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Abstract

Addressing imbalanced or long-tailed data
is a major challenge in visual recognition
tasks due to disparities between training and
testing distributions and issues with data noise.
We propose the Wrapped Cauchy Distributed
Angular Softmax (WCDAS), a novel softmax
function that incorporates data-wise Gaussian-
based kernels into the angular correlation
between feature representations and classifier
weights, effectively mitigating noise and sparse
sampling concerns. The class-wise distribution
of angular representation becomes a sum of
these kernels. Our theoretical analysis reveals
that the wrapped Cauchy distribution excels the
Gaussian distribution in approximating mixed
distributions. Additionally, WCDAS uses
trainable concentration parameters to dynamically
adjust the compactness and margin of each class.
Empirical results confirm label-aware behavior
in these parameters and demonstrate WCDAS’s
superiority over other state-of-the-art softmax-
based methods in handling long-tailed visual
recognition across multiple benchmark datasets.
The code is public available.

1. Introduction

Deep convolutional neural networks are the leading methods
for computer vision tasks, including visual recognition.
This strength is largely due to their robust representation
learning, a technique that simplifies target images into a
vector space with fewer dimensions. This crucial step is
facilitated by the penultimate layer and subsequently fed
into the final classifier, followed by a softmax function,
which calculates the probability of an input image being in
the j-th class: P(y = j | x) (Bridle, 1989; Goodfellow
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et al,, 2016). However, most image recognition tasks
have been demonstrated on well-balanced datasets. In
contrast, most real-world data comes with an imbalanced
distribution: a few high-frequency classes contain many
training examples, while many low-frequency classes have
insufficient training examples. This scenario is referred to
as long-tailed recognition (Liu et al., 2019), and standard
methods trained with such datasets tend not to yield the
same performance as balanced ones (Liu et al., 2019; Lin
et al., 2017; Cui et al., 2021).

Numerous studies have focused on long-tailed recognition
by attempting to re-balance the data distribution through
class-balanced sampling or class re-weighting (Han et al.,
2005; Kang et al., 2020; Kubdt & Matwin, 1997; Huang
et al., 2016; 2020; Hong et al., 2023). However, they
may under-represent the majority class (Han et al., 2005;
Kang et al., 2020; Kubat & Matwin, 1997) or destabilized
the network during optimization (Huang et al., 2016;
2020). In addition to direct sampling, focal loss (Lin
et al., 2017) adopts loss function emphasizing samples
with larger loss value. However, it inevitably involves
hyperparameters tuning by cross-validation. An alternative
method is to adopt a label-aware correction via introducing
a class-wise generalization error bound, such as Label-
Distribution-Aware Margin Loss (LDAM) (Cao et al., 2019)
and Balanced Meta-Softmax (BALMS) (Ren et al., 2020).
Cao, et. al. have proved that to improve the accuracy
in recognizing long-tailed distributed data, classes with
fewer training examples should have a higher generalization
error bound (Cao et al., 2019). However, both LDAM and
BALMS can be vulnerable when the number of examples
per class is unknown and constantly changing. Therefore,
further corrections are required for continuous training.
Meta-Weight-Net (Shu et al., 2019) and Equilibrium loss
(Feng et al., 2021) are developed for class re-weighting and
inter-class margin correction, which require no visibility to
the underlying data distribution. However, those methods
can either be subject to lengthy training time due to
the nature of meta-learning (Shu et al., 2019) or high
space complexity because of the memory module (Feng
et al., 2021). Lastly, using angular softmax, Kobayashi
has proposed applying von Mises-Fisher distribution for
compact feature space via a user-defined concentration
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parameter () (Kobayashi, 2021). However, such a methoddistribution (Liu et al., 2019) not only have an imbalanced
leads to lengthy hyper-parameter tuning with isotopic class with respect to the number of examples per class but
for all classes. Meanwhile, their trainable class-wisealso have a long tail of classes with only a few examples
approach shows inferior performance compared with(<10), i. e., tail class. Two predominant approaches for
the user-de ned counterpart for an optimal performancesuch a problem are (1) loss function improvement and (2)
(Kobayashi, 2021). In addition, data noise also exists irdata re-balancing. The former approach exploits aggressive
long-tail problem (Tong Wu & Lin, 2021; Cao et al., 2021; learning in the tail classes (Lin et al., 2017; Jingru Tan, 2020;
Zhang et al., 2023). Cui et al., 2019) or forcing large margin between classes,
&specially tail classes(Cao et al., 2019; Ren et al., 2020; Ye
et al., 2020). In particular, Caet. al. (Cao et al., 2019)
theoretically prove that the generalization error bound could
be minimized by increasing the margins of tail classes. In
addition to margin correction, Ferg. al. also balances the

