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Abstract

Recent work in scientific machine learning
(SciML) has focused on incorporating partial
differential equation (PDE) information into the
learning process. Much of this work has focused
on relatively “easy” PDE operators (e.g., ellip-
tic and parabolic), with less emphasis on rela-
tively “hard” PDE operators (e.g., hyperbolic).
Within numerical PDEgs, the latter problem class
requires control of a type of volume element
or conservation constraint, which is known to
be challenging. Delivering on the promise of
SciML requires seamlessly incorporating both
types of problems into the learning process. To
address this issue, we propose PROBCONSERV,
a framework for incorporating conservation con-
straints into a generic SciML architecture. To do
so, PROBCONSERV combines the integral form
of a conservation law with a Bayesian update.
We provide a detailed analysis of PROBCON-
SERV on learning with the Generalized Porous
Medium Equation (GPME), a widely-applicable
parameterized family of PDEs that illustrates the
qualitative properties of both easier and harder
PDEs. PROBCONSERV is effective for easy
GPME variants, performing well with state-of-
the-art competitors; and for harder GPME vari-
ants it outperforms other approaches that do
not guarantee volume conservation. PROBCON-
SERV seamlessly enforces physical conserva-
tion constraints, maintains probabilistic uncer-
tainty quantification (UQ), and deals well with
shocks and heteroscedasticities. In each case,
it achieves superior predictive performance on
downstream tasks.
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1. Introduction

Conservation laws are ubiquitous in science and engineer-
ing, where they are used to model physical phenomena
ranging from heat transfer to wave propagation to fluid flow
dynamics, and beyond. These laws can be expressed in two
complementary ways: in a differential form; or in an inte-
gral form. They are most commonly expressed as partial
differential equations (PDEs) in a differential form,

ur+V-F(u) =0,

for an unknown w and a nonlinear flux function F'(u). This
differential form of the conservation law can be integrated
over a spatial domain €) using the divergence theorem to
result in an integral form of the conservation law,

Ut:f/F(u)ﬁ@dF,
r

where U = [, u(t,2)d and " denotes the boundary of
Q. As examples: in the case of heat transfer, u denotes the
temperature, and U the conserved energy of system; and in
the case of porous media flow, u denotes the density, and U
the conserved mass of the porous media.

Global conservation states that the rate of change in time of
the conserved quantity U over a domain €2 is given by the
flux across the boundary I' of the domain. Local conser-
vation arises naturally in the numerical solution of PDEs.
Traditional numerical methods (e.g., finite differences, fi-
nite elements, and finite volume methods) have been devel-
oped to solve PDEs numerically, with finite volume meth-
ods being designed for (and being particularly well-suited
for) conservation laws (LeVeque, [1990; 2002} 2007). Fi-
nite volume methods divide the domain €2 into control vol-
umes and apply the integral form locally. They enforce that
the time derivative of the cell-averaged unknown is equal
to the difference of the in-flux and out-flux over the con-
trol volume. (This local conservation—so-called since the
out-flux that leaves one cell equals the in-flux that enters a
neighboring cell—can be used to guarantee global conser-
vation over the whole domain.) This numerical approach
should be contrasted with finite difference methods, which
use the differential form directly, and which are thus not
guaranteed to satisfy the conservation condition.

This discussion is relevant for machine learning (ML)
since there has been an interest recently in Scientific ML
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(SciML) in incorporating the physical knowledge or physi- servation constraint in the second step. In more detail, the
cal constraints into neural network (NN) training. A popu- following are our main contributions:

lar example of this is the so-called Physics-Informed Neu-
ral Networks (PINNs)[(Raissi et al., 2019). This approach
uses a NN to approximate the PDE solution by incor-
porating the differential form of the PDE into the loss
function, basically as a soft constraint or regularization
term. Other data-driven approaches, including DeepONet
(Lu et all,[20211) and Neural Operators (NOs) (Li et al.,
2021a[ Gupta et al., 20R1), train on simulations and aim to
learn the underlying function map from initial conditions
or PDE coef cients to the solution. Other methods such as
Physics-Informed Neural Operator (PINO) attempt to make
the data-driven Fourier Neural Operator (FNO) “physics-
informed,” again by adding the differential form into the
supervised loss function as a soft constraint regularization
term (Li et all| 2021b; Goswami et l., 2022).

« Integral form for conservation We propose to use
the integral form of the governing conservation law
via nite volume methods, rather than the commonly
used differential form, to enforce conservation subject
to a speci ed noise parameter. Through an ablation
study, we show that adding the differential form of the
PDE as a soft constraint to the loss function does not
enforce conservation in the underlying unconstrained
ML model.

« Strong control on the conservation constraiBly us-
ing the integral form, we are able to enforce conserva-
tion via linear probabilistic constraints, which can be
made arbitrarily binding or sharp by reducing the vari-
ance term 2. In particular, by adjusting3, one can
balance satisfying conservation with predictive met-

Challenges and limitations for SciML of this soft constraint rics (e.g., MSE), with ROBCONSERVObtaining exact

approach on model training were recently identi éd (Kr- conservation wheng =

ishnapriyan et al., 2021; Edwards, 2022). The basic is- < Effective for “easy” to “hard” PDEs We evalu-

sue is that, unlike numerical nite volume methods, these ate on a parametric family of PDEs, which permits

ML and SciML methods daot guarantee that the physical us to explore “easy” parameter regimes as well as

property of conservation is satis ed. This is a consequence  “medium” and “hard” parameter regimes. We nd that

of the fact that the Lagrange dual form of the constrained our method and the baselines do well for “easy” prob-

optimization problem does not in general satisfy the con- lems (although baselines sometimes have issues even

straint. This results in very weak control on the physical with “easy” problems, and even for “easy” problems

conservation property, resulting in non-physical solutions their solutions may not be conservative), but we do

that violate the governing conservation law. seamlessly better as we go to “harder” problems, with
a5 improvementin MSE.

e Uncertainty Quanti cation (UQ) and downstream
tasks We provide theoretical guarantees tha&toR-
CONSERYV increases predictive log-likelihood (LL)
compared to the original black-box ML model. Em-
pirically, we show that ROBCONSERV consistently
improves LL, which takes into account both prediction
accuracy and well-calibrated uncertainty. On “hard”
problems, this improved control on uncertainty leads
to better insights on downstream shock position detec-
tion tasks.

In this work, we frame the problem of learning physical
models that can respect conservation laws via a “ nite-
volume lens” from scienti c computing. This permits us
to use the integral form of the governing conservation law
to enforce conservation conditions for a range of SciML
problems. In particular, for a wide range of initial and
boundary conditions, we can express the integral form as
a time-varying linear constraint that is compatible with ex-
isting ML pipelines. This permits us to propose a two-step
framework. In the rst step, we use an ML model with a
mean and variance estimate to compute a predictive distri-
bution for the solution at speci ed target points. PossibleThere is a large body of related work, too much to summa-
methods for this step include: classic estimation methodsize here; see Appendix A for a summary.

(e.g., Gaussian Processes (Rasmussen & Williams, 2006));

methods designed to exploit the complementary strengthg_ A Probabilistic Approach to Conservation

of classical methods and NN methods (e.g., Neural Pro- Law Enforcement

cesses (Kim et al., 2019)); as well as computing ensembles
of NN models (to compute empirical estimates of meangn this section, we present our frameworkR&BCON-

and variances). In the second step, we apply a discretizasgry, for learning physical models that can respect con-
tion of the integral form of the constraint as a Bayesian upservation laws. Our approach centers around the follow-
date in order to enforce the physical conservation constrainhg two sources of information: an unconstrained ML al-
on the black-box unconstrained output. We illustrate Ourgorithm that makes mean and variance predictions; and a
framework, ROBCONSERY, by using an Attentive Neural conservation constraint (in the form of Equation 4 below)
Process (ANP) (Kim et al., 2019) as the probabilistic deeghat comes from knowledge of the underlying physical sys-
learning model in the rst step paired with a global con- tem. See Algorithm 1 for details of our approach. In the

2
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Algorithm 1 PROBCONSERV for some given nonlinear ux functior (u). The corre-
Input:  Constraint matrixG, constraint value, non-  sponding integral form of a conservation law is given as:
zero noise ¢ and input pointgty; X1);: 11 (tn ;XN ) z z ZZ
Step 1 Calculate black-box prediction over output grid: u(t;x)d = h(x)d F(u) nd dt: (3)
;= f ((tasxa)szii(tnsxn); D) 0
Step 2 Calculate~ and ™ according to Equation 8. See Appendix B for a derivation.

Output: + ~

In one-dimension, the boundary integral of the ux can be
computed analytically, as the difference of the ux in and

rst step, we compute a set of mean and variance estimate%“tzc’f the domain: 7 7

for the unconstrained model. In the second step, we use ) _ ! .
those mean and variance estimates to compute an update u(t:x)d = h(x)d + (Fin  Fouwdt; 4)
that respects the conservation law. The update rule has a Gu{(f;x) b b{(%) }

natural probabilistic interpretation in terms of uncertainty
quanti cation, and it can be used to satisfy the conservawhere = [ Xo;Xn], Fin = F(U;t;X0)ju=g(tx ), and

tion constraint to a user-speci ed tolerance level. As thisFout = F(U;t; XN )ju=g(tx y)- IN two and higher dimen-
tolerance goes to zero, our method gracefully converges tgions, we do not have an analytic expression, but one can

a limiting solution that satis es conservation exactly (seeapproximate this boundary integral as the sum over the spa-

Theorem 1 below). tial dimensions of the difference of the in and out uxes on

the boundary in that dimension. This methodology is well-

2.1. Integral Form of Conservation Laws as a Linear developed within nite volume discretization methods, and
Constraint we leave this extension to future work.

Here, we rst derive the integral form of a governing con- 'n many applications (including those we consider), by us-
servation law from the corresponding differential form (a9 the prescribed physical boundary conditioft; x) =

la nite volume methods), and we then show how this inte-9(t;X) for x 2, it holds that the in and out uxes on
gral form can be expressed as a linear constraint (for PDE¥1® boundary daot depend oru, and instead they only
with speci ¢ initial and boundary conditions, even for cer- depend or. This is known as &oundary ux linearity as-

tain nonlinear differential PDE operators) for a broad classUmptionsince, when it holds, one can use a simple linear
of real-world problems. constraint to enforce the conservation law. This assumption

holds for a broad class of problems—even including non-
Consider the differential form of the governing equation:  |inear conservation laws with nonlinear PDE operaférs
Fulttx)=0; x2 : 2 (See Appendix C for the initial/boundary conditions, exact
- solutions, exact linear global conservation constraints and
u(0:x) = h(x); x2 > 8t 0 @) Table 5 for a summary). In these cases, Equation 4 results
u(tx) = g(tx); x2 7 in the following linear cgnstraint equation:

where denotes the boundary of the domainh(x) the
initial condition, andg(t; x) the Dirichlet boundary con-

dition. - Recently-popular SciML methods, e.g., PINNS_Which can be used to enforce global conservation. See Ap-

(I?anss;g;zal.,f 2019), P.INOS (th_et atlr']'_ 2]921b; fGtﬁswam'pendix D.1 for details on how this integral equation can be
etal, ), focus on incorporating this form of the €ON- jiscretized into a matrix equation.

straint into the NN training procedure. In particular, the
differential form of the PDEF u(t; x) could be added as a In other applications, of course, the ux linearity assump-
soft constraint to the loss functidn, as follows: tion along the boundary of the domain will not hold. For
example, the ux may not be known and/or the boundary
condition may depend on(t;x). In these cases, we will
not be able to not apply Equation 5 directly. However, non-
Sinear least squares methods may still be used to enforce

NN approximat.e_d solution relati\{e to the known initial ar}d the conservation constraint. This methodology is also well-
boundary conditions (and potentially any observed SOIUt'orbleveloped and we leave this extension to future work.

samples), denotes the NN parameters, andlenotes a
penalty or regularization parameter.

