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Abstract
The paper uses a frame-theoretic setting to study
the injectivity of a ReLU-layer on the closed ball
of Rn and its non-negative part. In particular,
the interplay between the radius of the ball and
the bias vector is emphasized. Together with a
perspective from convex geometry, this leads to
a computationally feasible method of verifying
the injectivity of a ReLU-layer under reasonable
restrictions in terms of an upper bound of the
bias vector. Explicit reconstruction formulas are
provided, inspired by the duality concept from
frame theory. All this gives rise to the possibility
of quantifying the invertibility of a ReLU-layer
and a concrete reconstruction algorithm for any
input vector on the ball.

1. Introduction
The Rectified Linear Unit ReLU(s) = max(0, s), s ∈ R
has become indispensable in modern neural network archi-
tecture. It is applied component-wise on the output of an
affine linear function Ax− b, comprising of the multiplica-
tion by a weight matrix A and the shift by a bias vector b.
The combined mapping is called a ReLU-layer. This has
proven to be a simple, yet effective non-linear mapping to
handle fundamental problems in the training of deep neural
networks well (Glorot et al., 2011; Krizhevsky et al., 2012;
Goodfellow et al., 2016; Nair & Hinton, 2010). Despite its
simplicity, yet, the ReLU function still hides some mysteries
and is an active topic of research (Dittmer et al., 2020).

Recently, invertible network architectures have been getting
a lot of attention due to their increased interpretability and
the possibility of reversing the forward process analytically,
which is especially interesting in a generative setting. This
found many applications in the context of normalizing flows,
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offering exact and efficient likelihood estimations (Dinh
et al., 2017; Donahue et al., 2017). Mathematically speak-
ing, the forward process in such an invertible architecture
must be injective, guaranteeing the existence of a left-inverse
that allows perfect reconstruction of any input. A ReLU-
layer is a mapping that is designed to provide sparse output.
Hence, its injectivity is an interesting property that has been
tackled from a theoretical point of view only little in the
literature. Bruna et al. characterized a ReLU-layer to be
injective in terms of an admissibility condition for index sets
and proved a bi-Lipschitz stability condition for an injective
ReLU-layer, see Proposition 2.2 in (Bruna et al., 2014). Just
recently, Puthawala et al. formulated a condition in terms of
spanning sets that is equivalent to the one in (Bruna et al.,
2014) (with a slight modification) and describes the injec-
tivity of ReLU-networks consisting of many ReLU-layers
see Theorem 2 in (Puthawala et al., 2022). Both conditions,
however, are not applicable to verify the injectivity of a
ReLU-layer for a given weight matrix in practice. The pre-
sented work provides exactly that. We found the convex
geometry of the weight matrix to play an essential role in
the injectivity analysis for the associated ReLU-layer, using
a concept that Behrmann et al. introduced in Theorem 4 of
(Behrmann et al., 2018). The geometrical perspective helps
profoundly to strengthen the intuition on the effect of the
ReLU function. It allows to formulate a computationally
feasible method to give a sufficient condition for injectivity.
This shall contribute to the enhancement of the interpretabil-
ity of neural networks in terms of a way to quantify the
invertibility of a ReLU-layer with corresponding exact re-
construction formulas. Aiming to set a rigorous foundation
for future work on this topic, we formulate all results in an
abstract mathematical manner, using the language of frame
theory which we find to be especially well-suited.

In Section 2 we interpret a ReLU-layer by means of frame
theory and motivate the restriction to the ball. Section 3 is
dedicated to the injectivity of a ReLU-layer theoretically. In
Section 4 we introduce a method to obtain an upper bound
for all biases, such that the corresponding ReLU-layer is
injective on the ball and its non-negative part. Explicit re-
construction formulas are stated. Finally, Section 5 demon-
strates how the method can be used to analyze the injectivity
behavior of a ReLU-layer in numerical experiments.
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2. Mathematical Context
2.1. Neural Networks meet Frame Theory

The goal of this section is to link abstract frame theory
with deep learning. We want to particularly emphasize
that frames are a well-suited concept for the mathematical
analysis of neural networks, not only in terms of notation
but also due to its long usage in signal processing which
is tied closely to deep learning. In this sense, we build our
work upon notation and tools from frame theory for Rn, c.f.
(Balazs, 2008; Casazza & Kutyniok, 2012). We shall write