In light of these challenges, we propose the Wrappe
Cauchy Distributed Angular Softmax (WCDAS) for long-
tailed visual recognition based on (Kobayashi, 2021)
We presume that the data-wise probability distribution
follows the wrapped Normal distribution and deduce S )
. o classi cation via a Feature Memory Module (Feng et al.,
that WCDAS can be a better t for mixed distributions . :
. e A 2021). At the same time, a handful of studies focus on
comprised of individual distributions. We also demonstrate

that WCDAS has several desirable features, such a%Iata re-balancing during training, the second approach for

adaptive regulation of the margins between classes via imbalance training. Data rebalancing can be achieved by

. L2 : gata re-sampling (Han et al., 2005; Kang et al., 2020; Kubat
concentration parameter, exhibiting label-aware behawo& Matwin, 1997) or class re-weighting (Huang et al., 2016;

Upon evaluation on several benchmark long-tailed imag . )
S 020). However, data re-balancing-based strategies can
classi cation datasets, WCDAS outperforms state-of-the-ar . . . :

ead to over tting the tail classes and less ef cient learning

softmax-based methods. . . X

of the over-representative ones. The sampling strategies
In summary, our contributions include: 1) proposing ainclude xed samplers (Kang et al., 2020) and meta-based
model that considers noise-induced uncertainty in the fornsamplers (Ren et al., 2020; Shu et al., 2019). Decoupled
of data-wise wrapped Normal distributed kernels; 2) provingtraining (Kang et al., 2020) is a simple yet effective solution
that WCDAS can more effectively t the mixed distribution that could signi cantly improve the generalization issue
of such kernels; 3) showing that under a speci ¢ condition,on long-tailed datasets. During this two-stage training,
our method also signi cantly enhances inter-class marginghe representation learning is trained by instance-balanced
resulting in compact clustering; and 4) demonstrating thasampler (Kang et al., 2020) while the classi er is further
the concentration parameter can be adaptive, with classese-tuned by class-balanced sampler (Kang et al., 2020)
with fewer training samples having a higher concentratiorand meta sampler (Ren et al., 2020).

parameter and a larger margin. Parametric modeling of feature distribution. Despite

the emergence of deep learning being attributed to non-
2. Related works parametric non-linearity modeling, effectively training
a network can prove challenging when dealing with
certain real-world datasets that present issues such as class

: imbalance and insuf cient examples. Parametric modeling,
2017) have recently been proposed to improve the softm . . . L
. A : X ased on certain assumptions, can greatly assist learning in
loss in face veri cation tasks. Unlike conventional softmax,

'these adverse situations (Yang et al., 2021; Hayat et al.,
these methods allow neural networks to learn features i 019). One such approach involves approximating the
Egtzggeﬂkirlarggn;e;vgiy ;‘](:;:uasrl]r:jg fggt:rfscoinmeorsl'mt"hEg'StyGaussian distribution of feature representation in few-shot
Large-mardin softmax%Liu etal,, 2016) directl er?forces%aming to enhance generalizability (Yang et al., 2021). In
-arg 9 . " Scty € .~ the context of imbalanced classes, studies have shown that
inter-class sepqrablllty on the dot-product similarity, while Gaussian distribution (Hayat et al., 2019) and von Mises-
SphereFace (Liu et al., 2017) and ArcFace (Deng et alFisherdistribution (Kobayashi, 2021) modeling of feature

2019) enforce multiplicative and additive angular margins : .
: . representation, or angles between weights and features, can
on the hypersphere manifold, respectively. These margins,

igni cantly improv rformance. Parametric modeling of
are controlled by a hyperparameter, the larger the value signi cantly improve performance. Parametric er g0
X . the feature space can also better handle uncertainty caused
of m, the larger the margin. Consequently, larger margin o e .
inq QY noise in the data. Popular methods of utilizing parametric
between classes can lead to compact clusters, resulting |

. > models to account for uncertainty include Variational
enhanced performance over conventional softmax. (L"’Auto—encoder (Kingma & Welling, 2013), Bayesian-based
etal., 2017; Deng et al., 2019; Liu et al., 2016). . '

dropout (Gal & Ghahramani, 2016), and DUL (Chang et al.,
Long-tailed recognition. Datasets with long-tailed 2020), among others.

