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Abstract
We show that taking the width and depth to in-
finity in a deep neural network with skip connec-
tions, when branches are scaled by 1/

√
depth,

result in the same covariance structure no matter
how that limit is taken. This explains why the
standard infinite-width-then-depth approach pro-
vides practical insights even for networks with
depth of the same order as width. We also
demonstrate that the pre-activations, in this case,
have Gaussian distributions which has direct ap-
plications in Bayesian deep learning. We con-
duct extensive simulations that show an excellent
match with our theoretical findings.

1. Introduction
In recent years, deep neural networks have achieved re-
markable success in a variety of tasks, such as image clas-
sification and natural language processing. However, the
behavior of these networks in the limit of large depth and
large width is still not fully understood.

The success of large language and vision models have re-
cently amplified an existing trend of research on neural
network limits. Two main limits are the large-width and
the large-depth limits. While the former by itself is now
relatively well understood (Neal, 1995; Schoenholz et al.,
2017; Lee et al., 2018; Hayou, Doucet, et al., 2019a; Yang,
2020a), the latter and the interaction between the two have
not been studied as much. In particular, a basic question is:
do these two limits commute? Recent literature suggests
that, at initialization, in certain kinds of multi-layer per-
ceptrons (MLPs) or residual neural networks (resnets), the
depth and width limits do not commute; this would imply
that in practice, such kinds of networks would behave quite
differently depending on whether width is much larger than
depth or the other way around.
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However, in this paper, we show: to the contrary, at initial-
ization, for a resnet with branches scaled the natural way so
as to avoid blowing up the output,1 the width and depth lim-
its do commute. This justifies prior calculations that take
the width limit first, then depth, to understand the behavior
of deep residual networks, such as prior works in the signal
propagation literature (Hayou, Clerico, et al., 2021).

In addition to the significance of the results, the mathemati-
cal novelty of this paper is the proof technique: we take the
depth limit first (fixing width), then take the width limit, in
contrast to the typical prior work which takes the limits in
the opposite order. In the process, we prove a concentra-
tion of measure result for a kind of McKean-Vlasov pro-
cess (Mean-Field games). Our results provide new insights
into the behavior of deep neural networks and we discuss
implications for the design and analysis of these networks.

The proofs of the theoretical results are provided in the ap-
pendix and referenced after each result. Empirical evalua-
tions support our theoretical findings.

2. Related Work
The theoretical analysis of randomly initialized neural net-
works with an infinite number of parameters has yielded
a wealth of interesting results, both theoretical and prac-
tical. A majority of this research has concentrated on ex-
amining the scenario in which the width of the network is
taken to infinity while the depth is fixed. However, in re-
cent years, there has been a growing interest in exploring
the large depth limit of these networks. In this overview, we
present a summary of existing results in this area, though
it’s not exhaustive. A more comprehensive literature review
is provided in Appendix A.

2.1. Infinite-width limit

The study of the infinite-width limit of neural network ar-
chitectures has been a topic of significant research interest,
yielding various theoretical and algorithmic innovations.
These include initialization methods, such as the Edge of
Chaos (Poole et al., 2016; Schoenholz et al., 2017; Yang

1This contrasts with M. B. Li et al., 2022 whose non-commute
result requires the branches to be large enough to blow up the
network output in the case of standard resnet.
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and Schoenholz, 2017; Hayou, Doucet, et al., 2019a), and
the selection of activation functions (Hayou, Doucet, et al.,
2019a; Martens et al., 2021; Wolinski et al., 2022; Zhang
et al., 2022), which have been shown to have practical ben-
efits. In the realm of Bayesian analysis, the infinite-width
limit presents an intriguing framework for Bayesian deep
learning, as it is characterized by a Gaussian process prior.
Several studies (e.g. Neal, 1995; Lee et al., 2018; Matthews
et al., 2018; Hron et al., 2020; Yang, 2020a) have investi-
gated the weak limit of neural networks as the width in-
creases towards infinity, and have demonstrated that the
network’s output converges to a distribution modeled by a
Gaussian process. Bayesian inference utilizing this “neu-
ral” Gaussian process has been explored in (Lee et al.,
2018; Hayou, Clerico, et al., 2021). 2

The Neural Tangent Kernel (NTK) is another interesting
area of research where the infinite-width limit proves use-
ful. In this limit, the NTK converges to a deterministic ker-
nel, given appropriate parameterization. This limiting ker-
nel is fixed at initialization and remains constant through-
out the training process. The optimization and generaliza-
tion characteristics of the NTK have been the subject of
extensive study in the literature (see e.g. Arora et al., 2019;
Liu et al., 2022).

2.2. Infinite-depth limit

The infinite-depth limit of neural networks with random
initialization is a less explored area compared to the study
of the infinite-width limit. Existing research in this field
can be categorized into three groups based on the approach
and criteria used to consider the infinite-depth limit in rela-
tion to the width.

Infinite-width-then-depth limit. In this case, the width of
the neural network is taken to infinity first, followed by
the depth. This is the infinite-depth limit of infinite-width
neural networks. This limit has been extensively utilized
to explore various aspects of neural networks, such as ex-
amining the neural covariance, deriving the Edge of Chaos
initialization scheme (cited in (Poole et al., 2016; Schoen-
holz et al., 2017; Yang and Schoenholz, 2017)), evaluating
the impact of the activation function (Hayou, Doucet, et al.,
2019a; Martens et al., 2021), and studying the behavior of
the Neural Tangent Kernel (NTK) (Hayou, Doucet, et al.,
2020; Xiao et al., 2020).

The joint infinite-width-and-depth limit. In this case, the
ratio of depth to width is fixed, and the width and depth are
jointly taken to infinity. There are only a limited number of
works that have investigated the joint width-depth limit. In

2It is worth mentioning that kernel methods such as NNGP
and NTK significantly underperform properly tuned finite-width
network trained using SGD, see Yang, Santacroce, et al., 2022.

(M. Li et al., 2021), the authors showed that for a particu-
lar type of residual neural networks (ResNets), the network
output exhibits a (scaled) log-normal behavior in this limit,
which differs from the sequential limit in which the width
is first taken to infinity followed by the depth, in which
case the distribution of the network output is asymptoti-
cally normal ((Schoenholz et al., 2017; Hayou, Doucet, et
al., 2019a)). Additionally, in (M. B. Li et al., 2022), the au-
thors examined the covariance kernel of a multi-layer per-
ceptron (MLP) in the joint limit and proved that it weakly
converges to the solution of a Stochastic Differential Equa-
tion (SDE). Other works have investigated this limit and
found similar results (Hanin and Nica, 2019; Noci et al.,
2021; Zavatone-Veth et al., 2021; Hanin, 2022).

Infinite-depth limit of finite-width neural networks. In the
previous limits, the width of the neural network was ex-
tended to infinity, either independently or in conjunction
with the depth. However, it is natural to inquire about the
behavior of networks in which the width is fixed, while
the depth is increased towards infinity. In Peluchetti et al.,
2020, it was shown that for a particular ResNet architec-
ture, the pre-activations converge weakly to a diffusion pro-
cess in the infinite-depth limit, which follows from existing
results in stochastic calculus on the convergence of Euler-
Maruyama discretization schemes to continuous Stochastic
Differential Equations. More recent work by Hayou, 2022
evaluated the impact of the activation function on the dis-
tribution of the pre-activation and characterized the distri-
bution of the post-activation norms in this limit.

In this work, we are particularly interested in the case
where both the width and depth are taken to infinity.

3. Setup and Definitions
When analyzing the asymptotic behavior of randomly ini-
tialized neural networks, various notions of probabilis-
tic convergence are employed, depending on the context.
These notions are typically well-established definitions in
probability theory. In this study, we particularly focus on
two forms of convergence:

• Convergence in distribution (weak convergence): we
show that the pre-activations converge weakly to a
Gaussian distribution in the limit min(n,L) → ∞.
We use the Wasserstein metric to quantify the conver-
gence rate for the weak convergence.

• Convergence in L2 (strong convergence): we show
that the neural covariance3 converges to a determin-
istic limit that is characterized by a differential flow qt
as min(n,L) approaches infinity.

3The neural covariance is a (linear) measure of similarity be-
tween the pre-activations for different inputs. We define this quan-
tity in Section 4.

2



Width and Depth commute in Residual Networks

Definition 1 (Weak convergence). Let d ≥ 1. We say that
a sequence of Rd-valued random variables (Xk)k≥1 con-
verges weakly to a random variable Z if the cumulative
distribution function of Xk converges point-wise to that of
Z.

There are various metrics that can be utilized to measure
the weak convergence rate. One commonly used metric is
the Wasserstein metric.
Definition 2 (Wasserstein distance W1). Let µ and ν be
two probability measures on Rd. The Wasserstein distance
between µ and ν is defined by

W1 = sup
f∈Lip1

∣∣∣∣∫ f(x)(dµ− dν)

∣∣∣∣
= sup

f∈Lip1
|Eµf − Eνf | ,

where Lip1 is the set of Lipschitz continuous functions from
Rd to R with a Lipschitz constant ≤ 1.

In this work, we define strong convergence to be the L2

convergence as described in the following definition.
Definition 3 (Strong convergence). Let d ≥ 1. We say that
a sequence of Rd-valued random variables (Xk)k≥1 con-
verges in L2 (or strongly) to a continuous random variable
Z if limk→∞ ∥Xk −Z∥L2

= 0, where the L2 is defined by
∥X∥L2

=
(
E[∥X∥2]

)1/2
.

