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Abstract

Recent work in scientific machine learning
(SciML) has focused on incorporating partial
differential equation (PDE) information into the
learning process. Much of this work has focused
on relatively “easy” PDE operators (e.g., ellip-
tic and parabolic), with less emphasis on rela-
tively “hard” PDE operators (e.g., hyperbolic).
Within numerical PDEs, the latter problem class
requires control of a type of volume element
or conservation constraint, which is known to
be challenging. Delivering on the promise of
SciML requires seamlessly incorporating both
types of problems into the learning process. To
address this issue, we propose PROBCONSERV,
a framework for incorporating conservation con-
straints into a generic SciML architecture. To do
so, PROBCONSERV combines the integral form
of a conservation law with a Bayesian update.
We provide a detailed analysis of PROBCON-
SERV on learning with the Generalized Porous
Medium Equation (GPME), a widely-applicable
parameterized family of PDEs that illustrates the
qualitative properties of both easier and harder
PDEs. PROBCONSERV is effective for easy
GPME variants, performing well with state-of-
the-art competitors; and for harder GPME vari-
ants it outperforms other approaches that do
not guarantee volume conservation. PROBCON-
SERV seamlessly enforces physical conserva-
tion constraints, maintains probabilistic uncer-
tainty quantification (UQ), and deals well with
shocks and heteroscedasticities. In each case,
it achieves superior predictive performance on
downstream tasks.
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1. Introduction
Conservation laws are ubiquitous in science and engineer-
ing, where they are used to model physical phenomena
ranging from heat transfer to wave propagation to fluid flow
dynamics, and beyond. These laws can be expressed in two
complementary ways: in a differential form; or in an inte-
gral form. They are most commonly expressed as partial
differential equations (PDEs) in a differential form,

ut +∇ · F (u) = 0,

for an unknown u and a nonlinear flux function F (u). This
differential form of the conservation law can be integrated
over a spatial domain Ω using the divergence theorem to
result in an integral form of the conservation law,

Ut = −
∫
Γ

F (u) · ndΓ,

where U =
∫
Ω
u(t, x)dΩ and Γ denotes the boundary of

Ω. As examples: in the case of heat transfer, u denotes the
temperature, and U the conserved energy of system; and in
the case of porous media flow, u denotes the density, and U
the conserved mass of the porous media.

Global conservation states that the rate of change in time of
the conserved quantity U over a domain Ω is given by the
flux across the boundary Γ of the domain. Local conser-
vation arises naturally in the numerical solution of PDEs.
Traditional numerical methods (e.g., finite differences, fi-
nite elements, and finite volume methods) have been devel-
oped to solve PDEs numerically, with finite volume meth-
ods being designed for (and being particularly well-suited
for) conservation laws (LeVeque, 1990; 2002; 2007). Fi-
nite volume methods divide the domain Ω into control vol-
umes and apply the integral form locally. They enforce that
the time derivative of the cell-averaged unknown is equal
to the difference of the in-flux and out-flux over the con-
trol volume. (This local conservation—so-called since the
out-flux that leaves one cell equals the in-flux that enters a
neighboring cell—can be used to guarantee global conser-
vation over the whole domain.) This numerical approach
should be contrasted with finite difference methods, which
use the differential form directly, and which are thus not
guaranteed to satisfy the conservation condition.

This discussion is relevant for machine learning (ML)
since there has been an interest recently in Scientific ML
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(SciML) in incorporating the physical knowledge or physi-
cal constraints into neural network (NN) training. A popu-
lar example of this is the so-called Physics-Informed Neu-
ral Networks (PINNs) (Raissi et al., 2019). This approach
uses a NN to approximate the PDE solution by incor-
porating the differential form of the PDE into the loss
function, basically as a soft constraint or regularization
term. Other data-driven approaches, including DeepONet
(Lu et al., 2021) and Neural Operators (NOs) (Li et al.,
2021a; Gupta et al., 2021), train on simulations and aim to
learn the underlying function map from initial conditions
or PDE coef�cients to the solution. Other methods such as
Physics-Informed Neural Operator (PINO) attempt to make
the data-driven Fourier Neural Operator (FNO) “physics-
informed,” again by adding the differential form into the
supervised loss function as a soft constraint regularization
term (Li et al., 2021b; Goswami et al., 2022).

Challenges and limitations for SciML of this soft constraint
approach on model training were recently identi�ed (Kr-
ishnapriyan et al., 2021; Edwards, 2022). The basic is-
sue is that, unlike numerical �nite volume methods, these
ML and SciML methods donot guarantee that the physical
property of conservation is satis�ed. This is a consequence
of the fact that the Lagrange dual form of the constrained
optimization problem does not in general satisfy the con-
straint. This results in very weak control on the physical
conservation property, resulting in non-physical solutions
that violate the governing conservation law.

In this work, we frame the problem of learning physical
models that can respect conservation laws via a “�nite-
volume lens” from scienti�c computing. This permits us
to use the integral form of the governing conservation law
to enforce conservation conditions for a range of SciML
problems. In particular, for a wide range of initial and
boundary conditions, we can express the integral form as
a time-varying linear constraint that is compatible with ex-
isting ML pipelines. This permits us to propose a two-step
framework. In the �rst step, we use an ML model with a
mean and variance estimate to compute a predictive distri-
bution for the solution at speci�ed target points. Possible
methods for this step include: classic estimation methods
(e.g., Gaussian Processes (Rasmussen & Williams, 2006));
methods designed to exploit the complementary strengths
of classical methods and NN methods (e.g., Neural Pro-
cesses (Kim et al., 2019)); as well as computing ensembles
of NN models (to compute empirical estimates of means
and variances). In the second step, we apply a discretiza-
tion of the integral form of the constraint as a Bayesian up-
date in order to enforce the physical conservation constraint
on the black-box unconstrained output. We illustrate our
framework, PROBCONSERV, by using an Attentive Neural
Process (ANP) (Kim et al., 2019) as the probabilistic deep
learning model in the �rst step paired with a global con-

servation constraint in the second step. In more detail, the
following are our main contributions:

• Integral form for conservation. We propose to use
the integral form of the governing conservation law
via �nite volume methods, rather than the commonly
used differential form, to enforce conservation subject
to a speci�ed noise parameter. Through an ablation
study, we show that adding the differential form of the
PDE as a soft constraint to the loss function does not
enforce conservation in the underlying unconstrained
ML model.

• Strong control on the conservation constraint. By us-
ing the integral form, we are able to enforce conserva-
tion via linear probabilistic constraints, which can be
made arbitrarily binding or sharp by reducing the vari-
ance term� 2

G . In particular, by adjusting� 2
G , one can

balance satisfying conservation with predictive met-
rics (e.g., MSE), with PROBCONSERVobtaining exact
conservation when� 2

G = 0 .
• Effective for “easy” to “hard” PDEs. We evalu-

ate on a parametric family of PDEs, which permits
us to explore “easy” parameter regimes as well as
“medium” and “hard” parameter regimes. We �nd that
our method and the baselines do well for “easy” prob-
lems (although baselines sometimes have issues even
with “easy” problems, and even for “easy” problems
their solutions may not be conservative), but we do
seamlessly better as we go to “harder” problems, with
a5� improvement in MSE.

• Uncertainty Quanti�cation (UQ) and downstream
tasks. We provide theoretical guarantees that PROB-
CONSERV increases predictive log-likelihood (LL)
compared to the original black-box ML model. Em-
pirically, we show that PROBCONSERV consistently
improves LL, which takes into account both prediction
accuracy and well-calibrated uncertainty. On “hard”
problems, this improved control on uncertainty leads
to better insights on downstream shock position detec-
tion tasks.

There is a large body of related work, too much to summa-
rize here; see Appendix A for a summary.

2. A Probabilistic Approach to Conservation
Law Enforcement

In this section, we present our framework, PROBCON-
SERV, for learning physical models that can respect con-
servation laws. Our approach centers around the follow-
ing two sources of information: an unconstrained ML al-
gorithm that makes mean and variance predictions; and a
conservation constraint (in the form of Equation 4 below)
that comes from knowledge of the underlying physical sys-
tem. See Algorithm 1 for details of our approach. In the
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Algorithm 1 PROBCONSERV

Input: Constraint matrixG, constraint valueb, non-
zero noise� G and input points(t1; x1); : : : (tN ; xN )
Step 1: Calculate black-box prediction over output grid:
�; � = f � (( t1; x1); : : : (tN ; xN ); D )
Step 2: Calculate~� and~� according to Equation 8.
Output: ~�; ~�

�rst step, we compute a set of mean and variance estimates
for the unconstrained model. In the second step, we use
those mean and variance estimates to compute an update
that respects the conservation law. The update rule has a
natural probabilistic interpretation in terms of uncertainty
quanti�cation, and it can be used to satisfy the conserva-
tion constraint to a user-speci�ed tolerance level. As this
tolerance goes to zero, our method gracefully converges to
a limiting solution that satis�es conservation exactly (see
Theorem 1 below).

2.1. Integral Form of Conservation Laws as a Linear
Constraint

Here, we �rst derive the integral form of a governing con-
servation law from the corresponding differential form (a
la �nite volume methods), and we then show how this inte-
gral form can be expressed as a linear constraint (for PDEs
with speci�c initial and boundary conditions, even for cer-
tain nonlinear differential PDE operators) for a broad class
of real-world problems.

Consider the differential form of the governing equation:

F u(t; x ) = 0 ; x 2 
 ;

u(0; x) = h(x); x 2 
 ;

u(t; x ) = g(t; x ); x 2 � ;

9
>=

>;
; 8 t � 0; (1)

where� denotes the boundary of the domain
 , h(x) the
initial condition, andg(t; x ) the Dirichlet boundary con-
dition. Recently-popular SciML methods, e.g., PINNs
(Raissi et al., 2019), PINOs (Li et al., 2021b; Goswami
et al., 2022), focus on incorporating this form of the con-
straint into the NN training procedure. In particular, the
differential form of the PDEF u(t; x ) could be added as a
soft constraint to the loss functionL , as follows:

min
�

L (u) + � kF uk;

whereL denotes a loss function measuring the error of the
NN approximated solution relative to the known initial and
boundary conditions (and potentially any observed solution
samples),� denotes the NN parameters, and� denotes a
penalty or regularization parameter.

For conservation laws, the differential form is given as:

F u = ut + r � F (u); (2)

for some given nonlinear �ux functionF (u). The corre-
sponding integral form of a conservation law is given as:

Z



u(t; x )d
 =

Z



h(x)d
 �

Z t

0

Z

�
F (u) � nd� dt: (3)

See Appendix B for a derivation.

In one-dimension, the boundary integral of the �ux can be
computed analytically, as the difference of the �ux in and
out of the domain:

Z



u(t; x )d


| {z }
Gu(t;x )

=
Z



h(x)d
 +

Z t

0
(Fin � Fout)dt

| {z }
b( t )

;
(4)

where 
 = [ x0; xN ], Fin = F (u; t; x 0)ju= g( t;x 0 ) , and
Fout = F (u; t; x N )ju= g( t;x N ) . In two and higher dimen-
sions, we do not have an analytic expression, but one can
approximate this boundary integral as the sum over the spa-
tial dimensions of the difference of the in and out �uxes on
the boundary in that dimension. This methodology is well-
developed within �nite volume discretization methods, and
we leave this extension to future work.

In many applications (including those we consider), by us-
ing the prescribed physical boundary conditionu(t; x ) =
g(t; x ) for x 2 � , it holds that the in and out �uxes on
the boundary donot depend onu, and instead they only
depend ont. This is known as aboundary �ux linearity as-
sumptionsince, when it holds, one can use a simple linear
constraint to enforce the conservation law. This assumption
holds for a broad class of problems—even including non-
linear conservation laws with nonlinear PDE operatorsF
(See Appendix C for the initial/boundary conditions, exact
solutions, exact linear global conservation constraints and
Table 5 for a summary). In these cases, Equation 4 results
in the following linear constraint equation:

Gu(t; x ) =
Z



u(t; x )d
 = b(t); (5)

which can be used to enforce global conservation. See Ap-
pendix D.1 for details on how this integral equation can be
discretized into a matrix equation.

In other applications, of course, the �ux linearity assump-
tion along the boundary of the domain will not hold. For
example, the �ux may not be known and/or the boundary
condition may depend onu(t; x ). In these cases, we will
not be able to not apply Equation 5 directly. However, non-
linear least squares methods may still be used to enforce
the conservation constraint. This methodology is also well-
developed, and we leave this extension to future work.

2.2. Step 1: Unconstrained Probability Distribution

In Step 1 of PROBCONSERV, we use a supervised black-
box ML model to infer the mean� and covariance� of
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the unknown functionu from observed dataD . For ex-
ample,D can include values of the functionu observed
at a small set of points. Over a set ofN input points
(t1; x1); : : : ; (tN ; xN ), the probability distribution ofu :=
[u(t1; x1); : : : u(tN ; xN )] 2 RN conditioned on dataD has
mean� := E(ujD ) and covariance� := Cov(ujD ) given
by the black-box modelf � , i.e.,

�; � = f � (( t1; x1); : : : ; (tN ; xN ); D ) : (6)

This framework is general, and there are possible choices
for the model in Equation 6. Gaussian Processes (Ras-
mussen & Williams, 2006) are a natural choice, assuming
that one has chosen an appropriate mean and kernel func-
tion for the speci�c problem. The ANP model (Kim et al.,
2019), which uses a transformer architecture to encode the
mean and covariance, is another choice. A third option is
to perform repeated runs, e.g., with different initial seeds,
of non-probabilistic black-box NN models to compute em-
pirical estimates of mean and variance parameters.

2.3. Step 2: Enforcing Conservation Constraint

In Step 2 of PROBCONSERV, we incorporate a discretized
and probabilistic form of the constraint given in Equation 5:

b = Gu + � G �; (7)

whereG denotes a matrix approximating the linear opera-
tor G (see Appendix D.1),b denotes a vector of observed
constraint values, and� denotes a noise term, where each
component has unit variance. The parameter� G � 0 con-
trols how much the conservation constraint can be violated
(see Appendix E for details), with� G = 0 enforcing exact
adherence. Step 2 outputs the following updated mean~�
and covariance~� that respect conservation, given as:

~� = � � � GT (� 2
G I + G� GT ) � 1(G� � b); (8a)

~� = � � � GT (� 2
G I + G� GT ) � 1G� ; (8b)

where� and� denote the mean and covariance matrix, re-
spectively, from Step 1 (Equation 6).

