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Abstract
Partial differential equations (PDEs) are impor-
tant tools to model physical systems and including
them into machine learning models is an impor-
tant way of incorporating physical knowledge.
Given any system of linear PDEs with constant
coefficients, we propose a family of Gaussian pro-
cess (GP) priors, which we call EPGP, such that
all realizations are exact solutions of this system.
We apply the Ehrenpreis-Palamodov fundamental
principle, which works as a non-linear Fourier
transform, to construct GP kernels mirroring stan-
dard spectral methods for GPs. Our approach
can infer probable solutions of linear PDE sys-
tems from any data such as noisy measurements,
or pointwise defined initial and boundary condi-
tions. Constructing EPGP-priors is algorithmic,
generally applicable, and comes with a sparse ver-
sion (S-EPGP) that learns the relevant spectral
frequencies and works better for big data sets. We
demonstrate our approach on three families of
systems of PDEs, the heat equation, wave equa-
tion, and Maxwell’s equations, where we improve
upon the state of the art in computation time and
precision, in some experiments by several orders
of magnitude.

1. Introduction
Gaussian processes (GPs) (Rasmussen & Williams, 2006)
are a major tool in probabilistic machine learning and serve
as the default functional prior in Bayesian statistics. GPs
are specified by a mean function and a covariance function.
The covariance function in particular can be constructed
flexibly to allow various kinds of priors (Thewes et al., 2015)
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and learning hyperparameters in GPs allows to interpret
data (Duvenaud, 2014; Steinruecken et al., 2019; Berns
et al., 2020). They serve as stable regression models in
applications with few data points and provide calibrated
variances of predictions. In particular, they can serve as
simulation models for functions that are costly to evaluate,
e.g. in Bayesian optimization (Hernández Rodrı́guez et al.,
2022) or active learning (Zimmer et al., 2018). Furthermore,
GPs are often the models of choice to encode mathematical
information in a prior or if mathematical results should be
extracted from a model. One example is the estimation
of derivatives from data by differentiating the covariance
function (Swain et al., 2016; Harrington et al., 2016).

These techniques using derivatives have been generalized to
construct GPs with realizations in the solution set of specific
systems of linear partial differential equations (PDEs) with
constant coefficients (Macêdo & Castro, 2008; Scheuerer &
Schlather, 2012; Wahlström et al., 2013; Solin et al., 2018;
Jidling et al., 2018; Särkkä, 2011). These constructions
interpret such a solution set as the image of some latent
functions under a linear operator matrix. Assuming a GP
prior for these latent function leads to a GP prior for the
solution set of the system of PDEs. Jidling et al. (2017)
pointed out that these constructions of GP priors had strik-
ing similarities and suggested an approach for a general
construction, after which Lange-Hegermann (2018) reinter-
preted this approach in terms of Gröbner bases and made it
algorithmic. One limitation was that the method could only
work on a subclass of systems of linear PDEs with constant
coefficients: the so-called controllable (or parametrizable)
systems. The restriction to such controllable systems was
lifted for systems of ordinary differential equations (ODEs)
in (Besginow & Lange-Hegermann, 2022).

In this paper, we develop an algebraic and algorithmic con-
struction of GP priors inside the solution set of any given
system of (ordinary or partial) linear differential equations
with constant coefficients, eliminating previous restrictions
to special forms of equations, controllable systems, or ODEs.
Our construction is built upon the classical Ehrenpreis-
Palamodov fundamental principle (see Section 3) and recent
algorithms for the construction of Noetherian multipliers
used in this theorem (Chen et al., 2022b; Cid-Ruiz et al.,
2021; Cid-Ruiz & Sturmfels, 2021; Chen & Cid-Ruiz, 2022;
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Figure 1: Sample of a function u(x, y, t) describing the temperature of a 2-dimensional material over time. The sample is
obtained using the EPGP covariance kernel solving the heat equation in 2D. We observe heat dissipating as time progresses.

Ait El Manssour et al., 2021).

The major contributions of this paper are as follows:

1. We vastly generalize previously isolated methods to
model systems of ODEs and PDEs from data, such that
only the restrictions of linearity and constant coeffi-
cients remain and reinterpret the previously existing
methods in our framework. All previous approaches
are special cases: they yield precisely the same covari-
ance function as EPGP, in the rare cases where they
are applicable.

2. We do not distinguish between different types of PDEs,
e.g. elliptic, hyperbolic, or being of a certain order. In
particular, we construct GP kernels for any linear sys-
tem of linear PDEs Af = 0 with constant coefficients.

3. We demonstrate our approach on various PDE systems,
in particular the homogeneous Maxwell equations (see
Section 6.3). None of the previously mentioned GP
methods is applicable for any of the examples studied
in Section 6.

4. We demonstrate high accuracy of our approach, clearly
improving upon Physics Informed Neural Network
(PINN) methods in several examples (see Section 6).

Hence, this paper allows the application of machine learning
techniques for a vast class of differential equations ubiqui-
tous in physics and numerical analysis. In particular, we
propose a symbolic framework for turning physical knowl-
edge from differential equations into a form usable in ma-
chine learning. The symbolic approach allows us to sample
and regress on exact solutions of the PDE system, making
our methods not merely physics informed, but truly physics
constrained. Therefore, our GPs result in more precise re-
gression models, since they do not need to use information
present in the data or additional collocation points to learn or

fit to the differential equation, and instead combine the full
information content of the data with differential equations.

For code and videos corresponding to this paper we refer to
the arXiv, github, or mathrepo.

2. Gaussian processes (GPs)
A Gaussian process (GP) g ∼ GP(µ, k) defines a proba-
bility distribution on the evaluations of functions Ω → Rℓ,
where Ω ⊆ Rn, such that function values g(x1), . . . , g(xm)
at any points x1, . . . , xm ∈ Ω are jointly Gaussian. A GP g
is specified by a mean function µ : Ω → Rℓ : x 7→ E[g(x)],
often a-priori chosen to be zero, and a positive semidefinite,
smooth covariance function

k : Ω× Ω −→ Rℓ×ℓ
⪰0

(x, x′) 7−→ E
[
(g(x)− µ(x))(g(x′)− µ(x′))T

]
.

Then, any finite set of evaluations [g(x1), . . . , g(xm)] fol-
lows the multivariate Gaussian distribution with mean
[µ(x1), . . . , µ(xm)] and covariance Σi,j = k(xi, xj). Due
to the properties of Gaussian distributions, the posterior is
again a GP and can be computed in closed form via linear
algebra (Rasmussen & Williams, 2006).

GPs interplay nicely with linear operators, the foundation of
the constructions of (Macêdo & Castro, 2008; Scheuerer &
Schlather, 2012; Wahlström et al., 2013; Solin et al., 2018;
Jidling et al., 2018; Särkkä, 2011; Jidling et al., 2017; Lange-
Hegermann, 2018; Besginow & Lange-Hegermann, 2022;
Lange-Hegermann, 2021; Lange-Hegermann & Robertz,
2022):

Lemma 2.1. Let g ∼ GP(µ(x), k(x, x′)) with realizations
in some function space Fℓ, F = C∞(Ω), and B : Fℓ →
Fℓ′′ a linear, continuous operator. Then, the pushforward
B∗g of g under B is a GP with

B∗g ∼ GP(Bµ(x), Bk(x, x′)(B′)T ) , (1)
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where B′ denotes the operation of B on functions with
argument x′.

The proof we give in Appendix A in fact works for linear
continuous operators B : F ℓ → Gℓ′′ for spaces F , G which
embed continuously in the space C(Ω) of continuous func-
tions. The analogous result holds in Lp spaces, which is out
of scope of the current paper. For complex valued GPs, one
replaces the transpose by the Hermitian transpose.

3. The Ehrenpreis-Palamodov fundamental
principle

Consider the familiar case of a linear ODE with constant
coefficients, e.g. f ′′′(x)−3f ′(x)+2f(x) = 0. The solution
space of the ODE is determined by its characteristic polyno-
mial z3− 3z+2 via its roots and their multiplicities. In this
case z3 − 3z + 2 factors into (z − 1)2 · (z − (−2)), so all
solutions are linear combinations of the three functions e1x,
x · e1x and e−2x. We call functions of the form D(x) · ezx
exponential-polynomial functions whenever D(x) is a poly-
nomial and z is a constant. This idea generalizes to systems
of ODEs and PDEs: instead of taking linear combinations
of exponential-polynomial functions over the finitely many
zeros of the characteristic polynomial, one takes a weighted
integral of exponential-polynomial functions over a (po-
tentially multi-dimensional) characteristic variety1. This
generalization is formalized in the Ehrenpreis-Palamodov
fundamental principle, Theorem 3.1.

More formally, let Ω be a compact, convex subset of Rn.
Consider systems of ℓ equations with smooth functions
f : Ω → Cℓ′′ as potential solutions. We encode such a
system of PDEs as an (ℓ× ℓ′′) matrix A with entries in the
polynomial ring R = C[∂1, . . . , ∂n] in n variables. Here
the symbol ∂i denotes the operator ∂

∂xi
and a monomial

∂α = ∂α1
1 · · · ∂αn

n denotes the operator ∂|α|

∂x
α1
1 ···∂xαn

n
. For

example, for ℓ = 3, ℓ′′ = 2, n = 2, the PDE system

Af =

∂1 −∂21∂2
∂2 1
0 −∂1 + 3∂2

 f = 0

translates to a system of 3 homogeneous equations

∂f1
∂x1

− ∂3f2
∂x21∂x2

=
∂f1
∂x2

+ f2 = − ∂f2
∂x1

+ 3
∂f2
∂x2

= 0.

Its solutions are vector valued functions f(x1, x2) =
(f1(x1, x2), f2(x1, x2))

T . Another example is the 2 di-
mensional heat equation, where A is the 1 × 1 matrix
A = [∂2x + ∂2y − ∂t]. Its solutions are scalar functions
u(x, y, t), such as the one displayed in Figure 1.

1A variety is defined as the zero set of a system of polynomials.

The famed Ehrenpreis-Palamodov fundamental principle as-
serts that all solutions to the PDEs represented by A can be
written as suitable integrals of exponential-polynomial solu-
tions, each of which corresponds to roots and multiplicities
of the polynomial module generated by rows of A.
Theorem 3.1. (Ehrenpreis, 1970; Palamodov, 1970;
Hörmander, 1990; Björk, 1979) Let A ∈ Rℓ×ℓ′′ and let
Ω ⊆ Rn be a convex, compact set. There exist alge-
braic varieties {V1, . . . , Vs} and ℓ′′-tuples of polynomials
{Di,1(x, z), . . . , Di,mi(x, z)}i=1,...,s such that any smooth
solution f : Ω → Rℓ′′ to the equation Af = 0 can be
written as

f(x) =

s∑
i=1

mi∑
j=1

∫
Vi

Di,j(x, z)e
⟨x,z⟩ dµi,j(z) (2)

for a suitable choice of measures µi,j .