Both of these forms of convergence are valuable when an-
alyzing the behavior of neural networks with an infinite
number of parameters. They facilitate the understanding of
the network’s asymptotic behavior which enables predic-
tions about the finite-but-large width-and-depth regimes.

4. Warmup: Depth and Width Generally Do
Not Commute

In this section, we present corollaries of previously estab-
lished results that demonstrate that depth and width typi-
cally do not commute. The width and depth of the network
are denoted by n and L, respectively, and the input dimen-
sion is denoted by d. Let d, n, L ≥ 1, and consider a simple
MLP architecture given by the following:

Y0(a) = Wina, a ∈ Rd

Yl(a) = Wlϕ(Yl−1(a)), l ∈ [1 : L],
(1)

where ϕ : R → R is the ReLU activation function, Win ∈
Rn×d, and Wl ∈ Rn×n is the weight matrix in the lth layer.
We assume that the weights are randomly initialized with
iid Gaussian variables W ij

l ∼ N (0, 2
n ),

4 W ij
in ∼ N (0, 1

d ).

4This is the standard He initialization which coincides with
the Edge of Chaos initialization (Schoenholz et al., 2017). This
is the only choice of the variance that guarantees stability in both
the large-width and the large-depth limits.

For the sake of simplification, we only consider networks
with no bias, and we omit the dependence of Yl on n and
L in the notation. While the activation function is only
defined for real numbers (1-dimensional), we will abuse
the notation and write ϕ(z) = (ϕ(z1), . . . , ϕ(zk)) for any
k-dimensional vector z = (z1, . . . , zk) ∈ Rk for any
k ≥ 1. We refer to the vectors {Yl, l = 0, . . . , L} as
pre-activations and the vectors {ϕ(Yl), l = 0, . . . , L} as
post-activations.

4.1. Distribution of the pre-activations in the limit
n,L → ∞

It is well-established that in fixed-depth neural networks
of any type, as the width n approaches infinity, the pre-
activations exhibit Gaussian behavior. This phenomenon
was initially demonstrated for single-layer perceptrons by
(Neal, 1995), and has since been extended to include
multiple-layer perceptrons (MLPs) and general neural ar-
chitectures (Yang, 2020a). This behavior can be roughly
attributed to the Central Limit Theorem (CLT) (although
a formal proof require careful application of CLT for ex-
changeable random variables in the MLP case, as detailed
in Matthews et al., 2018, or Law of Large Numbers and
Gaussian conditioning trick in the general case (Yang,
2019b)). A question that the reader may have in this con-
text is: Why is the Gaussian distribution of significance?
One of the key implications of the Gaussian behavior of
infinite-width neural networks is their equivalence to Gaus-
sian processes. By utilizing existing methods of Gaussian
process regression, this equivalence facilitates the applica-
tion of exact Bayesian inference to infinite-width neural
networks, referred to as the neural network Gaussian pro-
cess (NNGP, Lee et al., 2018). The Gaussian behavior also
provides an interesting framework to study signal propaga-
tion in deep neural networks; since a Gaussian distribution
is fully characterized by its mean and covariance structure,
understanding these quantities is sufficient to capture what
happens inside the network at initialization.

When the depth L is also taken to infinity, different behav-
iors may emerge. Specifically, in the case of the MLP ar-
chitecture (1), if a fixed layer index l < L is considered and
the behavior of Yl is examined as n and L approach infin-
ity, Yl will exhibit the same limiting behavior as in the case
of n → ∞ and the depth is fixed. Some simple intuitive
calculations indicate that it is only meaningful to study the
limiting behavior of layers where the layer index is propor-
tional to the depth L (and not proportional to Lα for any
α < 1).5 In this case, the quantity of interest is Y⌊tL⌋ for

5Indeed, the ( 1
n
)-scaled Gram matrix of {Yl(a) : a ∈ Rd}

fluctuates with size Θ̃(1/
√
n) around its n → ∞ limit for any

fixed l. This fluctuation is asymptotically independent across
every layer, so the accumulated fluctuation at layer l = Lα is
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Figure 1: Histogram of Y 1
L (a) for an MLP Eq. (1) with

(n,L) ∈ {(10000, 500), (500, 500)}, d = 30, and a =√
d u
∥u∥ and u ∈ Rd has all coordinates randomly sampled

from the unifrom distribution U([0, 1]). The histogram is
based on N = 104 simulations. The red dashed line rep-
resents the theoretical distribution (Gaussian) predicted in
Proposition 1. We also perform a Kolmogorov-Smirnov
normality test and report the KS statistic and the p-value.

some t ∈ [0, 1]. Varying t between 0 and 1 encompasses
all layer indices, even in the infinite-depth limit.

Let us now state some corollaries of existing results. The
following is a trivial result from existing literature (see e.g.
Matthews et al., 2018) that characterizes the distribution of
the pre-activations in the limit n → ∞ then L → ∞.

Proposition 1 (Infinite-width-then-depth). Consider the
MLP architecture given by Eq. (1) and let a ∈ Rd such
that a ̸= 0. Then, in the limit “n → ∞, then L → ∞”,
Y 1
L (a)

6 converges weakly to a Gaussian distribution.

When the width and depth of a neural network both tend
towards infinity, the limiting behavior can vary depending
on the relative rates at which the width and depth increase.
Specifically, if the width and depth both approach infinity
while the ratio of width to depth remains constant, the dis-
tribution of the pre-activations in the last layer is not Gaus-
sian. This is a corollary of a more general result estab-
lished by (M. Li et al., 2021) (the case when α = 0) under
certain conditions and assumptions, which was also ver-
ified through empirical evidence. We omit here the rigor-
ous statement of the result and only illustrate this behaviour
with simulations.

Empirical evidence supports the existence of this difference
in the limiting behavior of the distribution. As shown in
Fig. 1, the distribution of Y 1

L (a) is observed to be (nearly)
Gaussian when the width is significantly greater than the
depth, as evidenced by a small KS statistic. However,
when the width is of the same magnitude as the depth,
the distribution exhibits heavy tails. This can be seen
by comparing the distribution for the settings (n,L) ∈
(10000, 500), (500, 500).

Θ̃(Lα/2/
√
n). This is Θ̃(1) iff α = 1.

6Y 1
L (a) refers to the first neuron in the last layer.

4.2. Neural covariance/correlation

In the literature on signal propagation, there is a signif-
icant interest in understanding the covariance/correlation
structure of neural networks. Specifically, researchers have
sought to understand the covariance of the pre-activation
vectors Y⌊tL⌋(a) and Y⌊tL⌋(b) (often called the neural co-
variance) for two different inputs a, b ∈ Rd. A natural
question in this context is: Why do we study the covariance
structure?

It is well-established that even for properly initialized
multi-layer perceptrons (MLPs), the network outputs
YL(a) and YL(b) become perfectly correlated (correla-
tion=1) in the limit of “n → ∞, then L → ∞” (Poole
et al., 2016; Schoenholz et al., 2017; Hayou, Doucet, et al.,
2019a; Yang and Salman, 2019). This can lead to unstable
behavior of the gradients and make the model untrainable
as the depth increases and also results in the inputs being
non-separable by the network7. To address this issue, sev-
eral techniques involving targeted modifications of the ac-
tivation function have been proposed (Martens et al., 2021;
Zhang et al., 2022). In the case of ResNets, the correla-
tion still converges to 1, but at a polynomial rate (Yang and
Schoenholz, 2017). A solution to this problem has been
proposed by introducing well-chosen scaling factors in the
residual branches, resulting in a correlation kernel that does
not converge to 1 (Hayou, Clerico, et al., 2021). This anal-
ysis was carried in the limit “n → ∞, then, L → ∞”.
In the case of the joint limit n,L → ∞ with n/L fixed,
it has been shown that the covariance/correlation between
Y⌊tL⌋(a) and Y⌊tL⌋(b) becomes similar to that of a Markov
chain that incorporates random terms. However, the corre-
lation still converges to one in this limit.

Proposition 2 (Correlation, (Hayou, Doucet, et al., 2019a;
M. B. Li et al., 2022)). Consider the MLP architecture
given by Eq. (1) and let a, b ∈ Rd such that a, b ̸= 0. Then,
in the limit “n → ∞, then L → ∞” or the the joint limit
“n,L → ∞, L/n fixed”, the correlation ⟨YL(a),YL(b)⟩

∥YL(a)∥∥YL(b)∥
converges8 weakly to 1.

The convergence of the correlation to 1 in the infinite depth
limit of a neural network poses a significant issue, as it in-
dicates that the network loses all of the covariance structure
from the inputs as the depth increases. This results in de-
generate gradients (see e.g. (Schoenholz et al., 2017)), ren-

7To see this, assume that the inputs are normalized. In this
case, the correlation between the pre-activations of the last layer
for two different inputs converges to 1. This implies that as the
depth grows, the network output becomes similar for all inputs,
and the network no longer separates the data. This is problematic
for the first step of gradient descent as it implies that the informa-
tion from the data is (almost) unused in the first gradient update.

8Note that weak convergence to a constant implies also con-
vergence in probability.
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dering the network untrainable. To address this problem
in MLPs, various studies have proposed the use of depth-
dependent shaped ReLU activations, which prevent the cor-
relation from converging to 1 and exhibit stochastic differ-
ential equation (SDE) behavior. As a result, the correlation
of the last layer does not converge to a deterministic value
in this case.