Gu(tx)=  u(tx)d = Kt); (®)

minL(u)+ KkFuk;

2.2. Step 1: Unconstrained Probability Distribution

For conservation laws, the differential form is given as: )
In Step 1 of ROBCONSERY, we use a supervised black-

Fu=u+r F(u) (2) box ML model to infer the mean and covariance of
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the unknown functioru from observed dat®. For ex- be gracefully controlled by shrinkings. Speci cally, if
ample,D can include values of the functiam observed we consider a monotonic decreasing sequence of constraint
at a small set of points. Over a set Nf input points  values ., # O, then the corresponding sequence of pos-

(t1;X2); 00 (tn s XN ), the probability distribution ofi = terior means-, is well-behaved, and the limiting solution
[u(ts;x1);:::u(ty ;Xn)] 2 RN conditioned on dat® has  can be calculated. This is shown in the following theorem.
mean = E(ujD) and covariance = CowWujD) given

by the black-box moddl , i.e.,

o= F ((t;xa); i (tnsXn ) D) (6) Theorem1 Let and be the mean and covariance wf
) ) ) _ Obtained at the end of Step 1. Le{,, # 0be a monotonic
This framework is general, and there are possible Cho'ceéecreasing sequence of constraint values ane-ebe the

for the model in Equation 6. Gaussian Processes (Ragsorresponding posterior mean at the end of Step 2 shown
mussen & Williams, 2006) are a natural choice, assumingy, Equation 8. Then:

that one has chosen an appropriate mean and kernel func-

tion for the speci ¢ problem. The ANP model (Kim etal., 1. The sequence, converges to a limit-? monotoni-
2019), which uses a transformer architecture to encode the ~ cally;i.e. k- ~’k 1 #0.

mean and covariance, is another choice. A third option is 2- The limiting mean-? is the solution to a constrained

to perform repeated runs, e.g., with different initial seeds, ~ least-squares problemargmin ky k1 subject

of non-probabilistic black-box NN models to compute em- toGy = b. _ .

pirical estimates of mean and variance parameters. 3. The sequendd~, converges tbinLp;i.e.,kG~,
bk, #0.

2.3. Step 2: Enforcing Conservation Constraint Moreover, if the conservation constraiGu = bholds ex-

In Step 2 of ROBCONSERYV, we incorporate a discretized 2Ctly for the true solution, then:

and probabilistic form of the constraint given in Equation 5: 4. The distance between the true solutionand the
posterior mean~, decreases asgn ! O, ie,
b=Gu+ ¢ @) k-n Uk 1#k=? uk :.
5. For sufciently small ¢, the log-likelihood
LL(u; ~n; Tn) is greater than LKu; ; ) and in-
creasesasgn ! O.

whereG denotes a matrix approximating the linear opera-
tor G (see Appendix D.1)b denotes a vector of observed
constraint values, anddenotes a noise term, where each
component has unit variance. The parameter 0 con-

trols how much the conservation constraint can be violatedeg Appendix G for a proof of Theorem 1. Importantly,
(see Appendix E for details), withg = 0 enforcing exact  Theorem 1 holds for any mean and covariance estimates
adherencc_e. Step 2 outputs the fO||0WI!’lg updated mean . \hether they come from a Gaussian Process, ANP,
and covariance” that respect conservation, given as: or repeated runs of a black-box NN. It also shows that we
= G( él +G G) 4G b; (8a) are guaran_teed to improve in log-likelihood (LL)_, which we
also verify in the empirical results (see Appendix E).
= G'(31+G G") G ; (8b)

We should also emphasize that, in addition to conserva-
where and denote the mean and covariance matrix, re-tion, Equation 7 can incorporate other inductive biases,
spectively, from Step 1 (Equation 6). based on knowledge of the underlying PDE. To take but
one practically-useful example, one typically desires a so-
lution that is free of arti cial high-frequency oscillations.
This smoothing can be accomplished by penalizing large

abilistic perspective, Equation 8 is the posterior mean an S
. L S : absolute values of the second derivative via a second order
covariance of the predictive distribution ofafter incorpo- L : T
central nite difference discretization in the mati (see

rating the information given by the conservation constraint ;

. . P : Appendix D.2).
via Equation 7. From an optimization perspective, Equa-
tion 8 is the solution to a least-squares problem that places o
a binding inequality constraint on the conserved quantity3. Empirical Results
G~ (i.e., kG~ bk, cfor somec2 (0;kG bky)). . . . L . .

: . In this section, we provide an empirical evaluation to illus-
See Appendix F for more details on these two complemen: .
{arv perspectives trate the main aspects of our proposed framewark &
Y Persp ' CoNSERV. We choose the ANP model (Kim et al., 2019)

We emphasize that, forg > 0, the nal solution does not as our black-box, data-driven model in Step 1, and we refer

satisfyG~ = b exactly. Adherence to the constraint can to this instantiation of our framework aRBBCONSERV

The update rule given in Equation 8 can be justi ed from
two complementary perspectives. From a Bayesian pro

4
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(a) easy: Diffusion equatiork(= 1) (b) medium: PMEK(u) = u®) (c) hard: Stefan (disconk(u))

Figure l.lllustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equations: (a) “easy” parabolic
smooth (diffusion equation) solutions, with constant paramgtgy = k  1; (b) “medium” degenerate parabolic PME solutions, with
nonlinear monomial coef cienk(u) = u™, with parametem = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp
solutions (Stefan equation) with nonlinear step-function coef clgnt) = 1, 2, wherelg is an indicator function for evert.

ANP.! Unless otherwise stated, we use the limiting solu-properties of smooth/easy parabolic to sharp/hard hyper-
tion described in Equation 8, withg = 0, so that conser- bolic PDEs. See Figure 1 for an illustration. In particular:
vation is enforced exactly through the integral form of thethe Diffusion equation is parabolic, linear and smooth, and
PDE. We organize our empirical results around the follow-represents an “easy” case (Sec. 3.1); the Porous Medium
ing questions: Equation (PME) has a solution that becomes sharper (as
= um. i “in-
1. Integral vs. differential form? m 1,_for'!<(u)“ u™, |rlcreases), and represents an “in
. _termediate” or “medium” case (Sec. 3.2); and the Stefan
2. Strong control on the enforcement of the conservation . ) ; .
constraint? equation has a solution that becomes discontinuous, and

3. “Easy” to “hard” PDES? represents a “hard” case (Sec. 3.3).

4. Uncertainty Quanti cation (UQ) for downstream We consider these three instances of the GPME (Diffusion,
tasks? PME, Stefan) that represent increasing levels of dif culty.

In particular, the challenging Stefan test case illustrates the

Generalized Porous Medium Equation. The paramet- importance of developing methods that satisfy conservation
ric Generalized Porous Medium Equation (GPME) is aconditions on “hard” problems, with non-smooth and even

family of conservation equations, parameterized by a nondiscontinuous solutions, as well as for downstream tasks,
linear coef cientk(u). It has been used in applications e.g., the estimation of the shock position over time. This is
ranging from underground ow transport to nonlinear heatimportant, given the well-known inductive bias that many

transfer to water desalination and beyoné@#quez, 2007). ML methods have toward smooth/continuous behavior.

The GPME is given as: See Appendix H for more on the GPME; see Appendix |

u r o (k(ur u)=0; (9) for details on the ROBCONSERVANP model schematic
(Figure 7), model training, data generation and the ANP;
whereF(u) =  k(u)r u is a nonlinear ux function, and see Appendix J for additional empirical results on the

and where the parametkr= k(u) can be varied. Even GPME and hyperbolic conservation laws.

though the GPME is nonlinear in general, for speci ¢ ini-

tial and boundary conditions, it has closed form self-similarBaselines. We compare our results to the following base-
solutions (\azquez, 2007; Maddix et al., 2018a;b). This |ines:

enables ease of evaluation by comparing each competing

method to ground truth solutions. * ANP: Base unconstrained ANP (Kim et al., 2019),

trained to minimize the negative evidence lower

By varying the parametet(u) in the GPME family, one bound (ELBO):
can obtain PDE problems with widely-varying dif cul- . .
ties, from “easy” (where nite element and nite differ- L= Epu pE: q logp (u;zjD) logq (zju; D);

ence methods perform well) to “hard” (where nite volume

h denotes th iational distributi f th
methods are needed), and exhibiting many of the qualitative whereq denotes the variationa” disTbution ot the

data used for training, angl denotes the generative
The code is available athttps:/github.com/ model. The ANP learns a global latent representa-
amazon-science/probconserv . tion z that captures uncertainty in global parameters,
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which in uences the prediction of the reference solu-
tion u. At inference time, the distribution af givenz

(p (ujz; D)) outputs a mean and diagonal covariance
for Step 1.

e SOFTC-ANP: In this “Physics-Informed” Neural Pro-
cess ablation, we include a soft constrained PDE in
the loss function, as is done with PINNs (Raissi et al.,
2019), to obtain:

L+ E;, q kF ;K3 R
Figure 2. The total masdJ(t) = u(t;x)d as a function of

whereF denotes the underlying PDE differential form timet for the (*easy”) diffusion equation with constant diffusivity
in Equation 1, , denotes the output mean of the ANP, coefcientk 2 A =[1;5] and test-time parameter valige= 1.
and denotes a hyperparameter controlling the reIa-The trueU(t) is zero at all times since there is zero net ux

tive strength of the penalty. (See Appendix J.1.2 forl‘rom the domain boundaries and mass cannot be created or de-
. 9 P Y. . PP " stroyed on the interior. BothHFbBCONSERVANP and HARDC-
details on the hyperparameter tuning of

} r . ANP satisfy conservation of mass exactly. The other baselines
* HARDC-ANP: In this hard-constrained Neural Pro- violate conservation and result in a non-physical mass pro le over

cess ablation, we project the ANP mean to the neartime. ANP and ®FTC-ANP are not even zero at tinte= 0.

est solution in_, satisfying the integral form of con-

servation constraint. This method is inspired by theTaple 1. Mean and standard error for CE10 ® (should be
approach taken in égiar et al. (2023) that projects zero), LL (higher is better) and MSE 10 * (lower is better)
the output of a neural network onto the nearest soluovernst = 50 runs for the (“easy”) diffusion equation at time
tion satisfying a linear PDE system ARDC-ANP is  t = 0:5with variable diffusivity constari parameter in the range
an alternative to Step 2 that solves the following con-A = [1;5] and test-time parameter valke= 1.

strained least-squares problem: | cE LL MSE
_ ) ANP 4.68(0.10) 2:72(0.02) 1:71(0.41)
Hc =argmin ku  k;st.Gu=b SOFTC-ANP 3.47 (0.17) 2:40(0.02) 2:24(0.78)
— G'(GG") G b HARDC-ANP 0(0.00) 3.08(0.04) 1:37(0.33)

PROBCONSERVANP | 0(0.00) 2.74 (0.02) 1.55(0.33)

HARDC-ANP is equivalent to the limiting solution of 3.1. Diffusion Equation: Constantk

the mean of ROBCONSERvVas ¢ ! 0in Equa-
tion 8a, if the variance from Step 1 is xed to be the The diffusion equation is the simplest non-trivial form of
same for each point, i.e.= |. the GPME, with constant diffusivity coef cienk(u) =

k > 0 (see Figure 1(a)). We train on valuesioR A =

Evaluation. At test time, we select a value of the PDE [1.5] The diffusion equation is also known as the heat

parameter that lies within the range of PDE parameters equation, where in tha}t application the PDE paramkter.
used during training (i.e., 2 A). For each value of denotes the conductivity and the total conserved quantity

we generate multiple independent drawgbf; u;; k) in dhengng t.he enerq{y. In ctJutr' emplrl(;:al fevatlu?rt:ons, we us;:
the same manner as the training data. For a given pre:c o' usion equation hotation, and reter o the conserve

diction of the mean and covariance at a particular quantity as the mass.
time-indext; in the training window, we report the fol- Figure 2 illustrates that the unconstrained ANP solution

lowing prediction metrics: conservation errf@€CE( ) = violates conservation by allowing mass to enter and exit the
(G b);; ); predictive log-pkelihood(LL(u; ; ) = system over time. Physically, there is no in- ux or out- ux
arku L ar i log tz,;i log2 );and  on the boundary of theglomain, and thus the true total mass
] - . H H
mean-squared errqMSE(U; ) = ﬁkuti; K2), of the systemU(t) = u(t;x)d is zero at all times.

Surprisingly, even incorporating the differential form of the
conservation law as a soft constraint into the training loss
via SOFTC-ANP violates conservation and the violation
occurs even @t=_0.

tj
whereM denotes the number of spatial points arﬁjq de-
notes the diagonal of;, 2 RM M. We report the average
of each metric ovenig = 50 independent runs. Our con-
vention for bolding the CE metric is binary on whether con-
servation is satis ed exactly or not. For the LL and MSE Enforcing conservation as a hard constraint in our
metrics, we bold the methods whose mean metric is withiPROBCONSERVANP model and KRDC-ANP guaran-
one standard deviation of the best mean metric. tees that the system total mass is zero, and also leads to
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improved predictive performance for both methods. In parsee Figure 5 in Appendix E, where we show empirically
ticular, Table 1 shows that these methods exactly obtain ththat the log likelihood is always increasing, as stated in
lowest MSE and the highest LL. The success of these twdheorem 1. Note that there are optimal values &f in
approaches that enforce the integral form of the conservawhich case the MSE can be better optimized.

tion law exactly, along with the failure of&TC-ANP that

penalizes the differential form, demonstrates that physica.3. Stefan Problem: Discontinuous Nonlineak(u)
knowledge must be properly incorporated into the learn- . )

ing process to improve predictive accuracy. Figure 9 in] N€ mostchallenging case of the GPME is the Stefan prob-
Appendix J.1.1 illustrates that these conservative method§™- [N this case, the coef cierk(u) is a discontinuous
perform well on this “easy” case since the uncertainty fromnonlinear step functiok(u) = 1, 7, wherele denotes

g . ,
the ANP is relatively homoscedastic throughout the solu2" indicator function for everg andu® 2 R.. The

tion space; that is, the estimated errors are mostly the sanfo!Ution is degenerate parabolic and develops a moving
size, and the constant variance assumption KRBIC- shock over time (see Figure 1(c)). We train on values of
ANP holds reasonably well. u’ 2 A = [0:55;0:7] and evaluate the predictive perfor-

mances of each model at = 0:6.

