
Domain Adaptation for Time Series Under Feature and Label Shifts

Huan He 1 Owen Queen 1 Teddy Koker 2 Consuelo Cuevas 2 Theodoros Tsiligkaridis 2 Marinka Zitnik 1

Abstract
Unsupervised domain adaptation (UDA) enables
the transfer of models trained on source domains
to unlabeled target domains. However, transfer-
ring complex time series models presents chal-
lenges due to the dynamic temporal structure vari-
ations across domains. This leads to feature shifts
in the time and frequency representations. Ad-
ditionally, the label distributions of tasks in the
source and target domains can differ significantly,
posing difficulties in addressing label shifts and
recognizing labels unique to the target domain.
Effectively transferring complex time series mod-
els remains a formidable problem. We present
RAINCOAT, the first model for both closed-set and
universal domain adaptation on complex time se-
ries. RAINCOAT addresses feature and label shifts
by considering both temporal and frequency fea-
tures, aligning them across domains, and correct-
ing for misalignments to facilitate the detection
of private labels. Additionally, RAINCOAT im-
proves transferability by identifying label shifts in
target domains. Our experiments with 5 datasets
and 13 state-of-the-art UDA methods demonstrate
that RAINCOAT can improve transfer learning per-
formance by up to 16.33% and can handle both
closed-set and universal domain adaptation.

1. Introduction
Neural networks have demonstrated impressive performance
on time series datasets (Ravuri et al., 2021; Lundberg et al.,
2018). However, their performance deteriorates rapidly un-
der domain shifts, making it challenging to deploy these
models in real-world scenarios (Zhang et al., 2022a;b). Do-
main shifts occur when the test distribution is not identical
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Figure 1. a) RAINCOAT captures domain-invariant frequency fea-
tures under feature and label shifts. b) For Closed-Set DA, RAIN-
COAT aligns source and target domains for greater generalization.
For Universal DA, the correction step prioritizes target-specific
features to detect private target classes.

to the training data, even though it is often related (Koh et al.,
2021; Luo et al., 2018; Zhang et al., 2013), meaning that la-
tent representations do not generalize to test datasets drawn
from different underlying distributions, even if the differ-
ences between these distributions are minor. To overcome
these challenges, domain adaptation (DA) has emerged as
a set of techniques that allow adaptation to new target do-
mains and reduce bias by leveraging unlabeled data in target
domains (Ganin et al., 2016; Long et al., 2015).

Training models that can adapt to domain shifts is crucial for
robust, real-world deployment. For instance, for healthcare
time series, data collection methods vary widely across dif-
ferent clinical sites (domains) (Zhang et al., 2022c), leading
to shifts in the underlying features and labels. It is preferable
to train a model on a diverse dataset collected from multiple
clinics rather than training and applying individual models
on smaller, single-domain datasets for each clinic. Addi-
tionally, training a model that can detect unknown classes
in test data, such as patients with rare diseases (Alsentzer
et al., 2022), is advantageous for real-world implementa-
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tion among end-users, such as clinicians (Tonekaboni et al.,
2019). Endowing learning systems with DA capabilities
can increase their reliability and expand applicability across
downstream tasks.

DA is a highly complex problem due to several factors.
First, models trained for robustness to domain shifts must
learn highly generalizable features; however, neural net-
works trained using standard practices can rely on spurious
correlations created by non-causal data artifacts (Geirhos
et al., 2020; DeGrave et al., 2021), hindering their ability
to transfer across domains. Additionally, shifts in label dis-
tributions across domains may result in private labels, i.e.,
classes that exist in the target domain but not in the source
domain (Lipton et al., 2018). In unsupervised DA, a model
must generalize across domains when labels from the target
domain are not available during training (Long et al., 2018a;
Kang et al., 2019a). Therefore, DA methods must be able
to identify when a private label is encountered in the target
domain without any prior supervision on detecting these
unknown labels (You et al., 2019; Fu et al., 2020). Yet, that
is not possible by techniques that rely on training samples
that simulate predicting unknown labels. This highlights the
need for time series DA methods that 1) produce generaliz-
able representations robust to feature and label shifts, and
2) expand the scope of existing DA methods by supporting
both closed-set and universal DA.

DA becomes even more challenging when applied to time
series data. Domain shifts can occur in both the time and
frequency features of time series, which can create a shift
that highly perturbs time features while frequency features
are relatively unchanged, or vice versa (Figure 1a). Previous
time series DA methods fail to explicitly model frequency
features. Further, models can fail to generalize due to short-
cut learning (Brown et al., 2022), which occurs when the
model focuses on time-space features while overlooking
crucial underlying concepts in the frequency-space domain,
leading to limited poor performance on data unseen during
training. Additionally, universal DA—when no assumptions
are made about the overlap between labels in the source
and target domains—is an unexplored area in time series
research (Figure 1b).

Present Work. We introduce RAINCOAT (fRequency-
augmented AlIgN-then-Correct for dOmain Adaptation for
Time series), a novel domain adaptation method for time
series data that can handle both feature and label shifts (as
shown in Figure 1). Our method is the first to address both
closed-set and universal domain adaptation for time series
and has the unique capability of handling feature and label
shifts. To achieve this, we first use time and frequency-based
encoders to learn time series representations, motivated by
inductive bias that domain shifts can occur via both time or
frequency feature shifts. We use Sinkhorn divergence for

source-target feature alignment and provide both empirical
evidence and theoretical justification for its superiority over
other popular divergence measures. Finally, we introduce an
“align-then-correct” procedure for universal DA, which first
aligns the source and target domains, retrains the encoder
on the target domain to correct misalignments, and then
measures the difference between the aligned and corrected
representations of target samples to detect unknown target
classes (as shown in Figure 2). We evaluate RAINCOAT
on five time-series datasets from various modalities, includ-
ing human activity recognition, mechanical fault detection,
and electroencephalogram prediction. Our method outper-
forms strong baselines by up to 9.0% for closed-set DA
and 16.33% for universal DA. RAINCOAT is available at
https://github.com/mims-harvard/Raincoat.

2. Related Work
General Domain Adaptation. General domain adaptation
(DA), leveraging labeled source domain to predict labels on
the unlabeled target domain, has a wide range of applica-
tions (Ganin and Lempitsky, 2015; Sener et al., 2016; Zhang
et al., 2018; Perone et al., 2019; Ramponi and Plank, 2020).
We organize DA methods into three categories: 1) Adversar-
ial training: A domain discriminator is optimized to distin-
guish source and target domains, while a deep classification
model learns transferable features indistinguishable by the
domain discriminator (Hoffman et al., 2015; Tzeng et al.,
2017; Motiian et al., 2017; Long et al., 2018a; Hoffman
et al., 2018). 2) Statistical divergence: These approaches
aim to extract domain invariant features by minimizing do-
main discrepancy in a latent feature space. Widely used
measures include MMD (Rozantsev et al., 2016), correlation
alignment (CORAL) (Sun and Saenko, 2016), contrastive
domain discrepancy (CDD) (Kang et al., 2019a), optimal
transport distance (Courty et al., 2017; Redko et al., 2019),
and graph matching loss (Yan et al., 2016; Das and Lee,
2018). 3) Self-supervision: These general DA approaches
incorporate auxiliary self-supervision training tasks. These
methods learn domain-invariant features through a pretext
learning task, such as data augmentation and reconstruc-
tion, for which a target objective can be computed without
supervision (Kang et al., 2019b; Singh, 2021; Tang et al.,
2021). In addition, reconstruction-based methods achieve
alignment by carrying out source domain classification and
reconstruction of target domain data or both source and tar-
get domain data (Ghifary et al., 2016; Jhuo et al., 2012).
RAINCOAT sits in the category of both 2 and 3.

Domain Adaptation for Time Series. While in light of
successes in computer vision, limited methods have focused
on adaptation approaches for time series data. To date, few
DA methods are specifically designed for time series. 1)
Adversarial training: VRADA (Purushotham et al., 2017)
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Figure 2. Illustration of the RAINCOAT method for time series DA. Details provided in-text.

builds upon a variational recurrent neural network (VRNN)
and trains adversarially to capture complex temporal rela-
tionships that are domain-invariant. CoDATS (Wilson et al.,
2020) builds upon VRADA but uses a convolutional neural
network for the feature extractor. 2) Statistical divergence:
SASA (Cai et al., 2021) aligns the condition distribution of
the time series data by minimizing the discrepancy of the
associative structure of time series variables between do-
mains. AdvSKM (Liu and Xue, 2021a) and (Ott et al., 2022)
are metric-based methods that align two domains by con-
sidering statistic divergence. 3) Self-supervision: DAF (Jin
et al., 2022) extracts domain-invariant and domain-specific
features to perform forecasts for source and target domains
through a shared attention module with a reconstruction task.
CLUDA (Ozyurt et al., 2022) and CLADA (Wilson et al.,
2021) are two contrastive DA methods that use augmen-
tations to extract domain invariant and contextual features
for prediction. However, the above methods align features
without considering the potential gap between labels from
both domains. Moreover, they focus on aligning only time
features while ignoring the implicit frequency feature shift
(Fig. 1a). In contrast, RAINCOAT considers the frequency
feature shift to mitigate both feature and label shift in DA.