Proposition 3 (Correlation SDE, Corollary of Thm 3.2
in M. B. Li et al., 2022). Consider the MLP architec-
ture given by Eq. (1) with the following activation function
ϕL(z) = z + 1√

L
ϕ(z) (a modified ReLU). Let a, b ∈ Rd

such that a, b ̸= 0. Then, in the joint limit “n,L → ∞, L/n
fixed”, the correlation ⟨YL(a),YL(b)⟩

∥YL(a)∥∥YL(b)∥ converges weakly to
a nondeterministic random variable.9

The joint limit, therefore, yields non-deterministic be-
haviour of the covariance structure. It is easy to check
that even with shaped ReLU as in Proposition 3, taking the
width to infinity first, then depth, the result is a determin-
istic covariance structure. The main takeaway from this
section is the following:

Summary. With MLPs (Eq. (1)), the width and depth lim-
its do not commute in the sense that the behaviour of the
distribution of the pre-activations and the covariance struc-
ture might differ depending on how the limit is taken.

With the background information provided above, we are
now able to present our findings. In contrast to MLPs, our
next section demonstrates that the limits of width and depth
for ResNet architectures commute.

5. Main results: Width and Depth Commute
in ResNets

We use the same notation as in the MLP case. Let d, n, L ≥
1, and consider the following ResNet architecture of width
n and depth L

Y0(a) = Wina, a ∈ Rd

Yl(a) = Yl−1(a) +
1√
L
Wlϕ(Yl−1(a)), l ∈ [1 : L],

(2)

where ϕ : R → R is the ReLU activation function.
We assume that the weights are randomly initialized with
iid Gaussian variables W ij

l ∼ N (0, 1
n ), W

ij
in ∼ N (0, 1

d ).
For the sake of simplification, we only consider networks
with no bias, and we omit the dependence of Yl on n and L
in the notation.

9In M. B. Li et al., 2022, the authors show that the correlation
of ⟨ϕL(YL(a)),ϕL(YL(b))⟩√

∥ϕL(YL(a))∥
√

∥ϕL(YL(b))∥
converges to a random variable in

the joint limit. Since ϕL converges to the identity function in this
limit, simple calculations show that the correlation between the
pre-activations ⟨YL(a),YL(b)⟩

∥YL(a)∥∥YL(b)∥ is also random in this limit.

The 1/
√
L scaling in Eq. (2)is not chosen arbitrarily. It has

been demonstrated that this specific scaling serves to stabi-
lize the norm of Yl and the gradient norms in the asymp-
totic limit of large depth (e.g. Hayou, Clerico, et al., 2021;
Hayou, 2022; Marion et al., 2022).10

5.1. Distribution of the pre-activations in the limit
n,L → ∞

It turns out that for the ResNet architecture given by (2), the
limiting distribution of the pre-activations Y⌊tL⌋ is a zero-
mean Gaussian distribution, with an analytic variance term,
regardless of how the depth L and width n approach infin-
ity, as long as min(n,L) → ∞. This is demonstrated in the
following result, where an upper bound on the Wasserstein
distance between the distribution of the neuron Y 1

⌊tL⌋ (the
first coordinate of the pre-activations Y⌊tL⌋)11 and that of a
zero-mean Gaussian random variable is provided.

Theorem 1 (Convergence of the pre-activations). Let a ∈
Rd such that a ̸= 0. For t ∈ [0, 1], the random variable
(Y⌊tL⌋(a))L≥1 converges weakly to a Gaussian random
variable with law N (0, v(t, a)) in the limit of min(n,L) →
∞, where v(t, a) = d−1∥a∥2 exp(t/2). Moreover, we have
the following convergence rate

sup
t∈[0,1]

W1(µ
t
n,L(a), µ

t
∞,∞(a)) ≤ C

(
1√
n
+

1√
L

)

where µt
n,L(a) is the distribution of Y 1

⌊tL⌋(a), µ
t
∞,∞(a) is

the distribution N (0, v(t, a)), and C is a constant that de-
pends only on ∥a∥ and d.

Moreover, for two different i, j ∈ [n], the neurons
Y i
⌊tL⌋(a) and Y j

⌊tL⌋(a) become independent in the limit
min(n,L) → ∞.

The proof of Theorem 1 is provided in Appendix D. It relies
on two technical results: 1) Width-uniform convergence
rate of the finite-width neural networks to an infinite-depth
SDE.12 2) A new result on the convergence of particles to a
mean field process. Both results are new. More details are
provided in the Appendix.

Theorem 1 suggests that the distribution of the pre-
activations becomes similar to a Gaussian distribution as
min(n,L) → ∞ regardless of how n and L go to infin-
ity. Note that the limiting distribution is the same as the
one reported in (Hayou, 2022) where the author considered

10A scaling of the form L−α where α < 1/2 yields exploding
pre-activations, while a more aggressive scaling where α > 1/2
yields trivial limiting covariance (identity covariance).

11Notice that the coordinate of the pre-activations are identi-
cally distributed (but not necessarily independent).

12By width-uniform, we refer to bounds with constants that do
not depend on the width n.
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the limit “n → ∞, then L → ∞”. Our result general-
izes these findings and establishes the universality of the
Gaussian behaviour as long as n → ∞ and L → ∞. We
validate these theoretical predictions in Section 6. An im-
portant consequence of the Gaussian behaviour is that the
residual network can be seen as a Gaussian process in this
limit with a well-specified kernel function (see next sec-
tion). Leveraging this result to perform Bayesian inference
with infinite-width-and-depth networks can be an interest-
ing direction for future work.

5.2. Neural covariance

Unlike the covariance structure in MLPs which exhibits
different limiting behaviors depending on how the width
and depth limits are taken, we show in the next result that
for the ResNet architecture given by (2), the neural covari-
ance converges strongly to a deterministic kernel, which
is given by the solution of a differential flow, in the limit
min(n,L) → ∞ regardless of the relative rate at which n
and L tend to infinity.

Theorem 2 (Neural covariance). Let a, b ∈ Rd such that
a, b ̸= 0 and a ̸= b. Define the neural covariance kernel
q̂t(a, b) =

⟨Y⌊tL⌋(a),Y⌊tL⌋(b)⟩
n . Then, we have the following

sup
t∈[0,1]

∥q̂t(a, b)− qt(a, b)∥L2
≤ C

(
1√
n
+

1√
L

)
where C is a constant that depends only on ∥a∥, ∥b∥, and
d, and qt(a, b) is the solution of the following differential
flow 

dqt(a,b)
dt = 1

2
f(ct(a,b))
ct(a,b)

qt(a, b),

ct(a, b) = qt(a,b)√
qt(a,a)

√
qt(b,b)

,

q0(a, b) = ⟨a,b⟩
d ,

(3)

where the function f : [−1, 1] → [−1, 1] is given by

f(z) =
1

π
(z arcsin(z) +

√
1− z2) +

1

2
z.

The proof of Theorem 2 is provided in Appendix E. The
result of Theorem 2 unifies previous approaches to under-
standing the covariance structure in large width and depth
ResNets. Perhaps the most important consequence of our
result is that it implies that all previous results that consid-
ered the limit n → ∞, then L → ∞, in order to understand
the covariance structure in ResNets still hold for ResNets
where the depth is of the same order as the width and both
are large. This is specific for ResNet and does not hold
for instance for MLPs where the joint-limit yields differ-
ent asymptotic behaviors (see Section 4). Notice that the
limiting covariance kernel qt is the same kernel found in
(Hayou, Clerico, et al., 2021) in the limit n → ∞, then

L → ∞.13 It is also worth noting that constant C can be
chosen independent of ∥a∥ and ∥b∥ provided that the in-
puts belong to a compact set that does not contain 0. The
result of Theorem 2 can also be expressed in terms of the
correlation. We demonstrate this in the next theorem.

Theorem 3 (Neural correlation). Under the same condi-
tions of Theorem 2, we have the following

sup
t∈[0,1]

∥ĉt(a, b)− ct(a, b)∥L2
≤ C ′

(
1√
n
+

1√
L

)
where C ′ is a constant that depends only on ∥a∥, ∥b∥, and
d, and ĉt(a, b) =

⟨Y⌊tL⌋(a),Y⌊tL⌋(b)⟩
∥Y⌊tL⌋(a)∥∥Y⌊tL⌋(b)∥

is the neural correla-
tion kernel, and ct(a, b) is defined in Theorem 2.

The proof of Theorem 3 relies on using a concentration in-
equality to control the inverse variance term, and conclude
by using the bound in Theorem 2. We refer the reader to
the Appendix for more details.

The differential flow satisfied by the kernel function qt can
actually be simplified and expressed as an ordinary differ-
ential equation (ODE). We show this in the next lemma.

Lemma 1. Let z = (a, b) ∈ Rd × Rd. The function qt in
Theorem 2 is the solution of the following ODE:

dqt(z)

dt
=

exp(t/2)

2
ξ(z)f

(
ξ(z)−1 exp(−t/2)qt(z)

)
,

where ξ(z) = ∥a∥ ∥b∥
d , and f is defined in Theorem 2.

Proof. The proof is straightforward by noticing that
f(1) = 1. With this we get dqt(a,a)

dt = 1
2qt(a, a) which

yields qt(a, a) = q0(a, a) exp(t/2) = d−1∥a∥2 exp(t/2).
The same holds for b, which concludes the proof.

Lemma 1 will prove useful in the experiments section when
we will have to approximate the solution qt using ODE
solvers.

6. Experiments and Practical Implications
In this section, we validate our theoretical results with ex-
tensive simulations on large width and depth residual neu-
ral networks of the form Eq. (2).

