinement: Feature sets may get altered
over time (Leskovec & Krevl, 2014; Bai et al., 2018).
Consider the evolution of smartphones into the foldable
form factor. While a feature characterizing the form-factor
is required in today’s context, it was not conceivable five
years back. Similarly, in a dating network, users might
choose to remove/hide personal attributes related to income,
education, and occupation at a later stage after initial
sign-up. Furthermore, the dating app might ask for covid
vaccination status in the post-pandemic era. Since the
number of model parameters in GNNs is a function of the
input node feature dimension, when the feature set changes,
the entire model needs to be retrained from scratch. The
ideal solution lies in decoupling the GNNs parameters with
feature set size and continually adapting the existing model
to new features without forgetting the past.

1

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 2

1.1. Existing Works

The closest work to ours is topology-aware feature impu-
tation over missing features (Taguchi et al., 2021; Jiang &
Zhang, 2020; Rossi et al., 2021)1. In feature imputation, the
value of a non-existing feature is predicted based on other
existing features and the graph topology. Feature imputation,
however, is not adequate for the proposed problem.

• Feature relevance: Feature imputation assumes that a
feature is relevant, but missing. Heterogeneous feature
sets surfaces a different problem where a feature itself is
not relevant and hence imputation is an irrational task.

• Transductive modeling: Topology-aware feature impu-
tation algorithms, such as GCNMF (Taguchi et al., 2021),
PAGNN (Jiang & Zhang, 2020) and FP (Rossi et al.,
2021), require computation of the Graph Laplacian, ren-
dering them incapable of modeling unseen nodes, i.e.,
nodes not observed in training.

• Lacking ability for continual learning: As discussed
above, it is natural for datasets to update feature sets
to stay in sync with their evolution. This necessitates
developing a continual learning framework for a
streaming node feature scenario that avoids catastrophic
forgetting on the portion of the graph that is unaffected
in the update. Existing algorithms for topology–aware
feature imputation do not support this need due to being
transductive. On the other hand, algorithms for continual
learning on graphs (Wang et al., 2022; 2020a; Liu et al.,
2021) perform continual learning only over nodes with
homogeneous feature sets.

1.2. Contributions
In this work, we propose GRAph FEature Neural NEtwork
(GRAFENNE) to address the above-highlighted gaps.
GRAFENNE is built on the following novel contributions:

• Continual, assumption-free and GNN-agnostic model-
ing: GRAFENNE transforms the input graph into a graph
consisting of two disjoint sets of graph nodes and feature
nodes. Through a novel message passing scheme across
these nodes, GRAFENNE ensures three key properties.
First, the number of model parameters is independent of
the number of nodes or features. Hence, it is inductive
to both unseen nodes and features. This enables an easy
transition to continual learning. Second, the flexible trans-
formation and message passing scheme can mimic any
of the existing GNN architectures. Third, it bypasses the
need to impute features and thereby imbibing the ethos of
heterogeneous feature sets.

• Expressivity: We prove that given any GNN of k-WL
expressivity, they can be embedded into the GRAFENNE

1Topology-unaware methods (Wu et al., 2021) are not
well-suited for the task due to their inability to model node-
dependencies (See. Appendix Sec. L)

framework to retain their full expressive power under k-
WL while also imbibing the above mentioned properties.

• Empirical evaluation: Extensive experiments on
diverse real-world datasets establish that GRAFENNE
consistently outperforms baseline methods across various
levels of feature scarcity on both homophilic as well
as heterophilic graphs. Further, the method is robust to
extreme low availability of node features.

2. Preliminaries
Definition 1 (Graph). A graph is defined as G = (V, E ,X)
over node and edge sets V and E = {(u, v) | u, v ∈ V}
respectively. X ∈ R|V |×|F | is a node feature matrix where
F is the set of all features in graph G. F is assumed to be
available for all nodes v ∈ V .

Assuming xv ∈ R|F | as input feature vector for every node
v ∈ V , the 0th layer embedding of node v is denoted as:

h0
v = xv ∀v ∈ V (1)

To compute the ℓth layer representation of node v, GNNs
compute the message from its neighbourhood Nv = {u |
(u, v) ∈ E} and aggregate them as follows:

mℓ
v(u) = MSGℓ(hℓ−1

u ,hℓ−1
v) ∀u ∈ Nv (2)

mℓ
v = AGGREGATEl({{ml

v(u),∀u ∈ Nv}}) (3)

where MSGl and AGGREGATEl are either pre-defined
functions (Ex: MEANPOOL) or neural networks
(GAT (Veličković et al., 2018)). {{. . .}} denotes a
multi-set; it is a multi-set since the same message may be
received from multiple neighbors.Finally, GNNs compute
the lth layer representation of node v as follows:

hℓ
v = COMBINEl(hℓ−1

v ,mℓ
v) (4)

where COMBINE is a neural network. The node represen-
tations of the final layer, denoted as hv, are used for down-
stream tasks such as node classification, link prediction, etc.

Assumptions: As summarized in the above generic frame-
work, all node representations undergo the same transfor-
mation in each layer. While this design allows GNNs to
decouple the number of model parameters from the node
set size |V|, it forces the parameter size to be a function
of the node representation dimension. Moreover, node fea-
tures xv are tightly coupled with node representation hℓ

v in
each hidden layer ℓ (See Eq. 1 and Eq. 4). Consequently,
if the feature set size is heterogeneous, or dynamic due to
changes over time, GNNs are either inapplicable, or requires
re-training from scratch following each feature set update.
Our objective is to remove this assumption and mitigate the
resultant shortcomings.

2

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 3

3. Problem Formulation
First, we redefine graph (Def. 1) by relaxing the constraint
that all nodes should consist of same set of input features:
Definition 2 (Graph with heterogeneous feature set). A
graph is defined as G = (V, E ,X) where V is a set of
nodes and E = {(u, v) | u, v ∈ V} is a set of edges.
X =

[
x1,x2 . . .x|V|

]
is a collection of node feature vectors

where xv ∈ R|Fv|,∀v ∈ V . Fv is the set of features avail-
able at node v and F =

⋃
v∈V Fv is the union of available

features across all nodes in the graph.

We note that X is not a matrix since the dimension of each
xv ∀v ∈ V can be different. Moreover, each dimension in
xv may have a different meaning for every v. Thus, exist-
ing GNNs cannot train on these graphs without including
missing-value imputation as an intermediate step. Motivated
by this, we now define the following novel formulation.
Problem 1 (GNN for graphs with heterogeneous features).

Input: Given a graph G (Def. 2), let Y : V → R be a
hidden function that maps a node to a real number2. Y (v)
is known to us only for subset Vl ⊂ V and may model
some downstream task such as node classification, or link
prediction.

Goal: Learn parameters Θ of a graph neural network, de-
noted as GNNΘ, that predicts Y (v), ∀v ∈ Vl accurately.
We focus on inductive learning so that GNNΘ can predict
on unseen graphs (and nodes).

Prob. 1 is formulated in the context of static graphs with
heterogeneous feature sets. It does not consist any tempo-
ral characterisation. We further generalize Def. 2 to allow
temporal characteristics.
Definition 3 (Dynamic graphs). A dynamic (or streaming)
graph is a sequence of graph (as per Def. 2) snapshots
recorded at consecutive timestamps t = 1, 2 . . . and repre-
sented as

−→
G = (G1,G2 . . .) where Gt = (Vt, Et,Xt).

In Def. 3, nodes/edges/features can be added or existing
ones can be deleted in consecutive snapshots, i.e., Vt+1 =
Vt+∆Vt, Et+1 = Et+∆Et and Xt+1 = Xt+∆Xt. We
note that different subsets of features can be added/removed
for all nodes or a subset of nodes during each update. To
ease the notational burden, we overload the notation of
∆VT to denote all nodes that were either deleted, added, or
underwent a feature change. Each of the three update types
can be distinguished with an appropriate indicator variable.

Following Def. 3, we write Gt = Gt−1 + ∆Gt where
∆Gt = (∆Vt,∆Et,∆Xt). The sequential graph updates
∆Gt may contain new patterns, thus making GNNΘ1 trained

2It is easy to adapt Y (v) for edge or graph level tasks by
learning an aggregation function over its constituent node repre-
sentations.

