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Abstract
Addressing imbalanced or long-tailed data
is a major challenge in visual recognition
tasks due to disparities between training and
testing distributions and issues with data noise.
We propose the Wrapped Cauchy Distributed
Angular Softmax (WCDAS), a novel softmax
function that incorporates data-wise Gaussian-
based kernels into the angular correlation
between feature representations and classifier
weights, effectively mitigating noise and sparse
sampling concerns. The class-wise distribution
of angular representation becomes a sum of
these kernels. Our theoretical analysis reveals
that the wrapped Cauchy distribution excels the
Gaussian distribution in approximating mixed
distributions. Additionally, WCDAS uses
trainable concentration parameters to dynamically
adjust the compactness and margin of each class.
Empirical results confirm label-aware behavior
in these parameters and demonstrate WCDAS’s
superiority over other state-of-the-art softmax-
based methods in handling long-tailed visual
recognition across multiple benchmark datasets.
The code is public available.

1. Introduction
Deep convolutional neural networks are the leading methods
for computer vision tasks, including visual recognition.
This strength is largely due to their robust representation
learning, a technique that simplifies target images into a
vector space with fewer dimensions. This crucial step is
facilitated by the penultimate layer and subsequently fed
into the final classifier, followed by a softmax function,
which calculates the probability of an input image being in
the j-th class: P (y = j | x) (Bridle, 1989; Goodfellow
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et al., 2016). However, most image recognition tasks
have been demonstrated on well-balanced datasets. In
contrast, most real-world data comes with an imbalanced
distribution: a few high-frequency classes contain many
training examples, while many low-frequency classes have
insufficient training examples. This scenario is referred to
as long-tailed recognition (Liu et al., 2019), and standard
methods trained with such datasets tend not to yield the
same performance as balanced ones (Liu et al., 2019; Lin
et al., 2017; Cui et al., 2021).

Numerous studies have focused on long-tailed recognition
by attempting to re-balance the data distribution through
class-balanced sampling or class re-weighting (Han et al.,
2005; Kang et al., 2020; Kubát & Matwin, 1997; Huang
et al., 2016; 2020; Hong et al., 2023). However, they
may under-represent the majority class (Han et al., 2005;
Kang et al., 2020; Kubát & Matwin, 1997) or destabilized
the network during optimization (Huang et al., 2016;
2020). In addition to direct sampling, focal loss (Lin
et al., 2017) adopts loss function emphasizing samples
with larger loss value. However, it inevitably involves
hyperparameters tuning by cross-validation. An alternative
method is to adopt a label-aware correction via introducing
a class-wise generalization error bound, such as Label-
Distribution-Aware Margin Loss (LDAM) (Cao et al., 2019)
and Balanced Meta-Softmax (BALMS) (Ren et al., 2020).
Cao, et. al. have proved that to improve the accuracy
in recognizing long-tailed distributed data, classes with
fewer training examples should have a higher generalization
error bound (Cao et al., 2019). However, both LDAM and
BALMS can be vulnerable when the number of examples
per class is unknown and constantly changing. Therefore,
further corrections are required for continuous training.
Meta-Weight-Net (Shu et al., 2019) and Equilibrium loss
(Feng et al., 2021) are developed for class re-weighting and
inter-class margin correction, which require no visibility to
the underlying data distribution. However, those methods
can either be subject to lengthy training time due to
the nature of meta-learning (Shu et al., 2019) or high
space complexity because of the memory module (Feng
et al., 2021). Lastly, using angular softmax, Kobayashi
has proposed applying von Mises-Fisher distribution for
compact feature space via a user-defined concentration
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parameter (� ) (Kobayashi, 2021). However, such a method
leads to lengthy hyper-parameter tuning with isotopic�
for all classes. Meanwhile, their trainable class-wise
� approach shows inferior performance compared with
the user-de�ned counterpart for an optimal performance
(Kobayashi, 2021). In addition, data noise also exists in
long-tail problem (Tong Wu & Lin, 2021; Cao et al., 2021;
Zhang et al., 2023).