6.1. Gaussian behavior and independence of neurons

Theorem 1 predicts that in the large depth and width limit,
the neurons (pre-activations) converge weakly to a Gaus-
sian distribution. To empirically validate this finding, we

13In Hayou, Clerico, et al., 2021, the authors showed that the
kernel qt is universal, meaning the network output is rich enough
that we can approximate any continuous function on a compact
set with features from this kernel.

6



Width and Depth commute in Residual Networks

0.0

0.1

0.2

0.3

0.4

De
ns

ity

KS=0.051, pV=4.40e-12

Y1
L (a)

Gaussian

KS=0.017, pV=9.35e-02

De
pt

h=
5

KS=0.011, pV=5.69e-01

0.0

0.1

0.2

0.3

0.4

De
ns

ity

KS=0.047, pV=4.19e-10 KS=0.010, pV=6.64e-01

De
pt

h=
50

KS=0.011, pV=5.57e-01

5 0 5
Width=5

0.0

0.1

0.2

0.3

0.4

De
ns

ity

KS=0.041, pV=5.59e-08

5 0 5
Width=50

KS=0.011, pV=4.89e-01

5 0 5
Width=500

De
pt

h=
50

0

KS=0.008, pV=8.72e-01

Figure 2: Histogram of Y 1
L (a) for ResNet Eq. (2) with

n,L ∈ {5, 50, 500}, d = 30, and a =
√
d u
∥u∥ and u ∈ Rd

has all coordinates randomly sampled from the unfirom dis-
tribution U([0, 1]). The histogram is based on N = 104

simulations. The red dashed line represents the theoretical
distribution (Gaussian) predicted in Theorem 1. We also
peform a Kolmogorov-Smirnov normality test and report
the KS statistic and the p-value.

show in Fig. 2 the histograms of the first neuron in the last
layer (t = 1 in Theorem 1) for a randomly chosen input a
and n,L ∈ {5, 50, 500}. We also perform a Kolmogorov-
Smirnov normality test and report the statistic (KS) and
the p-value. As can be seen in Fig. 2, the histograms ap-
pear to fit the theoretical Gaussian distribution more closely
as width and depth increase. Additionally, the KS statis-
tic decreases as the width and depth increase. For smaller
widths, the p-values are extremely small indicating a non-
Gaussian behavior. This is expected as the Gaussian behav-
ior arises primarily due to the average behavior when the
width increases. The depth also plays a role in the good-
ness of fit, as can be seen for the pair (n,L) = (500, 50)
and (n,L) = (500, 500) where the latter shows a better
fit in terms of the KS statistic which measures the distance
between the empirical cumulative distribution function and
the theoretical one. Notice also the contrast with the previ-
ously reported case of MLP (Fig. 1) where the the distribu-
tion of the neurons in the last layer is heavy-tailed.

Another theoretical prediction of Theorem 1 is the inde-
pendence of the neurons (Y i

⌊tL⌋)1≤i≤L. To validate this
prediction, we show in figure Fig. 3 the pair-wise joint dis-
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Figure 3: Joint distributions of (Y i
L(a), Y

j
L(a)) for ResNet

Eq. (2) with n,L = 500, d = 30, i, j ∈ {i1, i2, i3}
where i1, i2, i3 are randomly sampled from {1, . . . , n}, and
a =

√
d u
∥u∥ and u ∈ Rd has all coordinates randomly

sampled from the uniform distribution U([0, 1]). The his-
tograms are based on N = 104 simulations. The red curves
represent an isotropic two-dimensional Gaussian distribu-
tion (i.e. independent coordinates).

tributions of 3 randomly chosen neurons in the last layer
(t = 1). We also perform a kernel density estimation
(KDE) using the Gaussian kernel and illustrate the result
on top of the histograms. The joint distributions show an
excellent match with an isotropic 2-dimensional Gaussian
distribution which indicates independence of the neurons.

In Fig. 4, we investigate the distribution of the first neu-
ron in each layer in a ResNet/MLP of width n = 500 and
depth L = 500. For the ResNet architecture, the distri-
bution is relatively similar across layers which is expected
since Theorem 1 predicts a Gaussian limit with a standard
deviation that differs only by a factor of e1/4 ≈ 1.28 be-
tween the first and the last layers. In MLPs, the distribution
varies across layers with the neurons in the last layers dis-
playing heavy-tailed shapes, which agrees with Fig. 1.

6.2. Convergence of neural covariance

Theorem 2 predicts that the covariance q̂t(a, b) for two
inputs a, b converges in L2 norm to qt in the limit
min(n,L) → ∞. In Fig. 5, we compare the empirical co-
variance q̂t with the theoretical prediction qt for (n,L) ∈
{5, 50, 500, 5000}. The empirical L2 error is also reported.
As the width increases, we observe a good match with the
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Figure 4: Densities (approximated by Kernel Density Es-
timation) of the first neuron Y 1

l (a) for l ∈ {20k, k =
1, . . . , 25} for a ResNet Eq. (2) and an MLP Eq. (1) with
(n,L) = (500, 500). The input a is randomly sampled and
normalized in the same way as in Fig. 2.

theory. The role of the depth is less visually noticeable, but
for instance, with width n = 5000, we can see that the L2

error is smaller with depth L = 5000 as compared to depth
L = 5 (see Section 6.3 for a more in-depth discussion of
the role of width and depth). The theoretical prediction qt is
approximated with a PDE solver (RK45 method, Fehlberg,
1968) for t ∈ [0, 1] with a discretization step ∆t =1e-4.

6.3. Role of width and depth

From Fig. 2 and Fig. 5, it appears that the role of the width
is more important than that of the depth in the convergence
to the limiting values. In this section, we provide an intu-
itive explanation as to why that happens. First of all, recall
that in both figures, the impact of depth is less noticeable
but reflected in some measures (KS statistic in Fig. 2, and
L2 error in Fig. 5). The bounds in Theorem 1 and The-
orem 2 are of the form C

(
1√
n
+ 1√

L

)
for some constant

C. This bound is sufficient to conclude on the convergence
rate but it is not optimal in terms of the constants. We con-
jecture that a ‘better’ bound of the form C1√

n
+ C2√

L
can be

obtained where the constant C2 is much smaller than C1,
which would explain why the depth has less impact on the
bound. To give the reader an intuition of why this should
be the case, let us look at the case where the width is much
larger than the depth, for instance n = 500 and L ∈ {5, 50}
(see Fig. 2). Since n ≫ L, then we are essentially in the
regime where the n goes to infinity first. In this case, the
impact of depth is limited to how far the finite-depth vari-
ance is from infinite-depth one v(t, a) (see Theorem 1). For
an input satisfying ∥a∥2 = d, simple calculations yield
that the infinite-width finite-depth L variance of the neu-
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Figure 5: The blue curve represents the average covariance
q̂t(a, b) for ResNet Eq. (2) with n,L ∈ {5, 50, 500, 5000},
d = 30, and a and b are sampled following the same rule
as in Fig. 2. The average is calculated based on N = 100
simulations. The shaded blue area represents 1 standard de-
viation of the observations. The red dashed line represents
the theoretical covariance qt(a, b) predicted in Theorem 2.
The empirical L2 error is reported as well.

rons in the last layer is given by σL = (1 + 1
2L )

L.14 For
L = 5, σ5 ≈ 1.61 and for L = 50, we have σ50 ≈ 1.644.
This is very close to the infinite-depth variance given by
v(1, a) = e1/2 ≈ 1.648. Hence, even for small depths, the
finite-depth variance is close to the infinite-depth variance.
Similar analysis can be carried for the covariance as well.

7. Conclusion and Limitations
In this paper, we have shown that, at initialization, in the
most natural scaling of branches, the large-depth and large-
width limits of a residual neural network (resnet) commute.
We used a novel proof technique and proved a concentra-
tion of measure result for a kind of McKean-Vlasov pro-
cess. Our results justify the calculations in prior works
analyzing deep and wide neural networks that take the
width limit first then depth. However, our technique can-
not say anything about what happens when the network
starts training. Potentially, different behaviors can occur
depending on how the learning rate is chosen as a function

14See e.g. Hayou, Clerico, et al., 2021.
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of width and depth. Because of the correlations between
weights induced by training, such an analysis would likely
require far more mathematical machinery than presented
here, e.g., Tensor Programs (Yang, 2019a; Yang, 2019b;
Yang, 2020b; Yang and E. Hu, 2021; Yang and Littwin,
2021; Yang, E. J. Hu, et al., 2022).
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A. A more comprehensive literature review
Theoretical analysis of randomly initialized neural networks with an infinite number of parameters has yielded a wealth of
interesting results, both theoretical and practical. Most of the research in this area has focused on the case where the depth
of the network is fixed and the width is taken to infinity. However, in recent years, motivated by empirical observations,
there has been an increased interest in studying the large depth limit of these networks. We provide here a non-exhaustive
summary of existing results of these limits.

A.1. Infinite-width limit

The infinite-width limit of neural network architectures has been extensively studied in the literature and has led to many
interesting theoretical and algorithmic innovations. We summarize these results below.