X = (xi)i2I ⊆ Rn with |I| = m ≥ n

to refer to a collection of m vectors x1, . . . , xm in Rn. De-
noting the usual inner product on Rn as ⟨·, ·⟩ we say that X
constitutes a frame for Rn with frame elements xi, if there
are constants 0 < A ≤ B <∞, such that

A · ∥x∥2 ≤
X
i2I
|⟨x, xi⟩|2 ≤ B · ∥x∥2 (1)

holds for all x ∈ Rn. The constants A,B are called lower
and upper frame bounds for X . In Rn, a frame is equivalent
to a spanning set. The bounds A,B become important, if
one is interested in the numerical properties of the operators
associated with a frame: the analysis operator

C : Rn → Rm

x 7→ (⟨x, xi⟩)i2I ,

its adjoint, the synthesis operator

D : Rm → Rn

(ci)i2I 7→
X
i2I

ci · xi,

and the concatenation of analysis, followed by synthesis,
the frame operator

S : Rn → Rn

x 7→
X
i2I
⟨x, xi⟩ · xi.

If X is a frame, then C is injective, D surjective, and S
bijective. In Rn all the above operators are realized via
left-multiplication of x with a corresponding matrix. In this
sense, the analysis operator C can be identified with the
m× n matrix

C =

0B@−x1−
...

−xm−

1CA .

For the synthesis operator, we have that D = C>. Recall
that in matrix terminology, injectivity, and surjectivity re-
late to the corresponding matrix having full rank. Hence,

if the weight matrix of a layer in a neural network has full
rank, then it can be interpreted as the analysis operator of
the frame consisting of its row vectors if m ≥ n and as
the synthesis operator of the frame consisting of its column
vectors if m ≤ n. At the initialization of a neural network,
the weight matrices are commonly set to be Gaussian i.i.d.
matrices known to have full rank with probability 1 (Mehta,
2004). Hence, one can be (almost) sure to start the train-
ing with the rows, resp. columns of the weight matrices to
constitute frames. Here, we concentrate on the case where
m ≥ n and refer to such a layer as redundant.
The matrix associated with the frame operator is S = DC.
It can be used to construct the canonical dual frame for X ,
given by X̃ =

�
S�1xi

�
i2I . Denoting D̃ as the associated

synthesis operator leads to the canonical frame decomposi-
tion of x ∈ Rn by X ,

x = S�1S =
X
i2I
⟨x, xi⟩ · S�1xi = D̃Cx. (2)

In this way, (2) is equivalent to D̃ being a left-inverse of
C, allowing perfect reconstruction of x from Cx. To recon-
struct an input vector from the output of a ReLU-layer, we
will construct a left-inverse for it exactly in the spirit of (2).
Finally, one can find the minimal upper and the maximal
lower frame bound in (1) via the largest and smallest eigen-
value of S respectively. The ratio B

A of these bounds corre-
sponds to the condition number of the linear mapping given
by the analysis operator, hence the weight matrix of the
network layer, indicating its numerical stability.

2.2. ReLU-layers as Non-linear Analysis Operators

In a frame-theoretic context, we define the ReLU-layer asso-
ciated with a collection of vectors X = (xi)i2I ⊆ Rn and
a bias vector α ∈ Rm as the non-linear mapping

Cα : Rn → Rm

x 7→ (ReLU(⟨x, xi⟩ − αi))i2I .
(3)

The notation Cα is chosen to reflect the link to the frame
analysis operator C. Of course, this is equivalent to how a
ReLU-layer is commonly denoted, ReLU(Cx− α) where
ReLU applies component-wise. For fixed x, the effect
of the shift by the bias α and the ReLU function on the
frame analysis can be interpreted as all frame elements with
⟨x, xi⟩ < αi are set to be the zero-vector. According to this
observation, we introduce the notation

Iαx := {i ∈ I : ⟨x, xi⟩ ≥ αi}, (4)

determining the index set associated with those frame el-
ements which are not affected by the ReLU function for
x. This perspective requires referring to sub-collections
of frames very often. We write XL = (xi)i2L for the
sub-collection of X with respect to the index set L ⊆ I .
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Analogously, we add L as a subscript to the operators as-
sociated with XL, e.g. CL is the analysis operator of XL.
Clearly, the case where L = Iαx plays a central role.

2.3. Input Data on the Closed Ball

One of the core ideas in this paper is the restriction of Cα

to the closed ball of radius r > 0 in Rn, denoted by

Br = {x ∈ Rn : ∥x∥ ≤ r}.