Following the terminology in (Cid-Ruiz et al., 2021; Cid-
Ruiz & Sturmfels, 2021), we call the polynomialsDi,j(x, z)
Noetherian multipliers. The Noetherian multipliersDi,j and
varieties Vi appearing in Theorem 3.1 can be computed al-
gebraically; they are the higher-dimensional analogue of the
roots and multiplicities of the characteristic polynomial. An
algorithm for computing Di,j and Vi is implemented under
the command solvePDE in the Macaulay2 (Grayson &
Stillman) package NotherianOperators (Chen et al.,
2022b). A modern, algebraic and algorithmic treatment
of linear PDEs with constant coefficients can be found in
(Cid-Ruiz et al., 2021; Cid-Ruiz & Sturmfels, 2021; Chen
& Cid-Ruiz, 2022; Ait El Manssour et al., 2021). We refer
the interested reader to Appendix B for questions regarding
convergence of the integrals in (2).

4. Gaussian Process Priors from the
Ehrenpreis-Palamodov Theorem

We now construct GPs whose samples solve a system of
linear PDEs Af = 0, using the Ehrenpreis-Palamodov fun-
damental principle, Theorem 3.1, as a blueprint. We set the
mean function to zero, so our task, by Lemma 2.1, will be to
find a covariance function that satisfies the PDEs in both the
x and x′ arguments. The varieties Vi and polynomials Di,j

in Equation (2) can be computed algorithmically (Chen et al.,
2022b; Cid-Ruiz et al., 2021; Cid-Ruiz & Sturmfels, 2021;
Chen & Cid-Ruiz, 2022; Ait El Manssour et al., 2021), so
what remains is to choose the measures µi,j , each supported
on the variety Vi.

We propose two approaches for choosing the measures. In
the first one, coined Ehrenpreis-Palamodov Gaussian Pro-
cess (EPGP), the µi,j are chosen to be Gaussian measures
supported on the variety, with optional trainable length
scale and shift parameters. This resembles the construc-
tion by Wilson & Adams (2013), but applied to Ehrenpreis-
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Palamodov integrals as opposed to Fourier transforms. Our
second approach, Sparse EPGP (S-EPGP), chooses µi,j to
be linear combinations of Dirac delta measures, whose loca-
tions and weights are learned. See (Lázaro-Gredilla et al.,
2010) for a similar approach applied to Fourier transforms.

Before describing our covariance functions, we discuss the
question of how to integrate over an algebraic variety. In
certain cases our variety has a polynomial parametrization,
in which case the integral can easily be computed by substi-
tuting the parametrization in. For example if V is the variety
corresponding to the parabola y = x2, we can rewrite an
integral

∫
V
f(x, y) dµ(x, y) over V as

∫
C f(x, x

2) dµ′(x).

However, most algebraic varieties V do not have a
parametrization. In these cases we construct a parametriza-
tion implicitly by solving equations. If for example the
variety V is the set of points (x, y, z) where x3 − y2 +

z2 = 0, we could solve for z to get z = ±
√
y2 − x3.

Thus, an integral of the form
∫
V
f(x, y, z) dµ(x, y, z) can

be rewritten as a sum
∫
C2 f(x, y,

√
y2 − x3) dµ1(x, y) +∫

C2 f(x, y,−
√
y2 − x3) dµ2(x, y) of integrals over C2.

This construction works for arbitrary varieties V ⊆ Cn

and relies on results in algebraic dimension theory. We
now cite the main results and refer to e.g. the textbook by
Eisenbud (1995, Sec. 13.1) for a comprehensive treatment.

Suppose we denote the coordinates of Cn by z1, . . . , zn. If
V has dimension d, there is a set of d independent variables,
say z′ = (z1, . . . , zd) after reordering, on which the remain-
ing variables z′′ = (zd+1, . . . , zn) depend algebraically.
Thus for each choice of z′ ∈ Cd, there is a finite number of
z′′ ∈ Cn−d such that z = (z′, z′′) ∈ V . We denote this set
by Sz′ := {z ∈ V : (z1, . . . , zd) = z′}. Using this notation,
an integral

∫
V
f(z) dµ(z) over V can now be rewritten as

an integral
∫
Cd

∑
z∈Sz′

f(z) dµ(z′) over the much easier to
handle affine space Cd, at the cost of changing the measure
and splitting our integral into several pieces.

4.1. Ehrenpreis-Palamodov Gaussian Processes (EPGP)

Let Af = 0 be a system of PDEs whose solutions
are, by Ehrenpreis-Palamodov, of the form ϕ(x) =∑

j

∫
V
Dj(x, z)e

⟨x,z⟩ dµj(x). We define the EPGP ker-
nel kEPGP(x,x

′) by combining the Ehrenpreis-Palamodov
representation in both inputs x,x′, the above implicit
parametrization of the integrals, and a Gaussian measure on
the frequency space of the z. We construct one covariance
kernel for each summand in ϕ(x) and sum them to get the
EPGP kernel kEPGP:

Ψ(x, z′) :=
∑
j

∑
z∈Sz′

Dj(x, z)e
⟨x,z⟩

kEPGP(x,x
′) := (3)

∫
z′∈

√
−1Rd

Ψ(x, z′)Ψ(x′, z′)He−
∥z′∥2

2 dL(z′).

Here the superscript H denotes the Hermitian transpose
and L is the usual Lebesgue measure. We note that the
integral may not converge everywhere, but we can introduce
a shifting term to enforce convergence in any compact set Ω.
See Appendix B for details. It is straightforward to check
that kEPGP(x,x

′) satisfies the PDEs inA and the Hermitian
transpose ensures that kEPGP is positive semidefinite. A
strictly real valued GP is obtained by taking the real part of
kEPGP.

In (3), we replaced the integral over the complex space
z′ ∈ Cd by an integral over purely imaginary vectors z′ ∈√
−1Rd. This leads to more stationary kernels and we

further motivate this choice and the choice of the Gaussian
measure, in three examples:
Example 4.1 (No PDE). If we impose no PDE constraints,
we have A = 0, one variety V = Cn and one Noetherian
multiplier D(x, z) = 1. So equation (3) becomes

kEPGP(x,x
′) =

∫
z∈R

e
√
−1⟨x−x′,z⟩e−

∥z∥2
2 dL(z)

=
(√

2π
)n

e−
∥x−x′∥2

2

Thus, without PDEs, the EPGP kernel is the squared-
exponential kernel, up to a constant scaling factor.

The discussion in this example extends to any system of
PDEsA whose characteristic variety V is an affine subspace
of Cn. For details, refer to Appendix G, cf. also (Lange-
Hegermann, 2021). △
Example 4.2 (Heat equation). Let A(∂x, ∂t) = ∂2x − ∂t
be the one-dimensional heat equation. If we let z1, z2 cor-
respond to ∂x, ∂t respectively, the variety V is given by
z21 = z2 and the sole Noetherian multiplier is D = 1. The
EPGP kernel is defined when t + t′ > − 1

2 , in which case
we have

kEPGP(x, t;x
′, t′) =

∫
z∈R

e
√
−1(x−x′)e−z2(t+t′)e−

z2

2 dL(z)

=
√
2π

e
− (x−x′)2

2(1+2(t+t′))√
1 + 2(t+ t′)

Here, integrating over
√
−1R as opposed to C removes

unphysical solutions to the heat equation, such as ϕ(x, t) =
ex+t where heat increases exponentially with time.

This covariance function is the squared exponential covari-
ance w.r.t. the space dimension at each fixed pair of times
(t, t′). With increasing time, the scaling of the covariance
shrinks resp. the length scales increase. We interpret this
as heat going back to the mean value resp. being more
smoothly distributed over time. △
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Example 4.3 (Wave equation). Let A(∂x, ∂t) = ∂2x − ∂2t be
the 1-dimensional wave equation. The variety here is the
set z21 − z22 = 0, which is the union of the lines z1 = z2
and −z1 = z2. Thus we have Vj = V (z1 + (−1)jz2) and
Dj = 1 for j = 1, 2. The EPGP kernel is equal to

kEPGP(x, t;x
′, t′) =

∫
z∈R

(
e
√
−1z(x−t) + e

√
−1z(x+t)

)
·(

e−
√
−1z(x′−t′) + e

√
−1z(x′+t′)

)
e−

z2

2 dL(z)

=
√
2π

(
e−

((x−t)−(x′−t′))2
2 + e−

((x−t)−(x′+t′))2
2 +

e−
((x+t)−(x′−t′))2

2 + e−
((x+t)−(x′+t′))2

2

)
Here our choice of restricting to integrals over strictly imag-
inary numbers

√
−1R gets rid of non-stable solutions to the

wave equations, such as ex+t.

While kEPGP has four summands, we can also consider
kernels with fewer summands. E.g.

k2(x, t;x
′, t′) = e−

((x+t)−(x′+t′))2
2 + e−

((x−t)−(x′−t′))2
2 ,

yields the covariance kernel of the GP ϕ1(x+t)+ϕ2(x−t),
where ϕ1, ϕ2 ∼ GP (0, e−

(x−x′)2
2 ). This is kernel in fact

covers all smooth solutions to the 1-D wave equation, as
d’Alembert discovered in 1747 (d’Alembert, 1747) that all
solutions are superpositions of waves travelling in opposite
directions. △

Here we have tacitly assumed that the Ehrenpreis-
Palamodov integral requires only one variety V , i.e. s = 1.
In the general case s > 1, we repeat the above construction
for each variety Vi and finally sum the resulting s kernels.

We note that we may also parametrize the Gaussian mea-
sure imposed in Equation (3), for example with mean
and scale parameters. By replacing exp(−∥z′∥2

2 ) by e.g.

exp(−
∑d

i=1
(zi−µi)

2

2σ2
i

), we obtain a family of EPGP ker-
nels, which we can train on given data to find the parameters
µi, σ

2
i maximizing the log-marginal likelihood. In the case

of no PDE constraints, we recover exactly the covariance
kernels proposed in (Wilson & Adams, 2013). In Figure 3 of
Section 6.1 we investigate the effect of a scale parameter in
the posterior distribution of a solution to the 2 dimensional
heat equation.

4.2. Sparse Ehrenpreis-Palamodov Gaussian Processes
(S-EPGP)

Instead of imposing the measure e−∥z′∥2/2 dL(z′) in our
kernel, we outline a computationally efficient method for
estimating the integral by a weighted sum. The kernels de-
scribed in this section resemble the ones in (Lázaro-Gredilla
et al., 2010), but using representations of PDE solutions

via the Ehrenpreis-Palamodov fundamental principle as op-
posed to the Fourier transform. For notational simplicity we
assume that the Dj(x, z) are scalar valued and there is only
one variety in Equation (2), i.e. s = 1; the extension of our
analysis to the general case is straight forward and a con-
crete example of S-EPGP applied to Maxwell’s equations
can be seen in Section 6.3.