The update rule given in Equation 8 can be justi�ed from
two complementary perspectives. From a Bayesian prob-
abilistic perspective, Equation 8 is the posterior mean and
covariance of the predictive distribution ofu after incorpo-
rating the information given by the conservation constraint
via Equation 7. From an optimization perspective, Equa-
tion 8 is the solution to a least-squares problem that places
a binding inequality constraint on the conserved quantity
G~� (i.e., kG~� � bk2 � c for somec 2 (0; kG� � bk2)).
See Appendix F for more details on these two complemen-
tary perspectives.

We emphasize that, for� G > 0, the �nal solution does not
satisfyG~� = b exactly. Adherence to the constraint can

be gracefully controlled by shrinking� G . Speci�cally, if
we consider a monotonic decreasing sequence of constraint
values� G;n # 0, then the corresponding sequence of pos-
terior means~� n is well-behaved, and the limiting solution
can be calculated. This is shown in the following theorem.

Theorem 1 Let � and� be the mean and covariance ofu
obtained at the end of Step 1. Let� G;n # 0 be a monotonic
decreasing sequence of constraint values and let~� n be the
corresponding posterior mean at the end of Step 2 shown
in Equation 8. Then:

1. The sequence~� n converges to a limit~� ? monotoni-
cally; i.e.,k~� n � ~� ?k� � 1 # 0.

2. The limiting mean~� ? is the solution to a constrained
least-squares problem:argminy ky � � k� � 1 subject
to Gy = b.

3. The sequenceG~� n converges tobin L 2; i.e., kG~� n �
bk2 # 0.

Moreover, if the conservation constraintGu = b holds ex-
actly for the true solutionu, then:

4. The distance between the true solutionu and the
posterior mean~� n decreases as� G;n ! 0, i.e.,
k~� n � uk� � 1 # k~� ? � uk� � 1 .

5. For suf�ciently small � G;n , the log-likelihood
LL(u; ~� n ; ~� n ) is greater than LL(u; �; �) and in-
creases as� G;n ! 0.

See Appendix G for a proof of Theorem 1. Importantly,
Theorem 1 holds for any mean and covariance estimates
�; � , whether they come from a Gaussian Process, ANP,
or repeated runs of a black-box NN. It also shows that we
are guaranteed to improve in log-likelihood (LL), which we
also verify in the empirical results (see Appendix E).

We should also emphasize that, in addition to conserva-
tion, Equation 7 can incorporate other inductive biases,
based on knowledge of the underlying PDE. To take but
one practically-useful example, one typically desires a so-
lution that is free of arti�cial high-frequency oscillations.
This smoothing can be accomplished by penalizing large
absolute values of the second derivative via a second order
central �nite difference discretization in the matrix~G (see
Appendix D.2).

3. Empirical Results

In this section, we provide an empirical evaluation to illus-
trate the main aspects of our proposed framework PROB-
CONSERV. We choose the ANP model (Kim et al., 2019)
as our black-box, data-driven model in Step 1, and we refer
to this instantiation of our framework as PROBCONSERV-
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(a) easy: Diffusion equation (k = 1 ) (b) medium: PME (k(u) = u3) (c) hard: Stefan (discont.k(u))

Figure 1.Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equations: (a) “easy” parabolic
smooth (diffusion equation) solutions, with constant parameterk(u) = k � 1; (b) “medium” degenerate parabolic PME solutions, with
nonlinear monomial coef�cientk(u) = um , with parameterm = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp
solutions (Stefan equation) with nonlinear step-function coef�cientk(u) = 1u � u ? , where1E is an indicator function for eventE.

ANP.1 Unless otherwise stated, we use the limiting solu-
tion described in Equation 8, with� G = 0 , so that conser-
vation is enforced exactly through the integral form of the
PDE. We organize our empirical results around the follow-
ing questions:

1. Integral vs. differential form?
2. Strong control on the enforcement of the conservation

constraint?
3. “Easy” to “hard” PDEs?
4. Uncertainty Quanti�cation (UQ) for downstream

tasks?

Generalized Porous Medium Equation. The paramet-
ric Generalized Porous Medium Equation (GPME) is a
family of conservation equations, parameterized by a non-
linear coef�cient k(u). It has been used in applications
ranging from underground �ow transport to nonlinear heat
transfer to water desalination and beyond (Vázquez, 2007).
The GPME is given as:

ut � r � (k(u)r u) = 0 ; (9)

where F (u) = � k(u)r u is a nonlinear �ux function,
and where the parameterk = k(u) can be varied. Even
though the GPME is nonlinear in general, for speci�c ini-
tial and boundary conditions, it has closed form self-similar
solutions (V́azquez, 2007; Maddix et al., 2018a;b). This
enables ease of evaluation by comparing each competing
method to ground truth solutions.

By varying the parameterk(u) in the GPME family, one
can obtain PDE problems with widely-varying dif�cul-
ties, from “easy” (where �nite element and �nite differ-
ence methods perform well) to “hard” (where �nite volume
methods are needed), and exhibiting many of the qualitative

1The code is available athttps://github.com/
amazon-science/probconserv .

properties of smooth/easy parabolic to sharp/hard hyper-
bolic PDEs. See Figure 1 for an illustration. In particular:
the Diffusion equation is parabolic, linear and smooth, and
represents an “easy” case (Sec. 3.1); the Porous Medium
Equation (PME) has a solution that becomes sharper (as
m � 1, for k(u) = um , increases), and represents an “in-
termediate” or “medium” case (Sec. 3.2); and the Stefan
equation has a solution that becomes discontinuous, and
represents a “hard” case (Sec. 3.3).

We consider these three instances of the GPME (Diffusion,
PME, Stefan) that represent increasing levels of dif�culty.
In particular, the challenging Stefan test case illustrates the
importance of developing methods that satisfy conservation
conditions on “hard” problems, with non-smooth and even
discontinuous solutions, as well as for downstream tasks,
e.g., the estimation of the shock position over time. This is
important, given the well-known inductive bias that many
ML methods have toward smooth/continuous behavior.

See Appendix H for more on the GPME; see Appendix I
for details on the PROBCONSERV-ANP model schematic
(Figure 7), model training, data generation and the ANP;
and see Appendix J for additional empirical results on the
GPME and hyperbolic conservation laws.

Baselines. We compare our results to the following base-
lines:

• ANP: Base unconstrained ANP (Kim et al., 2019),
trained to minimize the negative evidence lower
bound (ELBO):

L = � ED;u � pEz� q� logp� (u; zjD )� logq� (zju; D );

whereq� denotes the variational distribution of the
data used for training, andp� denotes the generative
model. The ANP learns a global latent representa-
tion z that captures uncertainty in global parameters,
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which in�uences the prediction of the reference solu-
tion u. At inference time, the distribution ofu givenz
(p� (ujz; D)) outputs a mean and diagonal covariance
for Step 1.

• SOFTC-ANP: In this “Physics-Informed” Neural Pro-
cess ablation, we include a soft constrained PDE in
the loss function, as is done with PINNs (Raissi et al.,
2019), to obtain:

L + � Ez� q� kF � zk2
2;

whereF denotes the underlying PDE differential form
in Equation 1,� z denotes the output mean of the ANP,
and� denotes a hyperparameter controlling the rela-
tive strength of the penalty. (See Appendix J.1.2 for
details on the hyperparameter tuning of� .)

• HARDC-ANP: In this hard-constrained Neural Pro-
cess ablation, we project the ANP mean to the near-
est solution inL 2 satisfying the integral form of con-
servation constraint. This method is inspired by the
approach taken in Ńegiar et al. (2023) that projects
the output of a neural network onto the nearest solu-
tion satisfying a linear PDE system. HARDC-ANP is
an alternative to Step 2 that solves the following con-
strained least-squares problem:

� HC = argmin u ku � � k2
2 s.t.Gu = b

= � � GT (GGT ) � 1(G� � b):

HARDC-ANP is equivalent to the limiting solution of
the mean of PROBCONSERV as � G ! 0 in Equa-
tion 8a, if the variance from Step 1 is �xed to be the
same for each point, i.e.,� = I .

Evaluation. At test time, we select a value of the PDE
parameter� that lies within the range of PDE parameters
used during training (i.e.,� 2 A ). For each value of� ,
we generate multiple independent draws of(D i ; ui ; bi ) in
the same manner as the training data. For a given pre-
diction of the mean� and covariance� at a particular
time-index t j in the training window, we report the fol-
lowing prediction metrics: conservation error(CE(� ) =
(G� � b)t j ); predictive log-likelihood(LL(u; �; �) =
� 1

2M kut j ;� � � t j ;�k� � 1
t j

� 1
2M

P
i log � 2

t j ;i � log 2� ); and

mean-squared error(MSE(u; � ) = 1
M kut j ;� � � t j ;�k2

2),
whereM denotes the number of spatial points and� 2

t j ;� de-
notes the diagonal of� t j 2 RM � M . We report the average
of each metric overntest = 50 independent runs. Our con-
vention for bolding the CE metric is binary on whether con-
servation is satis�ed exactly or not. For the LL and MSE
metrics, we bold the methods whose mean metric is within
one standard deviation of the best mean metric.

Figure 2. The total massU(t) =
R


 u(t; x )d
 as a function of
timet for the (“easy”) diffusion equation with constant diffusivity
coef�cient k 2 A = [1 ; 5] and test-time parameter valuek = 1 .
The trueU(t) is zero at all times since there is zero net �ux
from the domain boundaries and mass cannot be created or de-
stroyed on the interior. Both PROBCONSERV-ANP and HARDC-
ANP satisfy conservation of mass exactly. The other baselines
violate conservation and result in a non-physical mass pro�le over
time. ANP and SOFTC-ANP are not even zero at timet = 0 .

Table 1. Mean and standard error for CE� 10� 3 (should be
zero), LL (higher is better) and MSE� 10� 4 (lower is better)
over n test = 50 runs for the (“easy”) diffusion equation at time
t = 0 :5 with variable diffusivity constantk parameter in the range
A = [1 ; 5] and test-time parameter valuek = 1 .

CE LL MSE

ANP 4.68 (0.10) 2:72 (0.02) 1:71 (0.41)
SOFTC-ANP 3.47 (0.17) 2:40 (0.02) 2:24 (0.78)
HARDC-ANP 0 (0.00) 3.08(0.04) 1:37 (0.33)

PROBCONSERV-ANP 0 (0.00) 2.74 (0.02) 1.55(0.33)

3.1. Diffusion Equation: Constantk

The diffusion equation is the simplest non-trivial form of
the GPME, with constant diffusivity coef�cientk(u) =
k > 0 (see Figure 1(a)). We train on values ofk 2 A =
[1; 5]. The diffusion equation is also known as the heat
equation, where in that application the PDE parameterk
denotes the conductivity and the total conserved quantity
denotes the energy. In our empirical evaluations, we use
the diffusion equation notation, and refer to the conserved
quantity as the mass.

Figure 2 illustrates that the unconstrained ANP solution
violates conservation by allowing mass to enter and exit the
system over time. Physically, there is no in-�ux or out-�ux
on the boundary of the domain, and thus the true total mass
of the systemU(t) =

R

 u(t; x )d
 is zero at all times.

Surprisingly, even incorporating the differential form of the
conservation law as a soft constraint into the training loss
via SOFTC-ANP violates conservation and the violation
occurs even att = 0 .

Enforcing conservation as a hard constraint in our
PROBCONSERV-ANP model and HARDC-ANP guaran-
tees that the system total mass is zero, and also leads to
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improved predictive performance for both methods. In par-
ticular, Table 1 shows that these methods exactly obtain the
lowest MSE and the highest LL. The success of these two
approaches that enforce the integral form of the conserva-
tion law exactly, along with the failure of SOFTC-ANP that
penalizes the differential form, demonstrates that physical
knowledge must be properly incorporated into the learn-
ing process to improve predictive accuracy. Figure 9 in
Appendix J.1.1 illustrates that these conservative methods
perform well on this “easy” case since the uncertainty from
the ANP is relatively homoscedastic throughout the solu-
tion space; that is, the estimated errors are mostly the same
size, and the constant variance assumption in HARDC-
ANP holds reasonably well.

3.2. Porous Medium Equation (PME):k(u) = um

The Porous Medium Equation (PME) is a subclass of the
GPME in which the coef�cient,k(u) = um ; is nonlinear
and smooth (see Figure 1(b)). The PME is known to be de-
generate parabolic, with differing behaviors depending on
the value ofm. We train on values ofm 2 A = [0 :99; 6].

Table 2 compares the CE, MSE, and LL results form =
1; 3; 6. These three values ofm re�ect “easy,” “medium,”
and “hard” scenarios, respectively, as the solution pro�le
becomes sharper. Despite achieving relatively low MSE
for m = 1 , the ANP model violates conservation the most.
The error pro�les as a function ofx in Figure 11 in Ap-
pendix J.1.2 illustrate the cause: the ANP consistently
overestimates the solution to the left of the shock. En-
forcing conservation consistently �xes this bias, leading to
errors that are distributed around0. Our PROBCONSERV-
ANP method results in an� 82% improvement in MSE,
and HARDC-ANP results in an� 54%improvement over
the ANP. Since HARDC-ANP shifts every point equally,
it induces a negative bias in the zero (degeneracy) region of
the domain, leading to a non-physical solution.

Form = 3 ; 6, while the MSE for PROBCONSERV-ANP in-
creases compared to the ANP, the LL for PROBCONSERV-
ANP improves. The increase in LL for PROBCONSERV-
ANP indicates that the uncertainty is better calibrated as
a whole. Figure 11 in Appendix J.1.2 illustrates that
PROBCONSERV-ANP reduces the errors to the left of the
shock point while increasing the error immediately to the
right of it. This error increase is penalized more in theL 2

norm, which leads to an increase in MSE. The LL metric
improves because our PROBCONSERV-ANP model takes
into account the estimated variance at each point. It is ex-
pected that the largest uncertainty occurs at the sharpest
part of the solution, since that is the area with the largest
gradient. This region is more dif�cult to be captured as the
shock interface becomes sharper whenm in increased.