3.2. Porous Medium Equation (PME):k(u) = u™ Unlike the PME test case, where the degeneracy point
The Porous Medium Equation (PME) is a subclass of the(x (.t.) = 1) Is the same for each value , the shock

GPME in which the coef cientk(u) = u™; is nonlinear pS’S'“O” fc_)r the Sfcefan prob_lem dep(_ends on the parameter
and smooth (see Figure 1(b)). The PME is known to be det. (See Figure 4 in Appendix C). This makes the problem

generate parabolic, with differing behaviors depending onore challenging for the ANP, as it can no longer mem-

) N orize the shock position. On this “harder” problem, the
the value ofm. We train on values af 2 A =[0:99; 6] unconstrained ANP violates the physical property of con-

Table 2 compares the CE, MSE, and LL results for= servation by an order of magnitude larger in CE than in
1;3; 6. These three values ofi re ect “easy,” “medium,”  the “easier” diffusion and PME cases. By enforcing con-
and “hard” scenarios, respectively, as the solution pro leservation of mass, ROBCONSERVANP results in sub-
becomes sharper. Despite achieving relatively low MSEstantial 65% improvement in MSE (Table 3). In addi-
form =1, the ANP model violates conservation the most.tion, Figure 3(a) shows that the solution pro les associated
The error pro les as a function of in Figure 11 in Ap-  with ANP and the other baselines are smoothed and devi-
pendix J.1.2 illustrate the cause: the ANP consistentlyate more from the true solution than the solution pro le of
overestimates the solution to the left of the shock. En-our PROBCONSERVANP model. Similar to our previous
forcing conservation consistently xes this bias, leading totwo case studies, adding the differential form of the PDE
errors that are distributed arou@d Our PROBCONSERV  via SOFTC-ANP does not lead to a conservative solution
ANP method results in an 82% improvement in MSE, (see Figure 12 in Appendix J.1.3). In fact, Table 3 shows
and HARDC-ANP results in an  54%improvement over that surprisingly, conservation is violated more byrSC-

the ANP. Since HRDC-ANP shifts every point equally, ANP than with the ANP, with a corresponding increase
itinduces a negative bias in the zero (degeneracy) region ah MSE. These results demonstrate that physics-based con-
the domain, leading to a non-physical solution. straints, e.g., conservation need be incorporated carefully

Form = 3 6. while the MSE for ROBCONSERVANP in- (via nite volume based ideas) into ML-based models.

creases compared to the ANP, the LL f®@GBCONSERV Table 3 shows that the LL for FoBCONSERVANP in-
ANP improves. The increase in LL forR®BCONSERV creases only slightly, compared to that of the ANP (3.56
ANP indicates that the uncertainty is better calibrated ays 3.53), and it is slightly less thano8TC-ANP. Figure

a whole. Figure 11 in Appendix J.1.2 illustrates that3(a) shows that enforcing conservation of mass creates a
PrRoOBCONSERVANP reduces the errors to the left of the small upward bias in the left part of the solution pro le for
shock point while increasing the error immediately to thex 2 [0;0:2]. Since the variance coming from the ANP is
right of it. This error increase is penalized more inthe  smaller in that region, this bias is heavily penalized in the
norm, which leads to an increase in MSE. The LL metricLL. This bias is worse for HRDC-ANP, which assumes
improves because ourRBBCONSERVANP model takes an identity covariance matrix and ignores the uncertainty
into account the estimated variance at each point. It is exestimates from the ANP. ARDC-ANP adds more notice-
pected that the largest uncertainty occurs at the sharpeable upward bias to the 2 [0; 0:2] region, and it even adds
part of the solution, since that is the area with the largesbias to the zero-density region to the right of the shock.
gradient. This region is more dif cult to be captured as theCompared to ROBCONSERVANP, HARDC-ANP only
shock interface becomes sharper wheim increased. leads to a slight reduction in MSE (3%) and a much lower

For control on the enforcement of conservation constraintI,‘L (2.33). This shows the benet of using the uncer-
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Table 2.Mean and standard error for CELO 3 (should be zero), LL (higher is better) and MSHO * (lower is better) ovenes: = 50
runs for the (“medium”) PME at timé = 0:5 with variablem parameter in the rangk = [0:99; 6]. For test-time parameten = 1,
where conservation by the unconstrained ANP is violated the mastBBONSER+ANP leads to a substanti&t5 improvementin
MSE and log-likelihood. For test-time parameters= 3 ; 6, the MSE for ROBCONSERVANP increases due to the error concentrated
at the sharper boundary while the desired log-likelihood and conservation metrics improve.

m=1 m=3 m=6
CE LL MSE CE LL MSE CE LL MSE
ANP 6:67(0.39) 3:49(0.01) 0:94(0.09)| 1:23(0.29) 3:67(0.00) 1:90(0.04)| 2:58(0.23) 3:81(0.01) 7.67(0.09)
SOFTC-ANP 5:62(0.35) 3:11(0.01) 1:11(0.14)| 0:65(0.30) 3:46(0.00) 2:06(0.03)| 3:03(0.26) 3:49(0.00) 7:82(0.09)
HARDC-ANP 0(0.00) 3.16 (0.04) 0.43(0.04) 0(0.00) 3:44(0.03) 1.86(0.03) | 0(0.00) 3.40 (0.05) 7.61(0.09)
PROBCONSERVANP | 0(0.00) 3.56(0.01) 0.17(0.02) | 0(0.00) 3.68(0.00) 2.10(0.07)| 0(0.00) 3.83(0.01) 10.4(0.04)
Table 3.Mean and standard error for CELO 2 (should be zero),
LL (higher is better), and MSE 10 ® (lower is better) over
Nest = 50 runs for the (“hard”) Stefan variant of the GPME at
timet = 0:05. Each model is trained with the paramatérin the
rangeA = [0:55;0:7] and test-time parameter valuéd = 0:6.
PROBCONSERVANP leads to an increase in log-likelihood and
a3 decrease in MSE.
| CE LL MSE
ANP -1.30 (0.01) 3.53(0.00) 5.38(0.01) (a) Solution pro le.
SOFTC-ANP -1.72 (0.04) 3.57(0.01) 6.81(0.15)

HARDC-ANP 0(0.00) 2.33(0.06) 5.18(0.02)
PROBCONSERVANP | 0(0.00) 3.56(0.00) 1.89(0.01)

tainty quanti cation from the ANP in our ROBCONSERV
ANP model for this challenging heteroscedastic case.

Downstream Task: Shock Point Estimation. While
quantifying predictive performance in terms of MSE or LL
is useful in ML, these metrics are typically not of direct in-
terest to practitioners. To this end, we consider the down-
stream task of shock point estimation, which is an impor-
tant problem in uids, climate, and other areas. The shockFigure 3.(a) Stefan solution pro les at time = 0:05 with train-
position for the Stefan problemx’(t) depends on the pa- ing parameter values’ 2 A = [0:55; 0:7] and test-time parame-
rameteru?. Hence, for a given function at test-time, the teru” = 0:6. PROBCONSERVANP results in a sharper solution

shock positionx?(t) is unknown and must be predicted PO le and the solution is mean-centered around the shock po-
from the estimated solution pro le. sition. (b) The corresponding histogram of the posterior of the

shock position computed as the mean plus or minus 3 standard
We de ne the shock point at timeeas the rst spatial point  deviations. RoBCONSERv+ANP reduces the level of underes-
(left-to-right) where the function equals zero: timation and the induced negative bias at the shock interface to
result in more accurate shock position prediction.

(b) Posterior of the shock position.

x?(t) = inf fu(t;x) =0g: (10)

On a discrete grid, we approximate the in mum using the
minimum. The advantage of a probabilistic approach ist
that we can directly quantify the uncertainty %f(t) by
drawing samples from the posterior distributions of our
PrRoOBCONSER+ANP model and the baselines.

he other baselines@TC-ANP and HhRDC-ANP. Re-
markably, neither adding the differential form as a soft con-
straint (35FTC-ANP) nor projecting to the nearest conser-
vative solution inL, (HARDC-ANP) helps with the task
Figure 3(b) shows the corresponding histograms of thef shock position estimation. This result highlights that
posterior of the shock position. We see that ourboth capturing the physical conservation constraint and us-
PrROBCONSERVANP posterior is centered around the true ing statistical uncertainty estimates in olRGEBCONSERV
shock value. By underestimating the solution pro le, the ANP model are necessary on challenging problems with
ANP misses the true shock position wide to the left, as deshocks, especially when the shock position is unknown.

8
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4. Conclusion Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Du-

i ) venaud, D. K. Neural ordinary differential equations.
We have formulated the problem of learning physical mod- |, Aqyances in Neural Information Processing Systems
els that can respect conservation laws from the nite vol- volume 31. 2018

ume perspective, by writing the governing conservation law

in integral form rather than the commonly-used (in SciML) Chen, S., Merriman, B., Osher, S., and Smereka, P. A sim-
differential form. This permits us to incorporate the global ple level set method for solving stefan probledsurnal
integral form of the conservation law as a linear constraint of Computational Physi¢c435(1):8-29, 1997.

into black-box ML models; and this in turn permits us to

develop a two-step framework that rst trains a black-box Edwards, C. Neural networks learn to speed up simula-
probabilistic ML model, and then constrains the output us- tions. Communications of the ACNS5(5):27-29, 2022.

ing a probabilistic constraint of the linear integral form.
Our approach leads to improvements (in MSE, LL, etc.) for
a range of “easy” to “hard” parameterized PDE problems.
Perhaps more interestingly, our unique approach of using
uncertainty quanti cation to enforce physical constraints Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
leads to improvements in challenging shock point estima- htari, A., and Rubin, D. B. Bayesian Data Analysis

tion problems. Future extensions include support for lo-  Chapman and Hall/CRC, New York, third edition, July
cal conservation in nite volume methods, where the same 2015,

linear constraint approach can be taken by computing the

uxes as latent variables; imposing boundary conditionsGoswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.
as linear constraints (Saad et al., 2023); and extension to Physics-informed deep neural operator netwodkiv
other physical constraints, including nonlinear constraints, preprint arXiv:2207.057482022.

e.g., enstrophy in 2D and helicity in 3D, and inequality con-
straints, e.g., entropy (Tezaur et al., 2017).

Evans, L. Partial Differential Equations volume 19 of
Graduate studies in mathematicAmerican Mathemat-
ical Society, 2nd edition, 2010.
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A. Related Works

Our method involves combining in a novel way ideas from several different literatures. As such, there is a large body
of related work, each of which approaches the problems we consider from somewhat different perspectives. Here, we
summarize some of the most related. Table 4 provides an overview of the comparisons of these methods.

Table 4.Summary of different properties of numerical and SciML methods for physical systems.

Inference with different Inference with different Resolution

Method Conservative - UQ Initial Conditions PDE coef cients independent
Numerical methods X 7 7 7 7
PINNs 7 7 7 7 X
Neural Operators 7 7 X X X
Conservative ML models X 7 X 7 7
PROBCONSERV (our approach) X X X X X

A.1. Numerical Methods

Numerical methods aim to approximate the solution to partial differential equations (PDES) by rst discretizing the spatial
domain into N gridpointsf x;gi\; with spatial step size x. Then, at each time step, we integrate the resulting semi-
discrete ODE in time with temporal step sizé to iteratively compute the solution at nal timg, i.e., fu(T;x;)gl; .

By the Lax Equivalence theorem for linear problems, convergence to the true solution, i.e., the norm of the error tending
to zero, can be proven to occur when; x! O(N !1 ) for methods that are both stable and consistent (LeVeque,
2007). A limitation of numerical methods is that to obtain higher accuracy, ne mesh resolutions must be used, which can
be computationally expensive in higher dimensions. In addition, for changes in PDE parameters, the simulations need to
be re-run. These classical methods are also deterministic, and they do not provide uncertainty quanti cation.