Available
Unavailable

Transform

𝐺!"#

		𝒗𝟏	

	𝒗𝟐	

		𝒗𝟑	

			𝑭𝟏	

𝑭𝟐

	𝑭𝟑

0.2

1

29

37

𝑉 	 𝑉"#$%

0

		𝒗𝟏	

	𝒗𝟐	

		𝒗𝟑	

𝐺

	0.2 29 NA

𝑭% 𝑭𝟐 𝑭𝟑

	NA NA 1

𝑭% 𝑭𝟐 𝑭𝟑

	NA 37 1
𝑭% 𝑭𝟐 𝑭𝟑

Figure 1: Transformation of input graph G to its allotropic
form Galt. In G, the features marked in green are available
for the corresponding node.

using G1, ineffective over G2, G3, . . . ,Gt. However, re-
training GNNΘt from scratch on Gt is computationally ex-
pensive as well. A vanilla solution of online learning re-
sides in updating Θt−1 only on ∆Gt. This, however, may
lead to catastrophic forgetting (Parisi et al., 2019) since the
learned parameters will be biased towards new patterns and
drift away from patterns learned earlier. This motivates us
to develop a continual training framework where learned
parameters perform effectively on ∆Gt while retaining in-
formation about Gt −∆Gt as well. This leads us to define
the following problem statement.

Problem 2 (Continual Learning over GNNs). We extend
Prob. 1 for dynamic graphs with the following objectives:

• Training accuracy: Given
−→
G = {G1, . . . ,Gt}, learn

{Θ1, . . . ,Θt} such that ∀v ∈ Vtl , GNNΘt
is accurate;

Vtl ⊆ Vt is the set of training nodes.
• Computational efficiency: Learning Θt should be signif-

icantly more efficient than retraining from scratch on Vtl .

We achieve the above objectives by grounding our update
mechanism for Θt predominantly on ∆Vt ∩ Vtl . The next
section details our methodology.

4. Proposed GNN framework: GRAFENNE

GRAFENNE constitutes of three major components: (1) An
allotropic graph transformation that enables decoupling of
model parameter-size from the number of features, (2) a
novel generic message-passing mechanism on transformed
graph that is provably as expressive as performing message
passing on the original graph, and (3) a continual learning
framework to adapt to new nodes, edges and features
efficiently and without catastrophic forgetting.

4.1. Graph Transformation

Given graph snapshot (Def. 2) G = (V, E ,X), we construct
its allotropic version Galt =

(
Valt, Ealt

)
. Valt = V∪Vfeat,

where in addition to the original nodes V , we add a node for
each unique feature in G. Formally,

Vfeat = F = {f | f ∈ ∪∀v∈VFv} (Recall Def. 2)

3

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 4

We call Vfeat the feature nodes. A regular node v ∈ V is
connected to a feature node f ∈ Vfeat if f characterizes v,
i.e., f ∈ fv. The weight of this edge is the value of feature
f in node v. In addition, we also retain all the edges among
the original nodes. Thus Ealt = E ∪ Efeat, where:

Efeat = {(v, f,xv[f]) | v ∈ V, f ∈ Fv}

Here, xv[f]∈ R refers to the edge weight/feature value be-
tween original graph node v and feature f ∈ Vfeat. Fig. 1
illustrates the transformation process.

In Galt, the feature nodes only have graph nodes as neigh-
bors. In contrast, graph nodes have both feature nodes as
well as other graph nodes in their neighborhood. To dis-
tinguish between these two types, we define the notions of
graph neighborhood and feature neighborhood.
Definition 4 (Feature Neighborhood). The feature neigh-
borhood of a node v ∈ Valt is defined as N feat

v ={
u | (u, v) ∈ Efeat, v ∈ Vfeat

}
.

Definition 5 (Graph Neighborhood). For a given
node v ∈ Valt, the graph neighbourhood N G

v =
{u | (u, v) ∈ E , v ∈ V} consists of only graph nodes.

Note that ∀v ∈ Vfeat, N G
v = ∅.

4.2. Message Passing Layer for Galt

Our goal is to perform message passing on Galt in order to
learn rich representations for graph nodes v ∈ V such that:
(1) Attribute information is captured from the feature nodes,
(2) Topological information is captured from the neighbor-
hood defined over E , (3) It decouples the size of model
parameters from the number of features, and (4) It theo-
retically guarantees that message passing on the allotropic
form does not lead to reduction in expressive power when
compared to executing a GNN on G.

To achieve our goals, the message passing scheme is broken
down into three phases. A single layer of message passing
is completed on the completion of these three phases.
•Phase 1 – Aggregating feature information: Messages
are sent from feature nodes u ∈ Vfeat to graph nodes
v ∈ V to aggregate edge weights (carrying the feature
value). Formally,

mℓ
v (u) = MSGℓ

feat

(
hℓ−1
u ,hℓ−1

v , euv
)

(5)

mℓ
v = AGGREGATEℓfeat

({{
mℓ

v (u) | u ∈ N feat
v

}})
(6)

hℓ
v = COMBINEℓ

feat

(
hℓ−1
v ,mℓ

v

)
(7)

Here, euv = xv[u] is edge weight between feature node
u ∈ Vfeat and graph node v ∈ V in Galt. ℓ denotes the
message-passing layer.

• Phase 2 – Aggregating topological information: Uti-
lizing the information aggregated in the previous phase,

exchange messages between graph nodes u, v ∈ V and
aggregate them as follows:

mℓ
v (u) = MSGℓ

G
(
hℓ
u,h

ℓ
v

)
(8)

mℓ
v = AGGREGATEℓ

G
({{

mℓ
v (u) | u ∈ N G

v

}})
(9)

hℓ
v = COMBINEℓ

G
(
hℓ
v,m

ℓ
v

)
(10)

• Phase 3 – Integrating attribute and topology informa-
tion: Messages are exchanged back from graph nodes v ∈ V
to feature nodes u ∈ Vfeat and aggregated as follows.

mℓ
u (v) = MSGℓ

G′

(
hℓ
v,h

ℓ−1
u , euv

)
(11)

mℓ
u = AGGREGATEℓG′

({{
mℓ

u (v) | v ∈ N feat
u

}})
(12)

hℓ
u = COMBINEℓ

G′

(
hℓ−1
u ,mℓ

u

)
(13)

Fig. 2 provides a visual depiction of the three phases
of message passing in GRAFENNE. MSGℓ

feat, MSGℓ
G ,

MSGℓ
G′ , AGGREGATEℓ

feat, AGGREGATEℓ
G , AGGREGATEℓ

G′ ,
COMBINEℓ

feat, COMBINEℓ
G and COMBINEℓ

G′ are neural net-
work based functions with semantics defined in preliminar-
ies section. Any existing GNN can be used to implement
these three phases since they are essentially exchanging in-
formation between nodes. This makes GRAFENNE a general
and flexible method. We discuss our specific implementa-
tion in §. 4.2.1.

Initialization: We use 0 as a feature vector for graph nodes
V in Galt since they no longer have any node features, i.e.,

h0
v = 0 ∀ v ∈ V (14)

For feature nodes Vfeat, we set them either to a learnable
vector initialized randomly or to a latent representation
learnt in a pre-processing step. Specifically,

h0
u = wu ∈ Rd ∀ u ∈ Vfeat (15)

4.2.1. SPECIFICS

The neural networks in phase 1 and phase 3 are defined
as attention-based aggregators. Since phase 2 involves
message passing only among graph nodes, we can adopt
the message passing scheme of any static GNN (Hamilton
et al., 2017; Veličković et al., 2018; Kipf & Welling, 2017;
Morris et al., 2019). Some possible options are outlined in
App. A. Phases 1 and 3 may also be customized to different
neural networks as per needs.

4

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 5

		𝒗𝟏	

	𝒗𝟐	

		𝒗𝟑	

	𝑭𝟏

𝑭𝟐

	𝑭𝟑

	𝑉 	 𝑉%&'(

		𝒗𝟏	

		𝒗𝟐	

		𝒗𝟑	

. 	𝑭𝟏	

	𝑭𝟐

	𝑭𝟑

	𝑉 	 𝑉%&'(

		𝒗𝟏	

	𝒗𝟐	

		𝒗𝟑	

			𝑭𝟏	

	𝑭𝟐

	𝑭𝟑

	𝑉 	 𝑉%&'(

Step	1
𝑉	 %&'(to 𝑉	 	

						Step	2
						𝑉	 	 to 𝑉	 	

						Step	3
					𝑉	 	 to 𝑉%&'(

Figure 2: A break-down of the message passing layer of GRAFENNE into its three phases.