Universal Domain Adaptation. Prevailing DA methods
assume all labels in the target domain are also available in
the source domain. This assumption, known as closed-set
DA, posits that the domain gap is driven by feature shift (as
opposed to label shift). However, the label overlap between
the two domains is unknown in practice. Thus, assuming
both feature and label shifts can cause the domain gap is
more practical. In contrast to closed-set DA, universal do-
main adaptation (UniDA) (You et al., 2019) can account for
label shift. UniDA categorizes target samples into common
labels (present in both source and target domains) or private
labels (present in the target domain only). UAN (You et al.,
2019), CMU (Fu et al., 2020), and TNT (Chen et al., 2022a)
use sample-level uncertainty criteria to measure domain
transferability. Samples with lower uncertainty are prefer-

entially selected for adversarial adaptation. However, most
UniDA methods detect common samples using sample-level
criteria, requiring users to specify the threshold to recognize
private labels. Moreover, over-reliance on source super-
vision neglects discriminative representation in the target
domain. DANCE (Saito et al., 2020) uses self-supervised
neighborhood clustering to learn features to discriminate
private labels. Similarly, DCC (Li et al., 2021a) enumerates
cluster numbers of the target domain to obtain optimal cross-
domain consensus clusters as common classes. Still, the
consensus clusters are not robust enough due to challenging
cluster assignments. MATHS (Chen et al., 2022b) detects
private labels via mutual nearest-neighbor contrastive learn-
ing. In contrast, UniOT (Chang et al., 2022) uses optimal
transport to detect common samples and produce represen-
tations for samples in the target domain. However, these
methods use a feature encoder shared across both domains
even though the source and target domains are shifted. In
addition, most require fine-tuned thresholds to recognize
private labels.

3. Problem Setup and Formulation
Notation. We are given a dataset D = {(xi, yi)}ni=1

of n multivariate time series samples where i-th sample
xi ∈ RT×d contains readouts of d sensors over T time
points. Without loss of generality, we consider regular time
series — RAINCOAT can be used with techniques, such
as Raindrop (Zhang et al., 2022b) to handle irregular time
series. We use xi to denote a time series (both univariate
and multivariate). Each label yi in D belongs to the label
set C, i.e., yi ∈ C. We use Ds = {(xs

i , y
s
i )}

ns

i=1 to denote
the source domain dataset with ns labeled samples, where
xs
i is a source domain sample and ysi is the associated la-

bel. The target domain dataset is unlabeled and denoted as
Dt = {(xt

i)}
nt

i=1 with nt unlabeled samples. Source and
target label sets are denoted as Cs and Ct, respectively. Zero,
one or more labels may be shared between source and target
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domains, which we denote as Cs,t = Cs ∩ Ct. Source and
target domains have samples drawn from source and target
distributions, Ds ∼ ps(x

s, ys) and Dt ∼ pt(x
t, yt).

We consider two types of domain shifts: feature shift and
label shift. Feature shift occurs when marginal probability
distributions of x differ, ps(x) ̸= pt(x), while conditional
probability distributions remain constant across domains,
ps(y|x) = pt(y|x) (Zhang et al., 2013). Label shift oc-
curs when marginal probability distributions of y differ,
ps(y) ̸= pt(y). Feature shifts may occur in time series due
to, for example, differences in sensor measurement setup or
length of samples. A unique property of time series is that
feature shifts may occur in both time and frequency spectra.
The importance of modeling shifts in both the time and fre-
quency spectrum is discussed in later sections. Label shift
may occur as either a change in the proportion of classes in
either domain or as a categorical shift: both domains might
contain different classes in their label sets.

Problem 3.1 (Closed-set Domain Adaptation for Time
Series Classification). Given the source and target domain
time series datasets, Ds and Dt, whose label sets are the
same, Cs = Ct, and target labels yt are not available at train
time. RAINCOAT specifies a strategy to train a classifier
f on Ds such that f generalizes to Dt, i.e., it minimizes
classification risk on Dt: Exi,yi∼Dt [LC(f(xi), yi)], where
LC is a classification loss function.

In a real-world application, little information may be avail-
able on the feature or label distribution of the target domain.
Private labels in either the source or target domain may exist,
i.e., classes present in one domain but absent in the other.
Thus, it is desirable to relax the strict assumption of Cs = Ct
made by Problem 3.1. We denote source private labels as
C̄s = Cs\Ct, target private labels as C̄t = Ct\Cs, and labels
shared between domains as Cs,t = Cs ∩ Ct. We denote the
access of samples in dataset D belonging to label set C as
D[C], e.g., samples in the target domain belonging to the
common label set would be denoted as Dt[Cs,t]. Domains
might not have common labels, Cs,t = ∅, leading to the
definition of universal DA.

Problem 3.2 (Universal Domain Adaptation (UniDA)
for Time Series Classification). Given our source and tar-
get domain time series datasets, Ds and Dt, where target
labels yt are unavailable at train time. RAINCOAT spec-
ifies a stratefy to train a classifier f on Ds such that f
generalizes to Dt, i.e., it minimizes classification risk of
a loss function LC on samples belonging to Cs,t in Dt:
Exi,yi∼Dt[Cs,t] [LC(f(xi), yi)], while identifying samples
in private target classes, xi ∼ Dt[C̄t], as unknown samples.

4. Preliminaries
Discrete Fourier Transform. Given a series sample x
with d channels and T time points, it is transformed to the
frequency space by applying the 1-dim DFT of length T to
each channel and then transforming it back using the 1-dim
inverse DFT, defined as:

Forward DFT : v[m] =
∑T−1

t=0 x[t] · e−i2πmt
T

Inverse DFT : x[n] =
1

T

∑T−1
t=0 v[m] · ei·2πmt

T

(1)

where T = number of points, n = current point index, m =
current frequency index, where m ∈ [0, T − 1]. We denote
the extracted amplitude and phase as a and p respectively:

a[m] =
|v[m]|
T

=

√
Re (v[m])

2
+ Im (v[m])

2

T
p[m] = atan2 (Im (v[m]) ,Re (v[m]))

(2)

where Im(v[m]) and Re(v[m]) indicate imaginary and real
parts of a complex number, and atan2 is the two-argument
form of arctan.

5. RAINCOAT Approach
We start with an overview of RAINCOAT and proceed with
(5.2) time-frequency encoding, (5.3) feature alignment, (5.4)
unknown sample detection, and (5.5) training and inference.

5.1. Overview

RAINCOAT is an unsupervised method for closed set and
universal domain adaptation in time series, addressing Prob-
lems 3.1-3.2. RAINCOAT consists of three modules: a time-
frequency encoder GTF, a classifier H , and an auxiliary
decoder UTF. Sec. 5.2 describes the encoder GTF, which
leverages both time and frequency features. Sec. 5.3 de-
scribes how Sinkhorn divergence is a suitable divergence
measurement to align the source and target domain be-
cause frequency features may not share the same support
across both domains. Sec. 5.4 motivates the correction
step for UniDA. Sec. 5.5 describes how RAINCOAT detects
potential unknown samples through analysis of pre- and
post-correction embeddings. Finally, Sec. 5.6 provides an
overview of RAINCOAT models.

5.2. Time-Frequency Feature Encoder

We begin by highlighting the significance of frequency fea-
tures in DA for time series. Although various methods have
been proposed to solve the time series DA problem under
the assumption of feature shift, none of them explicitly ad-
dress situations where changes in the frequency domain also
act as an implicit feature shift. To fill this gap, RAINCOAT
encodes both time and frequency features in its latent rep-
resentations. The source frequency and time features are
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Figure 3. Left: averaged sensor readings (one channel) of the walk-
ing activity collected from two persons (source and target). Right:
corresponding polar coordinates of Fourier features. Fourier fea-
tures are more domain-invariant than time features.

denoted as esF,i and esT,i, respectively, while the target fre-
quency and time features are represented as etF,i and etT,i.
For simplicity, the superscript indicating the source or target
domain is omitted in the rest of the text.

Shift of Frequency Features. We formalize the frequency
shift of time series as another type of feature shift. For this
purpose, we use the Fourier transform, with the possibility
of exploring other options such as wavelets left for future
work. A time series xi can be represented as a combination
of sinusoids, each with a specific frequency, amplitude, and
phase, as explained in Sec. 4. If the conditional distribu-
tions of the labels with respect to the frequency features
are equal (ps(y|DFT (xs)) = pt(y|DFT (xt))), but the do-
mains have different frequency features (p(DFT (xs)) ̸=
p(DFT (xt))), then a frequency shift occurs.

Frequency Features Promote Domain Adaptation. Ben-
David et al.; Ben-David et al. demonstrated that the per-
formance of DA techniques is bounded by the divergence
between the source and target domains, and that a small
feature shift is necessary for DA techniques to be effective.
However, unsupervised DA methods for time series align
only time features (esT,i and etT,i), leading to sub-optimal
performance when the time feature shift is large. By includ-
ing frequency features in the encoder GTF, we can uncover
potential invariant features across domains and improve
transferability. For instance, Figure 3 illustrates the sensor
readings of walking activity from two different individuals
(xs

i and xt
i) in the WISDM dataset (Kwapisz et al., 2011)

and their corresponding Fourier features (esF,i and etF,i). Us-
ing only time features would result in poor predictions in the
target domain due to a significant time feature shift between
xs
i and xt

i. On the other hand, frequency features from dif-
ferent domains do not exhibit significant feature shifts and
thus are domain invariant. This suggests that incorporating
frequency features can lead to more accurate predictions in
the target domain as DA aims to extract domain-invariant
features. For this reason, RAINCOAT uses both time and
frequency features in domain alignment.

Frequency Feature Encoder. Inspired by Fourier neural
operator (FNO) (Li et al., 2021b), RAINCOAT applies con-
volution on low-frequency modes of the Fourier transform
of xi. We make two modifications to improve the utility of
Fourier convolution for DA: 1) Prevent Frequency Leakage:
Discrete Fourier Transform considers inputs xi to be peri-
odic. Violation of such assumption results in frequency leak-
age (Harris, 1978). Specifically, given two window sliced
time series xs

i and xt
i , applying DFT (1) could return per-

turbed and noisy vs
i and vt

i which may lead to noisy-biased
domain alignment. To prevent aligning on noisy frequency
features, RAINCOAT applies a smoothing function (cosine
function) before applying DFT. 2) Consider amplitude ai
and phase pi information: Instead of using inverse DFT
to convert vi back to time-space which is an unnecessary
step for frequency feature extraction, RAINCOAT extracts
the polar coordinates of frequency coefficients to keep both
low-level (ai) and high-level (pi) semantics. The frequency
space features eF is a concatenation [ai;pi].