• Initialization schemes: the infinite-width limit of different neural architectures has been extensively studied in the litera-
ture. In particular, for multi-layer perceptrons (MLP), a new initialization scheme that stabilizes forward and backward
propagation (in the infinite-width limit) was derived in (Poole et al., 2016; Schoenholz et al., 2017). This initialization
scheme is known as the Edge of Chaos, and empirical results show that it significantly improves performance. In Yang
and Schoenholz, 2017; Hayou, Clerico, et al., 2021, the authors derived similar results for the ResNet architecture, and
showed that this architecture is placed by-default on the Edge of Chaos for any choice of the variances of the initializa-
tion weights (Gaussian weights). In Hayou, Doucet, et al., 2019a, the authors showed that an MLP that is initialized on
the Edge of Chaos exhibits similar properties to ResNets, which might partially explain the benefits of the Edge of Chaos
initialization.

• Gaussian process behaviour: Multiple papers (e.g. Neal, 1995; Lee et al., 2018; Matthews et al., 2018; Hron et al.,
2020; Yang, 2020a) studied the weak limit of neural networks when the width goes to infinity. The results show that a
randomly initialized neural network (with Gaussian weights) has a similar behaviour to that of a Gaussian process, for a
wide range of neural architectures, and under mild conditions on the activation function. In Lee et al., 2018, the authors
leveraged this result and introduced the neural network Gaussian process (NNGP), which is a Gaussian process model
with a neural kernel that depends on the architecture and the activation function. Bayesian regression with the NNGP
showed that NNGP surprisingly achieves performance close to the one achieved by an SGD-trained finite-width neural
network.

The large depth limit of this Gaussian process was studied in Hayou, Clerico, et al., 2021, where the authors showed that
with proper scaling, the infinite-depth (weak) limit is a Gaussian process with a universal kernel15.

• Neural Tangent Kernel (NTK): the infinite-width limit of the NTK is the so-called NTK regime or Lazy-training regime.
This topic has been extensively studied in the literature. The optimization and generalization properties (and some other
aspects) of the NTK have been studied in Arora et al., 2019; Hayou, Doucet, et al., 2019b; Liu et al., 2022; Seleznova
et al., 2022. The large depth asymptotics of the NTK have been studied in (Hayou, Doucet, et al., 2020; Xiao et al.,
2020; Hayou, Doucet, et al., 2022; Jacot et al., 2022). We refer the reader to Jacot, 2022 for a comprehensive discussion
on the NTK.

• Tensor programs: It is worth mentioning that a series of works called Tensor Programs studied the dynamics of infinite-
width limit of finite-depth general neural networks both at initialization and at finite training step t with gradient descent
(Yang, 2019a; Yang, 2019b; Yang, 2020a; Yang and E. Hu, 2021).

• Others: the theory of infinite-width neural networks have also been utilized for network pruning (Hayou, Ton, et al.,
2021), regularization (Vladimirova et al., 2019; Hayou and Ayed, 2021), feature learning (Lou et al., 2022), and ensem-
bling methods (He et al., 2020).

A.2. Infinite-depth limit

Infinite-width-then-infinite-depth limit. In this case, the width of the neural network is taken to infinity first, followed
by the depth. This is known as the infinite-depth limit of infinite-width neural networks. This limit has been widely used to
study various aspects of neural networks, such as analyzing neural correlations and deriving the Edge of Chaos initialization

15A kernel is called universal when any continuous function on some compact set can be approximated arbitrarily well with kernel
features.
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scheme (Poole et al., 2016; Schoenholz et al., 2017), investigating the impact of the activation function (Hayou, Doucet,
et al., 2019a), and analyzing the behavior of the Neural Tangent Kernel (NTK) (Hayou, Doucet, et al., 2020; Xiao et al.,
2020).

The joint infinite-width-and-depth limit. In this case, the depth-to-width ratio is fixed16, the width and depth are jointly
taken to infinity. There are a limited number of studies that have examined the joint width-depth limit. For example, in
(M. Li et al., 2021), the authors demonstrated that for a specific form of residual neural networks (ResNets), the network
output exhibits a (scaled) log-normal behavior in this joint limit, which is distinct from the sequential limit where the width
is taken to infinity first followed by the depth, in which case the distribution of the network output is asymptotically normal
((Schoenholz et al., 2017; Hayou, Doucet, et al., 2019a)). Furthermore, in (M. B. Li et al., 2022), the authors studied the
covariance kernel of a multi-layer perceptron (MLP) in the joint limit and found that it weakly converges to the solution
of a Stochastic Differential Equation (SDE). In Hanin and Nica, 2020, it was shown that in the joint limit case, the Neural
Tangent Kernel (NTK) of an MLP remains random when the width and depth jointly go to infinity, which is different from
the deterministic limit of the NTK when the width is taken to infinity before depth (Hayou, Doucet, et al., 2020). In (Hanin,
2019; Hanin, 2022), the authors explored the impact of the depth-to-width ratio on the correlation kernel and the gradient
norms in the case of an MLP architecture and found that this ratio can be interpreted as an effective network depth. Similar
results have been discussed in (Noci et al., 2021; Zavatone-Veth et al., 2021).

Infinite-depth limit of finite-width neural networks. In both previous limits, the width of the neural network is taken
to infinity, either in isolation or jointly with the depth. However, it is natural to question the behavior of networks where
the width is fixed and the depth is taken to infinity. For example, in Hanin, 2019, it was shown that neural networks with
bounded width are still universal approximators, motivating the examination of finite-width large depth neural networks.
The limiting distribution of the network output at initialization in this scenario has been investigated in the literature. In
Peluchetti et al., 2020, it was demonstrated that for a specific ResNet architecture, the pre-activations converge weakly to
a diffusion process in the infinite-depth limit. This a simple corollary of existing results in stochastic calculus on the con-
vergence of Euler-Maruyama disctretization schemes to continuous Stochastic Differential Equations. Other recent work
by Hayou, 2022 examined the impact of the activation function on the distribution of the pre-activation, and characterized
the distribution of the post-activation norms in this limit.

B. Review of Stochastic Calculus
In this section, we present the mathematical framework for the study of stochastic differential equations (SDEs). We
consider a filtered probability space (Ω,F ,P, (Ft)t ≥ 0), where Ω is the sample space, F is the sigma-algebra of events,
P is the probability measure, and (Ft)t ≥ 0 is the natural filtration of a standard n-dimensional Brownian motion B.
This framework allows us to study the evolution of a stochastic process X over time, by considering the events that are
measurable up to a given time t. Specifically, we focus on the class of Itô processes, which are defined through a specific
type of stochastic differential equation.

B.1. Existence and uniqueness

Definition 4 (Itô diffusion process). A stochastic process (Xt)t∈[0,T ] valued in Rn is called an Itô diffusion process if it
can be expressed as

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdBs,

where B is a n-dimensional Brownian motion and σt ∈ Rn×n, µ ∈ Rn are predictable processes satisfying
∫ T

0
(∥µs∥2 +

∥σsσ
⊤
s ∥2)ds < ∞ almost surely.

The following result gives conditions under which a strong solution of a given SDE exists, and is unique.

Theorem 4 (Thm 3.1 and Lemma 3.2 in Xuerong, 2008). Let n ≥ 1, and consider the following SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, X0 ∈ L2,

16Other works consider the case when the depth-to-width ratio converge to a constant instead of being fixed.
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where B is a m-dimensional Brownian process for some m ≥ 1, and µ : R+ ×Rn → Rn and σ : R+ ×Rn → Rn×m are
measurable functions satisfying

1. There exists a constant K > 0 such that for all t ≥ 0, x, x′ ∈ Rn

∥µ(t, x)− µ(t, x′)∥+ ∥σ(t, x)− σ(t, x′)∥ ≤ K∥x− x′∥.

2. There exists a constant K ′ > 0 such that for all t ≥ 0, x ∈ Rn

∥µ(t, x)∥+ ∥σ(t, x)∥ ≤ K ′(1 + ∥x∥).

Then, for all T ≥ 0, there exists a unique strong solution of the SDE above, and it satisfies the following

E sup
0≤t≤T

∥Xt∥2 ≤ C(1 + E∥X0∥2),

where C is a constant that depends only on K, K ′, and T .

B.2. Itô ’s lemma

The following result, known as Itô ’s lemma, is a classic result in stochastic calculus. We state a version of this result from
Tankov et al., 2018. Other versions and extensions exist in the literature (e.g. Ingersoll (1987), Kloeden et al. (1995), and
Øksendal (2003)).

Lemma 2 (Itô ’s lemma, Thm 6.7 in Tankov et al., 2018). Let Xt be an Itô diffusion process (Definition 4) of the form

dXt = µtdt+ σtdBt, t ∈ [0, T ], X0 ∼ ν

where ν is some given distribution. Let g : R+ × Rn → R be C1,2([0, T ],Rn) (i.e. C1 in the first variable t and C2 in the
second variable x). Then, with probability 1, we have that

f(t,Xt) = f(0, X0) +

∫ t

0

∇xf(s,Xs) · dXs +

∫ t

0

(
∂tf(s,Xs) +

1

2
Tr
[
σ⊤
s ∇2

xf(s,Xs)σs

])
ds,

where ∇xf and ∇2
xf refer to the gradient and the Hessian, respectively. This can also be expressed as an SDE

df(t,Xt) = ∇xf(t,Xt) · dXt +

(
∂tf(t,Xt) +

1

2
Tr
[
σ⊤
t ∇2

xf(t,Xt)σt

])
dt.

B.3. Convergence of Euler’s scheme to the SDE solution

The following result gives a convergence rate of the Euler discretization scheme to the solution of the SDE.