Finite Volume Methods. Finite volume methods are designed for conservation laws. These methods divide the domain
into control volumes, where the integral form of the governing equation is solved (LeVeque, 1990; 2002). By solving the
integral form at each control volume, these methods enforce ux continuity, i.e., that the out- ux of one cell is equal to
the in- ux of its neighbor. This results in local conservation, which guarantees global conservation over the entire domain.
Maddix et al. (2018a) show that the degenerate parabolic Generalized Porous Medium Equation (GPME) has presented
challenges for classical averaged-based nite volume methods, e.g., arithmetic and harmonic averaging. These numerical
artifacts include arti cial temporal oscillations, and locking or lagging of the shock position. To eliminate these artifacts
on the more challenging Stefan problem, Maddix et al. (2018b) show that information about the shock location needs to
be incorporated into the scheme to satisfy the Rankine-Hugoniot condition. Other complex methods that explicitly track
the front, e.g., front-tracking methods (Al-Rawahi & Tryggvason, 2002; Li et al., 2003) and level set methods (Osher
& Sethian, 1988) that implicitly model the interface as a signed distance function, have also been applied to the Stefan
problem for modeling crystallization (Sethian & Strain, 1992; Chen et al., 1997).

Reduced Order Models (ROMs). Reduced Order Models (ROMs) have been a popular alternative to full order model
numerical PDE simulations for computational ef ciency. ROMs aim to approximate the solution in a lower dimensional
subspace by computing the proper orthogonal decomposition (POD) basis using the singular value decomposition (SVD).
Similar to deep learning models, there is no way to enforce that unconstrained ROMs are conservative and non-oscillatory.
Tezaur et al. (2017) investigate enforcing conservative, entropy and total variation diminishing (TVD) constraints for ROMs

as constrained nonlinear least squares problems. These methods are coined “structure preserving” ROMs via physics-based
constraints (Sargsyan, 2016).

A.2. Scienti ¢ Machine Learning (SciML) Models

Here we describe the recent work in using ML models to solve PDEs. At a high-level, these works can be divided into
three categories: 1. Physics-Informed Neural Networks (PINNs), which aim to incorporate PDE information as a soft
constraint in the loss function; 2. Neural Operators, which aim to learn the solution mapping from PDE coef cients or
initial conditions to solutions; and 3. Hard-constrained conservative ML models, which aim to incorporate different types
of constraints to enforce conservation into the architecture.
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Physics-informed ML Methods. Physics-informed neural networks (PINNSs) (Raissi et al., 2019) parameterize the solu-
tion to PDEs with a neural network (NN). These methods impose physical knowledge into neural networks by adding the
differential form of the PDE to the loss function as a soft constraint or regularizer. Purely data-driven approaches include
DeepONet (Lu et al., 2021) and Neural Operators (NOs) (Li et al., 2020; 2021a; Gupta et al., 2021), which aim to learn the
underlying function map from initial conditions or PDE coef cients to the solution. Learning this mapping enables these
methods to be resolution independent, i.e., train on a coarse resolution and perform inference on a ner resolution. These
methods only use PDE knowledge implicitly by training on simulations. The Physics-Informed Neural Operator (PINO)
attempts to address that the physics are not directly enforced in the model by making the data-driven Fourier Neural Op-
erator (FNO) “physics-informed.” To do so, they again add the differential form into the supervised loss function as a soft
constraint regularization term (Li et al., 2021b; Goswami et al., 2022).

Recently Krishnapriyan et al. (2021); Edwards (2022) identi ed several challenges and limitations for SciML of this soft
constraint approach on the training procedure for several PDEs with large parameter values. In particular, Krishnapriyan
et al. (2021) show that the sharp and non-smooth loss surface created by adding the PDE directly as a regularizer can be
more dif cult to optimize. Relatedly, PINO has been shown to perform worse than the base FNO without the differential
form of the PDE as a soft constraint in the loss (Li et al., 2021b; Saad et al., 2023). Motivated by these obsenafians, N

et al. (2023) propose a solution for linear PDEs that enforces the differential form of the PDE as a hard constraint; and
Subramanian et al. (2022) propose another solution using an adaptive update of collocation points. In addition, Wang et al.
(2022) examine training issues associated with the spectral bias in PINNs (Jacot et al., 2018). Edwards (2022) discusses
the broader-scale impacts of these results for the SciML eld, and motivates the need for better solutions that capture the
underlying continuous physics.

Machine Learning Models for Conservation Laws. Enforcing the PDE as a soft constraint gives very weak control on

the physical conservation property, resulting in non-physical solutions that can violate governing conservation law. Jekel
et al. (2022) aim to satisfy conservation by adding the continuity equation as a soft regularizer via the PINNs approach, and
they show that this does not improve performance. To try to remedy this, Mao et al. (2020); Jagtap et al. (2020) propose
conservative PINNs (cPINNSs) for conservation laws, which aim to enforce ux continuity, i.e., the out- ux of one cell
equals the in- ux of the neighboring cell, for a type of local conservation. Again, however, this condition on the ux is
added to the loss function as a regularization term, i.e., as a soft constraint in a Lagrange dual form, and so the conservation
condition is in general not exactly satis ed.

Motivated by the importance of satisfying conservation laws in climate applications, Bolton & Zanna (2019); Zanna &
Bolton (2020); Beucler et al. (2021) have proposed building known linear physical constraints directly into deep learning
architectures. Beucler et al. (2021) propose a model that forces the output of a neural network into the null space of
the constraint matrix. While the solution exactly satis es the constraints, the constraints depend on the resolution of the
data, and they are an approximation to the true physical quantity that needs to be constrained. Surprisingly, Beucler
et al. (2021) also nds that the reconstruction error is not always improved with adding constraints. Other methods to
enforce conservation include the following. Sturm & Wexler (2022) enforce the ux continuity equation in the last layer

of the neural network to model the balance of atomslli&t (2022) enforce conservation by encoding symmetries using
Noether's theorem. Richter-Powell et al. (2022) propose so-called Neural Conservation Laws, to enforce conservation by
design by using parametizations of deep neural networks similar to the approaclégganéd al. (2023); Sturm & Wexler

(2022); Muller (2022). In particular, Richter-Powell et al. (2022) use a change of variables that combines time and space
derivatives into the divergence operator to create a divergence-free model, and they then use auto-differentiation similar
to the Neural ODEs approach (Chen et al., 2018). This optimize-then-discretize approach has been shown to have related
dif culties (Krishnapriyan et al., 2022; Ott et al., 2021; Onken & Ruthotto, 2020).

B. Derivation of the Integral Form of a Conservation Law

To obtain the integral form of a conservation law, given in Equation 3 as:
z z Z.Z
u(t;x)d = h(x)d F(u) nd dt (12)
0

we rstintegrate the differential form of the conservation law, given in Equation 2 as:

Fu=u+r F(u) (12)
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over the spatial domain. From this, we obtain an expression for the rate of change in time of the total conserved quantity

in terms of the uxes on the boundary, given as:
Z Z

E u(t;x)d = ue(t;x)d (13a)
dt 7
= r F(u)d (13b)
Z
= (F(u) n)d ; (13c)

where the last step is obtained by applying the divergence theorem to the ux term, igritie outward pointing unit
normal on the boundary.

We then integrate Equation 13 over the temporal dorfait}. Doing this to Equation 13a yields:
zZ.Z z z
ui(t; x)d = u(t;x)d u(0;x)d ;

whereu(0; x) = h(x) denotes the initial condition. By equating this quantity to the temporal integral of the right hand side
of Equation 13c, we obtain the corresponding integral form of a conservation law:
z z Z.Z
u(t;x)d = h(x)d F(u) nd dt
0

which is Equation 11.

C. Exact Solutions and Linear Conservation Constraints for Conservation Laws
In this section, we provide the exact solutions to to a wide range of conservation laws:

|Jt+r{ F(ugzo; X2 é

Fu ‘8
u(0;x) = h(x); 3 ’
u(t;x) = g(t;x); x2 ;

t o (14)

for general nonlinear ux= (u), nonlinear differential operatdf , initial conditionh(x) and prescribed boundary condi-
tions on the boundary of the spatial domain . These exact solutions are used to generate the solution samples for the
training data in the experiment section 3.

The integral form of the conservation law in Equation 4 is given as:

z z Z,
utx)d =  hx)d+  (Fn Foudt;

|—{z—13 | 9 } (15)
Gu(tx) b(t)

where = [ Xo;Xn], Fin = F(U;tX0)ju=g(txo)» Fout = F(U; XN )ju=g(tx ) @ndg(t;x) is the prescribed Dirichlet
boundary condition in Equation 14. We provide the exact formulation of our linear consB&ihix) = b(t). Table 5
provides a summary, showing that our boundary ux linearity assumption holds for a broad class of problems—even
including nonlinear conservation laws with nonlinear PDE operators
C.1. GPME Family of Conservation Laws
In this subsection, we consider the (degenerate) parabolic GPME family of conservation laws given in Equation 9 as:

u r  (k(uru)=0;

with ux F(u) = k(u)r u. Figure 4 shows the effects of the various PDE paramdt@ry at a xed timet on the
solution on three instances of the GPME ranging from the “easy” to “hard” cases, i.e., the diffusion equation, PME and
Stefan, respectively.
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Table 5.Classi cation of PDE conservation laws ranging from “easy” to “hard”, and corresponding total time-varying conserved value
b(t) in the integral form of Equation 15 for speci ed ux functiof (u), initial and boundary conditions(x) andg(t; x), respectively
in Equation 14. See Section C.1.3 for the value of the constaBtR.

PDE Type F(u) h(x) o(t; x) b(t)
e Linear parabolic . , ) .
Diffusion (“easy’) kr u,k2 Rs sin(x) f0; 0g [0;2]1 f0;2g O
Nonlinear degenerate 1=m. . . m™* = 941 =m
PME parabolic (‘medium”) umru,m2 .z, 0 f(mt)=";0g9 [0;1]  fO1g maT L
\ 2
Nonlinear degenerate I u;u u’ : _ . P—
Stefan parabolic (hard”) 0 otherwise ’ 2R: O f1;0g [0; 1] f0;1g 2c t=
§
) Linear hyperbolic L x 05 ) i ! .
Advection (“medium”) u, 2R: 0 otherwise f1;09 [0; 1] f0; 1g s+t
{
. Nonlinear 1.2 ax; x  0,a2R. ) ) .
Burgers hyperbolic (“hard”) 5u 0 otherwise fa;0g [ 1] f 1;1g (a=2)(1+ at)
(a) k: Diffusion equation at = 1 (“easy”). (b) m: PME att = 0:5 (“medium”). (c) u?: Stefan at = 0:08 (“hard”).

Figure 4.Effect of PDE parameters on the three “easy” to “hard” instances of the GPME at xed time

C.1.1. DFFUSION EQUATION

The heat or diffusion equation is a simple linear parabolic PDE with constant coeflc{ent= k, which represents an
“easy” task. Figure 4(a) illustrates the effect of the constant diffusivity (conductivity) parametersolutions to the
diffusion (heat) equation. For larger valueslgfwe see that the solution more quickly dissipates toward the constant
smooth zero steady state.

Exact Solution. We use the same diffusion test problem from Krishnapriyan et al. (2021) with the following initial
condition and periodic boundary conditions:

u(O;x) = h(x) =sin(x);8x 2 =[0 ;2 ];

u(t; 0) = u(t; 2 );8t 2 [0;T];
respectively. The exact solution is given as

ux) = FT Y(FT(h(x))e °t);

whereF T denotes the Fourier transform, andlenotes the frequency in the Fourier domain.
Global Conservation. The total mass (energy) is constant and zero over all time, since there is no in or out ux to the
domain. Then, Equation 15 reduces to the following linear homogeneous system:

Z,,
Gu(t;x) = u(t;x)dx =0 = b(t): (16)

Xo

To derive the above relation, we see by using separation of variables that the so(ation= sin( x)T(t) is a damped
sine curve over time. The wF(u) = kr u = cosik)T(t), whereT (t) denotes a decaying exponential function.

15
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Then, the integral form in Equation 15 is given as:
z z Z,
u(t;x)d = h(x)d + [F(uit;xg=0) F(u;t;xy =2 )]dt
0
Z, Zy
= sin(x)d k  [cos(O)T(t) cos(2)T(t)]dt=0;
0 0

by periodicity.

C.1.2. PROUSMEDIUM EQUATION

In the Porous Medium Equation (PME), the nonlinearity and small values of the coeflojaht= u™, form 1, cause
challenges for current state-of-the-art SciML baselines as well as classical numerical methods on this degenerate parabolic
equation. The dif culty increases as the exponanincreases, and the solution forms sharper corners. In particular, the
solution gradient is nite fom = 1, and it approaches in nity near the front far > 1. Figure 4(b) illustrates the effect

of the parametem on the solution, with solutions fan > 1 being sharper, and having a different pro le than those for

the piecewise linear solution fon = 1.