For control on the enforcement of conservation constraint,

see Figure 5 in Appendix E, where we show empirically
that the log likelihood is always increasing, as stated in
Theorem 1. Note that there are optimal values of� 2

G , in
which case the MSE can be better optimized.

3.3. Stefan Problem: Discontinuous Nonlineark(u)

The most challenging case of the GPME is the Stefan prob-
lem. In this case, the coef�cientk(u) is a discontinuous
nonlinear step functionk(u) = 1u� u ? , where1E denotes
an indicator function for eventE and u? 2 R+ . The
solution is degenerate parabolic and develops a moving
shock over time (see Figure 1(c)). We train on values of
u? 2 A = [0 :55; 0:7] and evaluate the predictive perfor-
mances of each model atu? = 0 :6.

Unlike the PME test case, where the degeneracy point
(x � (t) = t) is the same for each value ofm, the shock
position for the Stefan problem depends on the parameter
u? (See Figure 4 in Appendix C). This makes the problem
more challenging for the ANP, as it can no longer mem-
orize the shock position. On this “harder” problem, the
unconstrained ANP violates the physical property of con-
servation by an order of magnitude larger in CE than in
the “easier” diffusion and PME cases. By enforcing con-
servation of mass, PROBCONSERV-ANP results in sub-
stantial� 65% improvement in MSE (Table 3). In addi-
tion, Figure 3(a) shows that the solution pro�les associated
with ANP and the other baselines are smoothed and devi-
ate more from the true solution than the solution pro�le of
our PROBCONSERV-ANP model. Similar to our previous
two case studies, adding the differential form of the PDE
via SOFTC-ANP does not lead to a conservative solution
(see Figure 12 in Appendix J.1.3). In fact, Table 3 shows
that surprisingly, conservation is violated more by SOFTC-
ANP than with the ANP, with a corresponding increase
in MSE. These results demonstrate that physics-based con-
straints, e.g., conservation need be incorporated carefully
(via �nite volume based ideas) into ML-based models.

Table 3 shows that the LL for PROBCONSERV-ANP in-
creases only slightly, compared to that of the ANP (3.56
vs 3.53), and it is slightly less than SOFTC-ANP. Figure
3(a) shows that enforcing conservation of mass creates a
small upward bias in the left part of the solution pro�le for
x 2 [0; 0:2]. Since the variance coming from the ANP is
smaller in that region, this bias is heavily penalized in the
LL. This bias is worse for HARDC-ANP, which assumes
an identity covariance matrix and ignores the uncertainty
estimates from the ANP. HARDC-ANP adds more notice-
able upward bias to thex 2 [0; 0:2] region, and it even adds
bias to the zero-density region to the right of the shock.
Compared to PROBCONSERV-ANP, HARDC-ANP only
leads to a slight reduction in MSE (3%) and a much lower
LL (2.33). This shows the bene�t of using the uncer-
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Table 2.Mean and standard error for CE� 10� 3 (should be zero), LL (higher is better) and MSE� 10� 4 (lower is better) overn test = 50
runs for the (“medium”) PME at timet = 0 :5 with variablem parameter in the rangeA = [0 :99; 6]. For test-time parameterm = 1 ,
where conservation by the unconstrained ANP is violated the most, PROBCONSERV-ANP leads to a substantial5:5� improvement in
MSE and log-likelihood. For test-time parametersm = 3 ; 6, the MSE for PROBCONSERV-ANP increases due to the error concentrated
at the sharper boundary while the desired log-likelihood and conservation metrics improve.

m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP 6:67 (0.39) 3:49 (0.01) 0:94 (0.09) � 1:23 (0.29) 3:67 (0.00) 1:90 (0.04) � 2:58 (0.23) 3:81 (0.01) 7.67(0.09)
SOFTC-ANP 5:62 (0.35) 3:11 (0.01) 1:11 (0.14) � 0:65 (0.30) 3:46 (0.00) 2:06 (0.03) � 3:03 (0.26) 3:49 (0.00) 7:82 (0.09)
HARDC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3:44 (0.03) 1.86(0.03) 0 (0.00) 3.40 (0.05) 7.61(0.09)

PROBCONSERV-ANP 0 (0.00) 3.56(0.01) 0.17(0.02) 0 (0.00) 3.68(0.00) 2.10 (0.07) 0 (0.00) 3.83(0.01) 10.4 (0.04)

Table 3.Mean and standard error for CE� 10� 2 (should be zero),
LL (higher is better), and MSE� 10� 3 (lower is better) over
n test = 50 runs for the (“hard”) Stefan variant of the GPME at
timet = 0 :05. Each model is trained with the parameteru? in the
rangeA = [0 :55; 0:7] and test-time parameter valueu? = 0 :6.
PROBCONSERV-ANP leads to an increase in log-likelihood and
a3� decrease in MSE.

CE LL MSE

ANP -1.30 (0.01) 3.53 (0.00) 5.38 (0.01)
SOFTC-ANP -1.72 (0.04) 3.57(0.01) 6.81 (0.15)
HARDC-ANP 0 (0.00) 2.33 (0.06) 5.18 (0.02)

PROBCONSERV-ANP 0 (0.00) 3.56(0.00) 1.89(0.01)

tainty quanti�cation from the ANP in our PROBCONSERV-
ANP model for this challenging heteroscedastic case.

Downstream Task: Shock Point Estimation. While
quantifying predictive performance in terms of MSE or LL
is useful in ML, these metrics are typically not of direct in-
terest to practitioners. To this end, we consider the down-
stream task of shock point estimation, which is an impor-
tant problem in �uids, climate, and other areas. The shock
position for the Stefan problemx?(t) depends on the pa-
rameteru?. Hence, for a given function at test-time, the
shock positionx?(t) is unknown and must be predicted
from the estimated solution pro�le.

We de�ne the shock point at timet as the �rst spatial point
(left-to-right) where the function equals zero:

x?(t) = inf
x

f u(t; x ) = 0 g: (10)

On a discrete grid, we approximate the in�mum using the
minimum. The advantage of a probabilistic approach is
that we can directly quantify the uncertainty ofx?(t) by
drawing samples from the posterior distributions of our
PROBCONSERV-ANP model and the baselines.

Figure 3(b) shows the corresponding histograms of the
posterior of the shock position. We see that our
PROBCONSERV-ANP posterior is centered around the true
shock value. By underestimating the solution pro�le, the
ANP misses the true shock position wide to the left, as do

(a) Solution pro�le.

(b) Posterior of the shock position.

Figure 3.(a) Stefan solution pro�les at timet = 0 :05 with train-
ing parameter valuesu? 2 A = [0 :55; 0:7] and test-time parame-
ter u? = 0 :6. PROBCONSERV-ANP results in a sharper solution
pro�le and the solution is mean-centered around the shock po-
sition. (b) The corresponding histogram of the posterior of the
shock position computed as the mean plus or minus 3 standard
deviations. PROBCONSERV-ANP reduces the level of underes-
timation and the induced negative bias at the shock interface to
result in more accurate shock position prediction.

the other baselines SOFTC-ANP and HARDC-ANP. Re-
markably, neither adding the differential form as a soft con-
straint (SOFTC-ANP) nor projecting to the nearest conser-
vative solution inL 2 (HARDC-ANP) helps with the task
of shock position estimation. This result highlights that
both capturing the physical conservation constraint and us-
ing statistical uncertainty estimates in our PROBCONSERV-
ANP model are necessary on challenging problems with
shocks, especially when the shock position is unknown.
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4. Conclusion

We have formulated the problem of learning physical mod-
els that can respect conservation laws from the �nite vol-
ume perspective, by writing the governing conservation law
in integral form rather than the commonly-used (in SciML)
differential form. This permits us to incorporate the global
integral form of the conservation law as a linear constraint
into black-box ML models; and this in turn permits us to
develop a two-step framework that �rst trains a black-box
probabilistic ML model, and then constrains the output us-
ing a probabilistic constraint of the linear integral form.
Our approach leads to improvements (in MSE, LL, etc.) for
a range of “easy” to “hard” parameterized PDE problems.
Perhaps more interestingly, our unique approach of using
uncertainty quanti�cation to enforce physical constraints
leads to improvements in challenging shock point estima-
tion problems. Future extensions include support for lo-
cal conservation in �nite volume methods, where the same
linear constraint approach can be taken by computing the
�uxes as latent variables; imposing boundary conditions
as linear constraints (Saad et al., 2023); and extension to
other physical constraints, including nonlinear constraints,
e.g., enstrophy in 2D and helicity in 3D, and inequality con-
straints, e.g., entropy (Tezaur et al., 2017).
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A. Related Works

Our method involves combining in a novel way ideas from several different literatures. As such, there is a large body
of related work, each of which approaches the problems we consider from somewhat different perspectives. Here, we
summarize some of the most related. Table 4 provides an overview of the comparisons of these methods.

Table 4.Summary of different properties of numerical and SciML methods for physical systems.

Method Conservative UQ
Inference with different

Initial Conditions
Inference with different

PDE coef�cients
Resolution
independent

Numerical methods X 7 7 7 7
PINNs 7 7 7 7 X
Neural Operators 7 7 X X X
Conservative ML models X 7 X 7 7

PROBCONSERV(our approach) X X X X X

A.1. Numerical Methods

Numerical methods aim to approximate the solution to partial differential equations (PDEs) by �rst discretizing the spatial
domain
 into N gridpointsf x i gN

i =1 with spatial step size� x. Then, at each time step, we integrate the resulting semi-
discrete ODE in time with temporal step size� t to iteratively compute the solution at �nal timeT, i.e., f u(T; xi )gN

i =1 .
By the Lax Equivalence theorem for linear problems, convergence to the true solution, i.e., the norm of the error tending
to zero, can be proven to occur when� t; � x ! 0 (N ! 1 ) for methods that are both stable and consistent (LeVeque,
2007). A limitation of numerical methods is that to obtain higher accuracy, �ne mesh resolutions must be used, which can
be computationally expensive in higher dimensions. In addition, for changes in PDE parameters, the simulations need to
be re-run. These classical methods are also deterministic, and they do not provide uncertainty quanti�cation.

Finite Volume Methods. Finite volume methods are designed for conservation laws. These methods divide the domain
into control volumes, where the integral form of the governing equation is solved (LeVeque, 1990; 2002). By solving the
integral form at each control volume, these methods enforce �ux continuity, i.e., that the out-�ux of one cell is equal to
the in-�ux of its neighbor. This results in local conservation, which guarantees global conservation over the entire domain.
Maddix et al. (2018a) show that the degenerate parabolic Generalized Porous Medium Equation (GPME) has presented
challenges for classical averaged-based �nite volume methods, e.g., arithmetic and harmonic averaging. These numerical
artifacts include arti�cial temporal oscillations, and locking or lagging of the shock position. To eliminate these artifacts
on the more challenging Stefan problem, Maddix et al. (2018b) show that information about the shock location needs to
be incorporated into the scheme to satisfy the Rankine-Hugoniot condition. Other complex methods that explicitly track
the front, e.g., front-tracking methods (Al-Rawahi & Tryggvason, 2002; Li et al., 2003) and level set methods (Osher
& Sethian, 1988) that implicitly model the interface as a signed distance function, have also been applied to the Stefan
problem for modeling crystallization (Sethian & Strain, 1992; Chen et al., 1997).

Reduced Order Models (ROMs). Reduced Order Models (ROMs) have been a popular alternative to full order model
numerical PDE simulations for computational ef�ciency. ROMs aim to approximate the solution in a lower dimensional
subspace by computing the proper orthogonal decomposition (POD) basis using the singular value decomposition (SVD).
Similar to deep learning models, there is no way to enforce that unconstrained ROMs are conservative and non-oscillatory.
Tezaur et al. (2017) investigate enforcing conservative, entropy and total variation diminishing (TVD) constraints for ROMs
as constrained nonlinear least squares problems. These methods are coined “structure preserving” ROMs via physics-based
constraints (Sargsyan, 2016).

A.2. Scienti�c Machine Learning (SciML) Models

Here we describe the recent work in using ML models to solve PDEs. At a high-level, these works can be divided into
three categories: 1. Physics-Informed Neural Networks (PINNs), which aim to incorporate PDE information as a soft
constraint in the loss function; 2. Neural Operators, which aim to learn the solution mapping from PDE coef�cients or
initial conditions to solutions; and 3. Hard-constrained conservative ML models, which aim to incorporate different types
of constraints to enforce conservation into the architecture.

12



Learning Physical Models that Can Respect Conservation Laws

Physics-informed ML Methods. Physics-informed neural networks (PINNs) (Raissi et al., 2019) parameterize the solu-
tion to PDEs with a neural network (NN). These methods impose physical knowledge into neural networks by adding the
differential form of the PDE to the loss function as a soft constraint or regularizer. Purely data-driven approaches include
DeepONet (Lu et al., 2021) and Neural Operators (NOs) (Li et al., 2020; 2021a; Gupta et al., 2021), which aim to learn the
underlying function map from initial conditions or PDE coef�cients to the solution. Learning this mapping enables these
methods to be resolution independent, i.e., train on a coarse resolution and perform inference on a �ner resolution. These
methods only use PDE knowledge implicitly by training on simulations. The Physics-Informed Neural Operator (PINO)
attempts to address that the physics are not directly enforced in the model by making the data-driven Fourier Neural Op-
erator (FNO) “physics-informed.” To do so, they again add the differential form into the supervised loss function as a soft
constraint regularization term (Li et al., 2021b; Goswami et al., 2022).