In light of these challenges, we propose the Wrapped
Cauchy Distributed Angular Softmax (WCDAS) for long-
tailed visual recognition based on (Kobayashi, 2021).
We presume that the data-wise probability distribution
follows the wrapped Normal distribution and deduce
that WCDAS can be a better �t for mixed distributions
comprised of individual distributions. We also demonstrate
that WCDAS has several desirable features, such as
adaptive regulation of the margins between classes via a
concentration parameter, exhibiting label-aware behavior.
Upon evaluation on several benchmark long-tailed image
classi�cation datasets, WCDAS outperforms state-of-the-art
softmax-based methods.

In summary, our contributions include: 1) proposing a
model that considers noise-induced uncertainty in the form
of data-wise wrapped Normal distributed kernels; 2) proving
that WCDAS can more effectively �t the mixed distribution
of such kernels; 3) showing that under a speci�c condition,
our method also signi�cantly enhances inter-class margins,
resulting in compact clustering; and 4) demonstrating that
the concentration parameter can be adaptive, with classes
with fewer training samples having a higher concentration
parameter and a larger margin.

2. Related works

Angular-based Softmax.Angular softmax (Liu et al., 2016)
and its mutant approaches (Deng et al., 2019; Liu et al.,
2017) have recently been proposed to improve the softmax
loss in face veri�cation tasks. Unlike conventional softmax,
these methods allow neural networks to learn features in
an angular manner by focusing on the cosine similarity
between classi�er weights and features. Among these,
Large-margin softmax (Liu et al., 2016) directly enforces
inter-class separability on the dot-product similarity, while
SphereFace (Liu et al., 2017) and ArcFace (Deng et al.,
2019) enforce multiplicative and additive angular margins
on the hypersphere manifold, respectively. These margins
are controlled by a hyperparameter,m: the larger the value
of m, the larger the margin. Consequently, larger margins
between classes can lead to compact clusters, resulting in
enhanced performance over conventional softmax. (Liu
et al., 2017; Deng et al., 2019; Liu et al., 2016).

Long-tailed recognition. Datasets with long-tailed

distribution (Liu et al., 2019) not only have an imbalanced
class with respect to the number of examples per class but
also have a long tail of classes with only a few examples
(<10), i. e., tail class. Two predominant approaches for
such a problem are (1) loss function improvement and (2)
data re-balancing. The former approach exploits aggressive
learning in the tail classes (Lin et al., 2017; Jingru Tan, 2020;
Cui et al., 2019) or forcing large margin between classes,
especially tail classes(Cao et al., 2019; Ren et al., 2020; Ye
et al., 2020). In particular, Caoet. al. (Cao et al., 2019)
theoretically prove that the generalization error bound could
be minimized by increasing the margins of tail classes. In
addition to margin correction, Fenget. al. also balances the
classi�cation via a Feature Memory Module (Feng et al.,
2021). At the same time, a handful of studies focus on
data re-balancing during training, the second approach for
imbalance training. Data rebalancing can be achieved by
data re-sampling (Han et al., 2005; Kang et al., 2020; Kubát
& Matwin, 1997) or class re-weighting (Huang et al., 2016;
2020). However, data re-balancing-based strategies can
lead to over�tting the tail classes and less ef�cient learning
of the over-representative ones. The sampling strategies
include �xed samplers (Kang et al., 2020) and meta-based
samplers (Ren et al., 2020; Shu et al., 2019). Decoupled
training (Kang et al., 2020) is a simple yet effective solution
that could signi�cantly improve the generalization issue
on long-tailed datasets. During this two-stage training,
the representation learning is trained by instance-balanced
sampler (Kang et al., 2020) while the classi�er is further
�ne-tuned by class-balanced sampler (Kang et al., 2020)
and meta sampler (Ren et al., 2020).

Parametric modeling of feature distribution. Despite
the emergence of deep learning being attributed to non-
parametric non-linearity modeling, effectively training
a network can prove challenging when dealing with
certain real-world datasets that present issues such as class
imbalance and insuf�cient examples. Parametric modeling,
based on certain assumptions, can greatly assist learning in
these adverse situations (Yang et al., 2021; Hayat et al.,
2019). One such approach involves approximating the
Gaussian distribution of feature representation in few-shot
learning to enhance generalizability (Yang et al., 2021). In
the context of imbalanced classes, studies have shown that
Gaussian distribution (Hayat et al., 2019) and von Mises-
Fisher distribution (Kobayashi, 2021) modeling of feature
representation, or angles between weights and features, can
signi�cantly improve performance. Parametric modeling of
the feature space can also better handle uncertainty caused
by noise in the data. Popular methods of utilizing parametric
models to account for uncertainty include Variational
Auto-encoder (Kingma & Welling, 2013), Bayesian-based
dropout (Gal & Ghahramani, 2016), and DUL (Chang et al.,
2020), among others.
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Inspired by these three distinct approaches, we propose
a method that parametrically models the feature
representation. This method uses data-wise Gaussian
kernels as basis and it includes class-wise parameters that
are trainable, providing an adaptable framework for various
types of data."