Phase 1: ∀v ∈ V, u ∈ N feat
v

mℓ
v (u)=LEAKYRELU

(
Wℓ

1h
ℓ−1
v

n
Wℓ

2h
ℓ−1
u

n
wℓ

3euv

)
(16)

αvu=
exp

(
wℓ

4
T
mℓ

v (u)
)

∑
u′∈N feat

v

exp
(
wℓ

4
T
mℓ

v (u
′)
) , (17)

hℓ
v=MLP

Wℓ
5h

l−1
v

n ∑
u∈N feat

v

αvuW
ℓ
6h

ℓ−1
u


(18)

Phase 3: ∀u ∈ Vfeat, v∈N G
u

mℓ
u (v)=LEAKYRELU

(
Wℓ

7h
ℓ−1
u

n
Wℓ

8h
l
v

n
wℓ

9euv

)
αvu=

exp
(
wℓ

10
T
mℓ

u (v)
)

∑
v′∈NG

u

exp
(
wℓ

10
T
mℓ

u (v
′)
)

hℓ
u=MLP

Wℓ
11h

ℓ−1
u

n ∑
v∈NG

u

αvuW
ℓ
12h

l
v


All weights matrices and vectors of the form Wℓ

i and wℓ
i

respectively are trainable parameters.
f

represents the
concatenation operator. Note that since each edge weight
goes through an MLP, the proposed scheme is expressive
enough to model scaling and translation factors.

4.3. Theoretical Characterization

With the formalization of our message-passing algorithm,
we have a GNN framework for graphs with heterogeneous
feature sets. Next, we analyze its inductivity, expressivity,
and complexity.

4.3.1. INDUCTIVITY

Proposition 1. GRAFENNE is inductive to both unseen fea-
tures and nodes, i.e., once trained, it is capable of producing

representations for unseen nodes with unseen features.

Existing GNNs are not feature-inductive as they must be
re-trained if a new feature is added to the input graph.
GRAFENNE decouples features from GNNs’s parameters by
treating them as nodes in Galt. Moreover, GRAFENNE learns
aggregation functions over feature nodes to compute the
graph node representations in Phase-1. These aggregation
functions are independent of the number of features avail-
able to the target node. Such design empowers GRAFENNE
to detect patterns even if unseen feature nodes are added in
the target node. We formally prove this in App. B.

4.3.2. EXPRESSIVITY

Expressivity of GNNs is measured by their ability to discrim-
inate non-isomorphic graph structures (Xu et al., 2019; Mor-
ris et al., 2019) in terms of k-Weisfeiler Leman (WL) equiv-
alence. As discussed in § 4.2.1, the Phase-2 of the message-
passing layer could adopt any existing GNN Ψ’s message-
passing scheme. We show that executing GRAFENNE on the
allotropic form Galt with Ψ in Phase-2 does not lead to a
reduction in expressive power over executing GNN Ψ on G.

Theorem 1 (Expressivity of GRAFENNE). Let ΨG (v) :
V → Rd be a trained L-layered GNN on G. When an L-
layered GRAFENNE is trained on Galt with Ψ in Phase-2 of
message passing to produce Ψalt (v) : V → Rd, ∀ v1, v2 ∈
V if ΨG (v1) ̸= ΨG (v2) then representations produced by
GRAFENNE are different as well i.e. ΨG (v1) ̸= ΨG (v2) →
Ψalt (v1) ̸= Ψalt (v2) ∀ v1, v2 ∈ V .

Proof: See App. C. □.

Corollary 1. GRAFENNE is as expressive as k-WL.

PROOF: k-GNN (Morris et al., 2019) is as expressive
as k-WL on static graphs. Therefore, it follows from
Thm. 1, if k-GNN is used in Phase-2, GRAFENNE is also
as expressive as k-WL. □.

Next, we establish that the neural architecture of
GRAFENNE is expressive enough to recover the node fea-
ture vectors of the original space from the allotropic graph
representation.

5

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 6

𝑼 − 𝚫𝐕𝐭	

Weight

Consolidation
Update using
Δ𝐺!"#!

Δ𝐺!"#! 	Θ 𝒕"
𝟏∗
	
				Θ∗	

Low error on	𝑮𝒕$𝟏𝒂𝒍𝒕
	

Low error on 𝚫𝑮𝒕𝒂𝒍𝒕

Low error on 𝑮𝒕𝒂𝒍𝒕

Figure 3: Architecture diagram for updating GRAFENNE at
time t in a continual fashion. Θ∗

t−1 is the optimal parameter
space for Galt

t−1. Θ∗ represents the optimal parameter space
for Galt

t . Since our proposed feature streaming scenario is
different from task or class incremental learning, therefore
the concept of forgetting in our case is not task-specific but
is associated to the unaffected portion of the graph at any
given time t.

Theorem 2. Let v be a node characterized by a d-
dimensional feature vector xv = [x1, x2, · · · , xd] in the
original graph G. Thus, in the allotropic graph Galt, v
is connected to d feature nodes with edge weight xi when
connecting to feature node corresponding to dimension i.
We show that GRAFENNE can recover the original feature
vector xv from the allotropic graph Galt in Phase 1.

Proof. Refer to App. D.

This result is important since it shows that for Phase 2,
GRAFENNE would have the same level of information that
its base GNN would have if operating on the original graph.

4.3.3. COMPLEXITY OF GRAFENNE

In most GNNs such as GRAPHSAGE, GAT and GIN, time
and space computational complexity for embedding genera-
tion of each node is bounded by O

(∏L
ℓ=1 Sℓ

)
(Hamilton

et al., 2017) where L is no. of layers in GNN and Sℓ is no.
of sampled neighbors at each level of the computation graph.
In practise, Sℓ ≤ K is used where K is a small integer.

In GRAFENNE, this bound increases to
O
(∏L

ℓ=1 (Sℓ × | F |+ | V | × | F |)
)

due to the 3-stage
message passing layer. In practice, as in GRAPHSAGE, one
could sample nodes and features to reduce the complexity.
We elaborate on these implementation strategies and
optimization to exploit sparsity in feature space in App. E.

4.4. Continual Learning Framework with GRAFENNE

In this section, we discuss the adaptation of GRAFENNE

to learn on graphs with streaming updates, i.e.,
−→
G alt =(

Galt
1 ,Galt

2 , . . .
)

corresponding to the input streaming graph

−→
G = (G1,G2, . . .) as described in Def. 3. As the graph is up-
dated, the parameters of GRAFENNE also need to be updated
to capture the changes in the graph. Our goal is to search
for model parameters that fit on the updated portion of the
graph while also not forgetting the patterns learned on the
unaltered portion. Towards that objective, we aim to learn to
adjust the magnitude of the parameter updates at time t on
certain model weights based on how important they are to
the unaffected graph Galt

t −∆Galt
t . We achieve this through

Elastic Weight Consolidation (EWC) (Wang et al., 2020a;
Kirkpatrick et al., 2017). Specifically, GRAFENNE penalizes
significant changes to parameters that are important for the
unaltered graph. Fig. 3 illustrates Elastic Weight Consolida-
tion for our streaming feature scenario. The specifics of this
component are discussed in App.F.

5. Experiments
In this section, we examine the effectiveness of GRAFENNE
wrt. (1) Robustness to different missing feature rates (2)
Adaptation to different GNN architectures (3) Ablation
study, and (4) Performance on continual learning. Details
of the experimental setup in terms of hardware and soft-
ware framework, train-test splits, default parameter value,
etc., are listed in App. G. Our codebase is available at
https://github.com/data-iitd/Grafenne.

5.1. Datasets
We evaluate GRAFENNE on the real-world graphs listed
in Table 1. Among these, Actor is a heterophilic graph,
whereas the rest are homophilic. Further details on the
semantics of the datasets are provided in App. H.

5.2. Baselines

To deal with missing features, we consider five different
feature imputation strategies namely: (1) GCNMF (Taguchi
et al., 2021), (2) PAGNN (Jiang & Zhang, 2020), (3)
FP (Rossi et al., 2021), (4) Marking missing features with a
special label, (5) Imputing based on the mean of the neigh-
borhood values. Among the above strategies, GCNMF and
PAGNN propose their own GNNs. In contrast, the other
three algorithms are all pre-processing methods and there-
fore can be integrated with any GNN of choice. As the
base GNN architecture, we consider GRAPHSAGE (Hamil-
ton et al., 2017), GIN (Xu et al., 2019), GAT (Veličković
et al., 2018). GCNMF, PAGNN, and FP are all transductive,

Table 1: Dataset statistics

Dataset # Nodes # Edges # Features #Labels

Cora (Sen et al., 2008) 2708 10556 1433 7
CiteSeer (Yang et al., 2016) 3327 9104 3703 6
Physics (Shchur et al., 2018) 34493 495924 8415 5
Actor (Pei et al., 2020) 7600 33544 931 5

6

https://github.com/data-iitd/Grafenne

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 7

while the other two are inductive. We also compare with
FATE (Wu et al., 2021), which is an algorithm for feature
adaptation. We show that feature adaptation methods, when
adapted for graphs, are not adequate. A detailed differentia-
tion in methodology and empirical comparison is provided
in App. L.