Recently Krishnapriyan et al. (2021); Edwards (2022) identi�ed several challenges and limitations for SciML of this soft
constraint approach on the training procedure for several PDEs with large parameter values. In particular, Krishnapriyan
et al. (2021) show that the sharp and non-smooth loss surface created by adding the PDE directly as a regularizer can be
more dif�cult to optimize. Relatedly, PINO has been shown to perform worse than the base FNO without the differential
form of the PDE as a soft constraint in the loss (Li et al., 2021b; Saad et al., 2023). Motivated by these observations, Négiar
et al. (2023) propose a solution for linear PDEs that enforces the differential form of the PDE as a hard constraint; and
Subramanian et al. (2022) propose another solution using an adaptive update of collocation points. In addition, Wang et al.
(2022) examine training issues associated with the spectral bias in PINNs (Jacot et al., 2018). Edwards (2022) discusses
the broader-scale impacts of these results for the SciML �eld, and motivates the need for better solutions that capture the
underlying continuous physics.

Machine Learning Models for Conservation Laws. Enforcing the PDE as a soft constraint gives very weak control on
the physical conservation property, resulting in non-physical solutions that can violate governing conservation law. Jekel
et al. (2022) aim to satisfy conservation by adding the continuity equation as a soft regularizer via the PINNs approach, and
they show that this does not improve performance. To try to remedy this, Mao et al. (2020); Jagtap et al. (2020) propose
conservative PINNs (cPINNs) for conservation laws, which aim to enforce �ux continuity, i.e., the out-�ux of one cell
equals the in-�ux of the neighboring cell, for a type of local conservation. Again, however, this condition on the �ux is
added to the loss function as a regularization term, i.e., as a soft constraint in a Lagrange dual form, and so the conservation
condition is in general not exactly satis�ed.

Motivated by the importance of satisfying conservation laws in climate applications, Bolton & Zanna (2019); Zanna &
Bolton (2020); Beucler et al. (2021) have proposed building known linear physical constraints directly into deep learning
architectures. Beucler et al. (2021) propose a model that forces the output of a neural network into the null space of
the constraint matrix. While the solution exactly satis�es the constraints, the constraints depend on the resolution of the
data, and they are an approximation to the true physical quantity that needs to be constrained. Surprisingly, Beucler
et al. (2021) also �nds that the reconstruction error is not always improved with adding constraints. Other methods to
enforce conservation include the following. Sturm & Wexler (2022) enforce the �ux continuity equation in the last layer
of the neural network to model the balance of atoms. Müller (2022) enforce conservation by encoding symmetries using
Noether's theorem. Richter-Powell et al. (2022) propose so-called Neural Conservation Laws, to enforce conservation by
design by using parametizations of deep neural networks similar to the approaches in Négiar et al. (2023); Sturm & Wexler
(2022); Müller (2022). In particular, Richter-Powell et al. (2022) use a change of variables that combines time and space
derivatives into the divergence operator to create a divergence-free model, and they then use auto-differentiation similar
to the Neural ODEs approach (Chen et al., 2018). This optimize-then-discretize approach has been shown to have related
dif�culties (Krishnapriyan et al., 2022; Ott et al., 2021; Onken & Ruthotto, 2020).

B. Derivation of the Integral Form of a Conservation Law

To obtain the integral form of a conservation law, given in Equation 3 as:
Z



u(t; x )d
 =

Z



h(x)d
 �

Z t

0

Z

�
F (u) � nd� dt; (11)

we �rst integrate the differential form of the conservation law, given in Equation 2 as:

F u = ut + r � F (u); (12)
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over the spatial domain
 . From this, we obtain an expression for the rate of change in time of the total conserved quantity
in terms of the �uxes on the boundary, given as:

d
dt

Z



u(t; x )d
 =

Z



ut (t; x )d
 (13a)

= �
Z



r � F (u)d
 (13b)

= �
Z

�
(F (u) � n)d� ; (13c)

where the last step is obtained by applying the divergence theorem to the �ux term, andn is the outward pointing unit
normal on the boundary� .

We then integrate Equation 13 over the temporal domain[0; t]. Doing this to Equation 13a yields:
Z t

0

Z



ut (t; x )d
 =

Z



u(t; x )d
 �

Z



u(0; x)d
 ;

whereu(0; x) = h(x) denotes the initial condition. By equating this quantity to the temporal integral of the right hand side
of Equation 13c, we obtain the corresponding integral form of a conservation law:

Z



u(t; x )d
 =

Z



h(x)d
 �

Z t

0

Z

�
F (u) � nd� dt;

which is Equation 11.

C. Exact Solutions and Linear Conservation Constraints for Conservation Laws

In this section, we provide the exact solutions to to a wide range of conservation laws:

ut + r � F (u)
| {z }

F u

= 0 ; x 2 
 ;

u(0; x) = h(x);

u(t; x ) = g(t; x ); x 2 � ;

9
>>>=

>>>;

; 8 t � 0; (14)

for general nonlinear �uxF (u), nonlinear differential operatorF , initial conditionh(x) and prescribed boundary condi-
tions on the boundary� of the spatial domain
 . These exact solutions are used to generate the solution samples for the
training data in the experiment section 3.

The integral form of the conservation law in Equation 4 is given as:
Z



u(t; x )d


| {z }
Gu(t;x )

=
Z



h(x)d
 +

Z t

0
(Fin � Fout)dt

| {z }
b( t )

;
(15)

where
 = [ x0; xN ], Fin = F (u; t; x 0)ju= g( t;x 0 ) , Fout = F (u; t; x N )ju= g( t;x N ) andg(t; x ) is the prescribed Dirichlet
boundary condition in Equation 14. We provide the exact formulation of our linear constraintGu(t; x ) = b(t). Table 5
provides a summary, showing that our boundary �ux linearity assumption holds for a broad class of problems—even
including nonlinear conservation laws with nonlinear PDE operatorsF .

C.1. GPME Family of Conservation Laws

In this subsection, we consider the (degenerate) parabolic GPME family of conservation laws given in Equation 9 as:

ut � r � (k(u)r u) = 0 ;

with �ux F (u) = � k(u)r u. Figure 4 shows the effects of the various PDE parametersk(u) at a �xed time t on the
solution on three instances of the GPME ranging from the “easy” to “hard” cases, i.e., the diffusion equation, PME and
Stefan, respectively.
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Table 5.Classi�cation of PDE conservation laws ranging from “easy” to “hard”, and corresponding total time-varying conserved value
b(t) in the integral form of Equation 15 for speci�ed �ux functionF (u), initial and boundary conditionsh(x) andg(t; x ), respectively
in Equation 14. See Section C.1.3 for the value of the constantc1 2 R.

PDE Type F (u) h(x) g(t; x ) 
 � b(t)

Diffusion
Linear parabolic

(“easy”)
� kr u, k 2 R+ sin(x) f 0; 0g [0; 2� ] f 0; 2� g 0

PME
Nonlinear degenerate
parabolic (“medium”)

� um r u, m 2 Z+ 0 f (mt )1=m ; 0g [0; 1] f 0; 1g m 1+1 =m

m +1 t1+1 =m

Stefan
Nonlinear degenerate

parabolic (“hard”)

(
�r u; u � u?

0; otherwise
, u? 2 R+ 0 f 1; 0g [0; 1] f 0; 1g 2c1

p
t=�

Advection
Linear hyperbolic

(“medium”)
�u , � 2 R+

(
1; x � 0:5

0; otherwise
f 1; 0g [0; 1] f 0; 1g 1

2 + �t

Burgers'
Nonlinear

hyperbolic (“hard”)
1
2 u2

(
� ax; x � 0; a 2 R+

0; otherwise
f a; 0g [� 1; 1] f� 1; 1g (a=2)(1 + at)

(a) k: Diffusion equation att = 1 (“easy”). (b) m: PME att = 0 :5 (“medium”). (c) u? : Stefan att = 0 :08 (“hard”).

Figure 4.Effect of PDE parameters on the three “easy” to “hard” instances of the GPME at �xed timet.

C.1.1. DIFFUSION EQUATION

The heat or diffusion equation is a simple linear parabolic PDE with constant coef�cientk(u) = k, which represents an
“easy” task. Figure 4(a) illustrates the effect of the constant diffusivity (conductivity) parameterk on solutions to the
diffusion (heat) equation. For larger values ofk, we see that the solution more quickly dissipates toward the constant
smooth zero steady state.

Exact Solution. We use the same diffusion test problem from Krishnapriyan et al. (2021) with the following initial
condition and periodic boundary conditions:

u(0; x) = h(x) = sin( x); 8x 2 
 = [0 ; 2� ];

u(t; 0) = u(t; 2� ); 8t 2 [0; T];

respectively. The exact solution is given as

u(t; x ) = FT � 1(FT (h(x))e� kn 2 t );

whereFT denotes the Fourier transform, andn denotes the frequency in the Fourier domain.

Global Conservation. The total mass (energy) is constant and zero over all time, since there is no in or out �ux to the
domain. Then, Equation 15 reduces to the following linear homogeneous system:

Gu(t; x ) =
Z x N

x 0

u(t; x )dx = 0 = b(t): (16)

To derive the above relation, we see by using separation of variables that the solutionu(t; x ) = sin( x)T(t) is a damped
sine curve over time. The �uxF (u) = � kr u = � cos(x)T(t), whereT(t) denotes a decaying exponential function.
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Then, the integral form in Equation 15 is given as:

Z



u(t; x )d
 =

Z



h(x)d
 +

Z t

0
[F (u; t; x 0 = 0) � F (u; t; x N = 2 � )]dt

=
Z 2�

0
sin(x)d
 � k

Z t

0
[cos(0)T(t) � cos(2� )T(t)]dt = 0 ;

by periodicity.

C.1.2. POROUSMEDIUM EQUATION

In the Porous Medium Equation (PME), the nonlinearity and small values of the coef�cientk(u) = um , for m � 1, cause
challenges for current state-of-the-art SciML baselines as well as classical numerical methods on this degenerate parabolic
equation. The dif�culty increases as the exponentm increases, and the solution forms sharper corners. In particular, the
solution gradient is �nite form = 1 , and it approaches in�nity near the front form > 1. Figure 4(b) illustrates the effect
of the parameterm on the solution, with solutions form > 1 being sharper, and having a different pro�le than those for
the piecewise linear solution form = 1 .

Exact Solution. We test the locking problem (TLP) of the PME from Lipnikov et al. (2016); Maddix et al. (2018a) with
the following initial and growing in time Dirichlet left boundary conditions for some �nal timeT � 1:

u(0; x) = h(x) = 0 ; 8x 2 
 = [0 ; 1];

u(t; 0) = g(t; 0) = ( mt )1=m ; 8t 2 [0; T];

u(t; 1) = g(t; 1) = 0 ; 8t 2 [0; T];

respectively. The exact solution is given as:

u(t; x ) = ( m(t � x)+ )1=m : (17)

Global Conservation. We write the speci�c form of the linear conservation constraint in Equation 15 for the PME as:

Gu(t; x ) =
Z x N

x 0

u(t; x )dx =
m1+1 =m

m + 1
t1+1 =m = b(t); (18)

by using the fact that the total mass of the initial condition is zero, and thatu(t; x N = 1) = 0 on the right boundary for
t � xN = 1 .

Global conservation is driven by the in-�ux at the growing in left boundary, where

Fin = F (u; t; x 0)ju= g( t;x 0 ) ;x = x 0 = � g(t; x 0)m r ujx = x 0 = � mt r ujx = x 0 :

The boundary �ux at the right boundary is 0, since we assume that the shock is contained in the domain andt > x , hence
u(t; 1) = 0 and

Fout = F (u; t; x N )ju= g( t;x N ) ;x = x N = � g(t; x N )m r ujx = x N = 0 :

The �rst integral on the righthand side in Equation 15 consisting of the initial mass is 0, sinceh(x) = 0 , and we are left
only with the in-�ux term:
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Z



u(t; x )d
 =

Z t

0
Fin(t)dt

= �
Z t

0
g(t; x 0 = 0) m r ujx = x 0 dt

=
Z t

0
(mt )(mt )1=m � 1dt

= m1=m
Z t

0
t1=m dt

=
m1+1 =m

m + 1
t1+1 =m ;

wherer ujx = x 0 = � (m(t � x))1=m � 1jx = x 0 = � (mt )1=m � 1.

C.1.3. STEFAN PROBLEM

The Stefan problem is the most challenging problem in the GPME degenerate parabolic family of conservation equations
since the coef�cientk(u) is a nonlinear step function of the unknownu, given as:

k(u) =

(
kmax ; u � u?;
kmin ; u < u ?;

(19)

for constantskmax ; kmin 2 R andu(t; x � (t)) = u� 2 R+ for shock positionx � (t). In this problem, the solution is a shock
or moving interface with a �nite speed of propagation that does not dissipate over time. Figure 4(c) illustrates the effect of
the parameteru? on the solution and shock position, with smaller values ofu? resulting in a faster shock speed.

Exact Solution. We use the Stefan test case from van der Meer et al. (2016); Maddix et al. (2018b) withkmax = 1 ,
kmin = 0 in Equation 19, and the following initial and Dirichlet boundary conditions for some �nal timeT:

u(0; x) = h(x) = 0 ; 8x 2 
 = [0 ; 1];

u(t; 0) = g(t; 0) = 1 ; 8t 2 [0; T];

u(t; 1) = g(t; 1) = 0 ; 8t 2 [0; T];

respectively. The exact solution is given as:

u(t; x ) = 1u� u ?

�
1 � c1�[ x=(2

p
kmaxt)]

�
; (20)

where 1E denotes an indicator function for eventE, �( x) = erf(x) =
Rx

0 � (y)dy denotes the error function with
� (y) = (2 =

p
� ) exp(� y2), and constantc1 = (1 � u� )=�[ �= (2

p
kmax )]. A nonlinear solve for~� : (1 � u� )=

p
� =

u� �(~� )~� exp(~� 2), is used to compute� = 2
p

kmax ~� . The exact shock position isx � (t) = �
p

t.