3. Wrapped Cauchy Distributed Angular
Softmax (WCDAS)

Previous knowledge.For angular softmax, the predicted
probability from the linear classi�er in CNNs for thej -th
class given a sample vectorx and a weighting vectorw is
formulated as:

P(y = j j � ) =
ef ( � ;j )

P C
c=1 ef ( � ;c)

=
escos� j

P C
c=1 escos� c

(1)

where,
f (� ; j ) = scos� j (2)

f (� ; j ) calculates the angle between normalized vectors
x and w, cos� j = xT w j . For the ease of writing, we
refer the angular representation (� j ) betweenx andw as
"angular features".s 2 R is a empirically-de�ned constant
(Deng et al., 2019; Liu et al., 2017) or trainable parameter
(Kobayashi, 2021).

Intuition and Overview of WCDAS. The probability
function (f (� ; j )) of the angular softmax function (Equation
2) describes the angle between representation features
and classi�er weights. As such, the classi�er weights
are optimized to minimize the loss function, givencos� j .
However, this approach may potentially lead to over�tting,
especially when training with a few examples, as discussed
in previous large-margin based cosine softmax studies
(Kobayashi, 2021; Liu et al., 2016), or with data containing
noise, as reported by other studies (Tong Wu & Lin,
2021; Cao et al., 2021; Zhang et al., 2023). To address
these issues, our method seeks an optimal parametric
probability density function of� j , conditioned ony =
j , i.e., P(� j y = j ). To achieve this, we initially
propose using a data-wise Gaussian-based kernel as a basis.
Intuitively, given� , such a kernel can model the data-wise
uncertainty caused by the input noise or sparse sampling,
instead of a direct class-wise distribution (Section 3.1). By
doing so, we can obtain the class-wise angular feature
probability density function by summing the individual
basis (Section 3.1). Subsequently, we prove that this class-
wise distribution can be more accurately approximated by a
Wrapped Cauchy distribution,f (� ; � ; j ), with a class-wise
trainable concentration parameter,� 2 RC (Section 3.2).
We provide insights into why our novel softmax is a better
parametric distribution for representation feature modeling
(Section 3.2) and how it can create large margins under
speci�c conditions (Section 3.3).

Figure 1: Illustration of our method compared with other methods.
Black dot: representation of each data in one class. Yellow
dot with a black edge: centroid of the cluster. Gray solid line:
Gaussian kernel boundary. (a) Input data 1, 2, ..., M in Class j.
(b) parametric modeling of features fromeach datavia a wrapped
Normal kernel. (Hayat et al., 2019; Kobayashi, 2021) (c) Left
panel: parametric modeling of features fromeach datavia wrapped
Normal distribution. Right panel: zoomed diagram of the magenta
box in the left panel.

3.1. Wrapped Normal Basis for Angular Feature
Density Estimation.

Assumption. To mitigate over�tting in the representation
features, we approximate the uncertainty induced by
noise or sparse sampling using a Gaussian distribution.
Consequently, the angular feature of each data point follows
the probability distribution of a Normal distribution in
circular coordinates, i.e., a Wrapped Normal distribution
or a von Mises-Fisher distribution. Given that the
latter approximates the former distribution, we treat both
distributions as equivalent for ease of discussion. This
model of noise or sparse sampling-induced uncertainty using
a Gaussian distribution has been widely utilized in various
studies (Gal & Ghahramani, 2016; Rasmussen & Williams,
2005; Abdar et al., 2021). Following this assumption, the
probability distribution function of the angular feature for
them-th data point in thej -th class can be represented in the
form of a Symmetric-Wrapped Stable (SWS) distribution
(Jammalamadaka & SenGupta, 2001):

h(�; � ; m; j ) =
1

2�

 

1 + 2
1X

n =1

� n a

m cosn(� m � � m )

!