For the pre-processing based methods, we use the notations
“FP +⟨GNN⟩” and “NM +⟨GNN⟩” for FP and neighborhood
mean respectively. If we only use the name of the GNN, then
it indicates imputation with a special label for missing value.

5.3. Tasks

GRAFENNE is generic enough to accommodate any of the
standard predictive tasks on graphs. We choose two of the
most popular tasks of node classification and link prediction
to benchmark GRAFENNE and the baselines. As per stan-
dard practice (Hamilton et al., 2017), for node classification,
we quantify performance in terms of accuracy, i.e., the per-
centage of correct predictions, and for link prediction, we
use area under the receiver operating curve (AUCROC).

5.4. Empirical Evaluation

First, we evaluate on static graphs with heterogeneous fea-
tures sets. Next, we evaluate performance on streaming
graphs. Finally, we perform ablation studies. Since all of
the pre-processing features require a base GNN, we primar-
ily use GRAPHSAGE as the GNN of choice. To ensure a
fair comparison, we also use GRAPHSAGE as the message
passing scheme in Phase-2 of GRAFENNE. Nonetheless,
for the sake of completeness, we also present results when
GRAPHSAGE is replaced with GAT and GIN. To measure
the impact of missing features, we take datasets with com-
plete features, and randomly delete p portion (ratio) of the
features per node. p is varied across various values. This
strategy is consistent with evaluation methodology of our
baselines PAGNN,GCNMF, and FP.

5.4.1. STATIC GRAPHS

Table 2 show the results on node classification at multiple
feature missing rates. A similar table for link prediction
is provided in Table 4. We observe that GRAFENNE out-
performs baseline methods on a diverse range of missing
rates. Especially on higher missing rates, we observe a per-
formance gap of more than 10% between GRAFENNE and
the best baseline method. Further, on dataset Actor, we ob-
serve that GRAFENNE obtains significantly better accuracy
gain of over 5% on all missing rates. Interestingly, we also
observe that the performance of FP and mean-neighborhood
(NM) methods can be significantly improved when comple-
mented with GRAFENNE’s message passing framework, i.e.,
NM +GRAFENNE and FP +GRAFENNE. We note that FP
is a transductive feature imputation method that requires

Table 2: Accuracy of GRAFENNE and baselines on node
classification at various missing rates p. Std. dev. values <
0.01 are approximated to 0.

Dataset Method p = 0 p = 0.5 p = 0.99

Cora

GRAPHSAGE 83.80± 0.48 83.06± 0.62 72.58± 0.71
GCNMF 80.07± 0.0 67.52± 0.0 33.02± 0.0
PAGNN 82.47± 0.0 84.68± 0.0 67.89± 0.0
NM + GRAPHSAGE - 83.46± 0.36 78.48± 0.54
FP + GRAPHSAGE - 83.72± 0.53 81.25± 0.44

GRAFENNE 87.6 ± 0.73 84.35± 0.27 78.85± 0.29
NM + GRAFENNE - 85.05± 0.36 78.78± 0.62
FP + GRAFENNE - 85.46 ± 0.21 82.91 ± 0.92

CiteSeer

GRAPHSAGE 73.43± 0.97 70.85± 0.35 57.14± 0.96
GCNMF 71.47± 0.0 60.36± 0.0 23.12± 0.0
PAGNN 73.57± 0.0 72.82± 0.0 58.70± 0.0
NM + GRAPHSAGE - 70.96± 0.45 61.80± 0.46
FP + GRAPHSAGE - 71.02± 0.65 65.25 ± 1.08

GRAFENNE 73.90 ± 0.84 72.91± 0.95 64.08± 0.79
NM + GRAFENNE - 72.88± 0.55 63.03± 0.93
FP + GRAFENNE - 74.20 ± 0.40 64.64± 0.6

Actor

GRAPHSAGE 32.90± 0.79 30.61± 0.86 22.90± 0.50
GCNMF 24.53± 0.0 23.75± 0.0 21.57± 0.0
PAGNN 23.81± 0.0 23.81± 0.0 25.39 ± 0.0
NM + GRAPHSAGE - 29.27± 0.69 21.73± 0.07
FP + GRAPHSAGE - 29.15± 0.79 23.89± 1.03

GRAFENNE 38.90 ± 0.84 35.02 ± 0.21 23.97± 0.58
NM + GRAFENNE - 32.03± 0.70 24.01± 0.80
FP + GRAFENNE - 32.76± 1.06 24.02± 0.40

re-training in cases of unseen nodes or new features, making
GRAFENNE an attractive alternative in streaming graphs.
These results are a direct consequence of the nature of prop-
agation introduced by our proposed method. We also eval-
uate GRAFENNE on extremely high missing rates such as
p = 0.99999 on large-scale dataset physics in table 5 where
see GRAFENNE performs exceptionally well indicating its
application in settings where the nominal amount of data is
shared by very few users.

In Tables 3 and G (in appendix), we investigate the im-
pact of the GNN used in Phase-2 of GRAFENNE’s message
passing scheme. Towards that, GRAPHSAGE is replaced
with GAT and GIN. We observe that regardless of the GNN,
when empowered within the GRAFENNE framework, an

Table 3: Accuracy of GRAFENNE (GAT) and GRAFENNE
(GIN) with benchmark GNNs, GAT and GIN.

Dataset Method p = 0 p = 0.5 p = 0.99

Cora

GAT 86.10 ± 0.7 82.50± 0.96 73.72± 0.57
GRAFENNE (GAT) 85.97± 0.53 85.16 ± 0.63 79.74 ± 0.51

GIN 85.09± 0.92 82.91± 0.89 73.28± 0.35
GRAFENNE (GIN) 85.94 ± 0.39 84.25 ± 0.64 82.36 ± 1.17

CiteSeer

GAT 71.59± 0.85 69.15± 0.91 59.21± 0.73
GRAFENNE (GAT) 73.21 ± 0.33 72.64 ± 0.76 64.29 ± 0.61

GIN 72.16± 0.58 69.84± 1.10 60.15± 1.31
GRAFENNE (GIN) 73.45 ± 1.04 72.58 ± 0.59 64.32 ± 1.15

Actor

GAT 26.68± 0.92 25.92± 0.49 24.69 ± 1.55
GRAFENNE (GAT) 33.86 ± 0.88 32.07 ± 0.67 24.23± 0.4

GIN 26.93± 0.76 26.48± 1.36 22.98± 0.56
GRAFENNE (GIN) 29.13 ± 0.91 29.15 ± 1.36 24.03 ± 0.5

7

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 8

improvement is observed. Interestingly, even when almost
all features are available (p = 0), for the majority of the
cases, GRAFENNE outperforms solely using a GNN on the
original graph.

Table 4: AUCROC of GRAFENNE and baselines on link
prediction task . Note that we have not included GCNMF
and PAGNN as their code adapted for the link prediction
task is not generalizing on test data

Dataset Method p = 0 p = 0.5 p = 0.99

Cora

GRAPHSAGE 0.86± 0.002 0.84± 0.002 0.7523± 0.05
NM + GRAPHSAGE - 0.8687± 0.0008 0.8297± 0.0014
FP + GRAPHSAGE - 0.8773± 0.0015 0.9137± 0.0008

GRAFENNE 0.8780 ± 0.004 0.8501± 0.005 0.8015± 0.006
NM + GRAFENNE - 0.9009± 0.0026 0.8632± 0.0007
FP + GRAFENNE - 0.9344 ± 0.0020 0.9263 ± 0.0012

CiteSeer

GRAPHSAGE 0.8251± 0.005 0.7617± 0.001 0.7223± 0.002
NM + GRAPHSAGE - 0.8213± 0.0018 0.8001± 0.0019
FP + GRAPHSAGE - 0.8506± 0.0014 0.8875± 0.0011

GRAFENNE 0.8681 ± 0.0010 0.8047± 0.010 0.7378± 0.008
NM + GRAFENNE - 0.8944± 0.0067 0.8462± 0.0024
FP + GRAFENNE - 0.9348 ± 0.0024 0.9012 ± 0.0030

Actor

GRAPHSAGE 0.6569± 0.0013 0.7029± 0.0026 0.6969± 0.003
NM + GRAPHSAGE - 0.7473± 0.0004 0.6885± 0.0001
FP + GRAPHSAGE - 0.7552± 0.0003 0.7721± 0.0017

GRAFENNE 0.7047 ± 0.0050 0.7021± 0.005 0.7029± 0.007
NM + GRAFENNE - 0.7562± 0.0032 0.7169± 0.0012
FP + GRAFENNE - 0.7801 ± 0.0026 0.7869 ± 0.0013

5.4.2. CONTINUAL LEARNING WITH GRAFENNE

Setup: To evaluate GRAFENNE for continual learn-
ing, we evaluate on dynamic graphs, where features get
added/deleted over time and graph structure also changes
over time.
• Feature Addition and Deletion: A subset of features

for a subset of nodes is added or deleted at each times-
tamp. We first sample nodes with probability pn. For
each selected node, we randomly select features for addi-
tion/deletion. The probability of a feature getting added
or deleted to a node is paddf and pdelf respectively.