Global Conservation. We write the linearGconservation constraint in Equation 15 for the Stefan equation as:

Gu(t; x ) =
Z x N

x 0

u(t; x )dx = 2c1

r
kmax t

�
= b(t): (21)

We use the fact that the solution is monotonically non-increasing to compute the coef�cient values at the boundaries,
i.e., u(t; x 0) � u? � u(t; x N ), where0 = x0 � x? � xN = 1 andx � (t) denotes the shock position. It follows that
k(u(t; x 0)) = kmax andk(u(t; x N )) = 0 . Then the out-�uxFout = k(u(t; x N )) r u = 0 . The �rst integral on the righthand
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side of Equation 15 consisting of the initial mass is 0, sinceh(x) = 0 , and we are left only with the in-�ux term as follows:
Z



u(t; x )d
 =

Z t

0
Fin(t)dt

= � kmax

Z t

0
r ujx = x 0 dt

= c1

r
kmax

�

Z t

0
t � 1=2dt

= 2c1

r
kmax t

�
;

wherer ujx = x 0 = � c1� 0[x0=(2
p

kmax t)]=(2
p

kmax t) = � c1=
p

�k max t exp[x2
0=(4kmax t)] = � c1=

p
�k max t for x0 = 0 .

C.2. Hyperbolic Conservation Laws

In this section, we consider hyperbolic conservation laws, where solutions exhibit shocks and smooth initial conditions
self-sharpen over time (LeVeque, 1990; 2002).

C.2.1. LINEAR ADVECTION

The linear advection (convection) equation:
ut + �u x = 0 ; (22)

is a hyperbolic conservation law with �uxF (u) = �u , where a �uid with densityu is transported or advected by some
constant velocity� 2 R. For larger values of� , the shock moves faster.

Exact Solution. Here we consider the test case with the following initial and boundary conditions:

u(0; x) = h(x) = 1x � 0:5; 8x 2 
 = [0 ; 1];

u(t; 0) = g(t; 0) = 1 ; 8t 2 [0; T];

u(t; 1) = g(t; 1) = 0 ; 8t 2 [0; T];

respectively, and1E denotes an indicator function for eventE. Note that the linear advection (convection) problem is also
studied in Krishnapriyan et al. (2021) with smoothh(x) = sin( x) and periodic boundary conditions. Here we consider the
more challenging case, where the initial condition is already a shock.

In our case, the exact solution,
u(t; x ) = h(x � �t );

is simply the initial condition shifted to the right, which is a shock wave traveling to the right with speed� > 0.

Global Conservation. We write the linear conservation constraint in Equation 15 for linear advection as:

Gu(t; x ) =
Z x N

x 0

u(t; x )dx =
1
2

+ �t = b(t): (23)

The out-�ux Fout = u(t; 1) = g(t; 1) = 0 , by the �xed right Dirichlet boundary condition, and we are left with the
following terms: Z



u(t; x )d
 =

Z



h(x)dx +

Z t

0
Fin(t)dt

=
Z 0:5

0
dx + �

Z t

0
u(t; 0)dt

=
1
2

+ �t;

by using the Dirichlet boundary conditionu(t; 0) = g(t; 0) = 1 in the second term in the last step. We see that the time
rate of change in total mass is constant over time.
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C.2.2. BURGERS' E QUATION

Burgers' Equation, given as:

ut +
1
2

(u2)x = 0 ; (24)

is a commonly used nonlinear hyperbolic conservation law with �uxF (u) = 1
2 u2. Among other things, it is used in traf�c

modeling.

Exact Solution. We consider the test case from Tezaur et al. (2017), wherea = 1 , with the following initial and boundary
conditions:

u(0; x) = h(x) =

8
><

>:

a; x � � 1;
� ax; � 1 � x � 0;
0; x � 0;

8x 2 
 = [ � 1; 1];

u(t; � 1) = g(t; � 1) = a; 8t 2 [0; T];

u(t; 1) = g(t; 1) = 0 ; 8t 2 [0; T];

respectively for constant, positive parameter slopea � 1. For larger values ofa, the slope of the initial condition is steeper,
and a shock is formed faster.

We write the nonlinear Burgers' Equation 24 in non-conservative form as

ut + uux = 0 :

We see that this is the advection Equation 22 with speed� = u. Hence, similarly the exact solution is given byu(t; x ) =
h(x � ut) when the characteristics curves do not intersect, by using the method of characteristics (Evans, 2010). We then
obtain the following solution:

u(t; x ) =

8
><

>:

a; x � ut � � 1;
� a(x � ut); � 1 � x � ut � 0;
0; x � ut � 0:

We use the second case to solve this implicit equation explicitly foru, i.e., u = � a(x � ut) () u = � ax
1� at . Then

x � ut = x
1� at , where the denominator1 � at > 0 for t < 1=a. We then solve the inequalities and substitute this in to

obtain:

u(t; x ) =

8
><

>:

a; x � at � 1;
ax

at � 1 ; at � 1 � x � 0;
0; x � 0;

for 0 � t < 1=a. We see that as time increases the linear part of the solution self-sharpens with a steeper slope until the
characteristics intersect at breaking time

tb =
� 1

inf x h0(x)
= 1=a;

and a shock is formed. This is known as the waiting time phenomenon (Maddix et al., 2018b). The rightward moving
shock forms with weak solution given as:

u(t; x ) =

(
a; x � 1

2 (at � 1);
0; x � 1

2 (at � 1);

for t � 1=a. The shock speedx0(t) is given by the Rankine-Hugoniot (RH) condition (Evans, 2010). The RH condition
simpli�es for Burgers' Equation as follows:

x0(t) =
f (uR ) � f (uL )

uR � uL
=

1
2

u2
R � u2

L

uR � uL
=

1
2

(uR � uL )(uR + uL )
uR � uL

=
uR + uL

2
=

a
2

;

whereuL = a denotes the solution value to the left of the shock anduR = 0 denotes the solution value to the right
of the shock. Lastly, to obtain the shock positionx(t), we solve the simple ODEx0(t) = a=2 with initial condition
x(tb = 1=a) = 0 to obtainx(t) = at

2 + c, wherex(1=a) = 1
2 + c = 0 , and soc = � 1

2 . This results inx(t) = 1
2 (at � 1),

as desired.
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Global Conservation. We write the linear conservation constraint in Equation 15 for Burgers' equation as:

Gu(t; x ) =
Z x N

x 0

u(t; x )dx =
a
2

(1 + at) = b(t): (25)

The out-�ux is Fout = 1
2 u(t; 1)2 = 1

2 g(t; 1)2 = 0 , by the �xed right Dirichlet boundary condition, and we are left with the
following terms: Z



u(t; x )d
 =

Z



h(x)dx +

Z t

0
Fin(t)dt

= � a
Z 0

� 1
xdx +

1
2

Z t

0
u(t; � 1)2dt

=
a
2

(1 + at);

by using the Dirichlet boundary conditionu(t; � 1) = g(t; � 1) = a in the second term in the last step. We again see that
the time rate of change in total mass is constant over time.

D. Discretizations of the Integral Operator Gfor Conservation and Additional Linear
Constraints

In this section, we �rst describe common discretization schemesG for the integral operatorG in Equation 5 given as:

Gu(t; x ) =
Z



u(t; x )d
 = b(t); (26)

to form a linear matrix constraint equationGu = b. Then, we show how to incorporate other types of linear constraints into
our framework PROBCONSERV. In particular, we consider arti�cial diffusion, which is a common numerical technique
to smooth numerical artifacts through the matrix~G arising from the second order central �nite difference scheme of the
second derivative.

D.1. Discretizations of the Integral OperatorG

Here, we provide examples of the discrete matrixG 2 RT � MT , which approximates the continuous integral operatorG
in Equation 26. We useM to denote the number of spatial points,T to denote the number of time points, and we set
N = MT .

We form a discrete linear system from the continuous integral conservation law, i.e,.Gu = b, where each rowi of G acts as
a Riemann approximation to the integralGu(t; x ) at timet i . At inference time, we assume we have an ordered output grid
f (t1; x1); : : : ; (t1; xM ); : : : ; (tT ; x1); : : : ; (tT ; xM )g with spatial grid spacing� x j = x j +1 � x j for j = 1 ; : : : ; M � 1.
We want to compute the solution at these corresponding grid points given as:

u = [ u(t1; x1); : : : ; u(t1; xM ); : : : ; u(tT ; x1); : : : ; u(tT ; xM )]T 2 RMT :

The known right-hand side is given as:
b = [ b(t1); : : : ; b(tT )]T 2 RT :

We now proceed to provide examples of speci�c matricesG corresponding to common numerical spatial integration
schemes (Burden et al., 2016).

Left Riemann Sum. ForG arising from the common �rst-order left Riemann sum

M � 1X

j =1

u(t i ; x j )� x j ;

at timet i , we have the following expression:

Gij =

(
� x j ; (i � 1)M + 1 � j � iM � 1;

0; otherwise:
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In other words, it uses the left function valueu(t; x j ) on the interval [x j ; x j +1 ]. The right Riemann sum
(
P M

j =2 u(t; x j )� x j � 1 at timet) is a simple extension that shifts the column indices by 1 to(i � 1)M + 2 � j � iM to
use the right valueu(t i ; x j +1 ) on the interval[x j ; x j +1 ].

Trapezoidal Rule. For G arising from the second order trapezoidal rule

Gu =
M � 1X

j =1

u(t i ; x j ) + u(t i ; x j +1 )
2

� x j ;

at timet i , we have the following expression:

Gij =

8
>>>>>>>><

>>>>>>>>:

� x j

2
; j = ( i � 1)M + 1 ;

� x j � 1 + � x j

2
; (i � 1)M + 2 � j � iM � 1;

� x j � 1

2
; j = iM;

0; otherwise:

(27)

We use the trapezoidal discretization ofG in Equation 27 in our experiments. Note that higher order schemes, e.g.,
Simpson's Rule may also be used, as well as more advanced numerical techniques. These can help to reduce the error in
the spatial integration approximation, including shock tracking schemes in Maddix et al. (2018b) on the more challenging
sharper problems with shocks that we see for high values ofm in the PME and Stefan.

D.2. Adding Arti�cial Diffusion into the Discretization

In addition to various discretization schemes to compute the integral operatorG, our PROBCONSERV framework can
incorporate other inductive biases based on the knowledge of the underlying PDE, e.g., to bypass undesirable numerical
artifacts. One common technique that has been used widely in numerical methods for this purpose is adding arti�cial
diffusion (Maddix et al., 2018a). This arti�cial diffusion can act locally at sharp corners such as shock interfaces, where
numerical methods tend to suffer from high frequency oscillations. Other common numerical methods to avoid numerical
oscillations include total variation diminishing (TVD), i.e., TV(u(t i +1 ; x)) � TV(u(t i ; x)) , 8i , or total variation bounded
(TVB), i.e., TV(u(t i +1 ; x)) � C, C > 0, 8i , where TV(u) =

R

 j @u

@xjd
 and is approximated as
P M � 1

j =1 ju(t i ; x j +1 ) �
u(t i ; x j )j (LeVeque, 1990; Tezaur et al., 2017). Note that enforcing these inequality constraints is a direction of future
work.

In machine learning, arti�cial diffusion is analogous to adding a regularization penalty on theL 2 norm of the second
derivative

R
f @2

@x2 u(t i ; x)g2dx (Hastie et al., 2013). This can be written as theL 2 norm of a linear operator applied tou,

k ~G(u)k2
2, where ~G(u)( t i ) := @2

@x2 u(t i ; x). Thus, we can incorporate this penalty term into PROBCONSERV in the same
manner as the integral operators by discretizing~G via a matrix ~G. Let ~G be the second order central �nite difference
three-point stencil at timet i overM spatial points:

( ~Gu) j =
�

u(t i ; x j +2 ) � u(t i ; x j +1 )
� x j +1

�
�

�
u(t i ; x j +1 ) � u(t i ; x j )

� x j

�
:

for j = 1 ; : : : ; M � 2. For simplicity of notation, we assume� x j := � x for all x j , though this need not be the case in
general. This results in the following three-banded matrix:

~G =
1

� x

2

6
4

1 � 2 1 0 : : :
0 1 � 2 1 : : :
...

...
...

...
...

3

7
5 : (28)

Since our goal is to penalize large differences in the solution, we set the constraint valueb to zero:

~Gu + � ~G � = 0 ;
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where� ~G > 0 denotes the constraint value for the arti�cial diffusion. Since the mechanism is exactly the same with a linear
constraint, arti�cial diffusion can be applied using Equation 8a withb = 0 , where~� and ~� are the mean and covariance
after applying the conservation constraint as follows:

~� diffusion = ~� � ~� ~GT (� 2
~G I + G~� GT ) � 1( ~G~� );

~� diffusion = ~� � ~� ~GT (� 2
~G I + G~� GT ) � 1( ~G~�) :

Moreover, the guarantees of Theorem 1 still hold. Smaller values of� ~G lead to smaller values ofk ~G~� diffusionk2
2, which

results in a smoother solution.

Unlike the case of enforcing conservation, it is typically not desirable when applying arti�cial diffusion to set� ~G to zero, as
this will lead to a simple line �t (Hastie et al., 2013). We set the variance for each row of~G as follows: Let� 2

i := Var(un )
be the variance of target valueun from the Step 1 procedure:

� 2
~G;i

:= Var(( ~Gu) i ) = Var(ui � 2ui +1 + ui +2 ) = � 2
i + 4 � 2

i +1 + � 2
i +2 � 4� (� i � i +1 + � i +1 � i +2 ) + 2 � 2� i � i +2 ;

where� 2 [0; 1] determines the level of auto-correlation between neighboring points. Higher values of� lead to lower
values of� 2

~G;i
, and hence a higher penalty.
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E. Control on Conservation Constraint

(a) Norm of the conservation error: CE2(~� ) = kG~� � bk2
2 .

(b) Log-likelihood: LL(u; ~�; ~�) = � 1
2M kut j ; � � ~� t j ; � k~� � 1

t j
� 1

2M

P
i log ~� 2

t j ;i � log 2� .

(c) Mean-squared error: MSE(u; ~� ) = 1
M kut j ; � � ~� t j ; � k2

2 .

Figure 5.Illustration of the norm of the conservation error CE2 (lower is better) in the top row, the predictive log likelihood (LL) in
the middle row (higher is better), and the mean-squared error (MSE) (lower is better) in the bottom row, as a function of the constraint
precision 1

� 2
G

for PROBCONSERV-ANP on the PME in subsection 3.2, whereM denotes the number of spatial points,~� 2
t j ; � denotes

the diagonal of the covariance~� t j 2 RM � M andt j denotes the time-index in the training window at which the metrics are reported.
Each column indicates results for a different values of PDE parameterm 2 f 1; 3; 6g, corresponding to “easy”, “medium”, and “hard”
scenarios, respectively. In all three cases, CE2 monotonically decreases to zero and LL monotonically increases as� 2

G ! 0 (1=� 2
G !