(3)
wheren 2 N, � m 2 [0; 1) denotes concentration parameter
of m-th data inj -th class,� m denotes the center ofj -
th class anda 2 (0; 2]. When a = 1 , Equation 18
returns the wrapped Cauchy distribution and fora = 2 ,
we get the wrapped Normal distribution (Jammalamadaka &
SenGupta, 2001). The bigger� m is, the more compact the
wrapped Normal kernel is. Sinceh(�; � ; m; j ) computes the
probability � m belongs toj -th class with the optimized
classi�er weights, hence, for the correct class to be
recognized based on Equation 1,� m ! 0.

Note that in our proposed method, we approximate the
uncertainty of each� m as wrapped Normal distribution
parameterized by� m and � m instead of modeling the
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f (� ; j ) directly (Hayat et al., 2019; Kobayashi, 2021). Such
difference is shown in Figure 1(b) and (c).

Class-wise probability distribution. Subsequently, mixed
distribution f (� ; j ) can be obtained by summing all the
h(�; � ; m; j ) in j -th class:

f mixed(� ; j ) =
1

M j

M jX

m =1

h(�; � ; m; j ) (4)

whereM j is the total number of samples inj -th class.
f mixed(� ; j ) describes the mixture ofM j wrapped Normal
distributions centered around zero. Such an idea is
used in the non-parametric estimation of a probability
density function, such as kernel density estimation (KDE)
(Rosenblatt, 1956; Parzen, 1962). However different from
KDE, � j , a vector comprised of all� m in j -th class, can be
different in values, representing the heterogeneity of each
data.

Theorem 1. Let f mixed(� ; j ) be a mixed distribution
formed by summing several wrapped Normal distributions
h(�; � ; m; j ) (Equation 18).h(�; � ; m; j ) is centered at� m .
� m follows Normal distributionN (0; � ) centered at zero,
where� ! 0. Thenf mixed(� ; j ) can be approximated as:

f mixed(� ; j ) �
1

2�M j

M jX

m =1

 

1 + 2
1X

n =1

� n 2

m cosn� m

!

(5)

Corollary 1.1. Let f mixed(� ; j ) be a mixed distribution
formed by mixing several wrapped Normal distributions
(Equation 18 and Equation 5), thenf mixed(� ; j ) is a wrapped
distribution with cosine moments,� mixed, given by

� f n g
mixed =

1
M j

M jX

m =1

� f n g
m (6)

where � f n g
m is the n-th cosine trigonometric moment of

h(�; � ; m; j ).

We present the detailed proof of Theorem 1 and Corollary
1.1 inAppendix A. Theorem 1 essentially shows that when
summing the wrapped Normal distributed kernel basis with
a small perturbation away from zero, the result can be
approximated as a sum of wrapped Normal distributions
centered at zeros. Corollary 1.1 demonstrates that cosine
moments of the mixed distribution can be obtained by
averaging the cosine moments of each distribution. We
note that the cosine moments of mixed distribution from
two wrapped Normal distributions centered at zeros have
been proven by Bailey, et. al. (Bailey & Codling, 2020).
We here prove that it can be generalized to several functions
that are not centered at zero under certain conditions.

3.2. Angular Feature Probability Approximation via
Wrapped Cauchy Distribution.

It is vital to �nd the optimal presentation off mixed(� ; j ).
One straightforward solution is to use non-parametric
approaches (Rosenblatt, 1956; Parzen, 1962). However,
those methods usually require large computational costs
for large dataset (Holmström, 2000). In our case, those
methods also requires each� m to be calculated separately.
Therefore, we approximatef mixed(� ; j ) with parametric
distribution, denotingf (�; � ; j ). According to Theorem
1, f (�; � ; j ) should also be an SWS distribution. Among
the two predominant SWS distributions (Wrapped Cauchy
distribution vs Wrapped Normal distribution), wrapped
Cauchy distribution can �t Equation 5 better than the
wrapped Normal distribution.