Theorem 5 (Corollary of Thm 7.3 in Xuerong, 2008). Let d ≥ 1 and consider the Rd-valued ito process X (Definition 4)
given by

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs,

where B is a m-dimensional Brownian motion for some m ≥ 1, X0 satisfies E∥X0∥2 < ∞, and µ : R+ × Rd → Rd and
σ : R+ × Rd → Rd×m are measurable functions satisfying the following conditions:

1. There exists a constant K > 0 such that for all t ∈ R, x, x′ ∈ Rd,

∥µ(t, x)− µ(t, x′)∥2 + ∥σ(t, x)− σ(t, x′)∥2 ≤ K̄∥x− x′∥2.

2. There exists a constant K ′ > 0 such that for all t ∈ R, x ∈ Rd

∥µ(t, x)∥2 + ∥σ(t, x)∥2 ≤ K(1 + ∥x∥2).
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Let δ ∈ (0, 1) such that δ−1 ∈ N (integer), and consider the times tk = kδ for k ∈ {1, . . . , δ−1}. Consider the Euler
discretization scheme given by

X̄i
k+1 = X̄i

k + µi(tk, X̄
k
n)δ +

m∑
j=1

σi,j(tk, X̄
k
n)∆Bj

k, X̄i
0 = Xi

0,

where X̄i, µi, σi,j denote the coordinates of these vectors for i ∈ [d], j ∈ [m], and ∆Bj
k = Bj

k+1 −Bj
k ∼ N (0, δ). Then,

we have that
E sup

t∈[0,1]

∥Xt − X̄⌊tδ−1⌋∥2 ≤ C δ,

where C = 80KK̄(1 + (1 + 3E∥X0∥2) exp(6K)) exp(20K̄).

Proof. The proof is straightforward by taking T = 1 and t0 = 0 in Thm 7.3 in Xuerong, 2008.

Using this result, we prove the following width-uniform convergence result for infinite-depth, which is crucial to our
results.

Theorem 6 (Width-uniform convergence). Assume that the activation function ϕ is Lipschitz on R with Lipschitz constant
ζ > 0 and that ϕ(0) = 0, and let a ∈ Rd be a non-zero vector. Consider the process Xt the solution of the following SDE

dXt =
1√
n
∥ϕ(Xt)∥dBt, X0 = Wina, (4)

where (Bt)t≥0 is a Brownian motion (Wiener process), and let X̄ be its Euler scheme as in Theorem 5. Then, we have the
following width-uniform bound on the discretization error:

sup
n≥1

n−1 E sup
t∈[0,1]

∥Xt − X̄⌊tδ−1⌋∥2 ≤ C ′ δ,

where C ′ = 80ζ4(1 + (1 + 3d−1∥a∥2) exp(6ζ2)) exp(20ζ2).

Proof. The key observation in this proof is that the constant C in Theorem 5 scales linearly with width. Indeed, in this
case, the volatility term is given by σ(x) = 1√

n
∥ϕ(x)∥In, which satisfies the linear growth condition

∥σ(x)∥ =
1√
n
∥ϕ(x)∥∥In∥ = ∥ϕ(x)∥ ≤ ζ∥x∥,

where we have used the fact that ∥In∥ =
√

Tr(InI⊤n ) =
√
n17. Moreover, for any x, x′ ∈ Rn, we have that

∥σ(x)− σ(x′)∥ ≤
∣∣∣∣ 1√

n
∥ϕ(x)∥ − 1√

n
∥ϕ(x)∥

∣∣∣∣ ∥In∥ ≤ ζ∥x− x′∥,

Hence, in this case we can set K̄ = K = ζ2. We conclude by observing that E∥X0∥2 = nd−1∥a∥2 and using Theorem 5.

The result of Theorem 6 can be generalized to the case of multiple inputs as we show in the next result. We omit the proof
here as this result is not necessary for the proofs of the main results.

Theorem 7. Let a1, a2, . . . , ak ∈ Rd be non-zero inputs, and assume that the activation function ϕ is Lipschitz on R and
that ϕ(0) = 0. Consider the process Xk

t , the solution of the following SDE

dXk
t =

1√
n
Σ(Xk

t )
1/2dBt, Xk

0 = ((Wina1)
⊤, . . . , (Winak)

⊤)⊤, (5)

17In (almost) all the results on the existence, uniqueness, and Euler schemes in stochastic calculus, the default matrix norm is the
Frobenius norm.

14



Width and Depth commute in Residual Networks

where (Bt)t≥0 is an kn-dimensional Brownian motion (Wiener process), independent from Win, and Σ(Xk
t ) is the co-

variance matrix given by

Σ(Xk
t ) =


α1,1In α1,2In . . . α1,kIn
α2,1In α2,2In . . . α2,kIn

...
...

...
...

αk,1In . . . . . . αk,kIn

 ,

where αi,j = ⟨ϕ(Xk,i
t ), ϕ(Xk,j

t )⟩, with (Xk,1
t

⊤, . . . , Xk,k
t

⊤)⊤
def
= Xk

t .

Let X̄k be its Euler scheme as in Theorem 5. Then, we have the following width-uniform bound on the discretization error:

sup
n≥1

(kn)−1 E sup
t∈[0,1]

∥Xk
t − X̄k

⌊tδ−1⌋∥
2 ≤ C ′ δ,

where C ′ = 80ζ4(1 + (1 + 3d−1∥a∥2) exp(6ζ2)) exp(20ζ2).

B.4. Convergence of Particles to the solution of Mckean-Vlasov process

The next result gives sufficient conditions for the system of particles to converge to its mean-field limit, known as the
Mckean-Vlasov process.

Theorem 8 (Uniform Mckean-Vlasov process). Let d ≥ 1 and consider the Rd-valued ito process X (Definition 4) given
by

dXt = σ(νnt )dBt, X0 = Wina,

where B is a d-dimensional Brownian motion, W ij
in ∼ N (0, 1/d), a ∈ Rd and a ̸= 0, νnt

def
= 1

d

∑d
i=1 δ{Xi

t} is the empirical

distribution of the coordinates of Xt, and σ is real-valued given by σ(ν) =
(∫

ϕ(y)2dν(y)
)1/2

for any distribution ν, where
ϕ is the ReLU activation function. Then, for all T ∈ R+, we have that

sup
i∈[n]

E
(
sup
t≤T

|Xi
t − X̃i

t |2
)

= O(n−1),

where X̃i is the solution of the following Mckean-Vlasov equation

dX̃i
t = σ(νit)dB

i
t =

∥a∥√
2d

exp(t/4)dBi
t, X̃i

0 = Xi
0,

where νit is the distribution of X̃i. The constant in the O depends only on T and the norm of a.

Proof. The first part of the proof is similar to that of Theorem 3 in (Jourdain et al., 2007). In the second part, we use a
concentration argument to control the deviations of the volatility term which allow us to conclude.

Let ṽnt denote the empirical distribution of the independent processes X̃i
t , i ∈ [n] defined in the statement of the theorem.

Let t ∈ [0, 1]. Following (Jourdain et al., 2007), for some i ∈ [n], using Doob’s inequality, there exists a universal constant
C > 0 such that

E
(
sup
s≤t

|Xi
s − X̃i

s|2
)

≤ C

∫ t

0

E|σ(νns )− σ(νs)|2ds

≤ C

∫ t

0

E|σ(νns )− σ(ν̃ns )|2ds+ C

∫ t

0

E|σ(ν̃ns )− σ(νs)|2ds.
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For the first term, we have that∫ t

0

E|σ(νns )− σ(ν̃ns )|2ds =
∫ t

0

E
∣∣∣∣ 1√

n
∥ϕ(Xs)∥ −

1√
n
∥ϕ(X̃s)∥

∣∣∣∣2 ds
≤ 1

n

∫ t

0

E∥ϕ(Xs)− ϕ(X̃s)∥2ds

≤
∫ t

0

E
(
sup
r≤s

|Xi
r − X̃i

r|2
)
ds,

where we have used the exchangeability of the couples (Xi
t , X̃

i
t) (across i) and the Lipschitz property of ζ. Therefore,

using Gronwall’s lemma, there exists a constant C ′ > 0 (independent of i) such that

E
(
sup
s≤t

|Xi
s − X̃i

s|2
)

≤ C ′
∫ t

0

E|σ(ν̃ns )− σ(νs)|2ds.

Since the bound is uniform in i, we then have

sup
i∈[n]

E
(
sup
s≤t

|Xi
s − X̃i

s|2
)

≤ C ′
∫ t

0

E|σ(ν̃ns )− σ(νs)|2ds.

Thus, it suffices to show that the right hand side is of order n−1 to conclude. Let us first show that the volatility of the
process X̃i

t is given by σ(νit) = ∥a∥√
2d

exp(t/4). We have that dX̃i
t = σ(νit)dB

i
t . A simple application of Itô ’s lemma

(Lemma 2) yields

dE(X̃i
t)

2 =
1

2
E(X̃i

t)
2dt,

where we have used the fact that with ReLU E(ϕ(X̃i
t)

2) = 1
2E(X̃

i
t)

2. Therefore, we obtain E(X̃i
t)

2 = E(X̃i
0)

2 exp(t/2) =
∥a∥2

d exp(t/2). Thus, the volatility term is given by stated formula. Notice that X̂i
t has a normal distribution in this case.

We now use Hoeffding’s inequality for random variables with sub-exponential growth to control the deviations of σ(ν̃ns )
2.