1 ), illustrating Theorem 1. The biggest gains in log-likelihood are form = 1 , where conservation was also violated the most. In
contrast, the relationship between MSE and1

� 2
G

is not guaranteed to be monotonic, and it qualitatively changes, depending on the value

of m.

Figure 5 illustrates that Theorem 1 holds empirically for PROBCONSERV-ANP on the PME in subsection 3.2, where
both the norm of the conservation error (CE2) monotonically decreases to zero and the predictive log likelihood (LL)
monotonically increases as the constraint precision� 2

G ! 0 (1=� 2
G ! 1 ). For the MSE, the trend depends on the

dif�culty of the problem. For “easy” scenarios, wherem = 1 , the MSE also monotonically improves (decreases) as
� 2

G ! 0 (1=� 2
G ! 1 ). For “medium” dif�culty problems, wherem = 3 , we see that there is an optimal value for� 2

G
around10� 5, and enforcing the constraint exactly does not result in the lowest MSE. For the “harder”m = 6 case, we
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see that a looser tolerance on the constraint results in better MSE. In this case the solution is non-physical since it does
not satisfy conservation. Note that in the sharperm = 6 case, the accuracy may be able to be improved by using more
advanced approximations for the integral operatorGthat take the sharp corners in the solution into account (Maddix et al.,
2018b).

F. Derivation of Constrained Mean and Covariance

In this section, we provide two interpretations for the Step 2 procedure of PROBCONSERV from Equation 8 given as:

~� = � � � GT (� 2
G I + G� GT ) � 1(G� � b); (29a)

~� = � � � GT (� 2
G I + G� GT ) � 1G� : (29b)

While Equation 8 is well-de�ned in the case that� 2
G = 0 , for simplicity we assume� 2

G > 0 throughout this section. In
Lemma 1, we show how Step 2 is justi�ed as a Bayesian update of the unconstrained normal distribution from Step 1 by
adding information about the conservation constraint contained in Equation 7, i.e.,b = Gu + � G � in Step 2. In Lemma 2,
we show how the posterior mean~� and ~� can be re-expressed in a numerically stable and computationally ef�cient form
given in Equation 29. Finally, Lemma 3 shows that this is equivalent to a least-squares optimization with an upper bound
on the conservation error.

Note: � 2 RMT ; � 2 RMT � MT ; G 2 RT � MT ; b 2 RT , whereN = MT denotes the number of spatio-temporal output
points,M denotes the number of spatial points andT denotes number of constraints or in this case time steps to enforce
the conservation constraint.

Lemma 1 (Step 2 as Bayesian update)Assume the predictive distribution ofu conditioned only on observed dataD is
normal with mean� and covariance� . Letb be the known conservation quantity that follows a normal distribution with
meanGu and covariance� 2

G I , where� 2
G > 0. Then the posterior distribution ofu conditional on both dataD and

conservation quantityb is normal with mean~� and covariance~� given as:

ujb; D � N (~�; ~�) ;
~� = A � 1� ;

~� = A � 1(� +
1

� 2
G

� GT b);

whereA = I + 1
� 2

G
� GT G:

Proof This follows the same logic as a standard multivariate normal model with known covariance; see Chapter 3.5 of
Gelman et al. (2015). We outline the derivation below. Note that we mark the terms that are independent of the unknown
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u as constants.

logp(ujb; D) = log p(ujD )
| {z }

Step 1

p(bju)
| {z }

Step 2

� log
Z

p(bju)dp(ujD ) (Bayes' Rule)

= log p(ujD ) + log p(bju) + C1

= log N (u; �; �) + log N (b; Gu; � 2
G I ) + C1

= �
1
2

�
ku � � k2

� � 1 +
1

� 2
G

kGu � bk2
2

�
+ C2

= �
1
2

�
uT � � 1u � 2uT � � 1� + uT (

1
� 2

G
GT G)u � 2uT 1

� 2
G

GT b
�

+ C3

= �
1
2

�
uT (� � 1 +

1
� 2

G
GT G)u � 2uT (� � 1� +

1
� 2

G
GT b)

�
+ C3

= �
1
2

�
uT (� � 1 +

1
� 2

G
GT G)

| {z }
~� � 1

u � 2uT (� � 1 +
1

� 2
G

GT G)
| {z }

~� � 1

(� � 1 +
1

� 2
G

GT G) � 1(� � 1� +
1

� 2
G

GT b)
| {z }

~�

�
+ C3

= �
1
2

�
uT ~� � 1u � 2uT ~� � 1 ~�

�
+ C3

= log N (u; ~�; ~�) + C4;

where

~� = (� � 1 +
1

� 2
G

GT G) � 1 = ( I +
1

� 2
G

� GT G) � 1� = A � 1� ; (30a)

~� = (� � 1 +
1

� 2
G

GT G) � 1(� � 1� +
1

� 2
G

GT b) = ~�(� � 1� +
1

� 2
G

GT b) (30b)

= A � 1�(� � 1� +
1

� 2
G

GT b) = A � 1(� +
1

� 2
G

� GT b); (30c)

C1 = � log
Z

p(bju)dp(ujD ); (30d)

C2 = C1 �
1
2

�
MT log 2� + log det � + T log � + log � 2

G

�
; (30e)

C3 = C2 �
1
2

�
� T � � 1� +

1
� 2

G
bT b

�
; (30f)

C4 = 0 : (30g)

Note thatC4 = 0 since the left-hand side and right-hand side are log-probability densities, so we have the desired expres-
sion. �

Lemma 2 (Numerically stable form for Step 2) Assume that� 2
G > 0. The posterior mean and covariance~� and ~� can

be written in a numerically stable form as:

~� = � � � GT (� 2
G I + G� GT ) � 1(G� � b);

~� = � � � GT (� 2
G I + G� GT ) � 1G� :

Proof We use the following two Searle identities (corollaries of the Woodbury identity) (Petersen et al., 2008):

(I + CB) � 1 = I � C(I + BC ) � 1B; (31a)

(C + BB T ) � 1B = C � 1B (I + B T C � 1B ) � 1; (31b)
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for some matricesB; C . Using Equation 31a, we re-writeA � 1:

A � 1 = ( I +
1

� 2
G

� GT G) � 1 (32a)

= I � � GT (I +
1

� 2
G

G� GT ) � 1 1
� 2

G
G (32b)

= I � � GT (� 2
G I + G� GT ) � 1G: (32c)

The desired expression for~� immediately follows by combining Equation 32c with Lemma 1. For~� , we break the
expression into two parts, and then use the Searle identity shown in Equation 31b as follows:

~� = A � 1(� +
1

� 2
G

� GT b) (33a)

= A � 1� + A � 1 1
� 2

G
� GT b; (33b)

A � 1� = ( I � � GT (� 2
G I + G� GT ) � 1G)�; (33c)

A � 1 1
� 2

G
� GT b = (� � 1 +

1
� 2

G
GT G) � 1 1

� 2
G

GT b (33d)

=
1

� 2
G

� GT (I +
1

� 2
G

G� GT ) � 1b (33e)

= � GT (� 2
G I + G� GT ) � 1b: (33f)

Adding the expressions in Equation 33c and Equation 33f yields the desired form for~� . �

Observe that the matrix� 2
G I + G� GT 2 RT � T is invertible for all values of� 2

G (including zero), since it is square in
the smaller dimension and has full rankT. In addition, inverting� 2

G I + G� GT 2 RT � T has reduced computational
complexity compared to invertingA.

Lemma 3 (Solution to constrained optimization) The expression for the posterior mean~� with � 2
G > 0 is equivalent to

solving the following constrained least-squares problem for some value ofc > 0:

~� = argmin y
1
2

ky � � k2
� � 1 ;

subject to1
2 kGy � bk2

2 < c , wherec < 1
2 kG� � bk2

2.

Proof This is a standard result from ridge regression (Hastie et al., 2013).

Sincec < 1
2 kG� � bk2

2, the complementary slackness condition requires thatc = 1
2 kGy � bk2

2. Thus, we get the following
Lagrangian:

L (y; � ) =
1
2

ky � � k2
� � 1 + �

�
1
2

kGy � bk2
2 � c

�
:

Observe that, if we re-labely := u and� := 1=� 2
G , thenL(y; � ) is equal to� logp(ujb; D) + C2, whereC2 is a constant

with respect toy. Thus, the optimal value ofy is the posterior mean from Equation 29a, i.e.,

r y L(y; � ) = 0 () y = ~�;

where

~� = � � � GT (
1
�

I + G� GT )(G� � b):
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Next, we substitute the above expression for~� into the remaining feasibility condition:

c =
1
2

kG~� � bk2
2

= kG
�

� � � GT (
1
�

I + G� GT ) � 1(G� � b)
�

� bk2
2

= kG� � G� GT (
1
�

I + G� GT ) � 1(G� � b) � bk2
2

= k
�

I � G� GT (
1
�

I + G� GT ) � 1
�

(G� � b)k2
2:

The eigenvalues of matrixI � G� GT [(1=� )I + G� GT ]� 1 shrink to0 as1=� ! 0. This establishes thatc and1=� have
a monotonic relationship. Hence, one can �nd a value ofc such that� = 1=� 2

G .

G. Proof of Theorem 1

In this section, we provide the proof for Theorem 1. We begin by �rst restating Theorem 1.

Theorem 1 Let � and � be the mean and covariance ofu obtained at the end of Step 1. Let� G;n # 0 be a monotonic
decreasing sequence of constraint values and let~� n be the corresponding posterior mean at the end of Step 2 shown in
Equation 8. Then:

1. The sequence~� n converges to a limit~� ? monotonically; i.e.,k~� n � ~� ?k� � 1 # 0.
2. The limiting mean~� ? is the solution to a constrained least-squares problem:argminy ky � � k� � 1 subject toGy = b.
3. The sequenceG~� n converges tob in L 2; i.e., kG~� n � bk2 # 0.

Moreover, if the conservation constraintGu = bholds exactly for the true solutionu, then:

4. The distance between the true solutionu and the posterior mean~� n decreases as� G;n ! 0, i.e.,
k~� n � uk� � 1 # k~� ? � uk� � 1 .

5. For suf�ciently small� G;n , the log-likelihood LL(u; ~� n ; ~� n ) is greater than LL(u; �; �) and increases as� G;n ! 0.

For the proof of Theorem 1, recall the following expression for the posterior mean from Equation 8a:

~� n = � � � GT (� 2
G;n I + G� GT ) � 1(G� � b):

Proof of 1. De�ne ~� ? � � � � GT (G� GT ) � 1(G� � b). We will show that~� n converges monotonically to~� ? as follows:

~� n � ~� ? = � GT �
(G� GT ) � 1 � (� 2

G;n I + G� GT ) � 1�
(G� � b) (34a)

= � GT �
(G� G) � 1(� � 2

G;n I )( � � 2
G;n I � G� GT ) � 1�

(G� � b) (34b)

= � 2
G;n � GT �

(G� GT ) � 1(� 2
G;n I + G� GT ) � 1�

(G� � b) (34c)

= � 2
G;n � GT �

� 2
G;n G� GT + I

� � 1
(G� � b): (34d)

The above follows from the Searle identity

C � 1 + B � 1 = C � 1(C + B )B � 1;

whereC = G� GT , B = � (� 2
G;n I + G� GT ), andC + B = � � 2

G;n I . Then,

k~� n � ~� ?k2
� � 1 = ( G� � b)T �

� 2
G;n (G� GT ) + I

� � 1
� 2

G;n G�� � 1� GT � 2
G;n

�
� 2

G;n (G� GT ) + I
� � 1

(G� � b): (35)
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Focusing on the matrix, we obtain:

Qn :=
�
� 2

G;n (G� GT ) + I
� � 1

� 2
G;n G�� � 1� GT � 2

G;n

�
� 2

G;n (G� GT ) + I
� � 1

(36a)

=
�
� 2

G;n (G� GT ) + I
� � 1

� 2
G;n G� GT � 2

G;n

�
� 2

G;n (G� GT ) + I
� � 1

(36b)

= � 2
G;n

�
� 2

G;n (G� GT ) + I
� � 1

� 2
G;n G� GT �

� 2
G;n (G� GT ) + I

� � 1
(36c)

= � 2
G;n

�
� 2

G;n (G� GT ) + I
� � 1

"
1

� 2
G;n

(G� GT ) � 1 + I

#� 1

(36d)

= � 2
G;n

"

I + � 2
G;n G� GT +

1
� 2

G;n
(G� GT ) � 1 + I

#� 1

(36e)

= � 4
G;n

�
2� 2

G;n I + � 4
G;n G� GT + ( G� GT ) � 1� � 1

: (36f)

Let � i ; vi be an eigenvalue and associated eigenvector ofG� GT , respectively. Thenvi is also an eigenvector of matrixQn

with associated eigenvalue
� 4

G;n

2� 2
G;n + � 4

G;n � i + � � 1
i

=
1

2� � 2
G;n + � i + � � 1

i � � 4
G;n

:

Since all the eigenvalues are strictly decreasing as� G;n ! 0, the valuek~� n � ~� ?k2
� � 1 = ( G� � b)T Qn (G� � b) # 0, as

required.�

Proof of 2. Now, we show that~� ? = argmin y ky � � k2
� � 1 subject toGy = b. This constrained least-squares problem

can be cast into the following constrained least-norm problem:

minimizekuk2
2; subject toG� 1=2u = b� � � 1=2�;

with the transformationu = � � 1
2 (y � � ) or y = � + �

1
2 u.