The idea is to choose the measures µi,j in Equation (2) as
linear combinations of Dirac “delta functions”. Ideally we
would define a GP prior with realizations of the form

f(x) =

m∑
j=1

r∑
i=1

wi,jDj(x, zi,j)e
⟨x,zi,j⟩,

where all zi,j ∈ V . This is precisely the Ehrenpreis-
Palamodov representation of solutions, as in equation 2,
with r Dirac delta measures for each integral. Given train-
ing data, we would then choose zi,j ∈ V as to maximize
the log marginal likelihood. Unfortunately, the requirement
for zi,j to lie on an algebraic variety makes it challenging to
directly use a gradient descent based optimization method.

Instead, we use the implicit parametrization trick from the
beginning of this section and are looking at a GP with real-
izations of the form

f(x) =

m∑
j=1

r∑
i=1

wi,j
1

|Sz′
i,j
|

 ∑
z∈Sz′

i,j

Dj(x, z)e
⟨x,z⟩


=: wTϕ(x),

where now z′i,j ∈ Cd, d = dimV , and w, ϕ(x) are both
vectors of lengthmr. For the same reasons as in the previous
section we may also choose z′i,j ∈

√
−1Rd. To turn f(x)

into a GP, set wi,j ∼ N
(
0, 1

mrΣ
)
, where Σ is a diagonal

matrix with positive entries σ2
i for i = 1, . . . ,mr. We then

get a covariance function of the form

kS−EPGP(x,x
′) =

1

mr
ϕ(x)HΣϕ(x′) (4)

where ϕ(x)H denotes the conjugate transpose of ϕ(x). Re-
fer to Appendix C for details regarding the S-EPGP objec-
tive function and inference. An example implementation in
PyTorch can be found in Appendix H.

4.3. Summary

Below, we summarize concrete steps required to constuct
(S-)EPGP kernels. We emphasize every step can be imple-
mented algorithmically, given a system of PDEs as input.

1. Use the Macaulay2 command solvePDE to compute
the varieties Vi and Noetherian multipliers.
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2. Find nice parametrizations Cd → Vi for each variety.
If such a parametrization does not exist, use a combi-
nation of a random linear change of coordinates and a
univariate polynomial solver.

3. Compute the resulting integral (3). If a closed form
solution exists, use it as-is to obtain an EPGP kernel.
If not, use S-EPGP (4).

Note that EPGP can be Monte-Carlo approximated using
the S-EPGP kernel with frozen, randomly selected zi,j pa-
rameters.

5. Comparison to the Literature
Physics informed methods are a central research topic in
machine learning. The PINN approach adds additional loss
terms for a deep neural network from the differential equa-
tions at collocation points, sometimes combined with feature
engineering, specific network structures, usage of symme-
tries and similar techniques, see e.g. (van Milligen et al.,
1995; Lagaris et al., 2000; Raissi et al., 2019; Cuomo et al.,
2022; Drygala et al., 2022). Such techniques also include
GPs as a tool, e.g. (Zhang et al., 2022) uses GPs to estimate
solutions of a single PDE where the derivatives of the GPs
are used in the loss function and (Chen et al., 2022a) uses
GPs to model a single function constrained by a single linear
PDE. Another recent approach uses GPs and collocation
points to solve linear PDE systems with constant coefficients
(Pförtner et al., 2022).

There are several other deep learning approaches to systems
of PDEs. As an example, weak adversarial networks (Zang
et al., 2020) strive for a Nash equilibrium between a neural
network that minimizes a weak formulation for a PDE and
a second neural network modeling the test function in this
weak formulation. Alternatively, when given a variational
formulation of a PDE, where the solution of the PDEs min-
imizes an integral, the deep Ritz method (Yu et al., 2018)
approximates solutions of PDEs via a neural network such
that a discrete approximation of the integral is minimized.
Ordinary differential equations have been used to construct
deep neural networks (Chen et al., 2018), which has in turn
being used to learn differential equations (Saemundsson
et al., 2020). See also the review (Tanyu et al., 2022) on
similar deep learning methods.

The approaches in (Macêdo & Castro, 2008; Scheuerer &
Schlather, 2012; Wahlström et al., 2013; Solin et al., 2018;
Jidling et al., 2018; Särkkä, 2011; Jidling et al., 2017; Lange-
Hegermann, 2018; Dong, 1989; van den Boogaart, 2001; Al-
bert, 2019) construct GPs for controllable systems of linear
PDEs with constant coefficients using parametrizations and
Lemma 2.1. In the language of our paper, the controllable
systems are the systems with characteristic variety equal to
the full space of frequencies, see Appendix G. In particular,

the approaches in all of the above papers are special cases of
our EPGPs. When we would apply EPGPs to the differential
equations treated in these papers, we would get precisely
the same results. However, none of these approaches can
treat the three examples that we demonstrate in Section 6,
as these examples all have proper characteristic varieties.
Besginow & Lange-Hegermann (2022) construct priors for
all systems of linear ODEs with constant coefficients by
splitting apart the embedded components in the character-
istic variety and model them via linear regression, whereas
the controllable components are again parametrized. Again,
this approach is a special case of EPGPs.

Several paper deal with special cases of controllable systems.
The papers (Alvarez et al., 2009; Hartikainen & Sarkka,
2012; Alvarez et al., 2013; Reece et al., 2014; Alvarado
et al., 2014; Ghosh et al., 2015; Raissi et al., 2017; Camps-
Valls et al., 2018; Särkkä et al., 2018; Nayek et al., 2019;
Pang et al., 2019; Rogers et al., 2020; Gahungu et al., 2022)
constructs priors for linear ODE or PDE systems with forc-
ing terms, which are also controllable. Notably, (Ward et al.,
2020) used these methods in the context of linearization.
Furthermore, Ranftl (2022) uses GPs to construct neural
networks which only allow approximate solutions to given
PDEs as trained functions.

GPs are a classical tool for purely data based simulation
models. Hence, they appear regularly with their standard
covariance functions as an approximate model inside mod-
els connected to differential equations (Chai et al., 2008;
Zhao et al., 2011; Bilionis et al., 2013; Klenske et al., 2015;
Ulaganathan et al., 2016; Rai & Tripathi, 2019; Chen et al.,
2021). Furthermore, a huge class of probabilistic ODE
solvers (Calderhead et al., 2009; Schober et al., 2014; Marco
et al., 2015; Schober et al., 2019; Krämer & Hennig, 2021;
Tronarp et al., 2021; Bosch et al., 2021; Schmidt et al., 2021)
and a smaller class of probabilistic PDE solvers (Bilionis,
2016; Cockayne et al., 2017; Krämer et al., 2022) make use
of GPs when dealing with non-linear differential equations,
without constructing new covariance functions. For systems
of PDEs, solutions can be propagated forward in time using
numerical discretization combined with GPs (Raissi et al.,
2018).

Differential equations are often used together with boundary
conditions. There is recent interest in constructing GP priors
encoding such boundary conditions (Tan, 2018; Solin &
Kok, 2019; Gulian et al., 2022; Nicholson et al., 2022) and
even work constructing GP priors combining differential
equations with boundary conditions (Lange-Hegermann,
2021; Lange-Hegermann & Robertz, 2022).
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Figure 2: Comparison of the error between EPGP (ours) and PINN for learning a solution to a 1D heat equation. On the left,
training data is constrained to t = 0, which tests PDE solving capabilities based on initial data. On the right, training data is
spread over the entire interval t ∈ [0, 5] to test interpolation performance. EPGP yields considerably better results over a
wide range of the amount of training data. The error regions stem from training the model on 10 different instances.

(a) t = 0.000, σ2 = 2 (b) t = 0.015, σ2 = 2 (c) t = 0.03, σ2 = 2 (d) t = 0.045, σ2 = 2 (e) t = 0.06, σ2 = 2

(f) t = 0.000, σ2 = 20 (g) t = 0.015, σ2 = 20 (h) t = 0.03, σ2 = 20 (i) t = 0.045, σ2 = 20 (j) t = 0.06, σ2 = 20

Figure 3: Heat dissipation in 2D at 5 timepoints, with scale parameters σ2 = 2 and 20. The parameter σ2 in the Gaussian
measure regulates how strongly the learned function follows the initial data. Animations can be found on the project website
(Härkönen et al., 2023).

6. Examples
We demonstrate (S-)EPGPs on three systems of PDEs and
a fourth one in Appendix H. While the systems presented
below are simple, they are all fundamental physical sys-
tems still subject to active research, in particular in the
field of finite element methods (Steinbach & Zank, 2019;
Gopalakrishnan et al., 2017; Perugia et al., 2020). Due to
their algebraic simplicity, we omit here details regarding the
computation of their corresponding Noetherian multipliers
and characteristic varieties.

We compare our method with a version of PINN (Raissi
et al., 2019), implementing some of the recent improvements
in the review paper by Cuomo et al. (2022).

We note that there were no previously known GP priors for
any of these systems, as none of them are controllable.

The code used to generate figures and tables is available at

https://github.com/haerski/EPGP

Animated versions of some of the figures can be found on
the expository website

https://mathrepo.mis.mpg.de/EPGP/

6.1. Heat equation

The one-dimensional heat equation is given by the PDE
∂2xu(x, t) = ∂tu(x, t). Our first goal is to infer an ex-
act solution purely from sampled data points, without any
knowledge about boundary conditions. Consider the domain
(x, t) ∈ [−5, 5]× [0, 5] on a 101×51 grid of equally spaced
points. These 5151 corresponding function values serve as
our “underlying truth”.

We compare our method with PINN (Raissi et al., 2019) in
two setups. First, we test the ability of the model to solve
the heat equation given initial data. Therefore, we train on
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different numbers of randomly chosen points at t = 0 and
study the mean square error over all time points t ∈ [0, 5].
In our second setup, we test the ability of the model to
interpolate the underlying true solution from a limited set
of data scattered throughout time. We train on different
numbers of points chosen uniformly at random over the
101 × 51 grid. The results are depicted in Figure 2. The
GP achieves an error several orders of magnitude smaller
than the errors of PINN, even with fewer data points. In
addition, there is a drastic difference in total computation
time between EPGP (10s) and PINN (2h) using an Nvidia
A100 GPU.

Next, we apply the EPGP to the 2D heat equation, with an
added scale parameter on the Gaussian measure as discussed
in the end of Section 4.1. The initial data is given at t = 0,
on a 101×101 grid in the square [−5, 5]2, where every value
is equal to 0, except for a region depicting a smiling face
where we set the value to 1. In this case, the scaling factor σ2

in the covariance kernel determines how strongly the initial
data is respected. Figure 3 compares the posterior mean at
fives timepoints. When σ2 = 20, the prior allows abrupt
changes and the inferred function conforms to the jagged
edges in the data. In contrast, for σ2 = 2 the prior prefers
smooth interpretations of the initial data. In both cases we
show the instantaneous smoothing behavior at times t > 0,
which is characteristic to solutions of the heat equation.
For details (covariance functions, experimental setup, etc.)
and additional comparisons about the heat equation see
Appendix D.