Now we summarize how GFT encodes time-frequency
feature from xi. Define a convolution operator “∗” and
weight matrix B, the encoder GF encodes frequency fea-
tures eF,i by: 1) Smooth: xi = Smooth(xi), 2) DFT:
vi = DFT(xi), 3) Convolution: ṽi = B ∗ vi, 4) Trans-
form: ai,pi ← ṽi (Use Eq. 2), 5) Extract: eF,i = [ai;pi]
The time features eT,i can be obtained using any existing
time feature encoder, such as CNNs. Finally, the latent
representation zi is a concatenation of frequency and time
features [eF,i; eT,i]. Details are in Appendix B.

5.3. Domain Alignment of Time-Frequency Features

Next, we address the question of what is the appropri-
ate metric to align frequency features between esF and etF.
RAINCOAT represents the frequency features as the am-
plitude and phase, esF,i = [asi ;p

t
i], e

t
F,i = [ati;p

t
i], mean-

ing that the frequency feature shift can be represented as
ps(a

s,ps) ̸= pt(a
t,pt).

Disjoint Support Sets for Frequency Features. An ap-
propriate metric to align frequency features between esF and
etF is challenging to find. Distance measures such as the
total variation distance or Kullback-Leibler divergence are
not suitable because they are unstable when the supports
of distributions are deformed and do not metricize the con-
vergence in law (Feydy et al., 2019), meaning that they do
not effectively capture the discrepancy when esF,i and etF,i
have disjoint support. The KL divergence, for example,
grows unbounded (KL(esF,i||etF,i)→ +∞) when etF,i and
etF,i are far apart, leading to a degradation of alignment and
early collapse. An ideal divergence measure could capture
the discrepancy even if esF,i and etF,i have disjoint support
(supp(esF,i) ∩ supp(etF,i) ≈ ∅).

The components of frequency features, amplitude a and
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phase p, have different distributions. The phase p has a
uniform distribution over the range of polar angles, which
makes it easy to measure the distance between ps

i and pt
i,

bounded in the polar coordinate system pi ∈ [0, 2π). How-
ever, the amplitude a has a Rayleigh distribution with an
unlimited scale, ai ∈ [0,+∞), making it difficult to mea-
sure the distance between asi and ati using the KL divergence.
The KL divergence can not provide useful gradients when
asi are ati are far apart. This leads to a lack of alignment
when the amplitudes are far apart, as numerically verified in
Figure 5 in the Appendix.

Sinkhorn Divergence. The Sinkhorn divergence is an
entropy-regularized optimal transport distance that enables
the comparison of distributions with disjoint supports. An-
other metric, maximum mean discrepancy (MMD), ad-
dresses the issue of disjoint support by considering the ge-
ometry of the distributions. However, we demonstrate that
MMD has a theoretical weakness that manifests as vanishing
gradients or similar artifacts. To address this, RAINCOAT
aligns the source features (zsi ) and target features (zti) by
minimizing a domain alignment loss based on Sinkhorn.
Further details are provided in Appendix A.

5.4. Correction Step in RAINCOAT

In this section, we explain how the correction step helps
reduce negative transfer by rejecting target unknown sam-
ples xt ∼ Dt[C̄t]. The correction step updates the encoder
GTF and decoder UTF by solving a reconstruction task on
target samples xt ∼ Dt. This updated GTF repositions the
target features zti. The target features before and after the
correction step are denoted as zta,i and ztc,i, respectively.

Motivation for Reconstructing xt
i. The cluster assump-

tion (Chapelle and Zien, 2005) holds that the input data is
separated into clusters and that samples within the same
cluster have the same label. Based on this, we argue that
preserving target discriminative features zti is important for
UniDA, because such features help generate discrimina-
tive clusters, including clusters of target unknown samples,
which improves UniDA. To do this, RAINCOAT minimizes
a reconstruction loss to adapt the feature encoder GTF and
decoder UTF. The target features zta,i before the correc-
tion step are generated by a shared encoder GTF that aligns
the source and target domains. As a result, the target fea-
tures of common samples xt ∼ Dt[Cs,t] should change less
in the latent space than those of target unknown samples
xt ∼ Dt[C̄t]. This indicates that the corrected encoder GTF
maintains the features of common target samples close to
their originally assigned label while letting the features of
target unknown samples diverge from their originally as-
signed label. RAINCOAT leverages this to detect and reject
target unknown samples, which we discuss next.

5.5. Inference: Detect Target Private Samples

RAINCOAT detects target unknown samples xt ∼ Dt[C̄t]
by determining the movement of target features before and
after the correction step. It assumes that when the target
domain contains unknown labels, the distribution of the
movement will exhibit a bimodal structure.

For brevity, the feature vector zti is used as an input to
H , which consists of prototypes for each class W =
[w1,w2, · · · ,wC ]. Denote the distance (cosine similar-
ity) of zti to its assigned prototype c as d(zti,wc). Cosine
similarity is a reasonable choice because the cross entropy
(CE) loss encourages angular separation. It can be inter-
preted as aligning the feature vectors zti along its assigned
class prototype. The cosine similarity in the form of the
dot product gives CE an intrinsic angular property, which is
observed in Eq. 3 where features naturally separate in the
polar coordinates with CE only. Given a target feature zti
and true label yi = c, the cross entropy can be expressed as:

LCE(ŷ, y) = − log
exp(wT

c zt
i)∑

j exp(wT
j zt

i)
∝
∑
j ̸=c

exp
(
wT

j z
t
i −wT

c z
t
i

)
∝
∑
j ̸=c

exp
(
∥zti∥2 ∥wj∥2 cos (θj)− ∥z

t
i∥2 ∥wc∥2 cos (θc)

)
As a result, if the target feature zti is close to its proto-
types, then d(zti,wc) will be small, and vice versa. Then
RAINCOAT measures the movement by calculating the
absolute difference of target features’ distance to the as-
signed prototype before and after correction given by daci =
|d(zta,i,wc)− d(ztc,i,wc)|.

Next, RAINCOAT detects if there are private target samples
in each class by first running a bimodal test on each group
of Cs. If the bimodal test tells us dac has two modes, it
then trains a 2-mean cluster to fit the distribution of dac.
For each class, after we obtain the centroid µ1, µ2, where
µ1 < µ2, RAINCOAT takes µ2 as our threshold to reject
unknown target samples.

5.6. Overview of RAINCOAT Models

During alignment, RAINCOAT trains a classifier H using
labeled source dataset Ds and a feature encoder GTF and
decoder UTF using both Ds and Dt. At the same time,
it aligns target features zti with source features zsi using
Sinkhorn divergence. The overall loss function in this step
has three terms. First, the sinkhorn distance LA(z

t
i, z

s
i )

urges the target features zti to be aligned with source features
zsi . Second, the reconstruction loss LR(x

s
i , UTF(GTF(x

s
i )))

promotes learning of semantic features of Ds. Third, the
classification loss LC(H(GTF(x

s
i )), y

s
i ) guides the model

to classify samples correctly. In summary, the loss in this
step is defined as L = LA + LR + LC .

In this step, target common samples could be classified cor-
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Algorithm 1 Overview of RAINCOAT

1: Input: dataset Ds , Dt ; epochs E1, E2; time-frequency fea-
ture encoder, GTF, and decoder, UTF (Alg. 3); prototype
classifier H2:

3: Stage 1: Alignment (introduced in 5.2 , 5.3))
4: for E1 epochs do
5: Extract zsi , z

t
i ← GTF(x

s
i ), GTF(x

t
i)

6: LA ← SINKHORN(zsi , z
t
i) (Alg. 2)

7: LR ← |xs
i − UTF(z

s
i )|

8: LC ← CE(ys
i , H(zsi ))

9: Update UTF, GTF, H with∇(LA + LR + LC)
10: end for
11:
12: Stage 2: Correction (introduced in 5.4)
13: Extract features: zta,i ← GTF(x

t
i)

14: Distance to prototypes: dalign ← d(zta,i, H)
15: for E2 epochs do
16: LR ← |xt

i − (UTF ◦GTF)(x
t
i)|

17: Update UTF, GTF with∇LR

18: end for
19: Extract post-correction: ztc,i ← GTF(x

t
I)

20: Re-compute: dcorrect ← d(ztc,i, H)
21:
22: Stage 3: Inference (introduced in 5.5)
23: daci = |d(zta,i,wc)− d(ztc,i,wc)|
24: for c in Cs do
25: p← Bimodal Test
26: if p < 0.05 then ▷ Bimodal structure detected
27: µcommon

c , µunknown
c = CLUSTER(dac|ŷ = c)

28: end if
29: end for

rectly, and target unknown samples will be misclassified
because the GTF aligns all samples without considering the
label shift. The correction step in RAINCOAT aims to correct
such negative transfer (target unknown samples) by exploit-
ing target-specific discriminative features by minimizing
LR(x

t
i, UTF(GTF(x

t
i))).

In the inference step, only the trained classifier H and fea-
ture encoder GTF before and after correction are utilized.
When a target samples xt

i to inference is given, RAINCOAT
calculates the movement using daci equation followed by a
bimodal test and binary classification (known or unknown)
is necessary. An overview of RAINCOAT is in Alg. 1; a
detailed overview is in Appendix and Alg. 4.