The �nal solution is
� � � GT (G� GT ) � 1(G� � b);

which equals~� ?. �

Proof of 3. We show that theL 2 norm between the predicted conservation value and the true value,kG~� n � bk2
2, converges

monotonically to0 as� 2
G;n ! 0. We start by substituting the expression for Equation 8a:

G~� n � b = G� � G� GT (� 2
G;n I + G� GT ) � 1(G� � b) � b

= ( I � G� GT (� 2
G;n I + G� GT ) � 1)(G� � b):

(37)

Let vi be an eigenvector ofG� GT and� i the associated eigenvector. Thenvi is also an eigenvector of(I � G� GT (� 2
G;n I +

G� GT ) � 1) with eigenvalue1� � i =(� 2
G;n + � i ). Since all the eigenvalues are monotonically decreasing to zero as� 2

G;n ! 0
monotonically,kG~� n � bk2

2 # 0. For � 2
G;n = 0 , G~� n � b = 0 . �

Proof of 4. De�ne P := � GT (G� GT ) � 1G, which is an oblique projection matrix since

P2 = � GT (G� GT ) � 1G� GT (G� GT ) � 1G = P

and

hx; Pyi � � 1 = xT � � 1Py = xT GT (G� GT ) � 1Gy = xT PT � � 1y = hPx; yi � � 1 :

The normk~� n � uk� � 1 can be decomposed into two parts:

k~� n � uk� � 1 = kP(~� n � u)k� � 1 + k(I � P)(~� n � u)k� � 1 :
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First, we show that the second termk(I � P)(~� n � u)k� � 1 equalsk~� ? � uk� � 1 for all n as follows:

(I � P)~� n = ( I � P)� � (I � P)� GT (� 2
G;n I + G� GT ) � 1(G� � b)

= ( I � P)� � � GT (� 2
G;n I + G� GT ) � 1(G� � b) + P� GT (� 2

G;n I + G� GT ) � 1(G� � b)

= ( I � P)� � � GT (G� GT ) � 1(G� � b) + � GT (G� GT ) � 1G� GT (� 2
G;n I + G� GT ) � 1(G� � b)

= ( I � P)�

= ~� ? � � GT (G� GT ) � 1b;

(I � P)u = u � � GT (G� GT ) � 1Gu

= u � � GT (G� GT ) � 1b;

Therefore,
(I � P)~� n � (I � P)u = ~� ? � u:

Next, we show that the �rst termkP(~� n � u)k� � 1 is equal to the distance between~� n and~� ?. We �rst compute:

P ~� n = P � � P � GT (� 2
G;n I + G� GT ) � 1(G� � b) (38a)

= � GT (G� GT ) � 1G� � � GT (� 2
G;n I + G� GT ) � 1(G� � b); (38b)

Pu = � GT (G� G� 1)Gu (38c)

= � GT (G� G� 1)b: (38d)

Then subtracting Equation 38d from Equation 38a gives:

P ~� n � Pu = � GT (G� GT ) � 1G� � � GT (� 2
G;n I + G� GT ) � 1(G� � b) � � GT (G� GT ) � 1b (39a)

=
�
� GT (G� GT ) � 1 � � GT (� 2

G;n I + G� GT ) � 1�
(G� � b) (39b)

= ~� n � ~� ?: (39c)

From part 1,k~� n � ~� ?k� � 1 # 0 monotonically as� 2
G;n # 0. Thus,

k~� n � uk2
� � 1 = k~� n � ~� ?k2

� � 1 + k~� ? � uk2
� � 1 # k~� ? � uk2

� � 1 :

�

Proof of 5. Recall that the predictive log-likelihood (LL) is de�ned as:

LL(u; ~� n ; ~� n ) = �
1

2M
ku � ~� n k~� � 1

n
�

1
2

X

i

log ~� n;i;i �
1

2M
log 2�;

whereM denotes the total number of points. Also recall that the precision is well-de�ned as:

~� � 1
n = � � 1 +

1
� 2

G;n
GT G;

so the �rst term of the predictive likelihood can be further decomposed as:

k~� n � uk2
~� � 1

n
= (~� n � u)T ~� � 1

n (~� n � u) = (~� n � u)T � � 1(~� n � u) + (~� n � u)T 1
� 2

G;n
GT G(~� n � u)

= k~� n � uk2
� � 1 +

1
� 2

G;n
kG~� n � bk2

2

= k~� n � uk2
� � 1 + k

1
� G;n

(G~� n � b)k2
2:

Substituting the expression from Equation 37, we get:

1
� G;n

(G~� n � b) =
1

� G;n
(I � G� GT (� 2

G;n I + G� GT ) � 1)(G� � b): (40)
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Let vi be an eigenvector ofG� GT and � i the associated eigenvector. Thenvi is also an eigenvector of
1

� G;n
(I � G� GT (� 2

G;n I + G� GT ) � 1)(G� � b) with eigenvalue:

1
� G;n

�
1 �

� i

� 2
G;n + � i

�
=

� G;n

� 2
G;n + � i

=
1

� G;n + � i � � 1
G;n

:

For suf�ciently small� G;n , the eigenvalues are monotonically decreasing to zero as� 2
G;n ! 0.

Finally, log(~� n ) i;i is non-increasing with respect to� 2
G;n . From Equation 8b,

~� n = � � � GT (� 2
G;n I + G� GT ) � 1G� ;

( ~� n ) i;i = � i;i � eT
i � GT (� 2

G;n I + G� GT ) � 1G� ei ;

whereei denotes thei -th elementary vector. Since� GT (� 2
G;n I + G� GT ) � 1G� is positive de�nite with positive diagonal

entries, and the eigenvalues of(� 2
G;n I + G� GT ) � 1 increase monotonically as� G;n ! 0, the entry( ~� n ) i;i decreases as

� G;n ! 0.

H. Additional Details on the Generalized Porous Medium Equation

In this section, we discuss in more detail the parametric Generalized Porous Medium Equation (GPME). The GPME is a
familyof conservation equations, parameterized by a nonlinear coef�cientk(u), and it has been used in several applications
ranging from underground �ow transport to nonlinear heat transfer to water desalination and beyond. Among other things,
it has the parametric ability to represent pressure, diffusivity, conductivity, or permeability, in these and other applications
(Vázquez, 2007). From the ML/SciML methods perspective, it has additional advantages, including closed-form self-
similar solutions, structured nonlinearities, and the ability to choose the parameterk(u) to interpolate between “easy” and
“hard” problems (analogous to but distinct from the properties of elliptical versus parabolic versus hyperbolic PDEs).

The GPME Equation. The basic GPME is given as:

ut � r � (k(u)r u) = 0 ; (41)

whereF (u) = � k(u)r u is a nonlinear �ux function, and where the parameterk = k(u) can be varied (to model different
physical phenomena, or to transition between “easy” PDEs and “hard” PDEs). Even though the equation appears to be
parabolic, for small values ofk(u) in the nonlinear case, it exhibits degeneracies, and it is is called “degenerate parabolic.”
By varyingk, solutions span from “easy” to “hard,” exhibiting many of the qualitative properties of smooth/nice parabolic
to sharp/hard hyperbolic PDEs. Among other things, this includes discontinuities associated with self-sharpening occurring
over time, even for smooth initial conditions.

(a) easy: Diffusion equation (k = 1 ) (b) medium: PME (k(u) = u3) (c) hard: Stefan (discont.k(u))

Figure 6.Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equations: (a) “easy” parabolic
smooth (diffusion equation) solutions, with constant parameterk(u) = k � 1; (b) “medium” degenerate parabolic PME solutions, with
nonlinear monomial coef�cientk(u) = um , with parameterm = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp
solutions (Stefan equation) with nonlinear step-function coef�cientk(u) = 1u � u ? , where1E is an indicator function for eventE.
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Figure 6 (Figure 1 repeated here) provides an illustration of this “easy-to-hard” paradigm for PDEs for the three classes of
the GPME considered in the main text. In particular, Figure 6(a) illustrates an “easy” situation, withk(u) � 1, where we
have a simple parabolic solution to the linear heat/diffusion equation, where a sine initial condition is gradually smoothed
over time. Figure 6(b) illustrates a situation with “medium” dif�culty, namely the degenerate parabolic Porous Medium
Equation (PME) with nonlinear differentiable monomial coef�cientk(u) = um . Here, form = 3 , a constant zero initial
condition self-sharpens, and it develops a sharp gradient that does not dissipate over time (Maddix et al., 2018a). Finally,
Figure 6(c) illustrates an example of the “hard” Stefan problem, where the coef�cientk(u) is a nonlinear discontinuous
step-function of the unknownu de�ned by the unknown valueu? = u(t; x ?(t)) = 0 :5 at the discontinuity locationx?(t).
In this case, the solution evolves as a rightward moving shock or moving interface over time (Maddix et al., 2018b).

Here, we provide more details on these and other classes of the GPME.

Heat/Diffusion Equation. Perhaps the simplest non-trivial form of the GPME, where the conductivity or diffusivity
coef�cient

k(u) = k > 0;

is a constant, corresponds to the heat (or diffusion) equation. In this case, Equation 9 reduces to the linear parabolic
equation,ut = k� u, where� denotes the Laplacian operator. Solutions of this equation are smooth due to the diffusive
nature of the Laplacian operator, and even sharp initial condition are smoothed over time.

Variable Coef�cient Problem. The linear variable coef�cient problem

k(u; x) = k(x);

is also a classical parabolic equation. The variable coef�cient problem is commonly used in reservoir simulations to model
the interface between permeable and impermeable materials, wherek(u) denotes the step-function permeabilities that
depends on the spatial positionx.

Porous Medium Equation (PME). Another subclass of the GPME, in which the coef�cient is nonlinear but smooth,
is known as the Porous Medium Equation (PME). The PME is known to be degenerate parabolic, and it becomes more
challenging asm increases. The PME withm = 1 has been widely used to model isothermal processes, e.g., groundwater
�ow and population dynamics in biology. Form > 1, the PME results in sharp solutions, and it has been used to describe
adiabatic processes and nonlinear phenomena such as heat transfer of plasma (ionized gas).

Super-slow Diffusion Problem. Another subclass of the GPME, known as super-slow diffusion, occurs when

k(u) = exp( � 1=u):

Here, the diffusivityk(u) ! 0 asu ! 0 faster than any power ofu. This equation models the diffusion of solids at
different absolute temperaturesu. The coef�cientk(u) represents the mass diffusivity in this case, and it is connected with
the Arrhenius law in thermodynamics.

Stefan Problem. The most challenging case of the GPME is when the coef�cientk(u) is a discontinuous nonlinear step
function:

k(u) =

(
kmax ; u � u?

kmin ; u < u ?;
(42)

for given constantskmax , kmin andu? 2 R, in which case it is known as the Stefan problem. The Stefan problem has
been used to model two-phase �ow between water and ice, crystal growth, and more complex porous media such as foams
(van der Meer et al., 2016).

We conclude by noting that, even though the GPME is nonlinear in general, for speci�c initial and boundary conditions,
it has closed form self-similar solutions. For details, see Vázquez (2007); Maddix et al. (2018a;b). This enables ease of
evaluation by comparing each competing method to the ground truth.
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I. Detailed Experiment Settings

In this section, we review the basics of the Attentive Neural Process (ANP) (Kim et al., 2019) that we use as the black-box
deep learning model in Step 1 of our model PROBCONSERV-ANP in the empirical results section 3. Figure 7 illustrates
a schematic for PROBCONSERV-ANP that shows how in the �rst step the mean and covariance estimates�; � from the
ANP are fed into our probabilistic constraint in the second step to output the updated mean and covariance estimates~�; ~� .

Figure 7.Schematic for the instantiation of our framework PROBCONSERV with the ANP (PROBCONSERV-ANP) as the data-driven
black box model in Step 1 that is used in the empirical results. In Step 1, the ANP outputs a mean� and covariance� (yellow) of the
solution pro�le u evaluated at theN target points (red). The ANP takes as input the context setD that comprisesND labelled points
(blue). The parameter� encapsulates the neural network weights within the ANP. In Step 2, the probabilistic constraint in Equation 8 is
applied yielding an updated mean~� and covariance~� (green). The probabilistic constraint is determined by the matrixG, valueb, and
variance� 2

G in Equation 7.

Model Training. The model from Step 1 is data-driven, with parameter� that needs to be learned from data. Given an
empirical data distribution, written as(u; b; D) � p, we maximize the expected joint likelihood of the functionu and the
constraintb, conditioned on dataD , as a function of the Step 1 parameter� and Step 2 parameters� G andG as follows:

L (�; � G ; G) = Eu;b;D � p logp(u; bjD )

= Eu;D � p logp� (ujD )
| {z }

Step 1

+ Eu;b logp� G ;G (bju)
| {z }

Step 2

: (43)

This follows because the joint probability can be broken into conditionalsp(u; bjD ) = p� (ujD )p� G ;G (bju), using Bayes'
Rule. The Step 2 constraint only depends on the valueu.

The Step 1 parameter� is only present in the �rst term of the summation in Equation 43. Then, the optimal value for� ?

is found by optimizing the unconstrained log-likelihood from Step 1 over the empirical data distribution and is given as
follows:

� ? = arg max
�

L(�; � G ; G)

= arg max
�

Eu;D � p logp� (ujD ):
(44)

Equation 44 is simply the optimization target of several generative models, e.g., Gaussian processes and the ANP. This
justi�es training the Step 1 black-box model with its original training procedure before applying our Step 2.

Data Generation. For each PDE instance, we �rst generate training data for the data-driven model in Step 1. We generate
these samples, indexed byi , by randomly samplingntrain values of the PDE parameters� i from an intervalA . To create
the input dataD i , the solution pro�le corresponding to� i is evaluated on a set ofND points uniformly sampled from
the spatiotemporal domain[0; t] � 
 . Then, the reference solution foru with parameter� i , denotedui , is evaluated over
another set ofN train uniformly-sampled points. The Step 1 model (ANP) is then trained on these supervised input-output
pairs,(D i ; ui ). Using Equation 5, the conservation valueb in Step 2 is calculated given the parameter� i . At inference
time, we �x speci�c values of the PDE parameters� that are of interest and generate new input-output pairs to evaluate
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the predictive performance. The settings are the same as those at training, except that the reference solution is evaluated
on a �xed grid that evenly divides the time domain[0; t] into Ttest points and the spatial domain
 into M test points for a
spatio-temporal grid ofN test = Ttest � M test points. For consistent results, we repeat this procedure overntest independent
datasets for each� .

Table 6 provides the training settings and Table 7 provides the cor responding test settings.