We have

P
(
σ(ν̃ns )

2 ≤ ∥a∥2

4d

)
≤ P

(
σ(ν̃ns )

2 ≤ σ(νs)
2/2
)

= P
(
σ(ν̃ns )

2 − σ(νs)
2 ≤ −σ(νs)

2/2
)

≤ 2 exp(−nc),

where c > 0 is a constant that depends only on the moments of ϕ(X̃i
t) which can be upper-bounded uniformly for t ∈ [0, T ].

Define the event Hn = {σ(ν̃ns )2 ≤ ∥a∥2

4d } and let H̄n denote its complementary event. This yields for all s ∈ [0, T ]

E|σ(ν̃ns )− σ(νs)|2 = E1Hn |σ(ν̃ns )− σ(νs)|2 + E1H̄n
|σ(ν̃ns )− σ(νs)|2

≤ 2∥a∥2

d
exp

(
−n c+

s

2

)
+

(
d

4

)1/4

E|σ(ν̃ns )2 − σ(νs)
2|2

≤ 2∥a∥2

d
exp

(
−n c+

s

2

)
+

( √
d

2∥a∥

)
Eϕ(X̃1

s )
4

n
,

where we have use the fact that |
√
z −

√
z′| ≤ 1

2
√
z0
|z − z′| for z, z′ ≥ z0 > 0. Since X̃1

s is a zero-mean Gaussian with a
variance that depends only on s, we can therefore conclude that there exists C ′′ independent of n and i ∈ [n] such that

sup
i∈[n]

E
(
sup
s≤t

|Xi
s − X̃i

s|2
)

≤ C ′′ n−1,

which concludes the proof.
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B.5. Other results from probability and stochastic calculus

The next trivial lemma has been opportunely used in M. Li et al., 2021 to derive the limiting distribution of the network
output (multi-layer perceptron) in the joint infinite width-depth limit. This simple result will also prove useful in our case
of the finite-width-infinite-depth limit.

Lemma 3. Let W ∈ Rn×n be a matrix of standard Gaussian random variables Wij ∼ N (0, 1). Let v ∈ Rn be a random
vector independent from W and satisfies ∥v∥2 = 1 . Then, Wv ∼ N (0, I).

Proof. The proof follows a simple characteristic function argument. Indeed, by conditioning on v, we observe that Wv ∼
N (0, I). Let u ∈ Rn, we have that

EW,v[e
i⟨u,Wv⟩] = Ev[EW [ei⟨u,Wv⟩|v]]

= Ev[e
− ∥u∥2

2 ]

= e−
∥u∥2

2 .

This concludes the proof as the latter is the characteristic function of a random Gaussian vector with Identity covariance
matrix.

C. Some technical results for the proofs
Proposition 4. Assume that the activation function ϕ is Lipschitz on R and let a ∈ Rd with a ̸= 0. Then, in the limit
L → ∞, the process XL

t (a) = Y⌊tL⌋(a), t ∈ [0, 1], converges in distribution to the solution of the following SDE

dXt(a) =
1√
n
∥ϕ(Xt(a))∥dBt, X0(a) = Wina, (6)

where (Bt)t≥0 is a Brownian motion (Wiener process). Moreover, we have that

sup
n≥1

sup
1≤t≤1

W1(µ
t
n,L, µ

t
n,∞) ≤ CL−1/2,

where µt
n,L(a) is the distribution of Y i

⌊tL⌋(a), µ
t
n,∞(a) is the distribution Xi

t(a) (for any i since the coordinates are
identically distributed), and C is a constant that depends only on d and ∥a∥.

Proof. The proof is based on Theorem 6 in the appendix. It remains to express Eq. (2) in the required form and make sure
all the conditions are satisfied for the result to hold. To alleviate the notation, we denote Yl := Yl(a). Using Lemma 3, we
can write Eq. (2) as

Yl = Yl−1 +
1√
L
σ(Yl−1)ζ

L
l−1,

where σ(y)
def
= 1√

n
∥ϕ(y)∥ for all y ∈ Rn and ζLl are iid random Gaussian vectors with distribution N (0, I). This is equal

in distribution to the Euler scheme of SDE Eq. (6). Since σ trivially inherits the Lipschitz or local Lipschitz properties of
ϕ, we conclude for the convergence using Theorem 6.

Now let Ψ be 1-Lipschitz. We have that

|EΨ(Y⌊tL⌋)− EΨ(Xt)| ≤ E∥X̄⌊tL⌋ −Xt∥ ≤ CL−1/2.

where X̄ is the Euler scheme as in Theorem 6, and where we have used the fact that Y⌊tL⌋ and X̄⌊tL⌋ have the same
distribution, coupled with the Cauchy-Schwartz inequality. Since C depends only on d and ∥a∥, the conclusion is straight-
forward.
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Proposition 5. Assume that the activation function ϕ is Lipschitz on R and let a, b ∈ Rd with a, b ̸= 0 and a ̸= b. Then,
there exists two n-dimensional Brownian motions Bt(a) and Bt(b) and a discretized Euler scheme (X̄(a)) and (X̄(b))
such that for any t ∈ [0, 1], the processes (Y⌊tL⌋(a), Y⌊tL⌋(b)) have the same distribution as (X̄⌊tL⌋(a), X̄⌊tL⌋(b)) and
X̄⌊tL⌋(a) and X̄⌊tL⌋(b) converge (in L2) to the solutions of the following SDEs

dXt(a) =
1√
n
∥ϕ(Xt(a))∥dBt(a), X0(a) = Wina,

dXt(b) =
1√
n
∥ϕ(Xt(b))∥dBt(b), X0(b) = Winb,

(7)

Moreover, we have that

lim
n→∞

E
[
⟨Xt(a), Xt(b)⟩

n

]
= qt(a, b),

where qt(a, b) is the solution of the following Ordinary Differential Equation

dqt(a, b)

dt
=

1

2

f(ct(a, b))

ct(a, b)
qt(a, b),

ct(a, b) =
qt(a, b)√

qt(a, a)
√

qt(b, b)
,

q0(a, b) =
⟨a, b⟩
d

,

(8)

where the function f : [−1, 1] → [−1, 1] is given by

f(z) =
1

π
(z arcsin(z) +

√
1− z2) +

1

2
z.

Proof. The proof is similar to that of Proposition 4. The only difference lies the definition of the Gaussian vector ζLl . In
this case, for x ∈ {a, b}, we have

Yl(x) = Yl−1(x) +
1√
L

1√
n
ζLl−1(Yl−1(x)),

where ζLl−1(Yl−1(x))
def
=

√
nWlϕ(Yl−1(x)). It is straightforward that we can write 1√

L
ζLl−1(Yl−1(x)) as a Brown-

ian increment ∆Bl(x) = L−1/2 ζLl−1(Yl−1(x)). Defining the Euler schemes X̄(a), X̄(b) with the Brownian motions
(Bt(x))x∈{a,b} yields that the concatenated vector (Y⌊tL⌋(a), Y⌊tL⌋(b)) has the same distribution as (X̄⌊tL⌋(a), X̄⌊tL⌋(b)).
In particular, this implies that

E
[ ⟨X̄⌊tL⌋(a), X̄⌊tL⌋(b)⟩

n

]
= E

[ ⟨Y⌊tL⌋(a), Y⌊tL⌋(b)⟩
n

]
.

Now using Theorem 6, we know that for x ∈ {a, b},

sup
n≥1

n−1 E sup
t∈[0,1]

∥Xt(x)− X̄⌊tL⌋(x)∥2 ≤ C ′ δ,

where C ′ depends only on the ∥x∥ and d−1. From this, and by observing that the L2 norm of Xt(x) and X̄⌊tL⌋(x) are
upperbounded (see Theorem 4), it is straightforward that∣∣∣∣E [ ⟨Xt(a), Xt(b)⟩

n

]
− E

[ ⟨Y⌊tL⌋(a), Y⌊tL⌋(b)⟩
n

]∣∣∣∣ ≤ CL−1/2,

where C is a constant that depends only on ∥a∥, ∥b∥, and d. To conclude, we will take the width to infinity first then take
the depth to infinity. Taking n → ∞, then depth to ∞ (standard result, see Lemma 5 in Hayou, Clerico, et al., 2021) yields

lim
L→∞

lim
n→∞

E
[ ⟨Y⌊tL⌋(a), Y⌊tL⌋(b)⟩

n

]
= qt(a, b),

which concludes the proof.
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D. Proof of Theorem 1
Theorem 1 [Width/Depth uniform convergence of the pre-activations]
Let a ∈ Rd such that a ̸= 0. For t ∈ [0, 1] and i ∈ [n] fixed, the random variable (Y⌊tL⌋(a))L≥1 converges weakly to
a Gaussian random variable with law N (0, v(t, a)) in the limit of min(n,L) → ∞, where v(t, a) = d−1∥a∥2 exp(t).
Moreover, we have the following convergence rate

sup
t∈[0,1]

W1(µ
t
n,L(a), µ

t
∞,∞(a)) ≤ C

(
1√
n
+

1√
L

)
where µt

n,L(a) is the distribution of Y 1
⌊tL⌋(a), µ

t
∞,∞(a) is the distribution N (0, v(t, a)), and C is constant that depends

only on ∥a∥ and d.

Proof. The proof relies on a careful manipulation of the order of the depth and width limits. Unlike existing literature on
the infinite-width-then-depth networks, we found that is much easier to control the convergence rate by looking at what
happens when the L diverges first, then control over n. This uses two main ingredients:

• A new width-uniform convergence rate of the Euler discretization scheme of the infinite-depth SDE. We prove this in
Theorem 6.

• A new particle convergence result to a McKean-Vlasov process (Mean-Field limit). We prove this result in Theorem 8.