6. Experiments
6.1. Experimental Setup

Baselines for Closed-Set DA. We consider eight closed-
set DA methods. For baselines are general unsupervised
DA methods: deep correlation alignment (CORAL) (Sun
and Saenko, 2016), CDAN (Long et al., 2018b), decision-
boundary iterative refinement training with a teacher (DIRT-
T) (Shu et al., 2018), and AdaMatch (Berthelot et al., 2022).
We also consider four unsupervised DA methods for time

series: CODATS (Wilson et al., 2020), adversarial spectral
kernel matching for unsupervised time series domain adapta-
tion (AdvSKM) (Liu and Xue, 2021b), and CLUDA (Ozyurt
et al., 2022). We additionally consider source-domain-
only training (no transfer) implemented by (Ragab et al.,
2022). Baselines for Universal DA. We consider 4 state-
of-the-art methods that can reject unknown samples: in-
clude UAN (You et al., 2019), DANCE (Saito et al., 2020),
OVANet (Saito and Saenko, 2021), and UniOT (Chang et al.,
2022). Datasets. We consider five benchmark datasets from
three distinct problem types: (1) human activity recognition:
WISDM (Kwapisz et al., 2011), HAR (Anguita et al., 2013),
HHAR (Stisen et al., 2015); (2) mechanical fault detection:
Boiler (Shohet et al., 2019); and (3) EEG prediction: Sleep-
EDF (Goldberger et al., 2000). Further details on datasets
are given in Appendix C.1. Setup for Closed-Set DA. In-
dividual, participant, or device IDs define domains in the
above datasets. Following existing DA research on time
series (Ozyurt et al., 2022; Wilson et al., 2020), we select
ten pairs of domains to specify source 7→ target domains,
except for the Boiler dataset where we consider all possible
configurations (i.e., six scenarios). Setup for Universal DA.
The WISDM dataset is the most challenging because of the
considerable label shift across participants. For example,
source participant 29 does not perform the activity ‘jog’
at all, but target participant 28 performs ‘jog’ 33% of the
time. To this end, we consider WISDHM to examine the
performance of in-dataset UniDA. In addition, HHAR and
WISDM contain sensor measurements, and each has one
private label (‘bike’ and ‘jog’), making them appropriate for
cross-dataset evaluation of UniDA.

Evaluation. We report accuracy and macro-F1 calculated
using target test datasets. Accuracy is computed by di-
viding the number of correctly classified samples by the
total number of samples. Macro-F1 is calculated using the
unweighted mean of all the per-class F1 scores. It treats
all classes equally regardless of their support values. For
UniDA, the trade-off between correctly predicting common
vs. private classes on the target domain is captured using
H-score, defined as the harmonic mean between accuracy
on common classes CAc and accuracy on private classes
CAu, H-score = (2CAcCAu)/(CAc + CAu). The H-score
is high only when both CAc and CAu are high. Imple-
mentation. We adopted Adatime’s implementation as a
benchmarking suite for domain adaptation on time series
data (Ragab et al., 2022)1, using 1D-CNN as the encoder
because it was suggested to outperform more complex net-
works such as Resnet and TCN, ensuring differences in
performance were attributed to the adaptation algorithm.

1https://github.com/emadeldeen24/AdaTime
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Figure 4. Average performance of multiple Closed-set DA methods across multiple datasets. RAINCOAT consistently outperforms all
other methods in accuracy on test sets drawn from the target domain dataset.

Table 1. H-score of UniDA using WISDM, WISDM→HHAR,
HHAR→WISDM, Shown: mean H-score over 5 independent runs.
See Table 12 in Appendix for additional results.

Source 7→ Target UAN DANCE OVANet UniOT RAINCOAT

WISDM 3 7→ 2 0 0 0.07 0.11 0.51
WISDM 3 7→ 7 0 0 0.2 0.22 0.52
WISDM 13 7→ 15 0 0.14 0.33 0.36 0.50
WISDM 14 7→ 19 0.24 0.28 0.31 0.28 0.55
WISDM 27 7→ 28 0.07 0.07 0.23 0.35 0.59
WISDM 1 7→ 0 0.41 0.39 0.38 0.40 0.43
WISDM 1 7→ 3 0.46 0.49 0.45 0.43 0.51
WISDM 10 7→ 11 0 0 0.34 0.41 0.53
WISDM 22 7→ 17 0.13 0 0.32 0.41 0.52
WISDM 27 7→ 15 0.43 0.51 0.46 0.52 0.57
WISDM Avg 0.17 0.19 0.31 0.35 0.52
WISDM Std of Avg 0.04 0.05 0.04 0.05 0.04

W→H 4 7→ 0 0 0.14 0.15 0.19 0.49
W→H 5 7→ 1 0.24 0.22 0.25 0.28 0.53
W→H 6 7→ 2 0.14 0.12 0.20 0.25 0.55
W→H 7 7→ 3 0 0.15 0.04 0.14 0.51
W→H 17 7→ 4 0.35 0.28 0.41 0.45 0.57
W→H 18 7→ 5 0.20 0.27 0.29 0.32 0.47
W→H 19 7→ 6 0.19 0.22 0.25 0.28 0.51
W→H 20 7→ 7 0.11 0.17 0.35 0.41 0.49
W→H 23 7→ 8 0.21 0.28 0.47 0.51 0.57
W→H Avg 0.16 0.21 0.24 0.28 0.52
W→H Std of Avg 0.03 0.02 0.03 0.02 0.02

H→W 0 7→ 4 0.23 0.28 0.33 0.37 0.45
H→W 1 7→ 5 0.19 0.31 0.38 0.42 0.47
H→W 2 7→ 6 0.04 0.17 0.23 0.29 0.39
H→W 3 7→ 7 0.25 0.32 0.34 0.40 0.42
H→W 4 7→ 17 0.31 0.39 0.41 0.40 0.51
H→W 5 7→ 18 0.28 0.34 0.37 0.36 0.48
H→W 6 7→ 19 0.42 0.42 0.46 0.47 0.49
H→W 7 7→ 20 0.39 0.41 0.41 0.44 0.52
H→W 8 7→ 23 0.19 0.28 0.32 0.35 0.46
H→W Avg 0.26 0.32 0.36 0.39 0.47
H→W Std of Avg 0.05 0.05 0.03 0.04 0.03
Higher H-score is better. Best performance is indicated in bold.

6.2. Results

Q1: How effective is RAINCOAT for closed-set DA? Fig-
ure 4 shows each method’s average accuracy and standard
deviation for selected source-target domain pairs on all
datasets. Full results are given in Table 10 (accuracy) and
Table 11 (Macro-F1). Overall, RAINCOAT has won 5 out

of 5 tests (2 metrics in 5 datasets) and makes an average
improvement of accuracy (6.77%) and Macro-F1 (9.00%)
over with the strongest baseline across datasets. Specifi-
cally, RAINCOAT improves prediction accuracy by 8.65%
on HAR, 5.48% on HHAR, 5.8% on WISDM, 2.81% on
Sleep-EDF, and 10.43% on Boiler over the strongest base-
line on each dataset respectively. In particular, RAINCOAT
outperforms CLUDA, the state-of-the-art closed-set DA
method for time series, by 8.23% (accuracy) and 10.00%
(Macro-F1) averaged over all datasets. RAINCOAT captures
and aligns time-frequency features across domains which
improve knowledge transfer among time series in the pres-
ence of feature shift.

Q2: How effective is RAINCOAT for UniDA? We report
the average H-score in Table 1 and the average accuracy
results in Appendix 12. Results show that RAINCOAT con-
sistently outperforms baselines and achieves state-of-the-art
results on DA for time series under both feature and label
shift. We note that changes in features and labels of time
series data are different from other types of data, such as im-
ages, which cause a decrease in the performance of baseline
models. However, RAINCOAT has a significant average im-
provement over the strongest baseline by 16.33% (H-score)
across datasets with large gaps. This can be attributed to its
time-frequency feature encoder and detection of unknown
samples via discriminative features learned using the ’align-
and-correct’ strategy.

Ablation Studies. Next, we present the setup and re-
sults of our ablation studies discussed in Section 6.2. We
study the following questions Q1: How effective is the time-
frequency encoder? Q2: Will the correct step decrease the
performance when there is no label shift? Q3: Is Sinkhorn
divergence a better measurement for our time-frequency
feature? We evaluate how relevant the model components
are for effective DA. We perform the ablation study using
WISDM since it is a more challenging dataset and present
results in Table 2. When no component is used (1st row in
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Table 2. Ablation analysis of RAINCOAT. Specifically, the frequency encoder, Sinhorn Alignment, and Correct Step modules are shown
below. When no component is checked (first row), it refers to the source-only model. We evaluate RAINCOAT on both closed-set and
universal DA and also include average accuracy across all 10 scenarios (source 7→ target domain) on the WISDM dataset.

Element of RAINCOAT Closed Set DA Universal DA
Frequency Encoder Sinkhorn Correct 4 7→ 15 7 7→ 30 12 7→ 17 12 7→ 19 Avg (10 scenarios) 1 7→ 0 10 7→ 11 22 7→ 17 27 7→ 15 Avg (10 scenarios)

1 79.86 89.32 71.53 54.29 65.78 64.58 54.38 42.98 38.04 40.84
2 ✓ 89.72 90.12 84.34 83.87 75.22 70.84 65.04 44.81 54.39 42.97
3 ✓ 82.43 89.88 83.14 76.74 69.66 65.13 57.44 45.14 42.42 41.25
4 ✓ ✓ 95.34 92.36 86.84 84.11 76.24 73.68 72.37 40.79 58.17 44.08
5 ✓ ✓ 90.84 90.01 86.31 79.84 76.04 74.34 66.10 48.01 57.22 46.52
6 ✓ ✓ ✓ 97.91 91.28 89.80 85.00 76.60 82.57 76.36 48.16 66.42 53.51

Table 2), it refers to a source-only model. When Sinkhorn
is not used (2nd,5th row in Table 2), we use MMD to align
features. It can be observed that using the frequency encoder
alone (2nd row) results in performance improvement (accu-
racy) of 9.44% for Closed-set DA and 2.33% for UniDA on
average. It demonstrates the effectiveness of a frequency
encoder for handling the feature shift of time series. When
the frequency encoder (2nd row) is further equipped with
a correction step (5th row), it verifies the effectiveness of
the correction step when there is a label shift. By com-
paring the 5th row with the 2nd and 4th row, we find that
the correction step does not lead to a performance drop for
Closed-set DA. This finding indicates that RAINCOAT is
suitable for resolving both feature and label shifts, even if
no prior information on feature and label shifts is given.
By comparing 2nd row with 4th row, we observe Sinkhorn
Divergence brings consistent improvement for both Closed-
set DA (1.02%) and UniDA (1.11%), which demonstrates
the benefit of Sinkhorn Divergence for aligning frequency
features.