Table 6.Training details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter A Time domain[0; t] Spatial domain
 ntrain ND N train

Diffusion k [1; 5] [0; 1] [0; 2� ] 10,000 100 100

PME m [1; 6] [0; 1] [0; 1] 10,000 100 100

Stefan u? [0:55; 7] [0; 0:1] [0; 1] 10,000 100 100

Table 7.Testing details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter values Test time Spatial domain
 ntest ND Ttest M test N test

Diffusion k 2 f 1; 5g 0:5 [0; 2� ] 50 100 201 201 40; 401

PME m 2 f 1; 3; 6g 0:5 [0; 1] 50 100 201 201 40; 401

Stefan u? 2 f 0:6g 0:05 [0; 1] 50 100 201 201 40; 401

We describe here how the input dataD ; input points(t1; x1); : : : ; (tN ; xN ); and solutionu are created for a particular
draw of PDE parameter� 2 A . The input data (a.k.a. the context set)D is generated as follows. First, draw samples from
the spatiotemporal domain(tn ; xn ) � Uniform([0; t] � 
) , for n = 1 ; : : : ; ND . For each sample(tn ; xn ), evaluate the
reference solutionun := u(tn ; xn ) for � . ThenD = f (tn ; xn ; un )gn =1 ;:::;N D .

We create input points(t1; x1); : : : ; (tN ; xN ) differently depending on whether we are training or testing. At train-time,
the input points are sampled uniformly from the spatiotemporal domain

(tn ; xn ) � Uniform([0; t] � 
) ;

for n = 1 ; : : : ; N train. At test-time, we divide up the time domain[0; t] into Ttest evenly-spaced points and the spatial
domain
 into M test evenly-spaced points. We then take the cross product of these as the set of input points, whose size is
N test = Ttest � M test.

Finally, over the set of input points, we evaluate the reference solution for� as:u = [ u(tn ; xn )]n =1 ;:::;N train.

Attentive Neural Processes (ANP). The Attentive Neural Process (ANP) (Kim et al., 2019) models the conditional
distribution of a functionu at target input pointsf xn g := x1; : : : ; xN for x i 2 RD +1 given a small set of context points
D := f x i ; ui gi 2 C . The function values at each target pointxn , written asun , are conditionally independent given the
latent variablez with the following distribution forun :

p� (un jD ) =
Z

z
p� (un jz; D)p� (zjD )dz;

p� (un jz; D) = pN (un j� n ; � 2
n );

p� (zj� z ; � z ) = pN (zj� z ; � z );

� n ; � n = f u
� (xn ; z; f r

� (xn ; D )) ;

� z ; � z = f z
� (D ):

(45)

Here,pN (uj�; � 2) := (2 �� 2) � 1=2 exp
�
� 1

2� 2 (x � � )2
�

denotes the univariate normal distribution with mean� and vari-
ance� 2 andf z

� , f u
� , andf r

� are neural networks whose architecture is described in more detail below.
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As standard in variational inference, the attentive neural process (ANP) is trained to maximize the evidence lower bound
(ELBO), which is a tractable lower bound to the marginal likelihoodEu;D � p logp� (ujD ) that we want to maximize in
Equation 44:

Eu;D � p logp� (ujD ) � Eu;D � pEz� q� logp� (u; zjD ) � logq� (zju; D );

q� (zju; D ) = pN (zj� q
z ; � q

z );

� q
z ; � q

z = f z
� (D [ f (t1; x1; u1); : : : (tN ; xN ; uN )g):

(46)

By concatenating the context setD with the target set, the ANP can use the same networks for both the generative model
p� and the variational modelq� . This differs from methods such as the variational auto-encoder (VAE) that train a separate
network for the variational model.

In the experiments, we train the ELBO in Equation 46 using stochastic gradient descent over random mini-batches of the
supervised pairs(u; D ) and a sample of the latent variablez (using the reparameterization trick for an unbiased gradient
estimate). Speci�cally, we use the ADAM optimizer with a learning rate of1 � 10� 4 and a batch size of250.

Architectural details. Here, we brie�y describe the architecture of the ANP used in experiments; a more thorough
description of the ANP in general can be found in the original paper (Kim et al., 2019).

The ANP consists of three distinct networks:

1. Thelatent encoderf z
� takes the context setD = f x i ; ui gi 2 C as input and outputs a mean� z and diagonal covariance

� z for the latent representationz. Note thatf z
� is invariant to the order of the context set inputs inD .

2. Thedeterministic encoderf r
� takes the context setD = f x i ; ui gi 2 C and the target pointsf xn g as input, and outputs

a set of deterministic representationsf r n g corresponding to each target point. Note thatf r
� is permutation-invariant

to the order of the context set inputs inD , and is applied pointwise across the target inputsf xn g.

3. Thedecoderf u
� takes the outputs from the latent encoder, deterministic encoder, and the target pointsf xn g as input,

and outputs a set of mean and variancesf � n ; � n g corresponding to each target point. The decoder is applied pointwise
across the target inputsf xn g and deterministic representationf r n g.

Table 8.ANP hyperparameters.

Symbol Value Description

dx 2 Input dimension
du 1 Output dimension
dz 128 Latent dimension
h 128 Size of hidden layer
nheads 4 Number of heads in MultiHead
dh 128 Column dimension in MultiHead layers

For reproducibility, Figure 8 shows how each network is constructed and Table 8 shows the ANP hyperparameters. Each
building blocks is also brie�y described below:

• Linear(din; dout): dense linear layerxA + b.

• Mean: Averages the inputs of the input set; i.e., Mean(f si g) = 1
jf si gj

P
i si .

• ReLU: Applies ReLU activation pointwise.

• Cross-Attention and Self-Attention. These are multi-head attention blocks �rst introduced in Vaswani et al. (2017).
The three inputs to the multi-head attention block are the queriesQ = [ q1j : : : jqdq ]> , keysK = [ k1j : : : jqdk ]> , and
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valuesV = [ v1j : : : jvdk ]> . The hyperparameters are the number of heads,nheadsand the number of columns of the
matricesW Q

i ; W K
i ; W V

i , denoted asdh . We summarize the notations below:

Self-Attention(Q) := MultiHead(Q; Q; Q);

Cross-Attention(Q; K; V ); := MultiHead(Q; K; V );

MultiHead(Q; K; V ) := [ H1j : : : jHn heads]W
O ;

H i := Attention(QW Q
i ; KW K

i ; V WV
i );

Attention( Q; K; V ) := softmax
�

QK >
p

dk

�
V;

softmax

0

B
@

2

6
4

x1;1 : : : x1;n
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xm; 1 : : : xm;n

3

7
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1
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2

6
6
4

exp( x 1; 1 )P n
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3
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Figure 8.Architectural diagram of the three main networks that make up the Attentive Neural Process (ANP) from Kim et al. (2019) that
is used in the experiments as the Step 1 black-box model.
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J. Additional Empirical Results

In this section, we provide additional empirical results for the degenerate parabolic Generalized Porous Medium (GPME)
family of conservation laws as well as for hyperbolic conservation laws.

J.1. GPME Family of Conservation Laws

Here, we include additional solution pro�les and conservation pro�les over time for the GPME family of equations, ranging
from the “easy” diffusion (heat), “medium” PME, to the “hard” Stefan equations.

J.1.1. DIFFUSION (HEAT) EQUATION

Figure 9. Solution pro�les for the diffusion (heat) equation at timet = 0 :5 for diffusivity (conductivity) test-time parameterk = 1
in the top row andk = 5 in the bottom row. Each model is trained on samples ofk 2 A = [1 ; 5]. The shaded region illustrates
� 3 standard deviation uncertainty intervals. PROBCONSERV-ANP and HARDC-ANP both display tighter uncertainty bounds than the
baseline ANP, while SOFTC-ANP is more diffuse. The uncertainty is relatively homoscedastic on this “easy” case.

Solution Pro�les. Figure 9 shows the solution pro�les for the “easy” diffusion equation, at timet = 0 :5, where a sine
curve is damped over time for test-time parameterk = 1 ; 5 2 A = [1 ; 5]. Table 9 shows the corresponding metrics.

Table 9. Mean and standard error for CE� 10� 3 (should be zero), LL (higher is better) and MSE� 10� 4 (lower is better) overn test = 50
for the (“easy”) diffusion equation at timet = 0 :5 with variable diffusivity constantk parameter in the rangeA = [1 ; 5] and test-time
parameter valuesk = 1 ; 5.

k = 1 k = 5
CE LL MSE CE LL MSE

ANP 4.68 (0.10) 2:72 (0.02) 1:71 (0.41) 1.76 (0.04) 3:28 (0.02) 0:547(0.08)
SOFTC-ANP 3.47 (0.17) 2:40 (0.02) 2:24 (0.78) 2.86 (0.05) 2:83 (0.02) 1:75 (0.24)
HARDC-ANP 0 (0.00) 3.08(0.04) 1:37 (0.33) 0 (0.00) 3.64(0.03) 0:461 (0.07)

PROBCONSERV-ANP 0 (0.00) 2.74(0.02) 1.55(0.33) 0 (0.00) 3.30(0.02) 0.485(0.07)
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J.1.2. POROUSMEDIUM EQUATION (PME)

Results for Different � for SOFTC-ANP. As is the case with PINNs (Raissi et al., 2019), the SOFTC-ANP method
has a hyper-parameter� that controls the balance in the training loss between the reconstruction and differential term. A
higher value of� places more emphasis on the residual of the PDE term and less emphasis on the evidence lower bound
(ELBO) from the ANP.

To investigate whether tuning� will lead to signi�cantly different results, we report results for different values of� for the
SOFTC-ANP on the Porous Medium Equation (PME). Since these results are presented on the same test dataset used in
Table 2, it provides an optimistic case on how tuning� could improve the results for SOFTC-ANP. Table 10 shows that
the predictive performance is roughly the same across different values of� , with both MSE and LL worse than the original
ANP across the board and the conservation error (CE)G� � bat the �nal time worse form = 6 .

Table 10.Investigation of the effect of the soft constraint penalty parameter� in the SOFTC-ANP baseline. The metrics CE� 10� 3

(should be zero), LL (higher is better) and MSE� 10� 4 (lower is better) are reported for the (“medium”) PME at timet = 0 :5 with
variablem parameter in the rangeA = [0 :99; 6] and test-time parametersm 2 f 1; 3; 6g. We see that the performance is not signi�cantly
changed as a function of� , and, surprisingly, that the unconstrained ANP (� = 0) performs better in most metrics than SOFTC-ANP.

m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP (� = 0) 6:67 3:49 0:94 � 1:23 3:67 1:90 � 2:58 3:81 7:62

SOFTC-ANP (� = 0 :01) 5:58 3:11 1:11 � 0:61 3:46 2:03 � 3:00 3:49 7:76
SOFTC-ANP (� = 0 :1) 5:58 3:11 1:11 � 0:67 3:46 2:07 � 3:01 3:49 7:87
SOFTC-ANP (� = 1) 5:62 3:11 1:11 � 0:65 3:46 2:06 � 3:03 3:49 7:82
SOFTC-ANP (� = 10) 5:52 3:11 1:08 � 0:56 3:46 2:04 � 3:02 3:49 7:76
SOFTC-ANP (� = 100) 5:62 3:11 1:11 � 0:59 3:46 2:03 � 3:03 3:49 7:69

PROBCONSERV-ANP with Diffusion. As described in subsection D.2, we explore adding numerical diffusion for elim-
inating arti�cial small-scale noises when enforcing conservation. Table 11 shows that adding arti�cial diffusion improves
both MSE and LL compared to the conservation constraint alone. Figures 10-11 illustrate that by removing such arti�-
cial noises, PROBCONSERV-ANP with diffusion leads to tighter uncertainty bounds as well as higher LL than the other
baselines.

Table 11.Mean and standard error for CE� 10� 3 (should be zero), LL (higher is better) and MSE� 10� 4 (lower is better) overn test = 50
runs for the (“medium”) PME at timet = 0 :5 with variablem parameter in the rangeA = [0 :99; 6]. We see that PROBCONSERV-
ANP (w/diff) improves the performance on PROBCONSERV-ANP by applying smoothing at the sharp boundary as the test-time param-
eterm is increased.

m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP 6:67 (0.39) 3:49 (0.01) 0:94 (0.09) � 1:23 (0.29) 3:67 (0.00) 1:90 (0.04) � 2:58 (0.23) 3:81 (0.01) 7.67(0.09)
SOFTC-ANP 5:62 (0.35) 3:11 (0.01) 1:11 (0.14) � 0:65 (0.30) 3:46 (0.00) 2:06 (0.03) � 3:03 (0.26) 3:49 (0.00) 7:82 (0.09)
HARDC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3:44 (0.03) 1.86 (0.03) 0 (0.00) 3.40 (0.05) 7.61(0.09)

PROBCONSERV-ANP 0 (0.00) 3.56 (0.01) 0.17(0.02) 0 (0.00) 3.68 (0.00) 2.10 (0.07) 0 (0.00) 3.83 (0.01) 10.4 (0.04)
PROBCONSERV-ANP (w/diff) 0 (0.00) 4.04(0.02) 0.15(0.02) 0 (0.00) 3.96(0.00) 1.43(0.05) 0 (0.00) 4.03(0.01) 7.91 (0.03)

Solution and Error Pro�les. Figures 10-11 illustrate the differing solution pro�les and errors for the PME for various
values ofm 2 f 1; 3; 6g, respectively. As expected, we see a gradient form > 1 that becomes sharper and approaches
in�nity for m = 6 . Increasingm results in smaller values of the PDE parameter denoting the pressurek(u) = um , which
increases the degeneracy for smaller values ofk(u), i.e., larger values ofm. In this case the problem also becomes more
challenging. Form = 1 , we have a piecewise linear solution, and form = 3 ; 6 we see sharper oscillatory uncertainty
bounds at the front or free boundary, resulting in some negative values at this boundary as well. We see the value of
the uncertainty quanti�cation to re�ect that the model is certain in the parabolic regions to the left and right of the sharp
boundary especially in the zero (degeneracy) region, and is most uncertain at the boundary (degeneracy) point.
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