6.2. 2D wave equation

Consider the 2D wave equation, given by ∂2z
∂x2 +

∂2z
∂y2 = ∂2z

∂t2 .
The solution we are trying to learn is obtained by solving
the wave equation numerically, subject to boundary condi-
tions z(0, y, t) = z(1, y, t) = z(x, 0, t) = z(x, 1, t) = 0,
and initial conditions z(x, y, 0) = sin(4πx)y(1 − y), and
∂z
∂t (x, y, 0) = 0. A plot of the numerical solution can be
found on the top row of Figure 4. The recent theoretical
papers (Henderson et al., 2023a;b) construct and study a
covariance function for the 3D wave equation with initial
conditions at t = 0.

To learn the numerical solution, we split the domain
(x, y, t) ∈ [0, 1]3 into a 21 × 21 × 21 grid and use the
data at t = 0, 0.05, 0.1 for training. For S-EPGP, we use
a sum of 16 Dirac delta kernels, whose positions we learn.
A PINN model, with 15 hidden layers of size 200, was
also trained on the same data, but failed to get adequate
extrapolation performance. The bottom row of Figure 4
contains a PINN instance trained for 200,000 epochs. Tech-
nical details about wave equation, our experimental setup,
and an additional comparison of (S-)EPGP models can be
found in Appendix E. An example animation of colliding 2-
dimensional wavefronts can be found on the project website
(Härkönen et al., 2023).

6.3. Maxwell’s equations

The homogeneous Maxwell equations in a vacuum are

∇ ·E = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B =
∂E

∂t
,

where E = (Ex(x, y, z, t), Ey(x, y, z, t), Ez(x, y, z, t))
T

is the vector field corresponding to the electric field and
B = (Bx(x, y, z, t), By(x, y, z, t), Bz(x, y, z, t))

T is the
vector field corresponding to the magnetic field.

We run the S-EPGP algorithm using m = 4, 8, 16, 32, and
64 Dirac delta measures for each of the six multipliers. For
comparison, we repeat the experiment with PINN, where
we base hyperparameters on (Mathews et al., 2021) and
report the results in Table 1. For details about Noetherian
multipliers, the characteristic variety and implementation of
S-EPGP and PINN see Appendix F.

The S-EPGP method learns the true underlying solution
much better than PINN, achieving errors several orders of
magnitude smaller even with a relatively small number of
Dirac delta measures. Runtimes for S-EPGP scale well
and outperform PINN. Our fastest S-EPGP model, with
24 Dirac deltas trained on only 5 points, completes 10000
training epochs in about 60 seconds on an Nvidia A100
GPU, whereas the slowest one, with 384 Dirac deltas trained

Figure 4: Solutions to wave equations for t ∈ [0, 1]. The top row shows a numerical solution, the first three frames of which
serve as the training data. The second row is the mean from EPGP (ours) and the third row is the solution from by PINN.
The gray regions in the PINN solutions are values > 0.3. The project website (Härkönen et al., 2023) contains animated
versions of the above frame captures.
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Table 1: Root mean square errors learning an exact solution to Maxwell’s equations, using different number of datapoints
for training. Top: S-EPGP, with a varying number of Dirac delta measures. Bottom: PINN. Here HLW stands for “hidden
layer width”. Each experiment is repeated 10 times

Deltas 5 datapoints 10 datapoints 50 datapoints 100 datapoints 1000 datapoints

24 6.08± 0.797 8.92± 1.87 1.38± 0.698 0.981± 0.361 0.884± 0.347
48 4.31± 0.431 6.98± 1.37 0.356± 0.392 0.11± 0.101 0.0298± 0.0295
96 4.21± 0.387 3.81± 0.747 0.173± 0.169 0.00521± 0.00221 0.00192± 0.00203
192 3.9± 0.302 3.21± 0.706 1.22± 0.696 0.027± 0.0291 0.00239± 0.00155
384 3.45± 0.364 2.4± 0.796 0.192± 0.193 0.00974± 0.0113 0.000469± 0.00017

HLW 5 datapoints 10 datapoints 50 datapoints 100 datapoints 1000 datapoints

50 4.71± 0.403 4.09± 0.781 1.05± 0.304 0.742± 0.36 0.1± 0.0415
100 4.63± 0.469 4.12± 0.783 1.03± 0.278 0.693± 0.31 0.0948± 0.0272
200 4.72± 0.42 4.1± 0.789 1.06± 0.281 0.73± 0.296 0.0924± 0.0237

on 1000 points, takes about 70 seconds to complete 10000
epochs. In comparison, each PINN model took about 200
seconds to complete 10000 epochs on the same GPU.

For an example using EPGP for generating solutions to
Maxwell’s equations, see the project website (Härkönen
et al., 2023).

7. Discussion
Our method takes a starkly different approach to solving
and learning PDEs compared to other physics informed ma-
chine learning methods such as PINN. As is common in
applied non-linear algebra (Michalek & Sturmfels, 2021),
our philosophy is to remain in the exact setting as much as
possible. This is evidenced by the application of exact sym-
bolic algebraic techniques and the Ehrenpreis-Palamodov
Fundamental Principle in the construction of our kernels.
Thus we say that (S-)EPGP is physics constrained, as all
realizations from our GPs are, by construction, exact solu-
tions to the PDE system. Being constrained to solutions
is not necessarily a disadvantage when dealing with noisy
data, or even data that does not properly follow the PDEs.
The usual GP approaches account for such scenarios by
including additional components to the covariance function.
Our experiments show the exact approach to be the superior
and scalable, in both interpolation (learning) and extrapo-
lation (solving) tasks. Non-exactness in the form of noise
is only introduced at the very last step as we formulate the
GP, which — unlike PINN— makes the (S-)EPGP training
objective statistically well motivated and enables the usage
of well-established techniques for sparse, variational, and
approximate GPs. Furthermore, our method removes the
hyperparameter required for tuning PINN’s multiple loss
functions.

Compared to other methods of learning and solving PDEs,
our method is also completely data-driven and algorithmic.

We do not for example distinguish the time dimension from
other spacial dimensions, as is often done in numerical
methods. Our method also does not require explicit initial
and boundary conditions: data points can be given anywhere
in the domain and can consist of function values, derivatives,
or any combination thereof. For vector-valued functions,
we can also learn on partial representations of the data, for
example using just electric field data to learn a solution to
Maxwell’s equations in order to infer the corresponding
magnetic field. This makes (S-)EPGP extremely flexible
and applicable with minimal domain expertise.
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A. Proof of Lemma 2.1
Our proof hinges on the fact that Gaussian processes and Gaussian measures are essentially the same concepts when defined
on reasonable function spaces. The pushforward property is then easy to check for Gaussian measures.

We will work with a space F of functions, which can be a general locally convex topological vector space (LCS), but for our
purposes, we work with F = C∞(Ω) endowed with the topology induced by the semi norms pα(f) = supx∈Ω |∂αf(x)|
(recall here that we consider Ω to be the closure of an open, convex, bounded set). This topology induces the structure of
a separable Fréchet space on F . We write F∗ for the topological dual of F and δx : f ∈ F 7→ f(x) for the evaluation
functionals. It turns out that δx span a dense set in F∗, a property which will be crucial in the sequel.
Lemma A.1. Let F = C∞(Ω). Then the linear span of {δx}x∈Ω is weakly-* dense in F∗.

Proof. First, we must check that δx ∈ F∗ for a fixed x ∈ Ω, which means that δx is linear on F and continuous with respect
to the topology induced by the semi norms. Linearity is obvious. To check continuity, let fj → f with respect to all semi
norms, so, in particular, fj → f uniformly in Ω. This implies that fj(x) → f(x), so δx(fj) → δx(f).

To prove density, we use the Hahn-Banach extension theorem in locally convex spaces – in our case F∗ equipped with the
weakly-* topology. Denote by H the weakly-* closure of the linear span of {δx}x∈Ω and assume for contradiction that there
exists ϕ ∈ F∗ \H. By the extension theorem, there exists f ∈ F such that L(f) = 0 for all L ∈ H and ϕ(f) = 1. This
implies, in particular, that δx(f) = 0, so f(x) = 0 for all x ∈ Ω, so that f = 0. Finally, this implies that ϕ(f) = 0, which is
a contradiction. The lemma is proved.

To discuss Gaussian processes/measures, we need to turn F into the right measure space. Fortunately, it turns out that “all
reasonable sigma algebras” coincide:
Lemma A.2. Let F = C∞(Ω). The following sigma algebras on F coincide:

1. The Borel sigma algebra (generated by all open sets),

2. The sigma algebra which makes all linear functionals in F∗ measurable,

3. The sigma algebra which makes all evaluation functionals measurable.

Proof. For the equality of the first two sigma algebras see p.1945 in (Rajput & Cambanis, 1972), which only uses the
separability of F . The equality of the second and third sigma algebras follows at once from the Lemma A.1.

Henceforth, we will simply denote any of the three sigma algebras above by Σ. We define Gaussian measures on (F ,Σ) as
measures such that every L ∈ F∗ is a (one dimensional) Gaussian random variable on (F ,Σ, γ). We have the following
Fourier transform type characterization, see Theorem 2.2.4 in (Bogachev, 1998),

E[exp(
√
−1L)] =

∫
F
exp(

√
−1L(f))dγ(f) = exp

(√
−1A(L)− 1

2V (L)
)

for L ∈ F ∗, (5)

where A and V stand for the average and variance of L, which are

A(L) = E[L] =
∫
F
L(f)dγ(f), V (L) = C(L,L), where C(L,M) =

∫
F
(L(f)−A(L))(M(f)−A(M))dγ(f).

The linear map A is the mean of γ and the bilinear form C is its covariance.

With these in mind, it is very easy to prove the assertion of Lemma 2.1 in the case of Gaussian measures:

Lemma A.3. Let γ be a Gaussian measure on (Fℓ,Σ) and B : Fℓ → Fℓ′′ be a linear continuous map. Then B∗γ is a
Gaussian measure on (Fℓ′′ ,Σ) with mean L 7→ A(L◦B) and covariance (L,M) 7→ C(L◦B,M ◦B) for L, M ∈ (Fℓ′′)∗.

Here we recall the definition of the pushforward B∗γ, i.e. the measure on Fℓ′′ such that∫
Fℓ′′

F (f)dB∗γ(f) =

∫
Fℓ

F (Bh)dγ(h)

for all measurable F : Fℓ → [0,∞) such that the right hand side is finite. Equivalently, B∗γ(S) = γ(B−1(S)) for all
Borel sets S ⊂ F ℓ′′ .
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The statement clearly holds for linear continuous maps between locally convex spaces.

Proof. We examine for L ∈ (Fℓ′′)∗

EB∗γ [
√
−1L] =

∫
Fℓ′′

exp(
√
−1L(f))dB∗γ(f) =

∫
Fℓ

exp(
√
−1L(Bh))dγ(h) = Eγ [

√
−1L ◦B]

= exp
(√

−1A(L ◦B)− 1
2V (L ◦B)

)
,

so B∗γ is a Gaussian measure as well. The relations between the means and covariances are obvious.