We systematically investigate the role of Sinkhorn diver-
gence in RAINCOAT to align time-frequency features. This
analysis is particularly relevant because existing methods do
not consider frequency features as a potential source of fea-
ture shifts. To numerically verify that Sinkhorn divergence
is an appropriate divergence measurement for aligning time-
frequency features, we conducted experiments by replacing
the encoder with our time-frequency feature encoder for ad-
ditional baselines. We select four representative and strong
baselines to ensure a diverse category of adaptation meth-
ods: CoDATS, DeepCoral, AdvSKM, and CLUDA. We run
Closed-Set DA experiments on HAR datasets and report the
average prediction accuracy in Table 3. The results demon-
strate that the time-frequency feature encoder achieves the
highest accuracy when combined with Sinkhorn divergence,
highlighting the effectiveness of using this method to align
time-frequency features for time series. Furthermore, all
methods show improved prediction accuracy when using
our time-frequency encoder, indicating that leveraging and
aligning both time and frequency features are crucial for
domain adaptation in time series. Additional experiments
on RAINCOAT’s loss function and sample complexity are in

Table 14 and 15 in Appendix D.

Table 3. Accuracy comparison of different domain adaptation
methods with and without a time-frequency encoder on the HAR
dataset. Results on ‘RAINCOAT without our encoder‘ indicate
performance when only Sinkhorn divergence is used.

Method W/o our encoder W/ our encoder

CoDATS 75.54 83.67
DeepCoral 82.01 89.75
AdvSKM 83.26 89.64
CLUDA 85.53 90.62

RAINCOAT 82.48 94.43

7. Conclusion
We introduce RAINCOAT, a domain adaptation approach
for time series that addresses both feature and label shifts.
RAINCOAT combines time and frequency space features,
aligns them across domains, corrects misalignments, and
detects label shifts. Experimental results on five datasets
demonstrate RAINCOAT’s effectiveness, achieving up to
6.7% improvement on closed-set domain adaptation and
16.33% improvement on universal domain adaptation.
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for variational wasserstein problems. SIAM Journal on
Imaging Sciences, 9(1):320–343, 2016.

Nicolas Fournier and Arnaud Guillin. On the rate of con-
vergence in wasserstein distance of the empirical mea-
sure. Probability Theory and Related Fields, 162:707–
738, 2013.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. Journal of Machine Learning Research,
13(25):723–773, 2012. URL http://jmlr.org/papers/v13/
gretton12a.html.

A. Genevay, G. Peyre, and M. Cuturi. Learning generative
models with sinkhorn divergences. In AISTATS, 2018.

Soheil Kolouri, Phillip E. Pope, Charles E. Martin, and Gus-
tavo K. Rohde. Sliced wasserstein auto-encoders. In Inter-
national Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1xaJn05FQ.

Richard Sinkhorn. A relationship between arbitrary posi-
tive matrices and doubly stochastic matrices. Annals of
Mathematical Statistics, 35:876–879, 1964.

James W. Cooley and John W. Tukey. An algorithm for the
machine calculation of complex fourier series. Mathe-
matics of Computation, 19:297–301, 1965.

Kamisetty Ramamohan Rao and Pat Yip. The Transform
and Data Compression Handbook. CRC Press, Inc., USA,
2000. ISBN 0849336929.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang
Sun, and Rong Jin. FEDformer: Frequency enhanced de-
composed transformer for long-term series forecasting. In
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research. PMLR, 17–23 Jul 2022.

Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, and In-
So Kweon. Variational prototyping-encoder: One-shot
learning with prototypical images. 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9454–9462, 2019.

Min-Hung Chen, Zsolt Kira, Ghassan Al-Regib, Jaekwon
Yoo, Ruxin Chen, and Jian Zheng. Temporal attentive
alignment for large-scale video domain adaptation. 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 6320–6329, 2019a.

Donghyun Kim, Yi-Hsuan Tsai, Bingbing Zhuang, Xiang
Yu, Stan Sclaroff, Kate Saenko, and Manmohan Chan-
draker. Learning cross-modal contrastive features for
video domain adaptation. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 13598–
13607, 2021.

Jin Chen, Xinxiao Wu, Lixin Duan, and Shenghua Gao.
Domain adversarial reinforcement learning for partial do-
main adaptation. IEEE Transactions on Neural Networks
and Learning Systems, 33:539–553, 2019b.

Huan He, Yuanzhe Xi, and Joyce C Ho. Fast and accurate
tensor decomposition without a high performance com-
puting machine. In 2020 IEEE International Conference
on Big Data (Big Data), pages 163–170. IEEE, 2020.

Huan He, Shifan Zhao, Yuanzhe Xi, and Joyce Ho. Gda-am:
On the effectiveness of solving min-imax optimization
via anderson mixing. In International Conference on
Learning Representations, 2022.

Huan He, Shifan Zhao, Yuanzhe Xi, and Joyce C Ho. Med-
diff: Generating electronic health records using acceler-
ated denoising diffusion model, 2023.

Difeng Cai, Yuliang Ji, Huan He, Qiang Ye, and Yuanzhe
Xi. Autm flow: atomic unrestricted time machine for
monotonic normalizing flows. In James Cussens and Kun
Zhang, editors, Proceedings of the Thirty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, volume

13

https://dx.doi.org/10.21227/awav-bn36
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://openreview.net/forum?id=H1xaJn05FQ


Domain Adaptation for Time Series Under Feature and Label Shifts

180 of Proceedings of Machine Learning Research, pages
266–274. PMLR, 01–05 Aug 2022.

Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1215–1224, 2021.

Jogendra Nath Kundu, Naveen Venkat, V. RahulM., and
R. Venkatesh Babu. Universal source-free domain adap-
tation. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 4543–4552,
2020.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Her-
ranz, and Shangling Jui. Generalized source-free domain
adaptation. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 8958–8967, 2021.

Yuecong Xu, Jianfei Yang, Haozhi Cao, Keyu Wu, Min
Wu, and Zhenghua Chen. Source-free video domain
adaptation by learning temporal consistency for action
recognition. In European Conference on Computer Vision,
2022.

14



Domain Adaptation for Time Series Under Feature and Label Shifts

A. Further Information on Domain Alignment of Time-Frequency Feature
We first show the distributions of Fourier amplitude and phase.

f(a, p) = a× f(x = a sin p, y = a cos p)

= a× 1

2π
· exp

(
−
a2
(
sin2 θ + cos2 θ

)
2

)
·

=
a

2π
· exp

(
−a2

2

)
· I

= a · exp
(
−a2

2

)
· I(a ⩾ 0)× 1

2π
·

= Rayleigh (a | 1) ·U(p | 0, 2π)
(a ⩾ 0, 0 ⩽ p ⩽ 2π).

(3)

We can observe the amplitude can be arbitrarily large, and thus as and at might have a disjoint set when the frequency
feature shift is significant. As a result, we need to consider a measurement that can measure the distance of two arbitrary
distributions.

Sinkhorn Divergence. We consider two discrete probability measures represented as sums of weighted Dirac atoms:

µ =

n∑
i=1

µiδzi
and ν =

m∑
j=1

νjδzj
(4)

Here, µ ∈ Rn
+ and ν ∈ Rm

+ are non-negative vectors of length n and m that sum up to 1. We denote their probabilistic
couplings, set Π and cost matrix C, as:

Π(µ,ν) =
{
P ∈ Rn×m

+ ,P1m = µ,P⊤1n = ν
}

C = (Cij) ∈ Rn×m
+ , Cij = ∥zi − zj∥p

(5)

Sinkhorn divergence (Cuturi, 2013; Cuturi and Peyré, 2016) was proposed as an entropic regularization of the Wasserstein
distance (Fournier and Guillin, 2013) that interpolates between the pure OT loss for η = 0 and MMD (Gretton et al., 2012)
losses for η → ∞ and offers a computationally efficient way to approximate OT costs. It thus provides a good tradeoff
between (a) favorable sample complexity and unbiased gradient estimates and (b) non-flat geometry of OT (Genevay et al.,
2018; Feydy et al., 2019). The Sinkhorn divergence between µ and ν is given by

Sη(µ,ν) = min
P∈Π(µ,ν)

{⟨C,P⟩+ ηH(P)}, (6)

where H(P ) =
∑

i,j Pij log(Pij) is the negative entropy and η > 0 is a regularization parameter. By making η higher, the
resulting coupling matrix will be smoother, and as η goes to zero, it will be sparser, with the solution being close to the
optimal transport solution. The Sinkhorn algorithm to find such a coupling matrix is efficiently provided in Alg. 2.