We write B = B1. Indeed, this is a very reasonable assump-
tion when thinking of standard data normalization practices
for neural networks (LeCun et al., 2012; Huang et al., 2023).
It turns out that this restriction allows for a much richer
analysis of the injectivity of Cα than on all of Rn, in partic-
ular, involving the radius r. Furthermore, as the output of a
ReLU-layer has only non-negative entries, hence lies within
Rn

+, the input domain of any ReLU-layer that applies to the
output of a previous ReLU-layer on the ball lies within the
non-negative part of Br, denoted by

B+
r = Br ∩ Rn

+. (5)

Similarly, we write B+ = B ∩ Rn
+. The boundary of the

unit ball, or equivalently, the (n− 1)-sphere is denoted by

S = ∂B = {x ∈ Rn : ∥x∥ = 1}.

3. Injectivity of Cα on Br

The ReLU-layer mapping Cα is - by design - non-linear,
such that a condition for its injectivity will generally depend
on the input. Fixing x, one notices that if the sub-collection
XI�x

is a frame, then the analysis operator CI�x
is injective,

which we will use to study the injectivity of Cα. For α ≡ 0,
Puthawala et al. refer to this property as “x having a directed
spanning set” see Definition 1 in (Puthawala et al., 2022). In
the following, we formulate this for general α and K = Br

in the context of frame theory.
Definition 3.1 (α-rectifying on Br). A collection X =
(xi)i2I ⊆ Rn is called α-rectifying for α ∈ Rm on Br if
for all x ∈ Br the sub-collection XI�x

= (xi)i2I�x is a frame
for Rn.

An analogous definition can be formulated for B+
r . Unless

explicitly stated, we always refer to Br when writing that X
is α-rectifying, since it covers the case B+

r .

In Lemma 2 of the same paper (Puthawala et al., 2022)
the authors show that α-rectifying on Rn characterizes the
injectivity of Cα. We revisit this characterization for Br and
B+
r . Again, the frame-theoretic formulation simplifies the

statement significantly.
Theorem 3.2 (Injectivity of ReLU-layers on Br). Consider
X = (xi)i2I ⊆ Rn, α ∈ Rm. If X is α-rectifying on Br

(resp. B+
r ), then Cα is injective on Br (resp. B+

r ).

A proof can be found in the appendix. Hence, we can shift
the question of injectivity of Cα to the verification of the
α-rectifying property for a given collection of vectors X .

Stability. Following the lines of (Bruna et al., 2014) and
again, switching from Rn to Br, one can show that the injec-
tivity of Cα on Br implies frame-like inequalities analogous
to (1), i.e. there are constants 0 < A0 ≤ B0 <∞ such that

A0 · ∥x∥2 ≤
X
i2I
|ReLU (⟨x, xi⟩ − αi)|2 ≤ B0 · ∥x∥2 (6)

for all x ∈ Br. Here, A0 can be chosen as the smallest
eigenvalue and B0 as the largest eigenvalue of all frame
operators associated with the frames XI�x

with x ∈ Br.

Inclusiveness. It is clear that if X is α-rectifying, then X
is α0-rectifying for all α0 ≤ α. Therefore, we call

α an upper bias for Cα if X is α-rectifying.

This perfectly reflects the role of the bias vector in a neural
network: the larger the bias values, the more neurons are
activated by the ReLU function, hence the “more injective”
the ReLU-layer becomes in the sense that it is injective for a
larger set of bias vectors. Therefore, it is of natural interest
to find the largest possible upper bias for a given weight
matrix. A unique maximal upper bias, however, does not
exist in general.

Restriction to S. It is important to notice that we may
restrict the α-rectifying property to unit norm vectors since
the norms directly scale the upper bias values αi and can be
re-introduced at any time. In this sense, X is α-rectifying
if and only if X =

�
xi · ∥xi∥�1

�
i2I is α-rectifying, where

αi = αi · ∥xi∥. Therefore, in the following we will always
assume X ⊆ S, i.e. ∥xi∥ = 1 for all i ∈ I . Note that this
corresponds to standard weight normalization (Salimans &
Kingma, 2016).