Angular-based Softmax.Angular softmax (Liu et al., 2016)
and its mutant approaches (Deng et al., 2019; Liu et al
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Inspired by these three distinct approaches, we propose
a method that parametrically models the feature
representation. This method uses data-wise Gaussian
kernels as basis and it includes class-wise parameters that
are trainable, providing an adaptable framework for various

types of data.”
3. Wrapped Cauchy Distributed Angular Figure 1: lllustration of our method compared with other methods.
Softmax (WCDAS) Black dot: representation of each data in one class. Yellow

dot with a black edge: centroid of the cluster. Gray solid line:

Previous knowledge.For angular softmax, the predicted Saussian kernel boundary. (a) Input data 1, 2, ..., M in Class j.
(b) parametric modeling of features fragach datavia a wrapped

probability from the linear classi er in CNNs for theth  Normal kemnel. (Hayat et al., 2019; Kobayashi, 2021) (c) Left
class given a sample vectorand a weighting vector is  panel: parametric modeling of features freach dataia wrapped

formulated as: Normal distribution. Right panel: zoomed diagram of the magenta
~ box in the left panel.
o ef (i) @SCos |
POSII)= P9 " P e @
c= c=
h 3.1. Wrapped Normal Basis for Angular Feature
where, £( )= scos @ Density Estimation.
)= j
f( :j) calculates the angle between normalized Vector%&ssumptlon.To mitigate over tting in the representation
X a,ndw cos; = xTw;. For the ease of writing, we eatures, we approximate the uncertainty induced by
l ] = I l

noise or sparse sampling using a Gaussian distribution.
"angular features's 2 R is a empirically-de ned constant Consequently, the angular feature of each data point follows

(Deng et al., 2019; Liu et al., 2017) or trainable paramete?he probability distribution of a Normal distribution in
(Kobayashi '2021)’ ' circular coordinates, i.e., a Wrapped Normal distribution

or a von Mises-Fisher distribution. Given that the
Intuition and Overview of WCDAS. The probability latter approximates the former distribution, we treat both
function € ( ;j)) of the angular softmax function (Equation distributions as equivalent for ease of discussion. This
2) describes the angle between representation featuresodel of noise or sparse sampling-induced uncertainty using
and classi er weights. As such, the classi er weights a Gaussian distribution has been widely utilized in various
are optimized to minimize the loss function, giveos ;.  studies (Gal & Ghahramani, 2016; Rasmussen & Williams,
However, this approach may potentially lead to over tting, 2005; Abdar et al., 2021). Following this assumption, the
especially when training with a few examples, as discusse@robability distribution function of the angular feature for
in previous large-margin based cosine softmax studiethem-th data point in th¢-th class can be represented in the
(Kobayashi, 2021, Liu et al., 2016), or with data containingform of a Symmetric-Wrapped Stable (SWS) distribution
noise, as reported by other studies (Tong Wu & Lin,(Jammalamadaka & SenGupta, 2001):
2021; Cao et al., 2021; Zhang et al., 2023). To address |
these issues, our method seeks an optimal parametric _ . '
probability density function of ;, conditioned ory = h(: imij)= > 1+2 m oSN m  m)
j, i.e, P( jy = j). To achieve this, we initially n=1

propose using a data-wise Gaussian-based kernel as a basiﬁ. i . (3)
” . . wheren 2 N, ,, 2 [0; 1) denotes concentration parameter
Intuitively, given , such a kernel can model the data-wise