Optimal transport losses have appealing geometric properties, but it takes O(n3 log n) to compute. On the other hand,
discrepancy metrics such as MMD are geometry-aware and can scale up to large batches with a low sample complexity.
But we realize that measuring the discrepancy of frequency features using Sinkhorn has a stronger Gradient than MMD.
Specifically, consider MMD with an RBF kernel, the gradient of MMD w.r.t. a particular sample zs is∇zsDMMD(Zs,Zt) =
1

N2

∑
j k
(
zsi , z

s
j

) zs
j−zs

i

σ2 − 2
NM

∑
j k
(
zsi , z

t
j

) zt
j−zs

i

σ2 . When minimizing MMD, the first term is a repulsive term between
the samples from p(zs), and the second term is an attractive term between the samples from p(zs) and p(zt). The L2 norm
of the term between two samples zs and zt is small if ∥zs − zt∥2 is either too small or too large. This is saying if p(zs)
is far away from p(zt), the model will not receive strong gradients (bounded by a small norm). From another viewpoint,
(Feydy et al., 2019) demonstrated that the norm of MMD strongly relies on the smoothness of the reference measure and
tends to have vanishing gradients when points of the measures’ support are disjoint. Now let’s look at the gradients of
Sinkhorn. Denote a Lipschitz cost function as C(zs, zt). For η > 0, the associated Gibbs kernel is defined through

kη : (zs, zt) ∈ Zs ×Zt 7→ exp(−C(zs, zt)/η)
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(a) (b) (c) (d)

Figure 5. (a) Rayleigh distributions with different scales (b) JSD and KLD (c) Rayleigh distributions with different locations (d) JSD
and KLD. The Mean Squared Error (MSE) measure exhibits a rapid increase and explodes when there is a significant location shift
between distributions. As shown in Figure b, using the Kullback-Leibler (KL) divergence helps mitigate this issue, but it is still not
bounded. Furthermore, as depicted in Figure c, both Jensen-Shannon Divergence (JSD) and KL divergence struggle to provide meaningful
gradients when there is a substantial location shift. This observation is consistent with the fact that JSD cannot offer usable gradients when
distributions are supported on non-overlapping domains, as explained in (Kolouri et al., 2019). The Wasserstein distance demonstrates a
linear relationship with the shift, but it also lacks a bound.

(Feydy et al., 2019) show that the Sinkhorn divergence gradient w.r.t a particular sample zsi is largely determined by the
magnitude of:

η
(
log(exp(−C(zsi , z

s
j))/η))− log(exp(−C(zsi , z

t
j))/η))

)
. (7)

Different from MMD, the cost function C(zs, zt) replaces the Euclidean distance with an absolute distance |zsi − ztj |. Then,
the gradient is always strong regardless of the closeness between zsi and ztj . To numerically verify this claim, we compare
the magnitude of the gradients of different shifts in Figure 5. It shows that Sinkhorn has stronger gradients than alternative
approaches.

Algorithm 2 Simplified illustration of computation of Sinkhorn Divergence (Sinkhorn, 1964)
1: function SINKHORN DIVERGENCE(zs, zt)
2: a, b← 1n/n,1n/n
3: C ← ∥zs − zt∥p
4: K ← exp(−C/η)

5: for j ← 1 to J do
6: a(j) ← µ⊘Kb(j−1); b(j) ← ν ⊘K⊤a(j−1)

7: end for
8: Lalign←

∑
Cdiag(a(j))Kdiag(b(j−1))

9: return Lalign

10: end function

B. Details on Neural Networks RAINCOAT Algorithm
Encoder. An aspect that has not been adequately emphasized is the composition of a practical time series, which consists of
a blend of numerous oscillations at various frequencies, potentially even infinite. In order to address this, RAINCOAT takes
into account both time and frequency characteristics during encoding. We use DFT in our work and leave other approaches
for future work. To mitigate the issue of frequency leakage, RAINCOAT incorporates a smoothing process on the input
xi. The selection of a suitable smoothing function presents several options, yet the distinctions between them are often
negligible in practical applications. In our approach, we utilize either the cosine or Hann window w as a smoothing function,
commonly known as tapering functions. These functions are designed using a raised cosine with optimized non-zero
endpoints to minimize the impact of nearby side lobes. It is defined as:

w[n] = 0.5− 0.5 cos

(
2πn

N − 1

)
0 ≤ n ≤ N − 1 (8)

Following the smoothing process, the smoothed signal xi undergoes the Discrete Fourier Transform (DFT), resulting in
the transformed vector vi. However, the direct implementation of DFT, as shown in Equation (1), can be computationally
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inefficient for long signals. To address this, we can leverage the fast Fourier transform (FFT) algorithm (Cooley and
Tukey, 1965) to scale up the computation efficiently. An important property of the Fourier domain representation of real
signals is the Hermitian property: v[m] = v[−m]. This property implies that we can save memory by storing only the
one-sided representation containing positive frequencies. By doing so, we can reduce memory requirements by half. For a
comprehensive understanding of DFT, please refer to Rao and Yip (2000).

Next, RAINCOAT applies a convolution operator specifically on the low-frequency modes of vi, which aligns with existing
approaches in neural network-based frequency analysis. The rationale behind this step is that by focusing on low-frequency
modes, the operator smooths out high-frequency details that often exhibit less structure compared to their low-frequency
counterparts. This process helps to preserve the low-rank structure of signals, facilitating alignment. Unlike previous works
such as (Li et al., 2021b; Zhou et al., 2022), RAINCOAT does not incorporate an additional linear transform, as this step is
employed to preserve time-space features. Instead, RAINCOAT adopts a time feature encoder.

Subsequently, we extract the amplitude and phase from the output of the convolutional layer, as we have observed that
representing these features in polar coordinates (amplitude-phase representation) tends to be more domain-invariant and
introduces a useful inductive bias into the model.

Finally, the extracted frequency features are concatenated with the time features. Various approaches, such as manifold
alignment and self-attention, can be explored for feature fusion in future work. However, we defer these investigations to
our future research.

The process of frequency-space feature extraction is as follows: given a time series x, it is first multiplied by the Hann
window function (8) to mitigate frequency leakage. Subsequently, a convolution operation is applied to the smoothed signal.
This results in the frequency-space feature eF , which is obtained by concatenating the results using (2). For the extraction
of time-space features, any appropriate network architecture can be utilized. In this work, we adopt a Convolutional Neural
Network (CNN) to ensure a fair comparison with existing studies. The pseudocode for the time-frequency feature extraction
is presented in Algorithm 3.

Fourier Neural Operator. Fourier neural operator (FNO) (Li et al., 2021b) performs temporal predictions by combining
the Fourier transform with neural networks. Define a convolution operator “∗” and weight matrix B , the Fourier layer in
FNO can be summarized as:

(1) DFT v = [DFT(x)]
(2) Frequency Convolution ẽF = B ∗ v
(3) IDFT x̃ = [IDFT(ẽF )]

FNO then adds the output of the Fourier layer with the bias term (a linear transformation) and applies the activation function.
RAINCOAT differs a lot from FNO. The only shared component is the frequency convolution, as we mentioned previously.

Decoder. In order to acquire discriminative features, RAINCOAT employs a decoder that is trained through a reconstruction
task. Given a latent representation zi obtained from either the source or target, we decompose it into frequency and time
features. By performing separate reconstructions on both eF and eT, we can easily reconstruct the original signal x. For the
frequency feature reconstruction, we apply the inverse Discrete Fourier Transform (DFT) on eF, while for the time feature
reconstruction, a standard deconvolution network is utilized on eT. These reconstructed frequency and time components are
then combined to form x̂, an approximation of the original signal. To train the reconstruction task, we employ the L1 loss
function.

Prototypical Classifier. In RAINCOAT, we employ a prototypical classifier, inspired by the work of Kim et al. (2019).
The normalized feature vector z serves as the input to the classifier H . The classifier H consists of weight vectors
W = [w1,w2, · · · ,wC ], where C denotes the number of classes. These weight vectors can be interpreted as estimated
prototypes for each class. By utilizing the prototypical classifier, RAINCOAT aims to classify input samples based on their
similarity to the estimated prototypes. The feature vector z is compared to each weight vector wi, and the class with the
closest prototype is assigned as the predicted class label. This approach leverages the discriminative power of the prototypes
to facilitate accurate classification.

17



Domain Adaptation for Time Series Under Feature and Label Shifts

Algorithm 3 Time-Frequency Feature Encoder and Decoder, Domain Alignment via Sinkhorn Divergence
1: function TIME-FREQ ENCODER GTF(x)
2: x← smooth(x), as shown in (8)
3: vF ← DFT (x)
4: ← SPEC-CONV(vF)
5: a, p← vF|, atan2(Im(xF), Re(xF))
6: eF ← CONCAT(a,p)
7: eF ← TIME-CONV(x)
8: z← CONCAT(eF, eF)
9: return z

10: end function
11:
12: function TIME-FREQ DECODER UT F (z)
13: eT , eF ← z
14: x̄T , x̄F ← CONVTRAN1D(eT ), IFFT(eF )
15: x̄← x̄T + x̄F ,
16: return x̄
17: end function

C. Additional Experimental Results
C.1. Dataset Details

We evaluate the performance of RAINCOAT on five benchmark datasets, each with its own characteristics. The datasets we
consider are as follows:

(1) WISDM (Kwapisz et al., 2011): This dataset consists of 3-axis accelerometer measurements obtained from 30
participants. The measurements are collected at a frequency of 20 Hz. To predict the activity (label) of each participant
during specific time segments, we utilize non-overlapping segments of 128-time steps. The dataset includes six activity
labels: walking, jogging, sitting, standing, walking upstairs, and walking downstairs.

(2) Boiler (Shohet et al., 2019): The dataset comprises sensor data from three boilers recorded between March 24, 2014,
and November 30, 2016. Each boiler is treated as a separate domain. The objective of this task is to detect mechanical faults
specifically related to the blowdown valve of each boiler.