Bias-radius interplay. Often when studying ReLU-layers
theoretically, the bias is implicitly incorporated into the
linear part of the operator. However, in our work, we delib-
erately keep it as a shift as the interplay of bias and input
domain is of central interest. We mentioned that an upper
bias α favors injectivity when it is large. On the other hand,
a large input data domain, i.e. a ball with large radius r
offers more flexibility for normalization. However, there
is a general trade-off: the larger the radius is chosen, the
smaller α will get, in general, and vice versa. We have the
following trivial fact:

Any frame is α-rectifying on Br for α ≡ −r,

i.e. αi = −r for all i ∈ I . Hence, any redundant ReLU-
layer is injective on the closed ball with any radius if the bias
vector is sufficiently small. For a basis, (i.e. m = n) the
above fact becomes also necessary, immediately implying
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that a basis can never be α-rectifying on Rn for any α.
However, the standard basis for Rn is α-rectifying on B+

for α ≡ 0. This shows that taking into account the input
domain is a crucial step to take when studying injectivity
since it naturally adapts to situations where a frame is not
α-rectifying on Rn but might be on Br, resp. B+

r . The
question that we are now interested in is, how to find a
“good” upper bias for Br and B+

r ?

The Mercedes-Benz frame in R2 (Casazza & Kutyniok,
2012), given by

Xmb =

��
0
1

�
,

�
−
p

3/2

−1/2

�
,

�p
3/2

−1/2

��
(see Figure 1) is a particularly good example, where the
optimal upper bias for B can be found by looking at the
geometry of the frame. Its elements determine the vertices
of an equilateral triangle so that we can reduce the problem
to one pair of elements by symmetry. The worst case is
found by ⟨xi, xj⟩ = − 1

2 . Hence, Xmb is α-rectifying on B
for α ≡ − 1

2 . This idea can be generalized to polytopes in
arbitrary dimensions. In R3, we obtain that the Tetrahedron
frame, given by

Xtet =
1√
3
·

0@0@1
1
1

1A ,

0@ 1
−1
−1

1A ,

0@−11
−1

1A ,

0@−1−1
1

1A1A .

(see Figure 1) is α-rectifying on B for α ≡ − 1p
3

. In a more
general setting, where the frame elements are not aligned
in a regular manner, we can at least reduce the problem to
consider every face individually.

4. Convex Polytopes and Bias Estimations
In a nutshell, we estimate a “good” upper bias vector α for
a given set of vectors X , hence, the ReLU-layer mapping
Cα is injective on Br. It turns out that the combinatorial
structure of the convex polytope associated with the ele-
ments of X can be related to the α-rectifying property of
X . To prepare the estimation procedure, we shall introduce
all building blocks for the estimation procedure for Br in
Section 4.1 and then deduce a version for B+

r in Section 4.2.

For all standard results on convex polytopes, we refer to
(Ziegler, 2012). Here, we are specifically interested in con-
vex polytopes that arise as the set of all convex linear com-
binations of a collection of vectors X = (xi)i2I ⊆ S,

PX = {x ∈ Rn : x =
X
i2I

ci · xi, ci ≥ 0,
X
i2I

ci = 1}. (7)

A face of PX is any intersection of PX with an affine half-
space (in any dimension) such that none of the interior
points of PX (w.r.t. the induced topology on PX ) lie on

its boundary. While vertices and edges are the 0- and 1-
dimensional faces of PX , the (n− 1)-dimensional faces are
called facets. For every face and, in particular, every facet
F , there are a ∈ Rn \ {0} and b ∈ R such that

F = {x ∈ PX : ⟨a, x⟩ = b}, (8)

i.e. any facet lies on an affine subspace of codimension 1 of
Rn. Furthermore, any x ∈ F can be written as the convex
linear combination,

x =
X
i2IF

ci · xi, ci ≥ 0,
X
i2IF

ci = 1.

We shall write the index set of vertices, associated with F
as

IF = {i ∈ I : xi ∈ F}. (9)

The following lemma reveals the core idea of our approach.

Lemma 4.1. Let F be a facet. If 0 /∈ F , then XIF is a
frame.

In other words, as long as the facet does not go through the
origin, the associated vertices form a frame. A proof can be
found in the appendix.

We call X omnidirectional if 0 lies in the interior of PX

(w.r.t. the topology in Rn), see Definition 1 in (Behrmann
et al., 2018). Equivalently, there cannot be a hyperplane so
that the elements in X are all accumulated on only one side
of it.