We also make the definition of Gaussian processes that we are working with precise. Following (Rajput & Cambanis,
1972), we say that g is a Gaussian process on (F ,Σ,P) if for all x ∈ Ω, g(x) ∈ F∗ is a (one dimensional) random
variable such that (x, f) ∈ Ω × F 7→ g(x)(f) ∈ R is measurable and for all m and x1, . . . , xm ∈ Ω, we have that
X = [g(x1), . . . , g(xm)] is a jointly Gaussian distribution (to be precise, an m-dimensional multivariate Gaussian on F ). In
terms of characteristic functions, this is to say that

E[exp(
√
−1X · ν)] =

∫
F
exp(

√
−1X(f) · ν)dP(f) = exp

(√
−1a · ν − 1

2ν · vν
)

for ν ∈ Rm, (6)

where a = (µ(xi))i=1...m and v = (k(xi, xj))i,j=1...m. Here µ(x) = E[g(x)] and k(x, x′) = E[(g(x) − µ(x))(g(x′) −
µ(x′))] are the mean and covariance kernel of the GP g. We will use the abbreviation g(x, f) = g(x)(f) for x ∈ Ω, f ∈ F .

Heuristically, we notice that a Gaussian process as in (6) is nothing else than a restriction of a Gaussian measure as in (5)
for the specific choice of L =

∑m
i=1 νiδxi

∈ F∗ if P = γ. To say it bluntly, Gaussian measures can be evaluated by all
L ∈ F∗, whereas Gaussian processes can only be evaluated by the span of pointwise evaluations δx. For our choice of F as
the set of smooth functions, Lemma A.1 makes it clear that all of F∗ can be approximated to an arbitrary degree by the
pointwise evaluations δx. Hence, under these circumstances, Gaussian Processes on F “coincide” with Gaussian Measures
on F . In fact, if we reduce the set up to the finite dimensional case, i.e. Ω = {1, 2, . . . ,m}, so F ≃ Rm ≃ F∗, then indeed
GPs and Gaussian measures both coincide with a multivariate Gaussian random variable on Rm.

Therefore, the backbone to prove Lemma 2.1 is the following correspondence between GPs and Gaussian measures:

Theorem A.4. Let g be a GP on (F ,Σ,P). Then there exists a Gaussian measure γg on (F ,Σ) such that

γg(S) = P({f ∈ F : g( · , f) ∈ S}) for S ∈ Σ.

Conversely, let γ be a Gaussian measure on (F ,Σ). Then there exists a GP gγ on (F ,Σ, γ) such that γgγ = γ. Here
gγ(x, f) = f(x).

Moreover, if g and γ are in a correspondence as above, we have that

µ(x) =

∫
F
f(x)dγ(f), k(x, x′) =

∫
F
(f(x)− µ(x))(f(x′)− µ(x′))dγ(f) for x, x′ ∈ Ω.

where µ and k are the mean and covariance functions of g. In fact, if A and C are the mean and covariance of γ, then
µ(x) = A(δx) and k(x, x′) = C(δx, δx′).

Similar statements are true for a large variety of spaces, in particular Lebesgue spaces Lp, 1 ≤ p < ∞ (Rajput, 1972a)
and other locally convex spaces (Rajput & Cambanis, 1972; Rajput, 1972b). Here we focus on spaces which embed in
continuous functions.

Proof. The proof of the statement concerning the correspondence between g and γ follows immediately from Remark 1 in
(Rajput & Cambanis, 1972) and Lemma A.1.

The statements about the average and covariance are proved as follows: First

µ(x) = E[g(x)] =
∫
F
g(x, f)dP(f) =

∫
F
f(x)dγ(f) =

∫
F
δx(f)dγ(f) = A(δx).
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Then

k(x, x′) = E[(g(x)− µ(x))(g(x′)− µ(x′))] =

∫
F
(g(x, f)− µ(x))(g(x′, f)− µ(x′))dP(f)

=

∫
F
(f(x)− µ(x))(f(x′)− µ(x′))dγ(f) =

∫
F
(δx(f)−A(δx))(δx′(f)−A(δx′))dγ(f) = C(δx, δx′).

This completes the proof.

We can now finish our task. The proof consists of putting together Theorem A.4 and Lemma A.3.

Proof of Lemma 2.1. Let γg be the Gaussian measure given by Theorem A.4. Write A and C for its mean and covariance.
We can then record by Lemma A.3 that B∗γg is a Gaussian measure with appropriate mean and variance. We would like to
link B∗g with B∗γg . We claim that B∗γg = γB∗g . We have that for S ∈ Σ

γB∗g(S) = P({f ∈ F ℓ′′ : B∗g( · , f) ∈ S}) = P({h ∈ F ℓ : g( · , Bh) ∈ S}).

On the other hand,

B∗γg(S) =

∫
Fℓ′′

χS(f)dB∗γg(f) =

∫
Fℓ

χS(Bh)dγg(h) = γg({h ∈ F ℓ : Bh ∈ S}).

By definition of γg , these two quantities coincide.

We thus proved that that B∗g is the GP that corresponds to the Gaussian measure B∗γg , in the sense of Theorem A.4. This
takes care of proving that the process B∗g is indeed a GP. It remains to retrieve its mean and covariance. By the first formula
in Theorem A.4, we have that the mean of B∗g at x ∈ Ω equals∫

Fℓ′′
f(x)dB∗γg(f) =

∫
Fℓ′′

δx(f)dB∗γg(f) =

∫
Fℓ

δx(Bh)dγg(h) = δx

(
B

∫
Fℓ

hdγg(h)

)
= δx(Bµ) = (Bµ)(x).

We proved that the mean of B∗g is Bµ. To deal with the covariance, we introduce the notation f ⊗h : (y, y′) 7→ f(y)h(y′)T

for f, h ∈ Fℓ. We crucially note that δ(x,x′)f ⊗ h = f(x)h(x′)T . Suppressing the subscript from γg , we have

kB∗g(x, x
′) = CB∗γ(δx, δx′) = Cγ(δx ◦B, δx′ ◦B) =

∫
Fℓ

δ(x,x′)[B(f − µ)]⊗ [B(f − µ)]dγ(f)

= δ(x,x′)

∫
Fℓ

[B(f − µ)]⊗ [B(f − µ)]dγ(f) = δ(x,x′)

(
B

∫
Fℓ

(f − µ)⊗ (f − µ)dγ(f)(B′)T
)

= δ(x,x′)[Bkg(B
′)T ] = [Bkg(B

′)T ](x, x′),

so kB∗g = Bkg(B
′)T . The proof is complete.

Comparing to (Lange-Hegermann, 2021, Lemma 2.2), this proof does not need a compatibility assumption between
probabilities and operators.

B. Convergence of Ehrenpreis-Palamodov integrals
In general, integrals of the form

ϕ(x) =

∫
V

D(x, z)e⟨x,z⟩ dµ(z), k(x,x′) =

∫
V

D(x, z)D(x′, z)He⟨x,z⟩ dµ(z)

appearing in the Ehrenpreis-Palamodov theorem and EPGP kernels need not converge. This makes the choice of measure µ
slightly delicate. We propose three solutions.

1. If the variety V ⊂ Cn is the affine cone of a projective variety, i.e. x ∈ V ⇐⇒ λx ∈ V for all λ ∈ C, we can restrict
the measure to be supported on purely imaginary points, which equates to replacing V by V ∩

√
−1Rn. This fact

guarantees the convergence of the EPGP kernel when the characteristic variety is such an affine cone.
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2. In some cases, the integral may only converge on a subset of the domain of the solution. In such cases we can
restrict the domain of our solution. A concrete example is with the heat equation ∂2x = ∂t, whose Ehrenpreis-
Palamodov representation is

∫
R e

√
−1ax−a2t dµ(a) after restricting and parametrizing the measure. Here, the relatively

benign restriction to t ≥ 0 makes the integrand bounded. This observation makes the heat equation EPGP kernel
kEPGP(x, t;x

′, t′) well defined whenever t, t′ > 0.

3. A more general approach is to translate the exponent using the so-called supporting function of a convex, compact set
Ω ⊆ Rn, defined as

HΩ(w) = max
w∈Ω

⟨z,y⟩, for w ∈ Rn.

The integral is then modified to be

ϕ(x) =

∫
V

D(x, z)e⟨x,z⟩e−HΩ(Re(z)) dµ(z).

Of course, such a modification does change the Ehrenpreis-Palamodov measure to another allowed Ehrenpreis-
Palamodov measure. This modification makes the real part of the exponent negative, which bounds the magnitude
of the integrand and makes ϕ(x) defined whenever x ∈ Ω. The same modification can be carried over to EPGP by
substituting Ψ(x, z′) in Equation (3) by

Ψ(x, z) =
∑
j

∑
z∈Sz′

Dj(x, z)e
⟨x,z⟩e−HΩ(Re(z))

We prove that we have convergence of the Ehrenpreis-Palamodov integral for two explicit classes of bounded measures µ

• with compact support, i.e. there exists a relatively compact subset K of V such that µ(V \K) = 0 and µ(K) <∞
(e.g. S-EPGP with its Dirac delta measures),

• when dµ(z′) = e−
∥z′∥2

2 dL(z′) and V =
√
−1Rd (e.g. EPGP).

The proofs for convergence of EPGP kernels are analogous.

In case 1, since z is purely imaginary and x is real, we have that |e⟨x,z⟩| = 1 and, if µ has compact support,∫
V

|D(x, z)e⟨x,z⟩| dµ(z) =
∫
K

|D(x, z)||e⟨x,z⟩| dµ(z) ≤
∫
K

sup
Ω×K

|D| dµ(z) = µ(K) sup
Ω×K

|D|,

which is finite and proves the required convergence of the integral. In the case of the squared exponential weight, the only
difference is to notice that ∫

V

|D(x, z)|e−
∥z′∥2

2 dL(z′) <∞,

which follows since the squared exponential is a rapidly decreasing function.

In the case 2, we need not assume compact support, just µ(R) <∞, to get∫
R
|e

√
−1ax−a2t| dµ(a) =

∫
R
e−a2t dµ(a) ≤ µ(R),

since e−a2t ≤ 1 for t ≥ 0. This then directly includes the case when µ is a squared exponential.

Finally, we examine the integrand in case 3 which equals

|e⟨x,z⟩e−HΩ(Re(z))| = |e⟨x,z⟩−HΩ(Re(z))| = e⟨x,Re z⟩−HΩ(Re(z)) ≤ 1,

where the last inequality follows from the definition of HΩ. We then conclude that∫
V

|D(x, z)e⟨x,z⟩e−HΩ(Re(z))| dµ(z) ≤
∫
V

|D(x, z)| dµ(z) ≤ µ(K) sup
Ω×K

|D|,

where the last inequality follows like in the analysis of case 1. The case when µ is squared exponential follows similarly.
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C. Details about S-EPGP
In this section we derive the posterior distribution and training objective for S-EPGP. Recall that our latent functions are of
the form

f(x) =

m∑
j=1

r∑
i=1

wi,j
1

|Sz′
i,j
|

 ∑
z∈Sz′

i,j

Dj(x, z)e
⟨x,z⟩

 =: wTϕ(x),

where we assume w ∼ N (0, 1
mrΣ).