(3) HAR (Anguita et al., 2013): This dataset contains measurements from a 3-axis accelerometer, 3-axis gyroscope, and
3-axis body acceleration. The data is collected from 30 participants at a sampling rate of 50 Hz. Similar to the WISDM
dataset, we use non-overlapping segments of 128-time steps for classification. The goal is to classify the time series into six
activities: walking, walking upstairs, walking downstairs, sitting, standing, and lying down.

(4) HHAR (Stisen et al., 2015): This dataset consists of 3-axis accelerometer measurements from 30 participants. The
measurements are captured at a frequency of 50 Hz. Non-overlapping segments of 128-time steps are used for classification
purposes. The dataset includes six activity labels: biking, sitting, standing, walking, walking upstairs, and walking
downstairs.

(5) Sleep-EDF (Goldberger et al., 2000): This dataset contains electroencephalography (EEG) readings from 20 healthy
individuals. The objective is to classify the EEG readings into five sleep stages: wake (W), non-rapid eye movement stages
(N1, N2, N3), and rapid eye movement (REM). In line with prior research, we focus on the Fpz-Cz channel for our analysis.

For detailed statistics regarding each dataset, please refer to Table 4. These datasets cover a range of applications and
challenges, allowing us to evaluate the effectiveness and robustness of RAINCOAT across various domains.

C.2. Experimental Details

In this section, we provide implementation details of RAINCOAT and the baseline methods. The implementation was done in
PyTorch, based on the code available at here. The experiments were conducted on a NVIDIA GeForce RTX 3090 graphics
card.
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Algorithm 4 Detailed overview of RAINCOAT

Input: dataset Ds , Dt ; epochs E1, E2

Initialization: Parameter Γ for Time-Frequency Feature Encoder GT F , Φ for Time-Frequency Feature Decoder UT F ,
weight vectors W = [w1, w2, · · · , wCs ] for prototypical classifier,.
Stage 1: Align, introduced in Section 5.2 5.3
for e← 1 to E1 do

while Dt not exhausted do
Sample xs, ys from Ds, xt from Dt

Extract: zs ← GT F (x
s) (use Algorithm 3)

Extract: zt ← GT F (x
t) (use Algorithm 3)

Reconstruct x̄s ← UT F (z
s)

Compute:Lalign = SINKHORN(zs, zt, ϵ)
▷ in algorithm 3

Compute:Lrecon = |xs − x̄s|
Predict: ŷs = CLASSIFIER(zs)
Compute Lcls = CE(ys, ŷs)
Ltotal = Lrecon + Lalign + Lcls

Update Γ,Φ,W with∇Ltotal

end while
end for

Stage 2: Correct, introduced in Sec. 5.4
Compute distance to prototypes before correct:
dalign = Zs·W

∥Zs∥∥W∥
for e← 1 to E2 do

while Dt not exhausted do
Sample xt from Dt

Extract: zt ← GT F (x
t) (use Algorithm 3)

Reconstruct x̄t ← UT F (z
t)

Compute:Lrecon = |xs − x̄s|
Update Γ,Φ with∇Lrecon

end while
end for
Compute distance to prototypes after correct:
d(Z,W) = Zs·W

∥Zs∥∥W∥

Stage 3: Inference, introduced in Sec. 5.5
Compute drift during correct:
drift = |dcorrect − dalign|

for c← 1 to C do
Compute DIP statistic: dip = DIP({drift}y=c)
if dip < 0.05 then ▷ Two modes detected

µcommon
c , µprivate

c = K-MEANS({drift}y=c)
end if

end for

19



Domain Adaptation for Time Series Under Feature and Label Shifts

Table 4. Summary of datasets.
Dataset #Subjects #Channels Length # Class #Train # Test

HAR 30 9 128 6 2,300 990
HHAR 9 3 128 6 12,716 5,218
WISDM 30 3 128 6 1,350 720
Sleep-EDF 20 1 3,000 5 14,280 6,310
Boiler 3 20 36 2 160,719 107,400

Method Epoch Batch Size Learning rate

CoDATS 50 32 1e− 3
AdvSKM 50 32 5e− 1
CLUDA 50 32 1e− 2
DIRT-T 50 32 5e− 4

AdaMatch 50 32 3e− 3
DeepCoral 50 32 5e− 3

CDAN 50 32 1e− 2
RAINCOAT 50 32 5e− 4

Table 5. Experimental details for HAR dataset.

To ensure fair comparisons, we carefully selected the appropriate encoder and scale across all methods. This consideration
was applied to all our comparisons. For the extraction of time-space features, we utilized a 1D-convolutional neural network
(CNN) as the encoder. This configuration was kept consistent across all methods to ensure a fair comparison, where
differences in prediction performance could be attributed to the adaptation algorithm itself. The implementation of the
1D-CNN architecture was adapted from a recently published benchmark codebase in the literature (Ragab et al., 2022),
which has also been employed by others (Ozyurt et al., 2022). The 1D-CNN architecture consists of three blocks, each
consisting of a 1D convolutional layer, followed by a 1D batch normalization layer, a rectified linear unit (ReLU) function
for non-linearity, and finally, a 1D max-pooling layer. Extensive benchmark evaluations have demonstrated that the 1D-CNN
consistently outperforms more complex backbone networks, such as 1D-Resnet-18 and TCN, hence our choice of the
1D-CNN encoder.

During model training, we employed the Adam optimizer for all methods, with carefully tuned learning rates specific to
each method. The hyperparameters of Adam were selected after conducting a grid search on source validation datasets,
exploring a range of learning rates from 1× 10−4 to 1× 10−1. The learning rates were chosen to optimize the performance
of each method.

Key hyperparameters for RAINCOAT are reported in Tables 5, 6, 7, 8, and 9. The Fourier Frequency modes used for HAR,
EEG, HHAR, WISDM, and Boiler datasets are 64, 200, 64, 64, and 10, respectively. For the regularization term used
in the Sinkhorn divergence, we consistently used a value of 1 × 10−3 across all datasets and experiments. Additional
hyperparameters can be found in the codes.

By providing these implementation details and hyperparameter values, we ensure transparency and reproducibility of the
experiments conducted with RAINCOAT.

C.3. t-SNE Visualizations of Learned Representations for Closed-Set DA

We present t-SNE plots of the learned representations using HAR in Figures 6 and 7, which serve as strong evidence
of the effectiveness of RAINCOAT for domain adaptation. The t-SNE plots provide visual representations of the feature
distributions in both the source and target domains.

The plots clearly depict distinct clusters of data points, corresponding to different activity types, in both the source and target
domains. This observation indicates that RAINCOAT successfully preserves the underlying structure of the data, even in the
presence of differences in sensor configurations and other domain-specific factors. The distinct clusters in the t-SNE plots
validate the ability of our method to capture and discriminate between different activities.
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Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 128 1e− 2
AdvSKM 50 128 5e− 4
CLUDA 50 128 5e− 4
DIRT-T 50 128 5e− 4

AdaMatch 50 128 5e− 4
DeepCoral 50 128 5e− 4

CDAN 50 128 1e− 3
RAINCOAT 50 128 1e− 3

Table 6. Experimental details for EEG dataset.

Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 64 1e− 3
AdvSKM 50 64 3e− 4
CLUDA 50 64 1e− 3
DIRT-T 50 64 1e− 3

AdaMatch 50 64 2e− 3
DeepCoral 50 64 5e− 2

CDAN 50 64 1e− 3
RAINCOAT 50 64 1e− 3

Table 7. Experimental details for WISDM dataset

Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 32 1e− 3
AdvSKM 50 32 3e− 4
CLUDA 50 32 1e− 3
DIRT-T 50 32 1e− 3

AdaMatch 50 32 3e− 3
DeepCoral 50 32 5e− 4

CDAN 50 32 1e− 3
RAINCOAT 50 32 1e− 3

Table 8. Experimental details for HHAR dataset.

Hyperparameter Epoch Batch Size Learning rate

CoDATS 30 32 5e− 4
AdvSKM 30 32 1e− 3
CLUDA 30 32 1e− 3
DIRT-T 30 32 1e− 3

AdaMatch 30 32 3e− 3
DeepCoral 30 32 5e− 4

CDAN 30 32 1e− 3
RAINCOAT 50 32 1e− 3

Table 9. Experimental details for Boiler dataset.
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Additionally, the t-SNE plots reveal that the clusters in the target domain are generally more tightly grouped and better
separated compared to those in the source domain. This suggests that RAINCOAT effectively adapts the model to the
target domain, leading to improved performance and more accurate predictions. These findings demonstrate the efficacy of
RAINCOAT for domain adaptation and highlight its potential for a wide range of applications, including robotics, healthcare,
and sports performance analysis.

(a) HAR 2- HAR 11 (b) DeepCoral (c) CLUDA (d) RAINCOAT

Figure 6. For the HAR dataset of adapting from source 2 to target 11, we generated T-SNE plots of learned embeddings for three different
methods. Figure 6(a) depicts the T-SNE visualization of datasets of source and target domains. Figure 6(b), 6(c), and 6(d) represent a
different method respectively, and the plots are arranged from left to right (DeepCoral, CLUDA, and RAINCOAT respectively). In each
plot, each color corresponds to a different activity label. The square markers represent embeddings of source samples, while the star
markers represent embeddings of target samples. These T-SNE plots provide a visual representation of the learned embeddings and
demonstrate the effectiveness of the different methods in adapting to the target domain.

(a) HAR 7- HAR 13 (b) DeepCoral (c) CLUDA (d) RAINCOAT

Figure 7. For the HAR dataset of adapting from source 7 to target 13, we generated T-SNE plots of learned embeddings for three different
methods. In each plot, each color corresponds to a different activity label. The square markers represent source samples, while the star
markers represent target samples. These T-SNE plots provide a visual representation of the learned embeddings and demonstrate the
effectiveness of the different methods in adapting to the target domain.