Exact Solution. We test the locking problem (TLP) of the PME from Lipnikov et al. (2016); Maddix et al. (2018a) with
the following initial and growing in time Dirichlet left boundary conditions for some nal tifhe 1.

uO;x)= h(x)=0;8x2 =[0 ;1]
u(t; 0) = g(t; 0) = (mt)*™™;8t 2 [0; T];
u(t1)=9g(t;1)=0;8t 2 [O;T];

respectively. The exact solution is given as:

ut;x) = (m(t  x)+)Fm: (17)
Global Conservation. We write the speci ¢ form of the linear conservation constraint in Equation 15 for the PME as:

XN 1+1 =m

Gu(t;x) = u(t;x)dx = m-

] tH=m = i), (18)
Xo

by using the fact that the total mass of the initial condition is zero, anduttaty = 1) = 0 on the right boundary for
t XN =1.

Global conservation is driven by the in- ux at the growing in left boundary, where

Fin = F(U;t;XO)ju=g(t;x 0)iX=Xo — g(t; xo)™r Ujx=xo = MIr Ujx=x,:

The boundary ux at the right boundary is 0, since we assume that the shock is contained in the domairkarttence
u(t; 1) =0 and

I:Out: F(U;t;XN)ju:g(t;xN);x:XN = g(t;XN)mr qu=XN =0:

The rst integral on the righthand side in Equation 15 consisting of the initial mass is 0, Is{wge= 0, and we are left
only with the in- ux term:
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z Z,
u(t;x)d = Fin(t)dt
OZ .
= o(t; xo = 0) Mr Ujx= x, dt
z.°
= (mt)(mt)F" idt
0

z t
=m¥ Mgt
0

1+1 =m

m flri=m.

m+1
wherer Ujx=x, = (Mt x)¥™ Lj=y, = (mt)¥=m 1

C.1.3. SEFAN PROBLEM

The Stefan problem is the most challenging problem in the GPME degenerate parabolic family of conservation equations
since the coef cienk(u) is a nonlinear step function of the unknowngiven as:
?

(
K(u) = Kmax; U U%;

19
Kmin; u<u?; 19

for constant&max ; Kmin 2 Randu(t;x (t)) = u 2 R, for shock positiorx (t). In this problem, the solution is a shock
or moving interface with a nite speed of propagation that does not dissipate over time. Figure 4(c) illustrates the effect of
the parameten’ on the solution and shock position, with smaller valuea’ofesulting in a faster shock speed.

Exact Solution. We use the Stefan test case from van der Meer et al. (2016); Maddix et al. (2018®with= 1,
kmin = 0 in Equation 19, and the following initial and Dirichlet boundary conditions for some nal fime

uO;x)= h(x)=0;8x2 =[0 ;1]
ut; 0)=g(t;0)=1;8t 2 [0;T];
u(t;1)=g(t;1)=0;8t 2 [O;T];

respectively. The exact solution is given as:
p
uttx)= 1y vv 1 c[ x=(2 Kmad)] (20)

where 1g denotes an indicator function for eveBf ( x) = e{;f(x) 5( (y)dy denotes the error function with
(y) = (2 = exp( y?), and constant; = (1 U )=[ =(2 Kmax)]. A nonlinear sglve for: (1 u ):p* =
u (~ )~exp(~?),is used to compute = 2" Kmax ~. The exact shock position is (t) =

Global Conservation. We write the linealG conservation constraint in Equation 15 for the Stefan equation as:

VA r
xw I(max t

Gu(t;x) = u(t;x)dx =2¢

Xo

= b(t): (21)

We use the fact that the solution is monotonically non-increasing to compute the coef cient values at the boundaries,
i.e.,u(t;xg) u? u(t;xy),whereO = xo x? xy =1 andx (t) denotes the shock position. It follows that

K(u(t; Xo)) = Kmax andk(u(t;xn)) = 0. Then the out- uxFoy = k(u(t;xn))r u=0. The rstintegral on the righthand
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side of Equation 15 consisting of the initial mass is 0, simpe = 0, and we are left only with the in- ux term as follows:

Z Z,
u(t;x)d = Fin(t)dt
0 b t
= Kmax r uszxodt
r 5 t
=a Kmax " 12y
r 0
=2C kmaxt;

. p— p_—— p— p———
wherer Ujx=x, = €1 TX0=(2 Kmax)]=(2 Kmaxt) = C1= K maxtexpX3=(4kmaxt)]= <= K maxtforxo=0.

C.2. Hyperbolic Conservation Laws

In this section, we consider hyperbolic conservation laws, where solutions exhibit shocks and smooth initial conditions
self-sharpen over time (LeVeque, 1990; 2002).

C.2.1. UNEAR ADVECTION
The linear advection (convection) equation:
u+ uy =0; (22)

is a hyperbolic conservation law with uk (u) = u, where a uid with densityu is transported or advected by some
constant velocity 2 R. For larger values of , the shock moves faster.

Exact Solution. Here we consider the test case with the following initial and boundary conditions:

u(O;x) = h(x)= 14 0:5;8x2 =[0 ;1];
u(t; 0) = g(t 0)=1;8t 2 [0;T];
ut;1) = g(t;1)=0;8t 2 [0;T];
respectively, andg denotes an indicator function for eveiat Note that the linear advection (convection) problem is also

studied in Krishnapriyan et al. (2021) with smoditfx) = sin( xX) and periodic boundary conditions. Here we consider the
more challenging case, where the initial condition is already a shock.

In our case, the exact solution,
u(t;x)= h(x t);
is simply the initial condition shifted to the right, which is a shock wave traveling to the right with spee@.

Global Conservation. We write the linear conservation constraint in Equation 15 for linear advection as:
VAN 1
Gu(t; x) = u(t;x)dx = > + t = (t): (23)

Xo

The out-ux Foyr = u(t; 1) = g(t; 1) = 0, by the xed right Dirichlet boundary condition, and we are left with the
following terms: Z Z

z t
u(t;x)d = h(x)dx + Fin(t)dt
0
Z 0:5 V4 t
= dx + u(t; 0)dt
0 0
— }+ t-
=5 :

by using the Dirichlet boundary conditiar(t; 0) = g(t; 0) = 1 in the second term in the last step. We see that the time
rate of change in total mass is constant over time.
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C.2.2. BJRGERS EQUATION
Burgers' Equation, given as:
1
ug + é(uz)x =0; (24)

is a commonly used nonlinear hyperbolic conservation law withF(x1) = %uz. Among other things, itis used in traf ¢
modeling.

Exact Solution. We consider the test case from Tezaur et al. (2017), wderé , with the following initial and boundary

conditions: 8
2a; X 1;
u(0;x) = h(x) = S oax 1 x O 8x2 =[ 11
"0, x O

u; =gt 1)=ast2[0T];
u(t;1) = g(t; 1) =0;8t 2 [O;T];
respectively for constant, positive parameter slape 1. For larger values o4, the slope of the initial condition is steeper,
and a shock is formed faster.
We write the nonlinear Burgers' Equation 24 in non-conservative form as

Us + uuy =0:

We see that this is the advection Equation 22 with speedu. Hence, similarly the exact solution is given bft; x) =
h(x ut) when the characteristics curves do not intersect, by using the method of characteristics (Evans, 2010). We then
obtain the following solution: 8
2a; X ut 1;
u(t;x) = S a(x wut); 1 x ut O

"0 x ut O
We use the second case to solve this implicit equation explicithyfare.,u = a(x ut) u= 2. Then
X ut = %=, where the denominatdr at > Ofort < 1=a We then solve the inequalities and substitute this in to
obtain: 8
2 a; x at 1
u(t;x) = >af‘xl; at 1 x O
"0 X 0

for0 t< 1=a We see that as time increases the linear part of the solution self-sharpens with a steeper slope until the

characteristics intersect at breaking time
1

inf hO(x)
and a shock is formed. This is known as the waiting time phenomenon (Maddix et al., 2018b). The rightward moving
shock forms with weak solution given as:

(

a; x  at 1)
0, x 3(at 1);

tp = 1=a;

u(t;x) =

fort 1=a The shock speexl(t) is given by the Rankine-Hugoniot (RH) condition (Evans, 2010). The RH condition
simpli es for Burgers' Equation as follows:

f(ur) f(ur) _ }UZR ug _ }(UR ug)(ur + up) _Urt U _

Oty —
x(t) =
( ) Ur up 2 UR up 2 Ur up 2

a.
= 5
whereu, = a denotes the solution value to the left of the shock apd= 0 denotes the solution value to the right
of the shock. Lastly, to obtain the shock positioft), we solve the simple ODEYt) = a=2 with initial condition
X(tp = 1=a) = 0 to obtainx(t) = & + c, wherex(1=a) = 1+ c=0,andsac= }. Thisresultsir(t) = 1(at 1),
as desired.
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Global Conservation. We write the linear conservation constraint in Equation 15 for Burgers' equation as:

Z
Gu(t:x) = u(t: x)dx = a%(1+ at) = h(t): (25)
Xo
The out- ux isFoyt = %u(t; 1)? = %g(t; 1)2 =0, by the xed right Dirichlet boundary condition, and we are left with the
following terms:
9 z z Z,
u(t;x)d = h(x)dx + Fin(t)dt
Zo °z,
= a xdx+ = u(t 1)%dt
1 0
= a%(1 + at);

by using the Dirichlet boundary conditiar(t; 1) = g(t; 1) = ain the second term in the last step. We again see that
the time rate of change in total mass is constant over time.

D. Discretizations of the Integral Operator G for Conservation and Additional Linear
Constraints

In this section, we rst describe common discretization sche@éar the integral operatd® in Equation 5 given as:
Z

Gu(tx)=  u(tx)d = Kt); (26)

to form a linear matrix constraint equati@u = b. Then, we show how to incorporate other types of linear constraints into
our framework ROBCONSERV. In particular, we consider arti cial diffusion, which is a common numerical technique
to smooth numerical artifacts through the matBxarising from the second order central nite difference scheme of the
second derivative.

D.1. Discretizations of the Integral OperatorG

Here, we provide examples of the discrete ma@i2 RT MT | which approximates the continuous integral oper&or
in Equation 26. We us® to denote the number of spatial pointsto denote the number of time points, and we set
N =MT.

We form a discrete linear system from the continuous integral conservation lagu.e,. b, where each rowof G acts as
a Riemann approximation to the integ@l(t; x) at timet;. At inference time, we assume we have an ordered output grid
f(ty;Xa); i (b Xm )soos; (tr Xa); oy (B Xm )g with spatial grid spacing Xj = Xj+1  x; forj =1;::5;M 1.

We now proceed to provide examples of speci c matri€esorresponding to common numerical spatial integration
schemes (Burden et al., 2016).

Left Riemann Sum. ForG arising from the common rst-order left Riemann sum

ML
u(ti;xp) Xj,
j=1
at timet;, we have the following expression:
G = Xpi,p i )M +1 j M1
"7 0; otherwise
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other words, it uses the left function valug(t;x;) on the interval[Xj;x;+1]. The right Riemann sum
( JM:Z u(t;xj) x; 1 attimet)is a simple extension that shifts the column indices by ito 1)M +2 j iM to
use the right value(t;; xj +1 ) on the intervalx; ; Xj +1 ].
Trapezoidal Rule. ForG arising from the second order trapezoidal rule

KUt xg) + uti;xga)

Gu = 5 i
j=1
at timet;, we have the following expression:
8 “
—Lj= M +1
% Shii = DM +1;
Xj 1+ X
(i 1M +2 iM 1
Gij = 2 ( ) : (27)
Xj 1
= iM
% 2 il ] I il
" 0; otherwise

We use the trapezoidal discretization ®fin Equation 27 in our experiments. Note that higher order schemes, e.g.,
Simpson's Rule may also be used, as well as more advanced numerical techniques. These can help to reduce the error in
the spatial integration approximation, including shock tracking schemes in Maddix et al. (2018b) on the more challenging
sharper problems with shocks that we see for high values iofthe PME and Stefan.

D.2. Adding Arti cial Diffusion into the Discretization

In addition to various discretization schemes to compute the integral op&@atmr PROBCONSERV framework can
incorporate other inductive biases based on the knowledge of the underlying PDE, e.g., to bypass undesirable numerical
artifacts. One common technique that has been used widely in numerical methods for this purpose is adding arti cial
diffusion (Maddix et al., 2018a). This arti cial diffusion can act locally at sharp corners such as shock interfaces, where
numerical methods tend to suffer from high frequency oscillations. Other common numerical methods to avoid numerical
oscillations include total variation diminishing (TVD), i.e., T%t|+1 X)) TV(u(ti;x)), 8i, or tBtaI variation bounded

(TVB), i.e., TV(u(ti+1;x)) C,C > 0, 8i, where Tu) = J—jd and is approximated as ;’_; Ju(t. s Xj+1)

u(ti; xj)j (LeVeque, 1990; Tezaur et al., 2017). Note that enforcmg these inequality constramts is a direction of future
work.