Theorem 2. Let f mixed(� ; j ) be a mixed distribution formed
by mixed several wrapped Normal distributionsh(�; � ; m; j )
of j -th class, centred around zero, de�ned in Equation 4.
f (�; � ; j ) is the approximated distribution with a choice
of wrapped Normalf WN(�; � ; j ) and wrapped Cauchy
f WC(�; � ; j ). Let � j, min of f (�; � ; j ) minimize the least
square error betweenf (�; � ; j ) and mixed distribution
f mixed(� ; j ) of j -th class:

� � j ;WC or WN= jj f WN or WC(�; � ; j )

�
1

2�M j

M jX

m =1

 

1 + 2
1X

n =1

� n 2

m cosn� m

!

jj2 (7)

� min = arg min
�

� � (8)

Then the least square error of optimal� j, min of j -th class
is correlated with standard deviation of(

P M c
m c =1 � n 2

m )
1
n or

(
P M c

m c =1 � n 2

m )
1

n 2 with respect ton 2 [1; 1 )

� � j; min;WN / SDn =1

0

@
M jX

m =1

� n 2

m

1

A

1
n

or � � j; min;WC / SDn =1

0

@
M jX

m =1

� n 2

m

1

A

1
n 2

(9)

Theorem 3. Let � m of individualh(�; � ; m; j ) distribute
uniformly across its de�ned domain[0; 1), � WN and� WC

de�ned in Equation 29, Then� � j; min;WC < � � j; min;WN

The detailed proofs of Theorem 2 and Theorem 3 are
provided inAppendix A. These proofs substantiate that a
mixed distribution constituted by SWS distributions aligns
better with the wrapped Cauchy distribution than with
the wrapped Normal distribution. Although the proof is
analytical, it is based on the numerical assumption that� m

in thej -th class is evenly distributed in[0; 1) (Theorem 3).
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Figure 2: Heatmap of� � min;wn (a) and� � min;wc (b) with respect to� and� . (c) Binary heatmap showing whether wrapped Cauchy (WC:
black) or wrapped Normal (WN: gray) is preferred for simulated mixed distribution.

We also provide a numerical simulation for more general
situations where� m � N (� � ; � � ). Given that� 2 [0; 1),
we simulate� � and� � with the value of 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9. Any� values outside the[0; 1) domain
are clipped to 0 and 1, respectively. Figure 2 shows the
results, indicating a preference for the Wrapped Normal
distribution when� � is small (� � � 0:1); otherwise, the
wrapped Cauchy distribution is preferred. This implies
that unless the mixed distributionf mixed(� ; j ) comprises
wrapped Normal distributions with similar concentration
parameters, the wrapped Cauchy distribution, due to its
heavy tail, provides a better approximation forf mixed(� ; j ).

Assuming that� m follows a uniform distribution is an
idealized assumption that simpli�es the learning process.
In practice, the actual distribution of� m might be more
intricate. However, as our simulation of Gaussian-
distributed� m demonstrates, there is a trend: the greater the
diversity of� m values, the more advantageous the Cauchy
distribution becomes as an approximation over Gaussian,
given the heavy tail of the Cauchy distribution.

3.3. Large Margin � and optimization

It is important to obtain the optimal� . According to the
geometric series, Equation 18 can be written in an alternative
form with element-wise calculation(Jammalamadaka &
SenGupta, 2001):

f (� ; � ) =
1 � � 2

2� (1 + � 2 � 2� cos� ))
(10)

where� is the vector containing� j 2 [1;C ] from all classes
with the total number ofC. We note that this alternative
form of Equation 18 is presented for the ease of calculating
the margin between classes.

Large margin via WCDAS. Several studies have
demonstrated that the large margin-based softmax approach
can lead to better performance both in balanced (Deng et al.,

2019; Liu et al., 2017; 2016) and imbalanced datasets (Ren
et al., 2020; Hayat et al., 2019; Cao et al., 2019). We
here prove that WCDAS can perform equivalently as those
methods under a certain domain of� . However, we note that
not all � in WCDAS contribute to a large margin. Intuitively,
only high� leads to tighter clustering. We here provide the
boundary of� that will lead to large inter-class margins.