. : . .—of m-th data inj-th class, , denotes the center ¢f
uncertainty caused by the input noise or sparse samplmg1 class anda 2 (0;2] Whena = 1, Equation 18

m;tead of a direct class-wlse dlstrlbuthn (Section 3.1). Byreturns the wrapped Cauchy distribution and 4o 2,
doing so, we can obtain the class-wise angular feature A
- . : ; oo We get the wrapped Normal distribution (Jammalamadaka &
probability density function by summing the individual SenGupta, 2001). The bi is. the more compact the
basis (Section 3.1). Subsequently, we prove that this class- pia, ' 998 1S, P

wise distribution can be more accurately approximated by wrapped Normal kernel is. Sin¢& ; ;m; ) computes the

Wrapped Cauchy distributiofi( ; ;j), with a class-wise proba}b|l|ty m belongs toj -th class with the optimized

. . po ! classi er weights, hence, for the correct class to be
trainable concentration parameter?2 R™ (Section 3.2). recognized based on Equation 3, ! 0
We provide insights into why our novel softmax is a better 9 q T
parametric distribution for representation feature modelingNote that in our proposed method, we approximate the
(Section 3.2) and how it can create large margins undeuncertainty of each,, as wrapped Normal distribution
speci ¢ conditions (Section 3.3). parameterized by, and . instead of modeling the

refer the angular representation Y betweerx andw as
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f ( ;j) directly (Hayat et al., 2019; Kobayashi, 2021). Such 3.2. Angular Feature Probability Approximation via
difference is shown in Figure 1(b) and (c). Wrapped Cauchy Distribution.

Class-wise probability distribution. Subsequently, mixed It is vital to nd the optimal presentation dfmixed( ;j).
distributionf ( ;j) can be obtained by summing all the One straightforward solution is to use non-parametric

h(; ;m;j)inj-thclass: approaches (Rosenblatt, 1956; Parzen, 1962). However,
those methods usually require large computational costs
1 Wi for large dataset (Holmstrém, 2000). In our case, those
fmixed( ;1) = Mo h(; ;m;j) (4)  methods also requires each to be calculated separately.
l ' m=1

Therefore, we approximatmixed( ;j) wWith parametric

) . distribution, denoting (; ;j). According to Theorem
where M_J- is the_ total num_ber of samples jnth class. 1,f(; :j) should also be an SWS distribution. Among
fmixed( ;]) describes the mixture dfl; wrapped Normal e 1o predominant SWS distributions (Wrapped Cauchy

distributions centered around zero. Such an idea igistribution vs Wrapped Normal distribution), wrapped
used in the non-parametric estimation of a probabll|tyCaUChy distribution can t Equation 5 better than the
density function, such as kernel density estimation (KDEMrapped Normal distribution.

(Rosenblatt, 1956; Parzen, 1962). However different from . . T
KDE, ;, a vector comprised of ally in j -th class, can be Theorem 2. Letf mixed ;j) be a mixed distribution formed

different in values, representing the heterogeneity of eacny,m'xed several wrapped Normal d|str|but|ch'(s; ; m;J.)
data. of j -th class, centred around zero, de ned in Equation 4.

f(; ;j)is the approximated distribution with a choice
Theorem 1. Let fmixed ;j) be a mixed distribution of wrapped Normalfwn(; ;j) and wrapped Cauchy
formed by summing several wrapped Normal distributionsf ,«( ; :j). Let imn Of f(; ;}) minimize the least
h(; ;m;j) (Equation 18)h(; ;m;j)iscenteredat . square error betweeri (; ;j) and mixed distribution
m follows Normal distributiorN (0; ) centered at zero, f ..{ :j) ofj-th class:
where ! 0. Thenf hixed ;j) Can be approximated as:

| i sWC or WN= ifwnorwd 5 ) |
. 1 %j R 2 . 1 %j 3 2 '
fmixet( aJ) 1+2 nm cosn m (5) 1+2 rr1n €cosn nm ”2 (7)
2M _ 2M
m=1 n=1 m=1 n=1
Corollary 1.1. Let fmixed ;j) be a mixed distribution min = @rg min 8)

formed by mixing several wrapped Normal distributions
(Equation 18 and Equation 5), thép,ixed ;] ) iS @ wrapped

o : . . Then the least square error of optima|min of j -th class
distribution with cosine momentsixes given by q b min O1J

is correlated with standard deviation ¢f mgzl ")+ or

1 Xi ( m“zl ﬂf)n% with respectton 2 [1;1 )
fr)g - = fng (6) ¢
mixed M; m 0 1:
] m=1 %J’ , n
i min;WN/ SDn:l @ nm A
where "9 is the n-th cosine trigonometric moment of m=1
h(; ;m;j). 0 Ly
( J ) X‘j , n?
. n°A
We present the detailed proof of Theorem 1 and Corollary o ;mmwe/ SDn= @ . m ©)
m=