In machiqg Iearning arti cial diffusion is analogous to adding a regularization penalty oh zhrerm of the second
derivative f—u(tI : X)g?dx (Hasne et al., 2013). This can be written as thenorm of a linear operator applied tg
kG(u)k3, whereG(u)(t;) = @% u(ti; x). Thus, we can incorporate this penalty term inROBCONSERV in the same

manner as the integral operators by discretiZBigia a matrixG. Let G be the second order central nite difference
three-point stencil at timg overM spatial points:

(Gu), = u(ti; x +2)x- u(tisXj+1) u(ti; Xj+1) | u(ti; xj)
j+1 Xj
forj =1;:::;M 2. For simplicity of notation, we assumex; = x for all xj, though this need not be the case in
general. ThIS results in the following three-banded matrix:
2 3
1 1 2 1 0 :::
280 1 21 . (28)

Since our goal is to penalize large differences in the solution, we set the constrainb t@kzesro:
Gu+ 5 =0;
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where 5 > 0denotes the constraint value for the arti cial diffusion. Since the mechanism is exactly the same with a linear

constraint, arti cial diffusion can be applied using Equation 8a viith 0, where~ and ~ are the mean and covariance
after applying the conservation constraint as follows:

~diffusion = ~ ~GT( él + G~GT) 1(G~);
Zdgifusion =~ "GT( &1+ G™G") Y(G7:

Moreover, the guarantees of Theorem 1 still hold. Smaller valueg,dead to smaller values G ~gifusionk3, Which
results in a smoother solution.

Unlike the case of enforcing conservation, it is typically not desirable when applying arti cial diffusion tg detzero, as
this will lead to a simple line t (Hastie et al., 2013). We set the variance for each r@vas follows: Let 2 = Var(u,)

be the variance of target valug from the Step 1 procedure:

2o = Var(Gu)i) = Var(ui - 2uiv + Uis2) = Z+4 2+ fp 4 (it ik ie2) 42 2 e

where 2 [0;1] determines the level of auto-correlation between neighboring points. Higher valudsad to lower
values of é_i , and hence a higher penalty.
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E. Control on Conservation Constraint

(a) Norm of the conservation error: €&) = kG~ k3.

P
(b) Log-likelihood: LL(u; + = zrkuy; ~; k- 1 zp  log~; log2 .

Y

(c) Mean-squared error: MK, ~) = Mikutj R TF k3.

Figure 5.lllustration of the norm of the conservation error CHower is better) in the top row, the predictive log likelihood (LL) in
the middle row (higher is better), and the mean-squared error (MSE) (lower is better) in the bottom row, as a function of the constraint
precision-3- for PROBCONSERVANP on the PME in subsection 3.2, wheve denotes the number of spatial poinfé’l,; denotes

G

the diagonal of the covariance; 2 R™ M andt; denotes the time-index in the training window at which the metrics are reported.
Each column indicates results for a different values of PDE paramet2rf 1; 3; 6g, corresponding to “easy”, “medium”, and “hard”
scenarios, respectively. In all three cases? @®notonically decreases to zero and LL monotonically increase§ ds 0 (1= 2 !

1), illustrating Theorem 1. The biggest gains in log-likelihood arerfor= 1, where conservation was also violated the most. In
contrast, the relationship between MSE a%d is not guaranteed to be monotonic, and it qualitatively changes, depending on the value

of m.

Figure 5 illustrates that Theorem 1 holds empirically foddBCoNSERVANP on the PME in subsection 3.2, where
both the norm of the conservation error Enonotonically decreases to zero and the predictive log likelihood (LL)
monotonically increases as the constraint precisign! 0 (1= 2 ! 1 ). For the MSE, the trend depends on the
dif culty of the problem. For “easy” scenarios, whem = 1, the MSE also monotonically improves (decreases) as
21 0(1=2!'1 ). For“medium” dif culty problems, wheren = 3, we see that there is an optimal value fg
around10 °, and enforcing the constraint exactly does not result in the lowest MSE. For the “handers case, we
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see that a looser tolerance on the constraint results in better MSE. In this case the solution is non-physical since it does
not satisfy conservation. Note that in the shamper 6 case, the accuracy may be able to be improved by using more

advanced approximations for the integral oper@that take the sharp corners in the solution into account (Maddix et al.,
2018b).

F. Derivation of Constrained Mean and Covariance

In this section, we provide two interpretations for the Step 2 procedureoBoNsERvVfrom Equation 8 given as:

~= G'(&1+G G") G by (29a)
~ G'(31+G G") G : (29Db)

While Equation 8 is well-de ned in the case thag = 0, for simplicity we assume2 > 0 throughout this section. In
Lemma 1, we show how Step 2 is justi ed as a Bayesian update of the unconstrained normal distribution from Step 1 by
adding information about the conservation constraint contained in Equation B3.65u + ¢ in Step 2. In Lemma 2,

we show how the posterior meanand ~ can be re-expressed in a numerically stable and computationally ef cient form

given in Equation 29. Finally, Lemma 3 shows that this is equivalent to a least-squares optimization with an upper bound
on the conservation error.

Note: 2 RMT; 2 RMT MT.-G2 RT MT:.-ph2 RT, whereN = MT denotes the number of spatio-temporal output
points,M denotes the number of spatial points dndienotes number of constraints or in this case time steps to enforce
the conservation constraint.

Lemma 1 (Step 2 as Bayesian updateAssume the predictive distribution ofconditioned only on observed dafa is
normal with mean and covariance . Letbbe the known conservation quantity that follows a normal distribution with
meanGu and covariance 41, where 2 > 0. Then the posterior distribution aof conditional on both datd and
conservation quantitip is normal with mean- and covariance™ given as:

uip;D N (5 7;
~ A 1 .
_ 1 1 T
"‘—A ( +T G b),
G

whereA=1+ 1 GTG:
G

Proof This follows the same logic as a standard multivariate normal model with known covariance; see Chapter 3.5 of
Gelman et al. (2015). We outline the derivation below. Note that we mark the terms that are independent of the unknown
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u as constants.
z

log p(ujb; D) = log p(yjD) p(hju) log p(bju)dp(ujD) (Bayes' Rule)
Pé%p_} Pégp'z;
=log p(ujD) +log p(bju) + Cy
=logN(u;; )+log N(BGu; 3l)+ Cy

= % ku K 1+i2kGu bk + C,
G
_ } T 1 T 1 T i T Ti T
= u u 2u +Uu (G Gu 2u —G'b +Cs
2 G G
1 1 1
= 3 u( '+ 5G'Gu 2'( '+ 5G'h +C
G G
1 1 1 1 1
= 3 u' ( 1+—éGTG)u 2u’ ( 1+—éGTG)( 1+—éGTG) et +—éGTb) + C3
I {z } | {2 H {z }
— } T~ 1 T~ 1_
= 5 u u 2u + Cs3
=log N (u;+ T+ Cyg;
where
~ 1 1 T 1_ 1 T 1 _ 1 .
= ( + 5G'G) '=(1+ 5 G'G) = AL, (30a)
G G
— 1 1 T 1 1 1 T _ 1 1 T
~=( + 5G'G) X + >G'h= T + —G'bh) (30b)
G G G
=A L 1o+ iZGTb): A+ iz G'b); (30c)
Z G G
Ci= log p(hu)dp(ujD); (30d)
C,=C % MT log2 +logdet + Tlog +log 2 ; (30e)
C3=C, 1+ +i2bTb ; (30f)
2 G
Cs=0: (309)

Note thatC, = 0 since the left-hand side and right-hand side are log-probability densities, so we have the desired expres-
sion.

Lemma 2 (Numerically stable form for Step 2) Assume that > 0. The posterior mean and covarianeeand ~ can
be written in a numerically stable form as:

~= G'(&+G G") (G b;
= G'(21+G G") G :
Proof We use the following two Searle identities (corollaries of the Woodbury identity) (Petersen et al., 2008):
(l+CB) '=1 c( +BC) !B; (31a)
(C+BBT) '‘B=C B(1+B'C 'B) % (31b)
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for some matrice8; C. Using Equation 31a, we re-write *:

1

Al=(1+-5 G'G)* (32a)
G
— T 1 T 1 1
=1 G'(l+ %G G") '5G (32b)
G G
=1 G'(2l+G G") G (32c)

The desired expression for immediately follows by combining Equation 32c with Lemma 1. Ferwe break the
expression into two parts, and then use the Searle identity shown in Equation 31b as follows:

~= A ( + iz G'b (33a)
G

=Al +A 1i2 G'b; (33b)

G
Al = G'(21+G G") 'G); (33c)
A 1% G'b=( '+ %GTG) 1i2c;Tb (33d)

G G G
— 1 T 1 T 1

=2 G'(I+5G G") b (33e)

G G
= G'(&1+G G") b (33f)

Adding the expressions in Equation 33c and Equation 33f yields the desired form for

Observe that the matrix21 + G GT 2 RT T is invertible for all values of  (including zero), since it is square in
the smaller dimension and has full rafik In addition, inverting 31 + G G' 2 RT T has reduced computational
complexity compared to inverting.

Lemma 3 (Solution to constrained optimization) The expression for the posterior meamith & > 0is equivalent to
solving the following constrained least-squares problem for some vale df:

1ky k2 1,

~=argmin,, >

subjectto}kGy bk3 < c,wherec < kG bk3.

Proof This is a standard result from ridge regression (Hastie et al., 2013).

Sincec < %kG bk3, the complementary slackness condition requiresahat%kGy bk3. Thus, we get the following
Lagrangian:

1 1
L(y; ):éky K2 L+ ékGy bk ¢

Observe that, if we re-labgl = uand =1= %, thenL(y; ) is equalto logp(ujb;D)+ C,, whereC; is a constant
with respect toy. Thus, the optimal value of is the posterior mean from Equation 29a, i.e.,

ryL@y; )=0 (0 y==

where

~= GT(L +G G')(G b:
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Next, we substitute the above expression-anto the remaining feasibility condition:

1
c= ékG~ U(%
= kG GT(1| +G G") G b K
1
=kG G G'(ZI+G G") G b b
=k | G GT(}I +G G') ! (G Dbk
The eigenvalues of matrix G GT[(1= )l + G G'] !shrinktoOasl= ! 0. This establishes thatandl= have

a monotonic relationship. Hence, one can nd a value sfich that = 1= 3.

G. Proof of Theorem 1

In this section, we provide the proof for Theorem 1. We begin by rst restating Theorem 1.

Theorem 1 Let and be the mean and covariance wfobtained at the end of Step 1. Leat., # 0 be a monotonic
decreasing sequence of constraint values and-lebe the corresponding posterior mean at the end of Step 2 shown in
Equation 8. Then:

1. The sequence, converges to a limit? monotonically; i.e.k~, ~’k 1 #0.
2. The limiting mean-’ is the solution to a constrained least-squares probleangmin ky ~ k 1 subject toGy = b.
3. The sequendd~, converges tdin L,;i.e.,kG~, bk, #0.

Moreover, if the conservation constraiBu = bholds exactly for the true solutiam then:

4. The distance between the true solutionand the posterior mean-, decreases as g ! o, ie.,
k~n uk 1 #k"‘? uk 1.
5. For suf ciently small ., the log-likelihood LI(u; ~,; ~n) is greater than Lu; ; ) andincreases asg.,, ! 0.

For the proof of Theorem 1, recall the following expression for the posterior mean from Equation 8a:

~n = GT( é;nI +G GT) l(G b):
Proofof 1. De ne ~? G'(G G") G b). We will show that~, converges monotonically t&’ as follows:
- ~= G (GG)*' (& 1+G G)'(G b (34a)
= G' (G G) ' &) & GGH)'(G b (34b)
= 2, G (GG") (& I1+G G) ' (G b (34c)
= & G %G G +1 (G by (34d)

The above follows from the Searle identity
c!+Bl=c }c+B)B 1
whereC=G G",B= ( 4,1+G G'),andC+B = &, 1.Then,

k~y ~k* 1=(G T é;n (G G+ 1 ! é:nG tGT (23:n (2'-I-Jn (G G+ I l(G b): (35)
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Focusing on the matrix, we obtain:
1

1
Qni= &,(G GN)+1I .6 ' GT &, &.,(G GH+I (36a)
= 2,6 G+l " 2,66 % 2,6 G+l (36b)
1 1
= &0 &G GD*1 2,6 6T (6 G+ (36¢)
1
=2, 2.6 GH+1 ' 1 GT) 4 (36d)
G;n
n # 1
1
= &, I+ &,G6 G'+ (G G") '+ (36e)
G;n
= 4,221+ 4.G G +(GG") ! (36f)

Let ;;v; be an eigenvalue and associated eigenvectGr &', respectively. Thew; is also an eigenvector of matry,
with associated eigenvalue

1
n

- 2
noi Tt 26;n+i+

4
G;

2 4

2 G;n + G;

Since all the eigenvalues are strictly decreasinggs ! 0, the valuegk~, ~’k?> , =(G b'Q,(G b #0,as
required.