Let a ∈ Rd with a ̸= 0.

Part 1: Width-uniform infinite-depth limit. Let n ≥ 1 be fixed for now, and let us look at what happens in the infinite
depth limit. Using Proposition 4, we know that Y 1

⌊tL⌋(a) converges in distribution to X1
t (a) with a width-uniform rate in

terms of the Wasserstein distance
sup

1≤t≤1
W1(µ

t
n,L, µ

t
n,∞) ≤ CL−1/2,

where C depends only on d and ∥a∥.

Part 2: Taking the width to infinity. The rest of the proof rely on a new technical result that we prove in Theorem 8. The
intuition is that the coordinates (Xi(a)t)1≤i≤n can be seen as interacting particles of some underlying mean-field process.
This is known as Mckean-Vlasov process. Using Theorem 8 with T = 1, we obtain that

sup
i∈[n]

E
(

sup
0≤t≤1

|Xi
t(a)− X̃i

t(a)|2
)

≤ C ′n−1,

where X̃i
t(a) is the solution of the SDE

dX̃i
t(a) =

∥a∥√
2d

exp(t/4)dBi
t, X̃

i
0(a) = Xi

0(a).

This is a special SDE since all the marginal distributions are zero-mean Gaussians (sum of Brownian increments) with
variance EX̃i

t(a)
2 = ∥a∥2

d exp(t/2).

In particular, Xi(a)t converges weakly to X̃i
t(a) in the limit of infinite width n. Combining the bound in Part 1 with the

Mckean-Vlasov bound above, we obtain

sup
t∈[0,1]

W1(µ
t
n,L(a), µ

t
∞,∞(a)) ≤ C

(
1√
n
+

1√
L

)
for some constant that depends only on d and ∥a∥, and where µt

∞,∞(a) is the distribution of X̃i
t(a) ∼

N (0, d−1∥a∥2 exp(t/2)).
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E. Proof of Theorem 2
Theorem 9 (Neural Covariance). Let a, b ∈ Rd such that a, b ̸= 0 and a ̸= b. Then, we have the following

sup
t∈[0,1]

∥∥∥∥ ⟨Y⌊tL⌋(a), Y⌊tL⌋(b)⟩
n

− qt(a, b)

∥∥∥∥
L2

≤ C

(
1√
n
+

1√
L

)
where C is a constant that depends only on ∥a∥, ∥b∥, and d, and qt(a, b) is the solution of the following Ordinary Differ-
ential Equation

dqt(a, b)

dt
=

1

2

f(ct(a, b))

ct(a, b)
qt(a, b),

ct(a, b) =
qt(a, b)√

qt(a, a)
√

qt(b, b)
,

q0(a, b) =
⟨a, b⟩
d

,

(9)

where the function f : [−1, 1] → [−1, 1] is given by

f(z) =
1

π
(z arcsin(z) +

√
1− z2) +

1

2
z.

Proof. Let a, b ∈ Rd and qt be as in the statement of the theorem. Let Xt(a) and Xt(b) be the infinite-depth limits as in
Proposition 5, and let X̄(a), X̄(b) be the corresponding Euler schemes. Using the fact that (Y⌊tL⌋(a), Y⌊tL⌋(b)) has the
same law as (X̄⌊tL⌋(a), X̄⌊tL⌋(b)) , we trivially have

E
∣∣∣∣ ⟨Y⌊tL⌋(a), Y⌊tL⌋(b)⟩

n
− qt(a, b)

∣∣∣∣2 = E
∣∣∣∣ ⟨X̄⌊tL⌋(a), X̄⌊tL⌋(b)⟩

n
− qt(a, b)

∣∣∣∣2 .
We have the following upperbound∥∥∥∥ ⟨X̄⌊tL⌋(a), X̄⌊tL⌋(b)⟩

n
− qt(a, b)

∥∥∥∥
L2

≤
∥∥∥∥ ⟨X̄⌊tL⌋(a), X̄⌊tL⌋(b)⟩

n
− ⟨Xt(a), Xt(b)⟩

n

∥∥∥∥
L2

+

∥∥∥∥∥ ⟨Xt(a), Xt(b)⟩
n

− ⟨X̃t(a), X̃t(b)⟩
n

∥∥∥∥∥
L2

+

∥∥∥∥∥ ⟨X̃t(a), X̃t(b)⟩
n

− qt(a, b)

∥∥∥∥∥
L2

,

(10)

where X̃(a), X̃(b) are the infinite-width limits of the processes X(a), X(b) as in Theorem 8. Let us deal with each term
in this bound.

• First term: from Theorem 6 and standard upperbounds on the second moments (Theorem 4), we have that∥∥∥∥ ⟨X̄⌊tL⌋(a), X̄⌊tL⌋(b)⟩
n

− ⟨Xt(a), Xt(b)⟩
n

∥∥∥∥
L2

≤ C1 L
−1/2,

where C1 is a constant that depends only on ∥a∥, ∥b∥, and d.

• Second term: from Theorem 8, there exists a constant C2 such that∥∥∥∥∥ ⟨Xt(a), Xt(b)⟩
n

− ⟨X̃t(a), X̃t(b)⟩
n

∥∥∥∥∥
L2

≤ C2n
−1/2,

where C2 depends only on ∥a∥, ∥b∥, and d.
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• Third term: from Proposition 5, we know that limn→∞ E
[
⟨Xt(a),Xt(b)⟩

n

]
= qt(a, b). Using the bound above on the

second term, we obtain that limn→∞ E
[
⟨X̃t(a),X̃t(b)⟩

n

]
= qt(a, b). Now the key observation is that

⟨X̃t(a), X̃t(b)⟩
n

=
1

n

n∑
i=1

X̃i
t(a)X̃

i
t(b),

and the terms in the sum above are iid with mean qt(a, b). Therefore,∥∥∥∥∥ ⟨X̃t(a), X̃t(b)⟩
n

− qt(a, b)

∥∥∥∥∥
L2

=

E

∣∣∣∣∣ ⟨X̃t(a), X̃t(b)⟩
n

− qt(a, b)

∣∣∣∣∣
2
1/2

≤ (E(X̃1
t (a)X̃

1
t (b))

2)1/2 n−1/2.

Observe that E(X̃1
t (a)X̃

1
t (b))

2 can be bounded with a constant C3 depends only on ∥a∥, ∥b∥, and d.

We conclude by combining the three bounds above.

F. Proof of Theorem 3
Theorem 3. [Neural correlation]
Under the same conditions of Theorem 2, we have the following

sup
t∈[0,1]

∥ĉt(a, b)− ct(a, b)∥L2
≤ C ′

(
1√
n
+

1√
L

)
where C ′ is a constant that depends only on ∥a∥, ∥b∥, and d, and ĉt(a, b) =

⟨Y⌊tL⌋(a),Y⌊tL⌋(b)⟩
∥Y⌊tL⌋(a)∥∥Y⌊tL⌋(b)∥

is the neural correlation
kernel, and ct(a, b) is defined in Theorem 2.

Proof. Let a and b be as stated in the theorem. We have the following

∥ĉt(a, b)− ct(a, b)∥L2
≤

∥∥∥∥∥ q̂t(a, b)√
q̂t(a, a)q̂t(b, b)

− qt(a, b)√
q̂t(a, a)q̂t(b, b)

∥∥∥∥∥
L2

+

∥∥∥∥∥ qt(a, b)√
q̂t(a, a)q̂t(b, b)

− qt(a, b)√
qt(a, a)qt(b, b)

∥∥∥∥∥
L2

.

Using Markov’s inequality along with Theorem 2, it is straightforward that there exists a constant C1 that depends only on
∥a∥, ∥b∥, and d such that

P
(
q̂t(a, a) <

qt(a, a)

2

)
≤ C1 min(n,L)−1,

and

P
(
q̂t(b, b) <

qt(b, b)

2

)
≤ C1 min(n,L)−1.

Let A denote the event {q̂t(a, a) ≥ qt(a,a)
2 } ∪ {q̂t(b, b) ≥ qt(b,b)

2 }. With this, we obtain the following upperbound∥∥∥∥∥ q̂t(a, b)√
q̂t(a, a)q̂t(b, b)

− qt(a, b)√
q̂t(a, a)q̂t(b, b)

∥∥∥∥∥
L2

≤

∥∥∥∥∥1A

(
q̂t(a, b)√

q̂t(a, a)q̂t(b, b)
− qt(a, b)√

q̂t(a, a)q̂t(b, b)

)∥∥∥∥∥
L2

+

∥∥∥∥∥1Ac

(
q̂t(a, b)√

q̂t(a, a)q̂t(b, b)
− qt(a, b)√

q̂t(a, a)q̂t(b, b)

)∥∥∥∥∥
L2

≤ 2√
qt(a, a)qt(b, b)

∥q̂t(a, b)− qt(a, b)∥L2
+ C2P(Ac)1/2,

where Ac denote the complementary event of A and C2 is a constant that depends only on ∥a∥, ∥b∥, and d. From Theorem 2
and the Markov inequality bound, we can upperbound this term by a term of order min(n,L)−1/2 with a constant that
depends only on ∥a∥, ∥b∥ and d. A similar treatment of the second term yields the desired result.
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Figure 6: Same plot as Fig. 3 with n = L = 5

G. Additional experiments
G.1. Pairplots
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Figure 7: Same plot as Fig. 3 with n = 100 and L = 5
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Figure 8: Same plot as Fig. 3 with n = 5 and L = 100
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