1.1 inAppendix ATheorem 1 essentially shows that when
summing the wrapped Normal distributed kernel basis withrheorem 3. Let , of individualh(; ;m;j) distribute
a small perturbation away from zero, the result can bgniformly across its de ned domai®; 1),
approximated as a sum of wrapped Normal distributiongje ned in Equation 29, Then
centered at zeros. Corollary 1.1 demonstrates that cosine

moments of the mixed distribution can be obtained byThe detailed proofs of Theorem 2 and Theorem 3 are
averaging the cosine moments of each distribution. Weprovided inAppendix A These proofs substantiate that a
note that the cosine moments of mixed distribution frommixed distribution constituted by SWS distributions aligns
two wrapped Normal distributions centered at zeros havéetter with the wrapped Cauchy distribution than with
been proven by Bailey, et. al. (Bailey & Codling, 2020).the wrapped Normal distribution. Although the proof is
We here prove that it can be generalized to several functionanalytical, it is based on the numerical assumption that
that are not centered at zero under certain conditions. in thej -th class is evenly distributed [@; 1) (Theorem 3).

wnand we
i min; WC < i: min; WN
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Figure 2: Heatmap of | ..wn (@) and ,..wc (b) with respectto and . (c) Binary heatmap showing whether wrapped Cauchy (WC:
black) or wrapped Normal (WN: gray) is preferred for simulated mixed distribution.

We also provide a numerical simulation for more general019; Liu et al., 2017; 2016) and imbalanced datasets (Ren
situations where,, N ( ; ). Giventhat 2 [0;1), et al.,, 2020; Hayat et al., 2019; Cao et al., 2019). We
we simulate and  with the value of 0.1, 0.2, 0.3, 0.4, here prove that WCDAS can perform equivalently as those
0.5,0.6, 0.7, 0.8, 0.9. Anyvalues outside th@®; 1) domain  methods under a certain domain ofHowever, we note that
are clipped to 0 and 1, respectively. Figure 2 shows thewotall in WCDAS contribute to a large margin. Intuitively,
results, indicating a preference for the Wrapped Normabnly high leads to tighter clustering. We here provide the
distribution when is small ( 0:1); otherwise, the boundary of that will lead to large inter-class margins.
wrapped Cauchy distribution is preferred. This impIiesTheorem 4 Let
that unless the mixed distributidinixeq( ;j) COMprises
wrapped Normal distributions with similar concentration
parameters, the wrapped Cauchy distribution, due to it
heavy tail, provides a better approximation f@fixed( ;j)-

i be the concentration parameter of
wrapped Cauchy distributioh,¢ of thej -th class.x is the
normalized presentation feature amdis the normalized
§veights of the classier layer. Let; and i be the
angle betweer andw of j -th andk-th class respectively,
Assuming that , follows a uniform distribution is an wherex is from classj. When ; 2 (0:423321), then
idealized assumption that simpli es the learning processkfwe( j)  fwc( k)k> kcos j  cos ¢k forany ; and
In practice, the actual distribution of, might be more k whencos j > cos k. The margin can be expressed as
intricate. However, as our simulation of Gaussian-

distributed ,, demonstrates, there is a trend: the greater the _ it

diversity of n, values, the more advantageous the Cauchy Kiwe( ) Twel )k = 1 ,—)3kcoS i coskk
distribution becomes as an approximation over Gaussian, (11)
given the heavy tail of the Cauchy distribution.