Proof of 2. Now, we show that’ = argmin , ky k? , subject toGy = b. This constrained least-squares problem

can be cast into the following constrained least-norm problem:
minimizekuk3; subjecttoG u=b 1=2 .

with the transformatiom = z(y )ory= + zu.

The nal solution is
G'(G G") (G by

which equals-?.

Proof of 3. We show that th& , norm between the predicted conservation value and the true k@ug, bk3, converges
monotonically ta0 as é;n I 0. We start by substituting the expression for Equation 8a:

G~ b=G GG (&, 1+GG") G b b

=(I G G'(&,1+G G") )G b (37)

Letv; be an eigenvector@ G' and ; the associated eigenvector. Thetis also an eigenvector 6f G GT( 2,1+
G G') Ywitheigenvalud =( Z,+ ). Sinceall the eigenvalues are monotonically decreasing to zepa$ 0
monotonicallykG~, bk3 #0. For 4, =0,G~, b=0.

Proofof4. DeneP = G'(G G'") !G, whichis an oblique projection matrix since
P?= G'(G G") 'G G'(G G") 'G=P
and
;Pyi :=x" Py=x"G"(G G") Gy=x"PT ly=tPxyi ::
The normk~, uk 1 canbe decomposed into two parts:

ks UK 1=kP(~n Wk 1+Kk(I P)~n uk i:
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First, we show that the second tekfi P)(~, u)k 1 equalk~’ uk : foralln as follows:

(I P)~n=(1 P) (I P)G'(&I!+GG") G b
=(l P) G'(&,/+G G") (G b+P G'(&,1+G G") (G b
=(1 P) G'(G G') (G Db+ G'(G G")'G G'(&,1+G G") (G b
=(I P)

_? GT(G GT) lb;

u G'(G G") 'Gu

u G'(G G") lb;

(I P)u

Therefore,
(I P~ (I Plu=-~? u

Next, we show that the rstterreP(~, u)k 1 is equal to the distance betweep and~?. We rst compute:

Pw»=P P G'(&,1+G G') (G b (38a)
= G'(G G") G G'(&,1+G G") G b); (38b)
Pu= G'(G G YHGu (38¢)
= G'(G G YHb: (38d)

Then subtracting Equation 38d from Equation 38a gives:

P~, Pu= G'(G G") G G'(&,/+GG) G b G'(GG")"' (39a)
= G'(GG")?' G(EI+GG) (G b (39b)
=~, -~ (39¢)

From part 1k~, ~’k 1 #0monotonically as g, #0. Thus,

k"‘n uk2 1 = k""n ""’?k2 1 + k""? uk2 1 #k"‘? Uk2 1:

Proof of 5. Recall that the predictive log-likelihood (LL) is de ned as:
1 1X 1
LL(u;~; ~n) = Nku ~n km L5 | l0g ~hiii M log2;
whereM denotes the total number of points. Also recall that the precision is well-de ned as:
- 1
N 1 - 1 + 5 GT G,
G;n

so the rst term of the predictive likelihood can be further decomposed as:

ke UK =(n W M WE(e W e W W —GTG(~ U)

G;n
1
= k- uk® ;+ ——kG~, K3
G;n
— 2 1 2.
G;n

Substituting the expression from Equation 37, we get:

LG b= —

Gin Gn

(I GG (&,1+G G") )G b (40)

29



Learning Physical Models that Can Respect Conservation Laws

Let v; be an eigenvector oG G' and ; the associated eigenvector. Then is also an eigenvector of
LI G G'(3,1+G G") )G b with eigenvalue:

For suf ciently small ., , the eigenvalues are monotonically decreasing to zer@gs! 0.

Finally,log(~n)ii is non-increasing with respect t@;n . From Equation 8b,

~n = G'(&,1+G G") 'G ;
(Tn)ii = i €& G'(&,1+G G") 'G e;

wheree; denotes thé-th elementary vector. SinceG' ( é;n |+ G G") G ispositive de nite with positive diagonal

entries, and the eigenvalues(of,,| + G GT) !increase monotonically ass;y ! 0, the entry(™,);; decreases as
~ 10
G’n H .

H. Additional Details on the Generalized Porous Medium Equation

In this section, we discuss in more detail the parametric Generalized Porous Medium Equation (GPME). The GPME is a
family of conservation equations, parameterized by a nonlinear coef kignt and it has been used in several applications
ranging from underground ow transport to nonlinear heat transfer to water desalination and beyond. Among other things,
it has the parametric ability to represent pressure, diffusivity, conductivity, or permeability, in these and other applications
(Vazquez, 2007). From the ML/SciML methods perspective, it has additional advantages, including closed-form self-
similar solutions, structured nonlinearities, and the ability to choose the paraafe}do interpolate between “easy” and

“hard” problems (analogous to but distinct from the properties of elliptical versus parabolic versus hyperbolic PDES).

The GPME Equation. The basic GPME is given as:
u r o (k(ur u)=0; (41)

whereF (u) = k(u)r uisanonlinear ux function, and where the parameter k(u) can be varied (to model different
physical phenomena, or to transition between “easy” PDEs and “hard” PDEs). Even though the equation appears to be
parabolic, for small values &f(u) in the nonlinear case, it exhibits degeneracies, and it is is called “degenerate parabolic.”
By varyingk, solutions span from “easy” to “hard,” exhibiting many of the qualitative properties of smooth/nice parabolic

to sharp/hard hyperbolic PDEs. Among other things, this includes discontinuities associated with self-sharpening occurring
over time, even for smooth initial conditions.

(a) easy: Diffusion equatiork(= 1) (b) medium: PMEK(u) = u®) (c) hard: Stefan (disconk(u))

Figure 6.lllustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equations: (a) “easy” parabolic
smooth (diffusion equation) solutions, with constant paramggy = k  1; (b) “medium” degenerate parabolic PME solutions, with
nonlinear monomial coef cienk(u) = u™, with parametem = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp
solutions (Stefan equation) with nonlinear step-function coef clgut) = 1, 2, wherelg is an indicator function for evert.
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Figure 6 (Figure 1 repeated here) provides an illustration of this “easy-to-hard” paradigm for PDEs for the three classes of
the GPME considered in the main text. In particular, Figure 6(a) illustrates an “easy” situatiok(wjth 1, where we

have a simple parabolic solution to the linear heat/diffusion equation, where a sine initial condition is gradually smoothed
over time. Figure 6(b) illustrates a situation with “medium” dif culty, namely the degenerate parabolic Porous Medium
Equation (PME) with nonlinear differentiable monomial coef cid{u) = u™. Here, form = 3, a constant zero initial
condition self-sharpens, and it develops a sharp gradient that does not dissipate over time (Maddix et al., 2018a). Finally,
Figure 6(c) illustrates an example of the “hard” Stefan problem, where the coefkientis a nonlinear discontinuous
step-function of the unknowa de ned by the unknown valua? = u(t; x?(t)) = 0 :5 at the discontinuity locatior?(t).

In this case, the solution evolves as a rightward moving shock or moving interface over time (Maddix et al., 2018b).

Here, we provide more details on these and other classes of the GPME.

Heat/Diffusion Equation. Perhaps the simplest non-trivial form of the GPME, where the conductivity or diffusivity
coef cient

k(u)= k> 0

is a constant, corresponds to the heat (or diffusion) equation. In this case, Equation 9 reduces to the linear parabolic
equationu; = k u, where denotes the Laplacian operator. Solutions of this equation are smooth due to the diffusive
nature of the Laplacian operator, and even sharp initial condition are smoothed over time.

Variable Coef cient Problem. The linear variable coef cient problem
k(u;x) = k(x);

is also a classical parabolic equation. The variable coef cient problem is commonly used in reservoir simulations to model
the interface between permeable and impermeable materials, Whgrelenotes the step-function permeabilities that
depends on the spatial positign

Porous Medium Equation (PME). Another subclass of the GPME, in which the coef cient is nonlinear but smooth,

is known as the Porous Medium Equation (PME). The PME is known to be degenerate parabolic, and it becomes more
challenging asn increases. The PME witlm = 1 has been widely used to model isothermal processes, e.g., groundwater
ow and population dynamics in biology. Fon > 1, the PME results in sharp solutions, and it has been used to describe
adiabatic processes and nonlinear phenomena such as heat transfer of plasma (ionized gas).

Super-slow Diffusion Problem. Another subclass of the GPME, known as super-slow diffusion, occurs when
k(u) = exp( 1=u):

Here, the diffusivityk(u) ! Oasu ! O faster than any power af. This equation models the diffusion of solids at
different absolute temperatures The coef cientk(u) represents the mass diffusivity in this case, and it is connected with
the Arrhenius law in thermodynamics.

Stefan Problem. The most challenging case of the GPME is when the coef dign) is a discontinuous nonlinear step

function:

Kmax; U u?

k(u) =
W Kmin; U<u?;

(42)

for given constant&may , Kmin andu’ 2 R, in which case it is known as the Stefan problem. The Stefan problem has
been used to model two-phase ow between water and ice, crystal growth, and more complex porous media such as foams
(van der Meer et al., 2016).

We conclude by noting that, even though the GPME is nonlinear in general, for speci c initial and boundary conditions,
it has closed form self-similar solutions. For details, sézduez (2007); Maddix et al. (2018a;b). This enables ease of
evaluation by comparing each competing method to the ground truth.
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|. Detailed Experiment Settings

In this section, we review the basics of the Attentive Neural Process (ANP) (Kim et al., 2019) that we use as the black-box
deep learning model in Step 1 of our modeldBCoONSERVANP in the empirical results section 3. Figure 7 illustrates

a schematic for ROBCONSERVANP that shows how in the rst step the mean and covariance estimatesrom the

ANP are fed into our probabilistic constraint in the second step to output the updated mean and covariance estimates

Figure 7.Schematic for the instantiation of our frameworR®BCONSERV with the ANP (RROBCONSERVANP) as the data-driven

black box model in Step 1 that is used in the empirical results. In Step 1, the ANP outputs a medmovariance (yellow) of the
solution pro le u evaluated at th&l target points (red). The ANP takes as input the contexDs#tat comprisedNp labelled points

(blue). The parameterencapsulates the neural network weights within the ANP. In Step 2, the probabilistic constraint in Equation 8 is
applied yielding an updated mearand covariancé (green). The probabilistic constraint is determined by the m&trixalueb, and
variance 2 in Equation 7.

Model Training. The model from Step 1 is data-driven, with parameténat needs to be learned from data. Given an
empirical data distribution, written gsi; b; D)  p, we maximize the expected joint likelihood of the functwand the
constraint, conditioned on datB®, as a function of the Step 1 parametaand Step 2 parameterg, andG as follows:

L(; 6:G)= Eupp plogp(u;bD)
= Fu;D pl?gp (ujD;+ Fu;b Ioggze;e(ta‘ug: (43)

Step 1 Step 2

This follows because the joint probability can be broken into conditiop@lsbjD) = p (ujD)p . .c (bHu), using Bayes'
Rule. The Step 2 constraint only depends on the value

The Step 1 parameteris only present in the rst term of the summation in Equation 43. Then, the optimal valué for
is found by optimizing the unconstrained log-likelihood from Step 1 over the empirical data distribution and is given as
follows:

"zargmaxL(; g;G)

: (44)
=argmax E,p plogp (ujD):

Equation 44 is simply the optimization target of several generative models, e.g., Gaussian processes and the ANP. This
justi es training the Step 1 black-box model with its original training procedure before applying our Step 2.

Data Generation. For each PDE instance, we rst generate training data for the data-driven model in Step 1. We generate
these samples, indexed byby randomly samplingy.in Values of the PDE parameters from an intervalA. To create

the input dateD;, the solution pro le corresponding to; is evaluated on a set ®p points uniformly sampled from

the spatiotemporal doma[; t] . Then, the reference solution farwith parameter ;, denotedy;, is evaluated over
another set 0Ny, uniformly-sampled points. The Step 1 model (ANP) is then trained on these supervised input-output
pairs,(Dj; u;j). Using Equation 5, the conservation valua Step 2 is calculated given the parameter At inference

time, we X speci ¢ values of the PDE parametersthat are of interest and generate new input-output pairs to evaluate
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the predictive performance. The settings are the same as those at training, except that the reference solution is evaluated
on a xed grid that evenly divides the time domdid t] into T points and the spatial domaininto Mg points for a
spatio-temporal grid o5t = Trest M iest POINtS. For consistent results, we repeat this proceduremugmdependent

datasets for each.