• Edges: A subset of edges in the graph are added/deleted
over time. The probability of an edge getting selected
for deletion is pdele and the probability of an edge getting
added to the graph is padde .

In our experiments, for Cora and CiteSeer we set pn = 0.03,
paddf = 0.05, pdelf = 0.4, pdele = padde = 0.0005 and T = 9.
For Physics dataset we set pn = 0.003, pdelf = 0.8, paddf =

0.0001, pdele = padde = 0.00005 .

Real-world dynamic dataset: Additionally, we extract
streaming DBLP dataset (Tang et al., 2008) between 1992
to 1997 where nodes and edges get added over time. This
dataset has 3075 nodes, 6368 edges and 5 classes. We set
pn = 0.05, pdelf = 0.1, paddf = 0.05.

We set λ defined in Eq. 23 to 100000. We set |U | = 300 for
DBLP and |U | = 25 for other datasets(§ 4.4).

Baselines: Given a graph stream
−→
G = (G1,G2 . . . ,GT), we

compare GRAFENNE for continual learning with:
(1) ORACLE: Retraining from scratch: ORACLE discards
existing parameters and retrains GRAFENNE from scratch on
Gt resulting in optimal parameters Θt for Gt. This method
provides the upper bound of achievable performance.
(2) FT: Fine-tuning: We update the parameters using only
the affected nodes in Gt, i.e., ∆Vt.
(3) ER: Experience Replay: Here, in addition to FT, we
preserve a small sample of past nodes in memory and re-
play them when training on Gt to avoid forgetting of past
patterns.
(4) ContGNN(Wang et al., 2020b): Preserves past knowl-
edge through a combination of experience replay and weight
regularization.

Results on Continual Learning Scenario: In Fig. 4 we
compare the performance of proposed continual method
for training GRAFENNE along with Oracle, FT, ER and
ContGNN(Wang et al., 2020b) methods. We report test per-
formance on the entire graph at each timestamp for every
method. In Fig. 4, we observe that the continual method
on GRAFENNE can maintain significantly higher accuracy
on the entire test-set compared to other methods. The fine-
tuning method only updates the affected portion of the graph,
hence it suffers from catastrophic forgetting on the unaf-
fected nodes, which is evident from the accuracy metric
on the test nodes from the whole graph. Methods such as
ER and ContGNN preserve past knowledge by employing
a small set of memory for replay. However, they do not
cater to the unseen feature scenario, hence overall perfor-
mance on these methods deteriorates over time. On the
other hand, GRAFENNE coupled with elastic weight con-
solidation on an unaffected portion of graph reduces the
extent of catastrophic forgetting, hence achieves superior
performance. Additionally, in the case of large-size datasets
i.e Physics, we observe that GRAFENNE significantly out-
performs existing methods on all timestamps showing better
scalability.

6. Conclusion
Graph Neural Networks have shown significant performance
gains on graph-structured data. However existing works
mostly focused on graphs with an identical set of available
node features. Moreover, existing state-of-the-art imputa-
tion techniques to tackle scenario of dissimilar node features
are transductive in nature. In this work, we proposed a novel
inductive method GRAFENNE that can learn on graphs
having nodes with heterogeneous features. In addition to
this, we also formulated a novel problem of lifelong learning
on graphs with streaming features. Further, to solve this
problem, we proposed elastic weight consolidation based
continual learning method for training GRAFENNE on dy-
namic graphs. Through extensive evaluation on 4 real-world

8

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 9

Table 5: Node classification performance comparison at extreme missing rates p on large-scale Physics dataset. We report the
mean classification accuracy (%) along with the standard deviation on five runs. Std. dev. values < 0.01 are approximated
to 0. If a baseline produces an error during execution, we denote it as ∗.

Method p = 0 p = 0.5 p = 0.99 p = 0.999 p = 0.9999 p = 0.99999

GRAPHSAGE 96.91± 0.05 96.29± 0.17 92.92± 0.11 84.11± 0.08 61.05± 0.27 52.11± 0.04
GCNMF 92.52± 0.0 81.12± 0.0 50.4856± 0.0 51.45± 0.0 ∗ ∗
PAGNN 94.28± 0.0 93.88± 0.0 88.09± 0.0 75.44± 0.0 60.71± 0.0 51.35± 0.0
NM + GRAPHSAGE − 96.08± 0.11 94.47± 0.14 92.35± 0.06 82.96± 0.07 57.48± 0.01
FP + GRAPHSAGE − 96.41± 0.09 95.04± 0.0 94.34± 0.15 93.07± 0.22 78.44± 0.71

GRAFENNE 97.02 ± 0.05 96.23± 0.23 94.49± 0.18 94.31± 0.19 94.11± 0.21 89.49± 0.15
NM + GRAFENNE − 95.82± 0.12 94.70± 0.18 94.61± 0.0 94.57± 0.19 89.56± 0.06
FP + GRAFENNE − 96.36± 0.08 95.02± 0.05 94.57± 0.15 95.33 ± 0.21 93.17 ± 0.16

0 2 4 6 8
Timestamp

60

70

80

90

100

110

Ac
cu

ra
cy

(%
)

Physics
Oracle(Grafenne)
Continual(Grafenne)
Oracle(GSage)

FT(GSage)
ER(GSage)
ContGNN(GSage)

(a) Physics

0 2 4 6 8
Timestamp

70

75

80

85

90

95

100

Ac
cu

ra
cy

(%
)

Cora
Oracle(Grafenne)
Continual(Grafenne)
Oracle(GSage)

FT(GSage)
ER(GSage)
ContGNN(GSage)

(b) Cora

0 2 4 6 8
Timestamp

60

70

80

90

100

Ac
cu

ra
cy

(%
)

CiteSeer
Oracle(Grafenne)
Continual(Grafenne)
Oracle(GSage)

FT(GSage)
ER(GSage)
ContGNN(GSage)

(c) CiteSeer

1 2 3 4 5 6
Timestamp

60

80

100

Ac
cu

ra
cy

(%
)

DBLP
Oracle(Grafenne)
Continual(Grafenne)
Oracle(GSage)

FT(GSage)
ER(GSage)
ContGNN(GSage)

(d) DBLP

Figure 4: Continual learning performance on Physics, Cora, CiteSeer and DBLP. The x-axis represents the timestamps of
graph updates and the y-axis represents the test accuracy(%) corresponding to each timestamp.

datasets, we established that GRAFENNE achieves superior
performance against baseline approaches at various feature
missing rates p and is also robust at extremely high missing
feature rates e.g. p = 0.99999. Furthermore, we highlight
the capability of GRAFENNE to integrate with different
existing inductive GNN architectures and show significant
performance gains. Additionally, GRAFENNE achieves
high-quality results in the streaming scenario and hence
shows its ability to learn effectively in the lifelong learning
setup. In terms of future work, it will be interesting to
explore GRAFENNE on graphs having inter-feature relations
allowing the creation of feature-feature edges in Galt.

7. Acknowledgement
Shubham Gupta acknowledges Info Edge (India) Limited
for supporting his Ph.D. Sahil Manchanda acknowledges
Qualcomm for supporting him through Qualcomm Innova-
tion Fellowship and he also acknowledges GP Goyal Alumni
Grant of IIT Delhi for supporting this travel. Sayan Ranu ac-
knowledges the Nick McKeown chair position endowment.
Srikanta Bedathur was partially supported by DS Chair Pro-
fessor of AI grant and an IBM AI Horizons Network (AIHN)
grant.

9

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 10

References
Bai, T., Nie, J.-Y., Zhao, W. X., Zhu, Y., Du, P., and Wen,

J.-R. An Attribute-Aware Neural Attentive Model for Next
Basket Recommendation, pp. 1201–1204. Association
for Computing Machinery, New York, NY, USA, 2018.
ISBN 9781450356572. URL https://doi.org/10.
1145/3209978.3210129.

Bhattoo, R., Ranu, S., and Krishnan, N. Learning articu-
lated rigid body dynamics with lagrangian graph neural
network. Advances in Neural Information Processing
Systems, 35:29789–29800, 2022.