2

The detailed derivation is shown Appendix ATheorem 4
3.3. Large Margin  and optimization show; that within su_ch a domgin, WCDAS yjek_js alarger
o _ _ _ margin compared witlcos . It is worth mentioning that
It is important to obtain the optimal. According to the  such behavior holds with any and . It is also shown
geometric series, Equation 18 can be written in an alternativghat the larger ; is, the larger the margin isAppendix
form with element-wise calcuIation(JammaIamadaka &Figure 6) However, we note that our paper cannot prove

SenGupta, 2001): that the margin is label-aware because of the gradient-
1 2 based optimization. Therefore, the behaviors dfuring
fFCi)=5 @+ Z 2 cos)) (10)  optimization require numerical studies (see Section 4.3).

where is the vector containing; » 1.c; from all classes Optimization We can calculate its gradient with respect to
with the total number o€. We note that this alternative

form of Equation 18 is presented for the ease of calculating @(;)_ 2 +(@+ ?cos (12)
the margin between classes. @ 1+ 2 2 cos)?

Large margin via WCDAS. Several studies have Through direct visualization of Equation 12 (Figure 3), we
demonstrated that the large margin-based softmax approactotice two characteristics of our method: (1) whers
can lead to better performance both in balanced (Deng et abway from 0, decreases, i. e.(‘?f@i') < 0; when is

5
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Figure 3: Gradient plot of% with respectto and (a). The cross sections plotted alon¢b) and (c).

around 0, increases, i. e 2'5:) > 0. (2) The gradient 4. Empirical Experiments

@1 ) also increases whenis around O. Through the 4 1. Experimental setup

former characteristic, is able to regulate the margin from
the classi er layer. In contrast, the second characteristic caiVe perform extensive ablation experiments on different
destabilize the whole network, since the value afan also ~ aspects of our method (Section 4.2 and 4.3). We also
go beyond the de ned domain. To address this issue, w€ompared our approach with SOTA softmax-based methods
denew 2 (1 ;1) sothat follows the behavior of (Section 4.4) using four large-scale long-tailed datasets:
sigmoid function with respect t@ , which approximates CIFAR10-LT/100-LT (Krizhevsky, 2009), ImageNet-LT

2 [0; 1): (Liu et al., 2019; Deng et al., 2009) and iNaturalist 2018
(Van Horn et al., 2018). Among those datasets, CIFAR10-
LT, CIFAR100-LT and ImageNet-LT are truncated from
their balanced counterpart, following exponential decay
across classes (Liu et al., 2019) (see detail descriptions
in Appendix B.1L
In summary, both the classi er and the feature extractor . . )
update the gradient. While the classi er is updated usingMPlementation.  All models are trained using SGD

e : . 4

our proposed method in Algorithm 1, the feature extractoiPPtimizer with momentum 0.9, weight deca@ “. The -

(or encoder) is trained in a conventional manner. learning rate dgc_ays by a cosine scheduler. Unless speci ed,
we use 90 training epochs. Other hyper-parameters are

listed in Appendix Table 5The standard data augmentation
Algorithm 1 Wrapped Cauchy Distributed Angular Softmax is applied to input images. According to (Kang et al., 2020),

1: Input: Epoch numbeiE, feature representation, We apply a decoupled representation learning and classi er

= Trew W 2 R¢ (13)

weights in classi emw, scale s. learning: The whole network is rst trained via an instance-
2: Initialize: w balanced sampler (Kang et al., 2020). Only the classi er is
3: whilee < E do further trained over 30 epochs sampled by a class-balanced
4 while in Minibatchdo sampler (Kang et al., 2020) or meta sampler (Ren et al.,
5 = 1 2020). We apply WCDAS to both feature learning and
e classi er learning.

6: COS = wk

7 f(;)= m 4.2.Wrapped Normal vs Wrapped Cauchy, Class-wise

8: Compute Softmax% vs Single

9: Compute the cross ecﬁltropy ldss In this numerical experiment, we further validate Theorem
10: Updatew ;w based on gradient@®, St 3 utilizing ImageNet-LT. For a fair comparison, Angular
11:  end while Softmax (Equation 1) is used as a baseline instead of the
122 e e+1 conventional softmax function. Note that we implement von
13: end while Mises—Fisher distribution to approximate wrapped Normal

distribution (WNDAS). Table 1 shows that despite that both