Theorem 4. Let � j be the concentration parameter of
wrapped Cauchy distributionf wc of thej -th class.x is the
normalized presentation feature andw is the normalized
weights of the classi�er layer. Let� j and � k be the
angle betweenx andw of j -th andk-th class respectively,
wherex is from classj . When� j 2 (0:42332; 1), then
kf WC(� j ) � f WC(� k )k > k cos� j � cos� k k for any� j and
� k whencos� j > cos� k . The margin can be expressed as

kf WC(� j ) � f WC(� k )k =
� j + � 2

j

� (1 � � j )3 k cos� j � cos� k k

(11)

The detailed derivation is shown inAppendix A. Theorem 4
shows that within such a domain, WCDAS yields a larger
margin compared withcos� . It is worth mentioning that
such behavior holds with any� j and� k . It is also shown
that the larger� j is, the larger the margin is (Appendix
Figure 6). However, we note that our paper cannot prove
that the margin is label-aware because of the gradient-
based optimization. Therefore, the behaviors of� during
optimization require numerical studies (see Section 4.3).

Optimization We can calculate its gradient with respect to
� :

@f(� ; � )
@�

=
� 2� + (1 + � 2) cos�
� (1 + � 2 � 2� cos� )2 (12)

Through direct visualization of Equation 12 (Figure 3), we
notice two characteristics of our method: (1) when� is
away from 0,� decreases, i. e.,@f( � ;� )

@� < 0; when� is
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Figure 3: Gradient plot of@f( � ;� ;j )
@� with respect to� and� (a). The cross sections plotted along� (b) and� (c).

around 0,� increases, i. e.,@f( � ;� )
@� > 0. (2) The gradient

@f( � ;� )
@� also increases when� is around 0. Through the

former characteristic,� is able to regulate the margin from
the classi�er layer. In contrast, the second characteristic can
destabilize the whole network, since the value of� can also
go beyond the de�ned domain. To address this issue, we
de�ne w � 2 (�1 ; 1 ) so that� follows the behavior of
sigmoid function with respect tow � , which approximates
� 2 [0; 1):

� =
1

1 + e� w �
; w � 2 RC (13)

In summary, both the classi�er and the feature extractor
update the gradient. While the classi�er is updated using
our proposed method in Algorithm 1, the feature extractor
(or encoder) is trained in a conventional manner.

Algorithm 1 Wrapped Cauchy Distributed Angular Softmax

1: Input: Epoch numberE , feature representationx ,
weights in classi�erw , scale s.

2: Initialize: w�

3: while e < E do
4: while in Minibatchdo
5: � = 1

1+ e� w �

6: cos� = x T w j

kx kk w k

7: f (� ; � ) = 1� � 2

2� (1+ � 2 � 2� cos � ))

8: Compute Softmax: ef ( �;� ; j )
P C

c =1 ef ( �;� ; c )

9: Compute the cross entropy lossL
10: Updatew � ; w based on gradients@L

@w �
, @L

@w
11: end while
12: e  e+ 1
13: end while

4. Empirical Experiments

4.1. Experimental setup

We perform extensive ablation experiments on different
aspects of our method (Section 4.2 and 4.3). We also
compared our approach with SOTA softmax-based methods
(Section 4.4) using four large-scale long-tailed datasets:
CIFAR10-LT/100-LT (Krizhevsky, 2009), ImageNet-LT
(Liu et al., 2019; Deng et al., 2009) and iNaturalist 2018
(Van Horn et al., 2018). Among those datasets, CIFAR10-
LT, CIFAR100-LT and ImageNet-LT are truncated from
their balanced counterpart, following exponential decay
across classes (Liu et al., 2019) (see detail descriptions
in Appendix B.1).

Implementation. All models are trained using SGD
optimizer with momentum 0.9, weight decay10� 4. The
learning rate decays by a cosine scheduler. Unless speci�ed,
we use 90 training epochs. Other hyper-parameters are
listed inAppendix Table 5. The standard data augmentation
is applied to input images. According to (Kang et al., 2020),
we apply a decoupled representation learning and classi�er
learning: The whole network is �rst trained via an instance-
balanced sampler (Kang et al., 2020). Only the classi�er is
further trained over 30 epochs sampled by a class-balanced
sampler (Kang et al., 2020) or meta sampler (Ren et al.,
2020). We apply WCDAS to both feature learning and
classi�er learning.

4.2.Wrapped Normal vs Wrapped Cauchy, Class-wise�
vs Single�

In this numerical experiment, we further validate Theorem
3 utilizing ImageNet-LT. For a fair comparison, Angular
Softmax (Equation 1) is used as a baseline instead of the
conventional softmax function. Note that we implement von
Mises–Fisher distribution to approximate wrapped Normal
distribution (WNDAS). Table 1 shows that despite that both
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