Bhattoo, R., Ranu, S., and Krishnan, N. A. Learning the dy-
namics of particle-based systems with lagrangian graph
neural networks. Machine Learning: Science and Tech-
nology, 2023.

Bihani, V., Manchanda, S., Sastry, S., Ranu, S., and Kr-
ishnan, N. Stridernet: A graph reinforcement learning
approach to optimize atomic structures on rough energy
landscapes. In ICML, 2023.

Bishnoi, S., Bhattoo, R., Ranu, S., and Krishnan, N. Enhanc-
ing the inductive biases of graph neural ode for modeling
dynamical systems. ICLR, 2023.

Chakraborty, P., Ranu, S., Mantri, K. S. I., and De, A. Learn-
ing and maximizing influence in social networks under
capacity constraints. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data
Mining, pp. 733–741, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Goyal, N., Jain, H. V., and Ranu, S. Graphgen: a scalable
approach to domain-agnostic labeled graph generation.
In Proceedings of The Web Conference 2020, pp. 1253–
1263, 2020.

Gupta, M., Kodamana, H., and Ranu, S. FRIGATE: Frugal
spatio-temporal forecasting on road networks. In 29th
SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023. URL https://openreview.net/
forum?id=2cTw2M47L1.

Gupta, S., Manchanda, S., Bedathur, S., and Ranu, S. Tigger:
Scalable generative modelling for temporal interaction
graphs. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, pp. 6819–6828, 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Jain, J., Bagadia, V., Manchanda, S., and Ranu, S. Neu-
romlr: Robust & reliable route recommendation on road
networks. Advances in Neural Information Processing
Systems, 34:22070–22082, 2021.

Jiang, B. and Zhang, Z. Incomplete graph representation and
learning via partial graph neural networks, 2020. URL
https://arxiv.org/abs/2003.10130.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. In Proceedings of
the 15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2, Short
Papers, pp. 427–431. Association for Computational Lin-
guistics, April 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014. Accessed: 2022-03-18.

Liu, H., Yang, Y., and Wang, X. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 8653–8661, 2021.

Manchanda, S. and Ranu, S. Lifelong learning for neural
powered mixed integer programming. AAAI, 2023.

Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu,
S., and Singh, A. Gcomb: Learning budget-constrained
combinatorial algorithms over billion-sized graphs. Ad-
vances in Neural Information Processing Systems, 33:
20000–20011, 2020.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the Thirty-Third AAAI Conference on Ar-
tificial Intelligence and Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference and Ninth
AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI
Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/
aaai.v33i01.33014602. URL https://doi.org/10.
1609/aaai.v33i01.33014602.

10

https://doi.org/10.1145/3209978.3210129
https://doi.org/10.1145/3209978.3210129
https://openreview.net/forum?id=2cTw2M47L1
https://openreview.net/forum?id=2cTw2M47L1
https://arxiv.org/abs/2003.10130
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 11

Nishad, S., Agarwal, S., Bhattacharya, A., and Ranu, S.
Graphreach: Position-aware graph neural network using
reachability estimations. IJCAI, 2021.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54–71, 2019.

Pei, H., Wei, B., Chang, K. C., Lei, Y., and Yang, B. Geom-
gcn: Geometric graph convolutional networks. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1e2agrFvS.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a General, Powerful, Scal-
able Graph Transformer. Advances in Neural Information
Processing Systems, 35, 2022.

Ranjan, R., Grover, S., Medya, S., Chakaravarthy, V., Sab-
harwal, Y., and Ranu, S. Greed: A neural framework for
learning graph distance functions. In Advances in Neural
Information Processing Systems, 2022.

Rossi, E., Kenlay, H., Gorinova, M. I., Chamberlain,
B. P., Dong, X., and Bronstein, M. On the unrea-
sonable effectiveness of feature propagation in learn-
ing on graphs with missing node features, 2021. URL
https://arxiv.org/abs/2111.12128.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gal-
ligher, B., and Eliassi-Rad, T. Collective clas-
sification in network data. AI Magazine, 29
(3):93, Sep. 2008. doi: 10.1609/aimag.v29i3.
2157. URL https://ojs.aaai.org/index.
php/aimagazine/article/view/2157.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Taguchi, H., Liu, X., and Murata, T. Graph convolutional
networks for graphs containing missing features. Future
Generation Computer Systems, 117:155 – 168, 2021.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z.
Arnetminer: extraction and mining of academic social
networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 990–998, 2008.

Thangamuthu, A., Kumar, G., Bishnoi, S., Bhattoo, R.,
Krishnan, N., and Ranu, S. Unravelling the performance
of physics-informed graph neural networks for dynamical
systems. In Advances in Neural Information Processing
Systems, 2022.

Vasile, F., Smirnova, E., and Conneau, A. Meta-prod2vec:
Product embeddings using side-information for recom-
mendation. In Proceedings of the 10th ACM Conference
on Recommender Systems, RecSys ’16, pp. 225–232,
New York, NY, USA, 2016. Association for Comput-
ing Machinery. ISBN 9781450340359. doi: 10.1145/
2959100.2959160. URL https://doi.org/10.
1145/2959100.2959160.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph Attention Networks.
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V.,
and Frossard, P. Digress: Discrete denoising diffusion for
graph generation. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=UaAD-Nu86WX.

Wang, C., Qiu, Y., Gao, D., and Scherer, S. Lifelong graph
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13719–
13728, 2022.

Wang, J., Song, G., Wu, Y., and Wang, L. Streaming
graph neural networks via continual learning. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management, CIKM ’20,
pp. 1515–1524, New York, NY, USA, 2020a. Associa-
tion for Computing Machinery. ISBN 9781450368599.
doi: 10.1145/3340531.3411963. URL https://doi.
org/10.1145/3340531.3411963.

Wang, J., Song, G., Wu, Y., and Wang, L. Streaming graph
neural networks via continual learning. In Proceedings of
the 29th ACM International Conference on Information
& Knowledge Management, pp. 1515–1524, 2020b.

Wu, Q., Yang, C., and Yan, J. Towards open-world fea-
ture extrapolation: An inductive graph learning approach.
Advances in Neural Information Processing Systems, 34:
19435–19447, 2021.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan,
K. Theoretical understandings of product embedding
for e-commerce machine learning. In Proceedings
of the 14th ACM International Conference on Web
Search and Data Mining, WSDM ’21, pp. 256–264,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450382977. doi: 10.1145/
3437963.3441736. URL https://doi.org/10.
1145/3437963.3441736.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference

11

https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://arxiv.org/abs/2111.12128
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://doi.org/10.1145/2959100.2959160
https://doi.org/10.1145/2959100.2959160
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/3437963.3441736
https://doi.org/10.1145/3437963.3441736

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 12

on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisit-
ing semi-supervised learning with graph embeddings. In
Proceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning - Volume
48, ICML’16, pp. 40–48. JMLR.org, 2016.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=OeWooOxFwDa.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep
auto-regressive models. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 5694–5703.
PMLR, 2018. URL http://proceedings.mlr.
press/v80/you18a.html.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. In International conference on machine
learning, pp. 7134–7143. PMLR, 2019.

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 13

A. Appendix
A. Phase 2 Specifics of Message Passing

Phase 2 is a message-passing layer among graph nodes V . GRAFENNE adopts the message passing implementation of
GRAPHSAGE, which is defined as follows.

GRAFENNE:

hℓ
v = σ

WℓT

13

hl
v

n 1

| N feat
v |

∑
u∈N feat

v

hl
u

 ∀v ∈ V (19)

The message passing layer of GRAFENNE is flexible enough to accommodate other architectures as well such as
GAT (Veličković et al., 2018) and GIN (Xu et al., 2019).

GRAFENNE (GAT): ∀v ∈ V

mℓ
v (u)=LEAKYRELU

(
Wℓ

13h
l
v

n
Wℓ

14h
l
u

)
∀u∈N G

v ∪ v,

αvu=
exp

(
wℓ

15
T
mℓ

v (u)
)

∑
u′∈NG

v ∪ v

exp
(
wℓ

15
T
mℓ

v (u
′)
) ,

hℓ
v =

∑
u∈NG

v ∪v

αvuW
ℓ
16h

ℓ
u

(20)

GRAFENNE (GIN):

hℓ
v = MLP

(1 + ϵ)hℓ
v +

∑
u∈NG(v)

hℓ
u

 ∀v ∈ V (21)

All weights matrices and vectors of the form Wℓ
i and wℓ

i are trainable parameters; ϵ is a hyper-parameter.