Table 6 provides the training settings and Table 7 provides the cor responding test settings.

Table 6.Training details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter A Time domain0;t] Spatial domain  Nyain Np  Nyain
Diffusion k [1; 5] [G1] 62 ] 10,000 100 100
PME m [1; 6] [0; 1] [0; 1] 10,000 100 100
Stefan u’ [0:55,7] [0;0:1] [0; 1] 10,000 100 100

Table 7.Testing details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter values Testtime Spatialdomainnest Np  Tiest Miest Niest

Diffusion k 2f1;5g 0:5 G2 ] 50 100 201 201 4p01

PME m 2f1;3;6g 05 [0; 1] 50 100 201 201 4401

Stefan u’? 2 f 0:69 0:05 [01] 50 100 201 201 4p01
We describe here how the input dddg input points(ty;X1);:::;(tn ;XN ); and solutionu are created for a particular
draw of PDE parameter 2 A . The input data (a.k.a. the context 9Bt)s generated as follows. First, draw samples from
the spatiotemporal domaii,;x,) Uniform([0;t] ) ,forn =1;:::;Np. For each sampl&p;x,), evaluate the

the input points are sampled uniformly from the spatiotemporal domain

(tn;Xn)  Uniform([O;t] ) ;

domain into Mg evenly-spaced points. We then take the cross product of these as the set of input points, whose size is
Niest= Tiest Miest

----- N train
Attentive Neural Processes (ANP). The Attentive Neural Process (ANP) (Kim et al., 2019) models the conditional

D = fx;;ujg2c. The function values at each target paipt, written asu,, are conditionally independent given the
latent variablez with the following distribution forup, :

z
p (unjD)= p (unjz;D)p (zjD)dz;

z

P (Unjz;D) = pn (Unj n; 2);

p (ZJ Zs z)= PN (ZJ z1 z); (45)
ny n = fY(xn; 21" (xn; D));
z; 2= f%(D):

Here,pn (Uj; %) =(2 2) ¥exp 5%(x )? denotes the univariate normal distribution with meaand vari-
ance 2 andfZ,fY, andf " are neural networks whose architecture is described in more detail below.
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As standard in variational inference, the attentive neural process (ANP) is trained to maximize the evidence lower bound
(ELBO), which is a tractable lower bound to the marginal likelihdags ,logp (ujD) that we want to maximize in
Equation 44

Eup plogp (uiD) Eup pE; q logp (u;zjD) logq (zju; D);
q(ziu;D)=pn(Z) 75 P (46)
9 I=1f7(D[f (ty;x1;u1);:::(tn ;XN UN)Q):
By concatenating the context datwith the target set, the ANP can use the same networks for both the generative model

p and the variational mode| . This differs from methods such as the variational auto-encoder (VAE) that train a separate
network for the variational model.

In the experiments, we train the ELBO in Equation 46 using stochastic gradient descent over random mini-batches of the
supervised pairéu; D) and a sample of the latent variatd€using the reparameterization trick for an unbiased gradient
estimate). Speci cally, we use the ADAM optimizer with a learning ratd of 10 # and a batch size &f50.

Architectural details. Here, we brie y describe the architecture of the ANP used in experiments; a more thorough
description of the ANP in general can be found in the original paper (Kim et al., 2019).

The ANP consists of three distinct networks:

1. Thelatent encodef * takes the context s€& = fX;; uUjgi2c as input and outputs a meap and diagonal covariance
; for the latent representatian Note thaff # is invariant to the order of the context set input®in

2. Thedeterministic encodelr” takes the context s& = fX;; U;gi2c and the target pointlsx, g as input, and outputs
a set of deterministic representatidirg g corresponding to each target point. Note thats permutation-invariant
to the order of the context set inputsiin and is applied pointwise across the target infotsg.

3. Thedecoderf U takes the outputs from the latent encoder, deterministic encoder, and the target poinés input,
and outputs a set of mean and variarfces;, g corresponding to each target point. The decoder is applied pointwise
across the target inputx,, g and deterministic representatibn, g.

Table 8.ANP hyperparameters.

Symbol Value Description

dy 2 Input dimension

dy 1 Output dimension

d, 128 Latent dimension

h 128 Size of hidden layer

Nheads 4 Number of heads in MultiHead

dn 128 Column dimension in MultiHead layers

For reproducibility, Figure 8 shows how each network is constructed and Table 8 shows the ANP hyperparameters. Each
building blocks is also brie y described below:

Linear(din; dout): dense linear layexA + b.

« Mean: Averages the inputs of the input set; i.e., Méaig) = ﬁ i Si.

ReLU: Applies ReLU activation pointwise.

Cross-Attention and Self-Attention. These are multi-head attention blocks rst introduced in Vaswani et al. (2017).
The three inputs to the multi-head attention block are the queies o) :::joy,]”, keysK = [kij:::jog, ", and
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valuesV = [vij:::jvg, ]” . The hyperparameters are the number of heaglggsand the number of columns of the
matricesVViQ ;WK ;WY denoted asl,. We summarize the notations below:

Self-Attentior{(Q) = MultiHead Q; Q; Q);
Cross-AttentioQ; K; V ); = MultiHead Q; K; V );
MultiHead(Q; K;V ) = [Haj:::jHn,.JW®;

H; = Attention(QW.2; KW < ;VWY);

>
Attention( Q; K;V ) = softmax %de V;
k

02 31 25 epuy) ... p eOua) S
X110 i Xgn e(xy) T exp(X1; )
softmax%ﬁ : : EX = § : : Z
Xm:1 111 Xm; p &PXm1) ... p &P(Xmn)
e me sy exp(Xmj ) T M1 exp(Xmj )

Figure 8.Architectural diagram of the three main networks that make up the Attentive Neural Process (ANP) from Kim et al. (2019) that
is used in the experiments as the Step 1 black-box model.
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J. Additional Empirical Results

In this section, we provide additional empirical results for the degenerate parabolic Generalized Porous Medium (GPME)
family of conservation laws as well as for hyperbolic conservation laws.

J.1. GPME Family of Conservation Laws

Here, we include additional solution pro les and conservation pro les over time for the GPME family of equations, ranging
from the “easy” diffusion (heat), “medium” PME, to the “hard” Stefan equations.

J.1.1. DFFUSION (HEAT) EQUATION

Figure 9. Solution pro les for the diffusion (heat) equation at tirhe= 0:5 for diffusivity (conductivity) test-time parametér = 1

in the top row anck = 5 in the bottom row. Each model is trained on samplek & A = [1;5]. The shaded region illustrates
3 standard deviation uncertainty intervalRGBCONSER+ANP and HARDC-ANP both display tighter uncertainty bounds than the

baseline ANP, while S8FTC-ANP is more diffuse. The uncertainty is relatively homoscedastic on this “easy” case.

Solution Pro les. Figure 9 shows the solution pro les for the “easy” diffusion equation, at tirre0 :5, where a sine
curve is damped over time for test-time paramé&terl;52 A =[1;5]. Table 9 shows the corresponding metrics.

Table 9. Mean and standard error for CELO 2 (should be zero), LL (higher is better) and MSEO “ (lower is better) ovenes:= 50
for the (“easy”) diffusion equation at timte= 0 :5 with variable diffusivity constank parameter in the rangk = [1;5] and test-time

parameter valugs = 1 ;5.

k=1 k=5

CE LL MSE CE LL MSE
ANP 4.68(0.10) 2:72(0.02) 1:71(0.41) | 1.76 (0.04) 3:28(0.02) 0:547(0.08)
SOFTC-ANP 3.47(0.17) 2:40(0.02) 2:24(0.78) | 2.86 (0.05) 2:83(0.02) 1.75(0.24)
HARDC-ANP 0(0.00)  3.08(0.04) 1:37 (0.33)| 0(0.00)  3.64(0.03) 0:461 (0.07)
PROBCONSERVANP | 0(0.00)  2.74(0.02) 1.55(0.33) | 0(0.00)  3.30(0.02) 0.485(0.07)
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J.1.2. ®BROUSMEDIUM EQUATION (PME)

Results for Different for SOFTC-ANP. As is the case with PINNs (Raissi et al., 2019), ther8C-ANP method

has a hyper-parameterthat controls the balance in the training loss between the reconstruction and differential term. A
higher value of places more emphasis on the residual of the PDE term and less emphasis on the evidence lower bound
(ELBO) from the ANP.

To investigate whether tuningwill lead to signi cantly different results, we report results for different values &r the
SOFTC-ANP on the Porous Medium Equation (PME). Since these results are presented on the same test dataset used in
Table 2, it provides an optimistic case on how tuningould improve the results forc@TC-ANP. Table 10 shows that

the predictive performance is roughly the same across different valuesvith both MSE and LL worse than the original

ANP across the board and the conservation error (EE) bat the nal time worse fom =6.

Table 10.Investigation of the effect of the soft constraint penalty parameterthe SOFTC-ANP baseline. The metrics CE10 3
(should be zero), LL (higher is better) and MSELO # (lower is better) are reported for the (“medium”) PME at time 0:5 with
variablem parameter in the range = [0:99; 6] and test-time parameters 2 f 1; 3; 6g. We see that the performance is not signi cantly
changed as a function of, and, surprisingly, that the unconstrained ANP=0) performs better in most metrics thawSrC-ANP.

m=1 m=3 m=6

CE LL MSE | CE LL MSE | CE LL MSE
ANP ( =0) | 6:67 3:49 0:94 | 123 367 1:90 | 2:58 3:81 7:62
SOFTC-ANP( =0:01) | 5:58 311 111 0:61 346 203 3:.00 349 T76
SOFTC-ANP( =0:1) 5:58 311 111 0:67 346 207 301 349 787
SOFTC-ANP( =1) 5:62 311 111 0:65 346 206 3:03 349 782
SOFTC-ANP ( =10) 5:52 3:11 108 0:56 346 204 302 349 T76
SOFTC-ANP ( =100) 5:62 311 111 0:59 346 203 3:03 349 769

ProBCONSERV-ANP with Diffusion. As described in subsection D.2, we explore adding numerical diffusion for elim-
inating arti cial small-scale noises when enforcing conservation. Table 11 shows that adding arti cial diffusion improves
both MSE and LL compared to the conservation constraint alone. Figures 10-11 illustrate that by removing such arti -
cial noises, ROBCONSERVANP with diffusion leads to tighter uncertainty bounds as well as higher LL than the other

baselines.

Table 11 Mean and standard error for CELO 2 (should be zero), LL (higher is better) and MSEO “ (lower is better) ovenes;= 50

runs for the (“medium”) PME at timé = 0:5 with variablem parameter in the rangk = [0:99; 6]. We see that ROBCONSERV

ANP (w/diff) improves the performance orRBBCONSERV+ANP by applying smoothing at the sharp boundary as the test-time param-
eterm is increased.

m=1 m=3 m=6

CE LL MSE CE LL MSE CE LL MSE
ANP 6:67(0.39) 3:49(0.01) 0:94(0.09)| 1:23(0.29) 3:67(0.00) 1:90(0.04)| 2:58(0.23) 3:81(0.01) 7.67(0.09)
SOFTC-ANP 5:62(0.35) 3:11(0.01) 1:11(0.14)| 0:65(0.30) 3:46(0.00) 2:06(0.03)| 3:03(0.26) 3:49(0.00) 7:82(0.09)
HARDC-ANP 0(0.00)  3.16(0.04) 0.43(0.04) 0(0.00) 3:44(0.03) 1.86 (0.03) 0(0.00) 3.40 (0.05) 7.61(0.09)
PROBCONSERVANP 0(0.00)  3.56(0.01) 0.17(0.02) | 0(0.00) 3.68(0.00) 2.10 (0.07) 0 (0.00) 3.83(0.01) 10.4(0.04)
PROBCONSERVANP (w/diff) | 0(0.00)  4.04(0.02) 0.15(0.02) | 0(0.00) 3.96(0.00) 1.43(0.05) | 0(0.00) 4.03(0.01) 7.91(0.03)

Solution and Error Pro les.  Figures 10-11 illustrate the differing solution pro les and errors for the PME for various
values ofm 2 f 1; 3; 6g, respectively. As expected, we see a gradiennfor 1 that becomes sharper and approaches

in nity for m = 6. Increasingm results in smaller values of the PDE parameter denoting the prdsayre u™, which
increases the degeneracy for smaller valuds(aj, i.e., larger values ai. In this case the problem also becomes more
challenging. Fom = 1, we have a piecewise linear solution, and flor= 3 ;6 we see sharper oscillatory uncertainty
bounds at the front or free boundary, resulting in some negative values at this boundary as well. We see the value of
the uncertainty quanti cation to re ect that the model is certain in the parabolic regions to the left and right of the sharp
boundary especially in the zero (degeneracy) region, and is most uncertain at the boundary (degeneracy) point.
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