Given n noisy observations Y = f(X) + ϵ, where ϵ ∼ N (0, σ2
0I), the predictive distribution of F∗ = f(X∗) at new points

X∗ is given by

p(F∗ | Y ) = N (ϕH∗ A
−1ΦY, σ2

nϕ
H
∗ A

−1ϕ∗),

where A = mrσ2
0Σ

−1+ΦΦH , Φ is the mr×n matrix with columns ϕ(x) for all n training points x, and ϕ∗ is the mr×n∗
matrix with columns ϕ(x∗) for all n∗ prediction points x∗. Similarly, the log marginal likelihood is, up to a constant
summand C

log p(Y | x, θ) = − 1

2σ2
0

(Y TY − Y TΦHA−1ΦY )− n−mr

2
log σ2

0 −
1

2
log |Σ| − 1

2
log |A|+ C

Training the model means finding z′i,j ∈ Cd, σ0 > 0, and Σ = diag(σ2
1 , . . . , σ

2
mr) ∈ R⪰0 such that the log-marginal

likelihood is maximized.

Note that the main bottleneck in the above computation is the inversion of A. Since usually mr ≪ n, writing the training
objective in this form is computationally efficient, since the matrix A has only size mr ×mr. Instead of inverting A, we
compute a Cholesky decomposition, which also yields the determinant |A|. An example implementation is presented in
Appendix H.

D. Details on the heat equation
The variety V corresponding to the heat equation is the parabola, which we will denote z2x = zt. The only multiplier D is 1.
This can be confirmed using the Macaulay2 command solvePDE

i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,t];
i3 : solvePDE ideal (xˆ2-t)

2
o3 = {{ideal(x - t), {| 1 |}}}

We may choose zx as the independent variable, which turns Equation (3) into the covariance function

kEPGP(x, t, x
′, t′) =

∫
R
eixzx−tz2

xe−ix′zx−t′z2
xe−

z2x
2 dL(zx)

=

∫
R
eizx(x−x′)−(t+t′+1/2)z2

xe−ix′zx−t′z2
x dL(zx)

(7)

The integral converges whenever t + t′ + 1/2 > 0, which is always the case in our domain. Of course, changing the

scale parameters in e−
z2x
2 changes the area of convergence. For the 1D heat equation, we approximate the integral using

Monte-Carlo samples.

In the example of Section 6.1, the exact solution we want to learn is the function

u(x, t) =

√
5(64t3 + 125(−3 + x)(−1 + x)(2 + x)− 50t(−2 + x)(13 + 4x) + 40t2(16 + 5x))

ex2/(5+4t)(5 + 4t)7/2
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Figure 5: One set of trained instances with 16 randomly chosen datapoints. The vertical axis corresponds to x and the
horizontal axis corresponds to t, where t = 0 on the left and t = 5 on the right. The left plots describe the learned heat
profile and the right plot denotes the difference between the exact and the learned solution. We observe that PINN performs
well in regions where the density of data points is high, such as in the bottom right of the picture, but its error is relatively
large at small values of t.

Our experimental setup for PINN is modeled after the one in (Mathews et al., 2021). We use 5 hidden layers, each of
dimension 100, and a tanh activation function. The loss function is the sum of the mean squared error incurred from the
training data and the mean of the square of the value of the heat equation sampled at 100 random points on the domain
(x, t) ∈ [−5, 5]× [0, 5]. The neural network is trained for 10,000 epochs and parameters are optimized using Adam, with
learning rate 10−4.

For one particular instance, with the difference between the underlying truth see Figure 5. The benefit of using carefully
crafted covariance functions is also clearly visible in Figure 6, which gathers total errors from all initial point setups in a
comparison between EPGP and PINN.

For EPGP, the full 5151 × 5151 covariance matrix over 10,000 MC samples takes about one second to compute with
an Nvidia A100 GPU. This is the main computational task in vanilla EPGP, which once completed, allows essentially
instantaneous inference by posterior mean. This means that the entire experimental setup (10 repeats, 12 sets of initial
points) takes about 10 seconds in total. In contrast, each PINN model takes about a minute to complete 10,000 epochs
and the computation has to be restarted from scratch for each set of initial points. The total time used to run the entire
experimental setup using PINN is thus about two hours.
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Figure 6: Aggregate plot of total errors with different choices of initial points. On the left (init = False), we choose training
points at random in t ∈ [0, 5]. On the right (init = True), training points are chosen in t = 0.

Figure 7: Initial data for learning a solution to the heat equation in 2D. The dark data points correspond to a heat value of 0
and the light points correspond to a heat value of 1.

For the 2D heat equation, we use the EPGP kernel whose Gaussian measure includes a scale parameter σ2. In this case the
EPGP covariance kernel becomes

kσ(x, y, t;x
′, y′, t′) =

1
1
σ2 + 2(t+ t′)

e
− (x−x′)2+(y−y′)2

2( 1
σ2 +2(t+t′)) .

The initial data used in Figure 3 consists of the values {0, 1} in the pattern shown in Figure 7. The initial data is given on a
101× 101 grid of points in the range (x, y) ∈ [−5, 5]2 and at time t = 0.

E. Details about the wave equation
The Macaulay2 command solvePDE reveals that the characteristic variety for the 2D wave equation ∂2x + ∂2y − ∂2t = 0 is
the cone x2 + y2 − t2 = 0, so each entry of ϕ in the S-EPGP kernel will have the form

ϕj(x, y, t) =
1

2

(
e
√
−1(xaj+ybj+t

√
a2
j+b2j ) + e

√
−1(xaj+ybj−t

√
a2
j+b2j )

)
where j = 1, . . . , 16. The spectral parameters aj , bj ∈ R are learned from the data.

We initialize the 16 pairs (ai, bi) ∈ R2 randomly from a standard normal distribution. The initial noise coefficient σ0 is set
to 10−2 and the diagonal matrix Σ is initialized to 1

16I . Optimization is done using Adam, with a learning rate of 0.1 for
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both the (ai, bi) and the logarithm of the diagonal entries of Σ. Learning rate for the logarithm of σ2
0 was set to 0.01. The

frames visible in the middle row of Figure 4 were obtained after 10000 epochs.

For PINN, we again follow a similar schedule to (Mathews et al., 2021), with some fine-tuning. After a few attempts, we
settled on 15 hidden layers, each of size 200. The neural network was trained using the Adam optimizer with learning rate
10−4 on 200,000 epochs. In our first attempts, we observed that PINN would converge to a constant solution, which almost
certainly is a local optimum of the PINN loss function: a constant surely satisfies the wave equation equation exactly, but
does not fit the data very well. This led us to reweight the PINN objective so that data fit was given a weight 1000 times
larger than PDE fit. Despite our best efforts, we did not manage to get satisfactory extrapolation performance using PINN.

We also ran a comparison of different methods on a solution of the wave equation. Our underlying true solution u(x, y, t) to
the wave equation was computed from the initial values u(x, y, 0) = exp(−10((x−0.35)2+(y−0.25)2)), ∂tu(x, y, 0) = 0,
and boundary conditions u(x,−1, t) = u(x, 1, t) = u(−1, y, t) = u(1, y, t) = 0. We discretize the domain (x, y, t) ∈
[−1, 1]2 × [0, 3] by using a 64 × 64 × 31 grid. Our data consists of triples (x, y, t) chosen uniformly at random on the
grid and the corresponding function values u(x, y, t). We compare the performance of five models: two flavors of S-EPGP,
two flavors of (Monte-Carlo approximated) EPGP, and PINN. For the wave equation, the S-EPGP kernel takes the forms
kS−EPGP(x, y, t;x

′, y′, t′) = 1
rϕ(x, y, t)

HΣϕ(x′, y′, t′), where ϕ is an r-vector with entries

ϕi(x, y, t) =
1

2

(
eaix+biy+

√
a2
i+b2i t + eaix+biy−

√
a2
i+b2i t

)
,

and Σ is a diagonal matrix with positive entries. Our five models are described as follows

Complex S-EPGP This is the implementation of S-EPGP as described in Section 4.2, where ai, bi can take any complex
values. This model corresponds to rows labeled “C S-EPGP (r)” in Table 2, where r refers to the number of Dirac
delta measures used.

Imaginary S-EPGP This model restricts ai, bi to be purely imaginary numbers, i.e. in
√
−1R. This choice is motivated by

the discussion in Example 4.3. This model corresponds to rows labeled “i S-EPGP (r)” in Table 2, where r refers to
the number of Dirac delta measures used.

Vanilla EPGP This is the EPGP model, using a Gaussian measure with variance 2, i.e. proportional to e−
a2+b2

2·2 . Since
the integral defining the EPGP kernel does not have a closed form solution, we can use a Monte-Carlo approximation.
This can be implemented with a slight modification of S-EPGP: if r is number of Monte-Carlo points, we can sample
2r real values (ai, bi)ri=1 randomly from a normal distribution N (0, 2) and set Σ to the identity matrix. To guarantee
convergence, we substitute (ai, bi) by

√
−1(ai, bi). When learning, we disable optimization of (ai, bi) and Σ and only

optimize for σ2
0 . This model corresponds to rows labeled “EPGP (r)” in Table 2, where r refers to the number of

Monte-Carlo points used.

Length-Scale EPGP In this EPGP model, we parametrize our Gaussian weight with a variance parameter. The underlying

measure is thus proportional to e−
a2+b2

2·ℓ2 . Here too we implement the same Monte-Carlo and learning scheme as above,
with the addition of the optimization parameter ℓ2 > 0. This model corresponds to rows labeled “ℓ2 EPGP (r)” in
Table 2, where r refers to the number of Monte-Carlo points used.

PINN We include PINN mostly for completeness, as despite our best efforts we were unable to get it to converge to anything
reasonable. We use a neural network with the tanh activation function. At each epoch we use 500 random collocation
points in the range [−1, 1]2 × [0, 3] for measuring PDE fit and weigh the data fit summand by a factor of 1000 to avoid
converging to a constant solution. This model corresponds to rows labeled “PINN (h,w)” in Table 2, where h and w
are respectively the number and width of hidden layers.

For the (S-)EPGP models, we initialize the points (ai, bi) from a normal distribution with covariance 2I . The matrix Σ is
initialized to the identity matrix and σ2

0 is initially set to 10−4. The Adam optimizer is used, with the following learning
rates: 0.1 for (ai, bi) (S-EPGP); 0.001 for σ2

0 and the diagonal entries of Σ (S-EPGP only); 0.01 for ℓ2 (Length-Scale EPGP
only). The learning rates decay to 0 following a cosine annealing scheduler with warm restarts every 500 epochs (Loshchilov
& Hutter, 2016). Each (S-)EPGP model is trained for 3000 epochs in total. The PINN model is optimized for 3000 epochs
as well using the Adam optimizer with learning rate 10−4.
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Results of the comparison are recorded in Table 2, along with total runtimes for 3000 epochs in Table 3. With very few
training points, performance across all flavors of (S-)EPGP are similar. As the size of the training dataset increases, the
added flexibility obtained by increasing the number of Dirac delta measures (S-EPGP) or Monte-Carlo points (EPGP)
becomes apparent. Furthermore, runtimes scale extremely well with respect to the size of the training set. On the other hand,
the PINN models fail to capture the desired solution to the wave equation, despite a large and diverse training set, and they
exhibit much higher runtimes in general.