B. Inductive Analysis of GRAFENNE

We first define an input test graph Gtest = (Vtest, Etest,Xtest), which is an updated graph of input training graph G i.e.
Gtest = G +∇G where ∇G = (∇V,∇E ,∇X) . Similar to def. 2, where we define F as set of available features in graph G,
we also define feature set Ftest =

⋃
v∈Vtest

Fv on Gtest where Fv is set of features available at node v. We also assume an un-
known feature super-set F where F, Ftest ⊆ F . Now, in lieu of proposition 1, we describe and prove the following theorem 3.
Theorem 3 (Inductivity of GRAFENNE). Let ΨG (v) : V → Rd be a trained L-layered GNN on a graph G and Ψalt (v) :
V → Rd be a L-layered GRAFENNE trained on Galt with Ψ in Phase-2 of message passing. Given a test graph Gtest,
GRAFENNE Ψalt can generalize to unseen nodes with unseen features in Galt

test i.e. Ψalt(v) ≈ Y (v) even if ∃f ∈ Fv ∧ f /∈
F, ∀v ∈ Vtest − V . This holds true given that the following conditions hold.

1. Ψ is a node-inductive GNN i.e. it is able to generalize to unseen nodes albeit with seen features.
2. A feature embedding space Z ⊆ Rd which reflects the semantic/statistical relationships among vectors and an embedding

function over categorical variables Φ(f) : F → Z which can map any seen or unseen feature to this embedding space
Z i.e., Φ(f) ∈ Z, ∀f ∈ Ftest − F .

Proof: Condition-1 always holds, as GRAFENNE adopts the node inductive GNN Ψ in Step-2 as seen in eq. 8, 9 and
10 which are independent of no. of graph nodes |V| in Galt. All graph nodes V are initialized with 0 and assuming that
condition-2 holds true, all feature nodes Vfeat are initialized with vectors in embedding space Z . Combining this and
the fact that eq. 5, 6, 7, 11, 12 and 13 are independent of both no. of nodes V and no. of features F , makes GRAFENNE
both node-inductive and feature-inductive. □.

Remark on condition-2: Node attributes are usually composed of bag-of-words in citation graphs, product categories in
e-commerce graphs, and medical diagnoses in case of health-care-related graphs. In such cases, a categorical transformation
function Φ can be learned in the pre-processing stage. For eg., word-embedding methods (Joulin et al., 2017) for the bag of
words features, language models(Devlin et al., 2018) on the textual description of items categories or healthcare-related

13

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 14

categories. There also exist specialized product category encoding methods (Xu et al., 2021; Vasile et al., 2016) which
utilize skip-gram model on product sequences generated from user sessions.

C. Expressive Power of GRAFENNE– Proof of Thm. 1

Similar to other works on analyzing the expressive power of GNNs, we assume that the input feature space X is countable.
Since proposed graph transformation only impacts the features and their information flow during message-passing between
graph nodes V in Galt, it is sufficient to show that GRAFENNE produces distinct feature representation for nodes having
different features in Phase-1, i.e., after Phase-1 hℓ

v (v3) ̸= hℓ
v (v4) ∀ ℓ ∈ [1 . . . L], v3, v4 ∈ V, if∃ xv3 ̸= xv4 . If this holds

true, and since Phase-2 GNN utilizes ΨG itself, Thm. 1 is proved. We now need to prove the following lemma:
Lemma 1. GRAFENNE Ψalt produces distinct transformation for graph nodes ∀v ∈ V in phase -1 given that their input
feature vectors are different, i.e.,

hℓ
v (v3) ̸= hℓ

v (v4) ∀ ℓ ∈ [1..L], v3, v4 ∈ V if ∃ xv3 ̸= xv4 (22)

This is true only if following conditions hold:

1. MSGℓ
feat, COMBINEℓ

feat, MSGℓ
G′ and COMBINEℓ

G′ ∀ℓ ∈ [1 . . . L] in equations 5, 7, 11 and 13 are universal function
approximators such as MLPs(Hornik et al., 1989).

2. AGGREGATEℓ
feat , AGGREGATEℓ

G′ should be injective aggregators over MULTISETS i.e. produce different representations
of different MULTISETS.

If conditions 1 and 2 hold true and since each feature node is initialized with injective transformation in Eq. 15, for
l = 1 we can see that h1

v (v3) ̸= h1
v (v4) ∀v3, v4 ∈ V if ∃ xv3 ̸= xv4 after Phase-1 of GRAFENNE. For l > 1, after

Phase-3, we see that hℓ
v ∀v ∈ Vfeat will be distinct for all feature nodes due to assumptions 1 and 2. This follows to

hℓ
v (v3) ̸= hℓ

v (v4) ∀v3, v4 ∈ V if ∃ xv3 ̸= xv4 ∀ℓ > 1 after Phase-1. This concludes our analysis. □

D. Proof of Thm 2

Proof. As per Eq. 5, let h0
i ∈ Rd the representation of feature node corresponding to dimension i, which is also learnable,

be a one-hot encoding where dimension i is 1, and rest are 0. h0
v is a zero-vector inconsequential to following analysis, and

eiv is the value corresponding to ith dimension of xv. With these inputs, let us assume MSGℓ
feat is such that it computes

messages of the form m1
v(i) ∈ R2d where the first d dimensions are h0

i , the rest of the dimensions have value xv[i],
i.e., ∀k : d + 1 ≤ k ≤ 2d,m1

v(i)[k] = xv[i]. The learning task is, therefore, to learn the AGGREGATEℓ
feat function

f({{m1
v(i)}}) = xv , i.e., recover the original feature vector from the messages received from feature nodes in the allotropic

graph. Examining the messages m1
v(i) it is clear that, xv[i] = m1

v(i)[i]×m1
v(i)[d+ i]. From the universal approximation

theorem, an MLP can learn this function; hence, GRAFENNE can recover the original feature space from the allotropic
representation.

E. Complexity Analysis

To reduce this computational burden, we bound the number of features by SVfeat

during message aggregation in Phase-1
(Eqs. 5 and 6). Similarly in Phase-3, we bound the number of graph nodes to compute the feature node embedding by SV .
This leads to O

(∏L
i=1

(
Si × SVfeat

+ SV × SVfeat
))

bound on time and space complexities for generating embedding

for every node. SV is the no. of graph nodes for computing feature node embeddings and SVfeat

is the no. of feature nodes
for computing graph node embeddings. In the datasets we have considered for evaluation, all nodes have large dimensional
features, but they are highly sparse. For eg., in Cora out of 1433 features, on average 18 features have value 1 for all nodes.
Similarly, all feature nodes on average have a value of 1 in 34 graph nodes. Thus, connecting graph nodes with only those
feature nodes having value 1 and vice-versa results in a low-computational overhead. We perform sampling in case of large
scale datasets eg. Physics, where each graph node has on average 34 features having value 1 out of 8415 features and each
feature node has on average 135 graph nodes.

F. Extension to Continual Learning for Dynamic Graphs

To perform elastic weight consolidation, we randomly sample a small set of training nodes U ∈ Vtl from the graph. Then,
we compute the importance of model weights on the loss of U −∆Vtl where ∆Vtl is the set of affected training nodes at

14

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 15

time t. Specifically,
Ωw = E(v)∼(U−∆Vtl)

[(
δL(v)
δΘw

)2
]

Here, Θ refers to the model parameters of GRAFENNE, Ωw refers to importance of the wth weight parameter. The term δL(v)
δΘw

calculates the gradient of the loss on unaffected nodes with respect to the parameter w. When the parameter update is to take
place with respect to the updated data ∆Galt

t , we penalize updates to the weights that are important for the representative
sample of nodes that were not updated in the latest timestamp t using Ωw calculated above. We accomplish it by the below
loss function.

Lcont =
∑

v∈∆Vtl

L (v) +
∑
w

λ

2
Ωw

(
Θw

t −Θw
t−1

)2
(23)

The first term refers to the loss computed on the updated set of training nodes in the current timestamp. The second term is a
quadratic penalty term on the difference between the parameters for the new timestamp and the previous timestamp. We also
observe that we only need to store the current model parameters and model parameters of previous phase t− 1, as evident
from Eq. 23. λ is a hyper-parameter reflecting how important the unaffected portion of the current graph Gt is compared to
the updated portion of the graph.

G. Experimental Environment
All experiments are performed on an Intel Xeon Gold 6248 processor with 80 cores, 1 Tesla V-100 GPU card with 32GB
GPU memory, and 377 GB RAM with Ubuntu 18.04. We perform a 60%−20%−20% data split for train-test-validation.
These splits are generated at random. In all experiments, we have used 2 layers of message-passing and trained GRAFENNE
using the Adam optimizer with a learning rate of 0.0001 and choose the model based on the best validation loss. All
experiments have been executed 5 times. We report the mean and standard deviations. Standard deviation below 0.01 have
been approximated to 0 in node classification results.