For the proposed bias estimation on Br, omnidirectionality
is an essential property as it allows to cover every x ∈ Br

the same way. For B+
r we formulate an analogous condition

in Section 4.2. Moreover, if X is omnidirectional, then
0 cannot lie on any facet of PX and Lemma 4.1 applies.
Numerically, it is verified via a simple convex optimization
program (Behrmann et al., 2018).

Assuming a certain ordering of the facets, we write Fj

referring to the j-th facets of PX . Analogous to the idea of
obtaining the optimal upper biases for the Mercedes-Benz
and the Tetrahedron frame, we will use the frames XIFj

for
all j to estimate a bias. Letting the cone of Fj be denoted as

cone(Fj) = {tx : x ∈ Fj , t ≥ 0},

then omnidirectionality and X ⊆ S provide the following
properties.

Lemma 4.2. If X ⊆ S is omnidirectional, then the follow-
ing holds.

(i)
S

j IFj = I ,

(ii)
S

j cone(Fj) = Rn

(iii) XIFj
is a frame for every j.
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Figure 1.Frame vectorsX (blue) and their convex hulls forming convex regular polytopesPX . From left to right: Mercedes-Benz,
Square, and Pentagon frame inR2 , Tetrahedron and Icosahedron frame inR3 . The unit ballB is outlined in gray.

These three properties build the backbone of our approach.
By (i), every frame element is a vertex ofPX . Due to(ii) ,
we can partitionBr into facet-speci�c conical subsets where
we can estimate a bias locally. And most importantly, by
(iii) , every sub-collection associated to a facet induces a
frame. Properties(i) and(ii) are easy to see and(iii) is a
direct consequence of Lemma 4.1.

Remark4.3. For a facetF , the vectorsX I F will be redun-
dant (m > n ) only in rare cases. If the frame elements lie
in general position onS, then everyX I F is a basis (m = n)
with probability1 (Buchta & Müller, 1984).

Before we introduce the upper bias estimation procedures
for Br andB+

r , we provide an explanation of why the partic-
ular grouping of the frame elements into vertices of facets
is indeed suitable for the purpose of �nding large upper bias
values for the� -rectifying property.

If X is omnidirectional andF a facet ofPX , then consistent
with (8) there area 2 Rn n f 0g and0 6= b 2 R such that

ha; xk i = b; for k 2 I F ;

ha; x` i < b; for ` =2 I F :

In this sense, the construction ofX I F is a natural way of
selecting spanning sub-collections ofX with the highest
coherence possible, making this particularly useful for our
purpose.

4.1. Polytope Bias Estimation forBr

We now introduce thePolytope Bias Estimation(PBE) for
Br with r > 0. The procedure estimates an upper bias,
denoted as� B, such thatX is � B-rectifying onB. This
implies thatX is (r � 1 � � B)-rectifying onBr .

The core idea is to partitionB (andS) into conical pieces,

F B
j := cone(Fj ) \ B (10)

F S
j := cone(Fj ) \ S: (11)

If X is omnidirectional, by Lemma 4.2, we have

B =
[

j

F B
j and S =

[

j

F S
j : (12)

To �nd � B
i , we identify the minimal analysis coef�cient

hy; x i i that can occur fory on eachF B
j containingx i , i.e.

� B
i := min

y2 F B
j

j :x i 2 F j

hy; x i i : (13)

We do not tackle this optimization problem directly but
solve two related problems instead. On the one hand, we
consider the minimal auto-correlation values on each facet,

� X
i := min

` 2 I F j
j :x i 2 F j

hx ` ; x i i ; (14)

that are easy to compute. On the other hand, we solve

� S
i := min

y2 F S
j

j :x i 2 F j

hy; x i i (15)

via convex linear programs. Note that the sets, on which
all three optimization problems happen are subsets of each
other,F B

j � F S
j � X I F j

, so that we immediately observe

that� B
i � � S

i � � X
i . With this, we solve (13).

Theorem 4.4. (PBE for B) If X � S is omnidirectional,
thenX is � B-rectifying onB and� B

i , given in(13) can be
computed as

� B
i =

(
0 if � X

i � 0
� S

i otherwise.
(16)

If � X
i < 0, then � S

i given in (15) is the minimum over
j : x i 2 Fj of the solutions of the convex linear programs

min
�

x>
i D I F j

�
d

subject tod � 0 (17)

kD I F j
dk2 � 1;

whereD I F j
is the synthesis operator ofX I F j

.
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