We also note that all of our (S-)EPGP kernels are compatible with standard methods to approximate Gaussian Processes,
such as sparse variational Gaussian Processes (Titsias, 2009), which may further improve runtime and performance.

Table 2: Comparison of root mean squared errors for different models applied to the 2-dimensional wave equation. For each
model, we predict a 64× 64× 31 grid of function values based on a varying number of training points and compare it to
the 64× 64× 31 grid of “true” values, computed numerically. The means and standard deviations of the RMS errors are
recorded below, with best values in bold.

Root mean square (RMS) error

Training data points 32 128 512 2048

C S-EPGP (32) 0.176± 0.032 0.103± 0.021 0.040± 0.003 0.036± 0.001
C S-EPGP (64) 0.159± 0.036 0.100± 0.019 0.028± 0.003 0.017± 0.002
C S-EPGP (128) 0.157± 0.025 0.089± 0.013 0.016± 0.002 0.007± 0.000
i S-EPGP (32) 0.158± 0.020 0.087± 0.012 0.056± 0.006 0.053± 0.004
i S-EPGP (64) 0.149± 0.022 0.072± 0.008 0.036± 0.002 0.032± 0.002
i S-EPGP (128) 0.143± 0.016 0.068± 0.011 0.022± 0.004 0.010± 0.002
EPGP (100) 0.188± 0.067 0.099± 0.004 0.078± 0.008 0.070± 0.004
EPGP (1000) 0.133± 0.021 0.082± 0.011 0.046± 0.004 0.040± 0.003
ℓ2 EPGP (100) 0.231± 0.053 0.084± 0.014 0.054± 0.009 0.057± 0.022
ℓ2 EPGP (1000) 0.201± 0.033 0.075± 0.011 0.017± 0.003 0.008± 0.003
PINN (7,100) 0.207± 0.038 0.133± 0.018 0.113± 0.004 0.107± 0.004
PINN (15,200) 0.192± 0.017 0.130± 0.018 0.109± 0.003 0.107± 0.004

Table 3: Comparison of runtimes (in seconds) for different models applied to the 2-dimensional wave equation. Each model
is trained for 3000 epochs in total and we record the mean and standard deviation of 10 repetitions for each model, with best
values in bold.

Runtime (s)

Training data points 32 128 512 2048

C S-EPGP (32) 8.4± 0.0 8.4± 0.1 8.4± 0.1 8.7± 0.0
C S-EPGP (64) 8.2± 0.1 8.3± 0.1 8.5± 0.0 8.5± 0.0
C S-EPGP (128) 8.5± 0.1 8.7± 0.0 8.8± 0.0 8.8± 0.0
i S-EPGP (32) 8.3± 0.0 8.3± 0.0 8.3± 0.0 8.5± 0.1
i S-EPGP (64) 8.2± 0.0 8.2± 0.0 8.4± 0.0 8.4± 0.0
i S-EPGP (128) 8.4± 0.0 8.6± 0.0 8.6± 0.0 8.7± 0.0
EPGP (100) 5.6± 0.1 5.6± 0.1 5.7± 0.1 5.8± 0.1
EPGP (1000) 14.1± 0.1 14.3± 0.1 15.0± 0.1 17.6± 0.0
ℓ2 EPGP (100) 7.9± 0.1 7.9± 0.0 8.2± 0.0 8.2± 0.0
ℓ2 EPGP (1000) 16.6± 0.0 17.0± 0.2 19.0± 0.0 27.0± 0.1
PINN (7,100) 41.4± 0.4 41.4± 0.3 41.7± 0.3 42.3± 0.3
PINN (15,200) 93.8± 1.0 94.2± 1.0 94.5± 1.4 94.7± 0.9
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F. Details about Maxwell’s equation
If we set ψ = (Ex, Ey, Ez, Bx, By, Bz)

T , Maxwell’s equations correspond to the following eight linear equations with
constant coefficients: 

∂x ∂y ∂z 0 0 0
0 −∂z ∂y ∂t 0 0
∂z 0 −∂x 0 ∂t 0
−∂y ∂x 0 0 0 ∂t
0 0 0 ∂x ∂y ∂z

−∂t 0 0 0 −∂z ∂y
0 −∂t 0 ∂z 0 −∂x
0 0 −∂t −∂y ∂x 0


ψ = 0.

The output of the Macaulay2 command solvePDE returns two Noetherian multipliers and one variety, namely an affine
cone of spheres.

i1 : needsPackage "NoetherianOperators"
i2 : R = QQ[x,y,z,t];
i3 : M = matrix {

{x,y,z,0,0,0},
{0,-z,y,t,0,0},
{z,0,-x,0,t,0},
{-y,x,0,0,0,t},
{0,0,0,x,y,z},
{-t,0,0,0,-z,y},
{0,-t,0,z,0,-x},
{0,0,-t,-y,x,0}

};
i4 : solvePDE transpose M

2 2 2 2
o4 = {{ideal(x + y + z - t ), {| -xz |, | xy |}}}

| -yz | | y2-t2 |
| -z2+t2 | | yz |
| -yt | | -zt |
| xt | | 0 |
| 0 | | xt |

We note that while the two operators are independent and generate the excess dual space (Härkönen, 2022), they are slightly
”unbalanced”, in the sense that the last two coordinates alone uniquely determine the two summands in the Ehrenpreis-
Palamodov representation of the solution. Thus any potential noise in the y and z coordinates of the magnetic field will have
a stronger effect on the quality of the inference procedure. We solve this imbalance by considering the kernel of the matrix
as a map between free R/P modules, where R = C[x, y, z, t] is a polynomial ring and P = ⟨x2 + y2 + z2 − t2⟩ is the
prime ideal corresponding to our characteristic variety. Since the generators of the kernel as an R/P -module maps to a set
of frac(R/P )-vector space generators, this procedure indeed yields a valid set of Noetherian multipliers (Härkönen, 2022).
This computation can also be carried out using Macaulay2.

i5 : N = coker transpose M;
i6 : P = first associatedPrimes N

2 2 2 2
o6 = ideal(x + y + z - t )

o6 : Ideal of R
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i7 : kernel sub(M, R/P)

o7 = image {1} | xz -y2-z2 xy -yt zt 0 |
{1} | yz xy y2-t2 xt 0 -zt |
{1} | z2-t2 xz yz 0 -xt yt |
{1} | yt 0 -zt xz xy -y2-z2 |
{1} | -xt zt 0 yz y2-t2 xy |
{1} | 0 -yt xt z2-t2 yz xz |

We recognize our two Noetherian multipliers in the columns of the above matrix, as well as four extra operators. The
six columns above will serve as our Noetherian multipliers D1, . . . , D6 in the S-EPGP method. This yields a slightly
overparametrized, but also more balanced set of Noetherian multipliers, as every operator has a single zero in a distinct entry.

In order to avoid excessive subscripts, we will depart from our convention denoting primal (space-time) variables by
the symbol x and dual (spectral) variables by the symbol z. Instead, we will use x, y, z, t for the space-time variables
and a, b, c, d for the corresponding spectral variables. Note that the symbols x, y, z, t in the above matrix denoted by
o7 actually correspond to ∂x, ∂y, ∂z, ∂t and thus will be evaluated at the spectral points (a, b, c, d) on the variety V =
V (a2 + b2 + c2 − d2).

For the implicit parametrization trick, we let a, b, c be free variables and solve for d = ±
√
a2 + b2 + c2. Thus, as described

in Section 4.2, the S-EPGP kernel for Maxwell’s equations will have the form

k(x, y, z, t;x′, y′, z′, t′) =
1

6m
Φ(x, y, z, t)HΣΦ(x′, y′, z′, t′),

where Φ(x, y, z, t) is the (6m× 6) matrix whose rows, indexed by i = 1, . . . ,m and j = 1, . . . 6 are

1

2
Dj(aij , bij , cij ,

√
a2ij + b2ij + c2ij)

T e
√
−1(aijx+bijy+cijz+

√
a2
ij+b2ij+c2ijt)+

1

2
Dj(aij , bij , cij ,−

√
a2ij + b2ij + c2ij)

T e
√
−1(aijx+bijy+cijz−

√
a2
ij+b2ij+c2ijt)

Our goal is to infer an exact solution to Maxwell’s equations from a set of 5, 10, 50, 100, and 1000 randomly selected
datapoints in the range (x, y, z, t) ∈ [−1, 1]3 × [0, 2]. The exact solution is a superposition of five plane waves. Each plane
wave is constructed by choosing two orthogonal 3-vectors E0,i and ki. We then set

Ei(x, y, z, t) = Re
(
E0,ie

√
−1⟨ki,(x,y,z)⟩−∥ki∥t

)
Bi(x, y, z, t) =

ki

∥ki∥
×Ei(x, y, z, t)

E(x, y, z, t) =

5∑
i=1

Ei(x, y, z, t)

B(x, y, z, t) =

5∑
i=1

Bi(x, y, z, t).

In our experiments, we choose

E0,1 =

−2
0
1

 E0,2 =

11
0

 E0,3 =

 1
−1
−1

 E0,4 =

32
1

 E0,5 =

−7
2
3


k1 =

10
2

 k2 =

00
1

 k3 =

 0
−1
1

 k4 =

−1
1
1

 k5 =

 0
3
−2


The exact function is then sampled on a uniform 11× 11× 11× 11 grid in the ranges (x, y, z) ∈ [−1, 1]3 and t ∈ [0, 2].
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For S-EPGP, we initialize the spectral points using standard normal random values. Each S-EPGP run is optimized using the
Adam optimizer with learning rate 0.01 over 10000 epochs.

For PINN, we use 5 hidden layers of varying sizes, with the tanh activation function. PDE fit is measured using 500
collocation points sampled uniformly in the region [−1, 1]3 × [0, 2]. The loss function is defined as the sum of the mean
squared error at the data points and the mean square error of the PDE constraints, similarly to the original PINN paper
(Raissi et al., 2019). We train the model for 9000 epochs using the Adam optimizer with learning rate 10−3 and finally 1000
epochs using the L-BFGS optimizer.

G. Affine subspaces
In this section, we consider the EPGP kernel in the special case where the characteristic variety V is an affine subspace, i.e.
linear spaces and translations thereof.

We first show that our approach generalizes the approach to parametrizable systems of PDEs in (Lange-Hegermann, 2021).
The control theory literature calls such systems controllable (Shankar, 2019). Parametrizable systems are characterized by
several algebraic conditions, but the one we are interested in is the following: controllable systems are precisely the ones
where the only characteristic variety is Cn. The Ehrenpreis-Palamodov fundamental principle thus implies that all solutions
are of the form

f(x) =
∑
i

∫
Cn

Di(z)e
⟨x,z⟩ dµi(z) =

∑
i

Di(∂x)

∫
Cn

e⟨x,z⟩ dµi(z) =:
∑
i

Di(∂x)ϕi(x).