H. Datasets

Cora (Yang et al., 2016), CiteSeer (Yang et al., 2016) and DBLP (Tang et al., 2008) are citation graphs where each node is a
paper and the edge manifests a citation. The node labels represent the research category. In Cora and CiteSeer, the node
attributes contain a bag of words of the paper text and in DBLP, the node attributes contain bag of words of keywords (Tang
et al., 2008). We also use a large scale graph Physics (Shchur et al., 2018) to show the scalability capabilities of GRAFENNE.
Physics is a co-authorship graph where each node is an author and edges represent if two nodes co-authored a paper. Node
attributes are bag-of-words of authors’ papers. The task is to map each author to its corresponding research area. These
graphs are homophilic. We also use a heterophilic dataset, Actor(Pei et al., 2020) to evaluate GRAFENNE. The actor is a
co-occurrence graph of actor nodes on the same Wikipedia page. Node features are bags of words from Wikipedia pages,
and node labels are actor categories from Wikipedia pages.

I. Impact of 3-phase Message Passing Compared to Vanilla Message Passing on Transformed Graph

Table F: Performance of GRAFENNE in node classification task when message passing is performed in standard mode on
Galt on full dataset

Method Cora CiteSeer Actor

Traditional 81.36± 0.80 66.72± 1.40 36.20± 0.29
GRAFENNE 87.6± 0.73 73.90± 0.84 38.90± 0.84

Table F shows the importance of the proposed 3-phased message passing framework. Specifically, we use GRAPHSAGE on
the allotropic graph instead of the proposed 3-phased message passing. As visible, there is a significant drop in quality.

15

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 16

J. Additional Results
Table G: AUCROC of GRAFENNE (GAT) and GRAFENNE (GIN) with benchmark GNNs, GAT and GIN on link-prediction
task

Dataset Method p = 0 p = 0.5 p = 0.99

Cora

GRAPHSAGE 0.86± 0.002 0.84± 0.002 0.7523± 0.05
GRAFENNE 0.8780 ± 0.004 0.8501 ± 0.005 0.8015 ± 0.006

GAT 0.8681± 0.0027 0.8316± 0.0010 0.7468± 0.0024
GRAFENNE (GAT) 0.8765 ± 0.002 0.8392 ± 0.0047 0.7841 ± 0.005

GIN 0.8552± 0.0022 0.8267± 0.0037 0.7399± 0.0051
GRAFENNE (GIN) 0.8591 ± 0.007 0.8301 ± 0.008 0.7692 ± 0.011

CiteSeer

GRAPHSAGE 0.8251± 0.005 0.7617± 0.001 0.7223± 0.002
GRAFENNE 0.8681 ± 0.010 0.8047 ± 0.010 0.7378 ± 0.008

GAT 0.8123± 0.0011 0.7789± 0.0008 0.7205± 0.005
GRAFENNE (GAT) 0.8546 ± 0.008 0.8042 ± 0.005 0.7268 ± 0.010

GIN 0.8319± 0.0031 0.7767± 0.0018 0.7203± 0.007
GRAFENNE (GIN) 0.8720 ± 0.0058 0.8046 ± 0.0040 0.7228 ± 0.0003

Actor

GRAPHSAGE .6569± 0.0 0.7029± 0.0026 0.6969± 0.003
GRAFENNE 0.7047 ± 0.005 0.7021 ± 0.0034 0.7029 ± 0.0026

GAT .7436 ± 0.0016 0.7436± 0.0025 0.6721± 0.0035
GRAFENNE (GAT) 0.7142± 0.006 0.7090 ± 0.006 0.6942 ± 0.004

GIN 0.7549± 0.0 0.7995 ± 0.0 0.7856 ± 0.0
GRAFENNE (GIN) 0.7982 ± 0.0 0.7905± 0.0013 0.7539± 0.0

K. Impact of Feature Translation

We translate features in Cora dataset by a factor of 10 in the node classification task. In Table H we observe that the
performance of GRAFENNE remain intact. p represents the ratio of features deleted per node as defined in Sec 5.4(Empirical
evaluation.).

p = 0 p = 0.5 p = 0.99

GRAFENNE 87.6± 0.73 84.35± 0.27 78.85± 0.29
GRAFENNE (Translate) 87.7± 0.81 84.03± 0.31 78.78± 0.99

Table H: Impact of feature translation (by a factor of 10) on the Cora dataset.

L. Comparison with FATE (Wu et al., 2021)

As we explain below, FATE tackles a different problem, is significantly different in methodology and consequently, when
adapted for our problem, generates substantially inferior results.

Difference in problem formulation: The input to our problem is a graph where nodes are annotated with feature vectors.
In FATE, the input does not include a graph. FATE takes as input just a set of feature vectors. In addition, FATE also assumes
the feature vectors to be a set of attributes (represented as one-hot encoding). In our problems, the feature vectors may
represent either attributes or continuous-valued.

Difference in methodology: For feature adaptation, FATE forms a bipartite graph where the two sets of nodes correspond to
original data points and feature values. While we also form a data(node)-feature graph, the methodology is dramatically
different.

1. Structure of graph representation: GRAFENNE is not a bipartite graph as there are node-node edges in addition to
node-feature edges (Recall Fig. 1).

2. Modeling feature values: Since FATE assumes attributed feature vectors, which are one-hot encodings, an edge exists in

16

GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets 17

the bipartite graph from the original data point to a feature-node if the feature (attribute) is present in that data point.
This design is not adequate for our problem since features could be continuous-valued. Hence, in our allotropic graph
construction, the edges from feature nodes to data nodes are weighted indicating the feature value in the node.

3. Handling continuous-value data: FATE does discuss strategies to adapt their methodology to continuous-valued features
by discretizing the feature space into bins. This solution is not adequate since:
(a) It’s not clear what should be the bin-width.
(b) More importantly, binning feature spaces and treating them as discrete values in the form of one-hot encodings

distort the notion of similarity in the original feature space. Specifically, let’s assume a bin width of 25 on a feature
ranging from 0 to 100. A value in bins 0-25 is more similar to a value in 26-50 than to one in 76-100. This semantics
gets lost when discretized since FATE treats every two bin values as either being the same or different (as in items
drawn from a set).

(c) Finally, FATE results in f ×m feature-nodes where f is the number of features and m is the number of feature
values (bins) per feature on average. In contrast, the proposed work generates f feature nodes. Thus, FATE (Wu
et al., 2021) leads to higher storage and computation overheads.

4. Message-passing scheme: Since the input data in FATE is not a graph and the input is assumed to be attributed feature
vectors, the message-passing scheme’s primary objective is to learn co-occurrence correlation across features. The
task in our case is significantly more complex. Specifically, we (1) need to learn feature co-occurrence patterns, (2)
continuous-valued feature imputation as a function of topology, and (3) the objective function (such as node classification,
link prediction, etc) as a joint function of topology and features. Owing to the difference in objectives, while FATE
decouples the objective task (Ex. classification) from the feature adaptation task. In contrast, we learn feature adaptation
and the end objective in an end-to-end manner. Furthermore, while FATE directly uses message passing mechanism of
GNNs on the bipartite graph, we have devised a 3-phased message passing framework on the transformed graph due to
the more complex modeling needs. As evident from Table F in Appendix Sec. G, the 3-phased message passing obtains
superior performance.

Empirical evaluation: We have added FATE (Wu et al., 2021) as a baseline in the table below. p represents the ratio of
features deleted per node as defined in Sec 5.4(Empirical evaluation.). The results are presented for node classification. To
adapt FATE for our task where the input is a graph, in addition to the bipartite graph, we added node-node edges as in our
construction. Yet, FATE produces significantly inferior results, due to the issues outlined above.

Dataset\Method GRAFENNE FATE

p = 0 p = 0.5 p = 0.99 p = 0 p = 0.5 p = 0.99

Cora 87.6± 0.73 84.35± 0.27 78.85± 0.29 — 71.11± 1.11 52.43± 1.21 30.42± 0.22

Actor 38.9± 0.84 35.02± 0.21 23.97± 0.58 — 34.42± 0.11 32.25± 0.93 22.57± 0.15

CiteSeer 73.9± 0.84 72.91± 0.95 64.29± 1.02 — 69.7± 0.78 61.11± 0.06 22.69± 0.51

Physics 97.02± 0.05 96.23± 0.23 94.49± 0.18 — 96.34± 0.09 92.87± 0.22 53.55± 0.15

Table I: Comparison of GRAFENNE against FATE at different missing rates on the node classification task.

17