We can omit the x-variables in the polynomials Di, since every variable is independent over R/(0), where the zero ideal (0)
is the prime ideal corresponding to the variety Cn (Ait El Manssour et al., 2021; Härkönen, 2022). Furthermore, any choice
of smooth functions ϕi(x) yields a solution. In other words, the set of solutions to the PDEs A(∂x)f = 0 is the image of the
matrix B(∂x), which is the matrix with columns Di(∂x). Thus the EPGP kernel induces the pushforward GP of B, where
our latent covariance is the squared exponential kernel, precisely as in Example 4.1.

We now generalize this to general affine subspaces, i.e. translated linear spaces. Suppose A describes a system of linear
PDEs whose only characteristic variety is an affine subspace. Then there is a parametrization of the variety of the form
z 7→ Cz+ b for some n× d constant matrix C of rank d and a constant vector b. By a change of variables, we may choose
the Noetherian operators to be functions of z only, so by Ehrenpreis-Palamodov the solution set consists of summands of the
form

fi(x) =

∫
Cd

Di(z)e
⟨x,Cz⟩+⟨x,b⟩ dµi(z)

= e⟨x,b⟩Di(∂CTx)

∫
Cd

e⟨C
Tx,z⟩ dµi(z)

= e⟨x,b⟩(Di(∂y)ϕi(y))y→CTx,

where ϕi(y) is an arbitrary, smooth d-variate latent function. By Ehrenpreis-Palamodov, every smooth solution arises this
way.

If we gather all Di inside a matrix B, the EPGP kernel (up to a scaling factor) becomes kEPGP(x,x
′) =

e⟨x,b⟩
(
B(∂y)γ(y, y

′)BT (∂y′)
)
y→CTx

e⟨x
′,b⟩, where γ(y, y′) is the d-dimensional squared exponential kernel. We ob-

serve that kEPGP(x,x
′) is (up to scaling) the covariance function of f(x) = e⟨x,b⟩ (B(∂y)g(y))y→CTx, where g(y) is a

vector of independent latent GPs with squared exponential covariance. Since f(x) is the general form of a solution to the
PDEs given by A and realizations of GPs with squared exponential covariance functions are dense in the set of smooth
functions, we conclude that our method constructs a kernel for which realizations are dense in the set of smooth solutions to
A.

H. Example implementation for Laplace’s equation
In this section, we present an example implementation of S-EPGP in PyTorch. Other examples, including code generating
all figures and tables in this paper can be found in the repository
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(a) Solution computed numerically. (b) Solution inferred by S-EPGP. (c) Difference between the solutions.

Figure 8: Figures output by code snippets in the example implementation in Appendix H, depicting solutions to a 2-
dimensional Laplace equation, with sinusoidal boundary conditions.

https://github.com/haerski/EPGP.

Our aim is to learn a numerically computed solution to Laplace’s equation ∂2x + ∂2y = 0 from data. All input cells will
be framed. We note that the code presented below is self contained, aside from dependencies on torch (version 1.13.1),
py-pde (version 0.27.1), and numpy (version 1.23.1), and was tested on Python version 3.9.13.

We start by importing the required packages.

import torch
import matplotlib.pyplot as plt
import numpy as np
from pde import CartesianGrid, solve_laplace_equation

torch.set_default_dtype(torch.float64)
torch.manual_seed(13);

H.1. A numerical solution

We compute a numerical solution to the Laplace equation in 2D, given by the equation ∂2x + ∂2y = 0. We consider this as the
underlying “true” solution to the PDE from which we draw training data. This solution is plotted in Figure 8a.

grid = CartesianGrid([[0, 2 * np.pi]] * 2, 64)
bcs = [{"value": "sin(y)"}, {"value": "sin(x)"}]

res = solve_laplace_equation(grid, bcs)

We convert the py-pde types to PyTorch tensors

Ps = torch.tensor(grid.cell_coords)
u_true = torch.tensor(res.data)

The training dataset will consist of 50 randomly sampled points in the numerical solution

train_pts = 50
train_idx = torch.randperm(len(u_true.flatten()))[:train_pts]
X = Ps.flatten(0,1)[train_idx]
U = u_true.flatten()[train_idx]
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H.2. Setting up a S-EPGP kernel

Running the command solvePDE in Macaulay2 reveals two varieties, namely the lines a = ib and a = −ib, where a, b
are spectral variables corresponding to x, y respectively. For both lines, there is only one Noetherian multiplier, namely 1.
This means that the Ehrenpreis-Palamodov representation of solutions to Laplace’s equations are of the form∫

a=ib

eax+by dµ1(a, b) +

∫
a=−ib

eax+by dµ2(a, b).

By parametrizing the two lines, we can rewrite the integrals in a simpler form. We use the parametrizations

(a, b) = ((1 + i)c, (1− i)c)

(a, b) = ((1− i)c, (1 + i)c)

The integrals then become ∫
C
e(1+i)cx+(1−i)cy dµ′

1(c) +

∫
C
e(1−i)cx+(1+i)cy dµ′

2(c)

We approximate each measure with m Dirac delta measures. This translates to the S-EPGP kernel

k(x, y) = Φ(x, y)HΣΦ(x, y),

where Φ(x, y) is the vector with entries

Φ(x, y)j =

{
e(1+i)cjx+(1−i)cjy, if j = 1, . . . ,m

e(1−i)cjx+(1+i)cjy, if j = m+ 1, . . . , 2m
,

and Σ is a 2m× 2m diagonal matrix with positive entries σ2
j . Our goal will be to learn the cj ∈ C, σ2

j > 0 that minimize the
log-marginal likelihood. Given an array c of length 2m and a s × 2 matrix X of points (x,y), the function Phi returns
the 2m × s matrix with columns Φ(x, y).

def Phi(c,X):
c1, c2 = c.chunk(2)
c1 = c1.unsqueeze(1) * torch.tensor([1+1.j,1-1.j])
c2 = c2.unsqueeze(1) * torch.tensor([1-1.j,1+1.j])
cc = torch.cat([c1,c2])
return cc.inner(X).exp()

H.3. Objective function

Suppose we are trying to learn on s data points. Let X be the s× 2 matrix with input points xk, yk and U the s× 1 vector
with output values uk. Let Φ be the 2m× s matrix of features obtained by the function Phi above.

The negative log-marginal likelihood function is

1

2σ2
0

(UTU − UTΦHA−1ΦU) +
s− 2m

2
log σ2

0 +
1

2
log |A|+ 1

2
log |Σ|+ n

2
log 2π,

where σ2
0 is a noise coefficient and

A = ΦΦH + σ2
0Σ

−1

This can be computed efficiently using a Cholesky decomposition: A = LLH . Ignoring constants and exploiting the
structure of Σ, we get the objective function

1

2σ2
(∥U∥2 − ∥L−1ΦU∥2) + s− 2m

2
log σ2

0 +
2m∑
j=1

logLj,j +
1

2

2m∑
j=1

log σ2
j

The function below computes the Negative Log-Marginal Likelihood (NLML). Here we assume that Sigma is a length 2m
vector of values log σ2

j and sigma0 is log σ2
0
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def NLML(X,U,c,Sigma,sigma0):
phi = Phi(c,X)
A = phi @ phi.H + torch.diag_embed((sigma0-Sigma).exp())
L = torch.linalg.cholesky(A)
alpha = torch.linalg.solve_triangular(L, phi @ U, upper=False)
nlml = 1/(2*sigma0.exp()) * (U.norm().square() - alpha.norm().square())
nlml += (phi.shape[1] - phi.shape[0])/2 * sigma0
nlml += L.diag().real.log().sum()
nlml += 1/2 * Sigma.sum()
return nlml

H.4. Training

We now set up parameters, initial values, optimizers and the training routine. We will use m = 8 Dirac delta measures for
each integral.

m = 8
Sigma = torch.full((2*m,), -np.log(2*m)).requires_grad_()
sigma0 = torch.tensor(np.log(1e-5)).requires_grad_()
c = (1*torch.randn(2*m, dtype=torch.complex128)).requires_grad_()

U = U.to(torch.complex128).reshape(-1,1)
X = X.to(torch.complex128)

def train(opt, sched, epoch_max = 1000):
for epoch in range(epoch_max):

nlml = NLML(X,U,c,Sigma,sigma0)

print(f’Epoch {epoch+1}/{epoch_max}\tNLML {nlml.detach():.3f}’, end=’\r’)

opt.zero_grad()
nlml.backward()
opt.step()
sched.step()

Here we use a simple Adam optimizer, with learning rate 0.1 and decaying by a factor of 10 every 1000 steps. We train for
3000 epochs.

opt = torch.optim.Adam([c,Sigma,sigma0], lr = 1e-2)
sched = torch.optim.lr_scheduler.StepLR(opt,3000,gamma=0.1)
train(opt,sched,3000)

H.5. Prediction

Suppose we want to use our trained model to predict the value of the function at r points (xi, yi)ri=1, organized in the r × 2
matrix X∗. We will do inference using the posterior mean, which is given by

ΦH
∗ A

−1ΦU,

where Φ∗ is the 2m× r matrix, with columns Φ(xi, yi) for each row in X∗.

The following function computes the prediction, where the variable X corresponds to X∗. For numerical stability, we
compute a Cholesky decomposition of A instead of inverting. Since Laplace’s equation has real coefficients, the real part of
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a solution is yet again a solution. As we are only looking for real valued functions, we will discard the imaginary part of the
predicted values.

def predict(X_, X,U,c,Sigma,sigma0):
with torch.no_grad():

phi = Phi(c,X)
A = phi @ phi.H + torch.diag_embed((sigma0-Sigma).exp())
L = torch.linalg.cholesky(A)

alpha = torch.linalg.solve_triangular(L, phi @ U, upper=False)
alpha1 = torch.linalg.solve_triangular(L.H, alpha, upper=True)

phi_ = Phi(c,X_)
return (phi_.H @ alpha1).real

We compute predicted values on the same points as the numerical solution.

X_ = Ps.flatten(0,1).to(torch.complex128)
u_pred = predict(X_, X, U, c, Sigma, sigma0)

The root mean square error of our prediction, computed by the code snippet below, is approximately 3.67 · 10−4.

(u_pred.view_as(u_true) - u_true).square().mean().sqrt().item()

We can also visually compare the true solution with our prediction. The following two snippets generate Figures 8a and 8b.

ax = plt.imshow(u_true,extent=2*[0,2*np.pi])
plt.colorbar(ax)
plt.title("True solution");

ax = plt.imshow(u_pred.view_as(u_true),extent=2*[0,2*np.pi])
plt.colorbar(ax)
plt.title("Predicted solution");

Finally, we plot the difference between the true and predicted solutions. The plot is depicted in Figure 8c.

diff = u_pred.view_as(u_true) - u_true
limit = max(diff.max(), -diff.min())
ax = plt.imshow(diff, extent=2*[0,2*np.pi],

cmap=’coolwarm’, vmin = -limit, vmax = limit)
plt.colorbar(ax)
plt.title("Diff");
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