C.4. Full Results of Closed-Set DA

Comprehensive tables presenting the results for Closed-Set Domain Adaptation (DA) experiments are provided in two
separate tables, accuracy and macro-F1. Table 10 showcases the accuracy scores, while Table 11 displays the Macro-F1
scores. Upon analyzing the tables, it becomes evident that RAINCOAT consistently outperforms the baseline methods across
all datasets in terms of both accuracy and Macro-F1 scores. This demonstrates the superiority of RAINCOAT in effectively
adapting to the target domain and achieving improved performance compared to the baseline approaches.

C.5. Full Results of UniDA

Detailed tables containing the results for Universal Domain Adaptation (UniDA) experiments are provided in two separate
tables, accuracy and H-scores. Table 12 presents the accuracy scores, while Table 13 displays the H-scores. It is worth
noting that accuracy alone is not an appropriate metric for evaluating UniDA since it does not fully reflect the ability to
detect target unknown samples. Accuracy can be misleading due to class imbalance issues, resulting in high or low scores
without effectively capturing the capability of detecting unknown samples. We conducts three UniDA settings including
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Table 10. Prediction accuracy for each dataset between various subjects. Shown: mean Accuracy over 5 independent runs.
Source 7→ Target w/o UDA CDAN DeepCORAL AdaMatch DIRT-T CLUDA AdvSKM CoDATS RAINCOAT

HAR 2 7→ 11 76.56 85.42 90.63 75.00 80.21 81.77 98.96 68.23 100
HAR 6 7→ 23 67.36 87.50 84.38 80.20 74.31 92.01 88.54 74.31 95.83
HAR 7 7→ 13 83.68 92.01 87.50 85.76 82.99 99.31 92.71 77.43 100
HAR 9 7→ 18 24.65 58.86 46.88 56.59 59.03 67.71 74.65 63.89 75.69
HAR 12 7→ 16 61.11 66.67 65.28 49.65 67.01 65.28 69.44 66.32 86.52
HAR 13 7→ 19 88.89 96.52 95.49 94.79 99.30 94.44 93.05 94.09 100
HAR 18 7→ 21 100 100 100 100 98.61 98.96 100 99.65 100
HAR 20 7→ 6 94.10 95.13 95.49 84.37 92.36 97.22 85.41 70.49 93.41
HAR 23 7→ 13 71.18 82.64 69.79 68.75 74.72 72.92 79.51 56.25 86.52
HAR 24 7→ 12 83.68 93.40 87.50 70.83 94.27 99.31 96.87 82.81 93.75
HAR Avg 75.12 85.78 82.01 76.07 83.26 85.53 83.26 75.54 94.43
HAR Std of Avg 0.98 0.91 1.09 1.77 2.78 1.78 2.79 3.31 1.32

HHAR 0 7→ 2 64.51 76.19 84.23 84.78 77.83 79.84 78.94 79.61 87.72
HHAR 1 7→ 6 70.63 92.57 90.14 92.31 88.54 93.40 87.91 90.90 93.33
HHAR 2 7→ 4 45.42 52.57 47.08 54.50 50.69 45.90 52.57 60.07 63.75
HHAR 4 7→ 0 32.81 29.09 28.13 36.45 32.22 38.84 33.49 21.80 46.46
HHAR 4 7→ 5 78.32 97.27 90.49 78.45 93.16 94.08 92.64 97.66 98.05
HHAR 5 7→ 1 90.63 96.16 89.91 94.20 91.86 95.57 92.71 97.66 98.25
HHAR 5 7→ 2 25.67 35.04 38.39 41.96 38.62 33.93 36.53 41.44 42.63
HHAR 7 7→ 2 32.37 37.05 34.45 37.65 38.10 37.80 39.95 38.54 43.32
HHAR 7 7→ 5 39.26 75.26 55.73 63.80 72.46 75.26 65.49 58.15 84.17
HHAR 8 7→ 4 62.92 96.11 76.88 64.69 65.83 96.11 83.75 97.01 93.75
HHAR Avg 54.25 68.73 68.03 65.91 64.99 68.73 66.41 68.71 74.21
HHAR Std of Avg 1.31 1.52 0.99 1.41 2.13 0.69 0.30 0.88 0.72

WISDM 2 7→ 32 81.16 89.37 87.92 74.39 77.78 73.91 70.83 77.29 79.71
WISDM 4 7→ 15 79.86 65.97 62.50 78.47 70.83 67.36 95.85 70.83 97.91
WISDM 7 7→ 30 89.32 84.79 91.26 89.64 90.61 86.40 93.85 83.20 91.28
WISDM 12 7→17 71.53 70.48 79.86 73.26 70.20 65.97 77.08 70.17 89.80
WISDM 12 7→19 54.29 51.01 51.77 55.30 51.51 49.24 47.47 47.47 85.00
WISDM 18 7→20 83.74 88.62 64.23 75.20 85.36 83.74 81.30 76.01 92.23
WISDM 20 7→30 67.96 77.02 81.88 74.76 71.84 72.49 21.28 82.85 91.66
WISDM 21 7→31 21.29 46.58 54.62 31.32 54.41 49.97 44.45 52.61 59.09
WISDM 25 7→29 26.11 44.33 53.89 57.78 60.04 35.00 74.79 53.89 82.97
WISDM 26 7→2 82.52 83.33 77.44 87.20 66.46 86.47 74.95 83.29 83.50
WISDM Avg 65.78 70.05 70.80 69.79 69.62 67.04 66.97 70.66 76.60
WISDM Std of Avg 1.92 1.01 1.16 1.01 1.41 0.91 1.84 0.88 0.73

Sleep-EDF 0 7→ 11 55.60 68.94 57.22 63.86 65.88 57.87 56.51 69.53 74.41
Sleep-EDF 2 7→ 5 60.03 69.53 60.41 72.39 72.85 71.86 65.62 71.83 73.76
Sleep-EDF 12 7→ 5 72.01 78.45 75.00 72.09 78.97 79.39 76.49 79.28 79.81
Sleep-EDF 7 7→ 18 53.91 73.18 65.82 71.61 74.34 74.49 60.93 73.19 75.32
Sleep-EDF 16 7→ 1 40.21 74.53 69.53 57.86 81.82 75.83 72.96 75.32 78.64
Sleep-EDF 9 7→ 14 75.00 80.14 82.22 82.55 86.14 86.32 76.75 81.64 87.17
Sleep-EDF 4 7→ 12 48.76 67.08 64.97 48.17 68.48 66.53 66.14 71.68 69.86
Sleep-EDF 10 7→ 7 67.86 74.35 76.05 60.41 75.05 75.23 74.31 73.31 77.23
Sleep-EDF 6 7→ 3 75.20 80.99 78.38 78.12 83.66 81.96 78.90 83.59 84.58
Sleep-EDF 8 7→ 10 35.21 55.16 36.79 51.25 46.01 65.70 44.76 44.22 62.35
Sleep-EDF Avg 58.38 72.24 66.66 65.83 66.04 73.50 67.33 72.36 76.31
Sleep-EDF Std of Avg 1.33 0.54 1.16 1.69 0.99 0.34 0.89 1.03 0.87

Boiler 1 7→ 2 57.09 67.93 67.13 67.42 68.13 68.93 72.43 75.74 98.06
Boiler 1 7→ 3 74.54 94.98 93.32 94.02 94.88 95.36 96.14 97.32 99.57
Boiler 2 7→ 1 73.14 85.96 84.32 84.32 87.76 88.74 89.32 90.23 97.33
Boiler 2 7→ 3 66.09 93.32 91.53 92.89 92.62 91.31 91.53 92.89 93.18
Boiler 3 7→ 1 74.99 93.89 92.43 93.01 93.14 93.92 94.77 95.32 98.1
Boiler 3 7→ 2 61.31 63.32 60.39 57.93 60.43 60.43 70.62 72.32 99.57
Boiler Avg 65.86 83.23 81.45 81.59 82.77 83.03 85.69 87.21 97.64
Boiler Std of Avg 0.84 1.02 0.73 0.78 0.81 0.97 0.64 0.69 0.51
Higher is better. Best value in bold.

WISDM→WISDM, WISDM→HHAR, HHAR→WISDM. It can be observed that RAINCOAT consistently outperforms the
baseline methods across all three UniDA settings considered in this work. The superiority of RAINCOAT is demonstrated
in its ability to effectively handle the challenges associated with Universal Domain Adaptation and achieve improved
performance compared to the baseline approaches.

C.6. Ablation Studies

Investigation of Loss Weights. To account for the different magnitudes of the loss terms in RAINCOAT, we employ
weight balancing to ensure that the magnitudes of the loss terms are roughly comparable. We represent the overall loss as
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Table 11. Macro-F1 for each dataset between various subjects. Shown: mean Accuracy over 5 independent runs.
Source 7→ Target w/o UDA CDAN DeepCORAL AdaMatch DIRT-T CLUDA AdvSKM CoDATS RAINCOAT

HAR 2 7→ 11 0.69 0.85 0.91 0.73 0.81 0.81 0.99 0.66 1.00
HAR 6 7→ 23 0.63 0.88 0.81 0.81 0.68 0.92 0.87 0.71 0.96
HAR 7 7→ 13 0.84 0.91 0.87 0.86 0.82 0.99 0.92 0.78 1.00
HAR 9 7→ 18 0.17 0.61 0.44 0.55 0.58 0.67 0.73 0.60 0.76
HAR 12 7→ 16 0.58 0.64 0.65 0.48 0.62 0.64 0.68 0.64 0.86
HAR 13 7→ 19 0.91 0.97 0.95 0.94 0.99 0.94 0.93 0.93 1.00
HAR 18 7→ 21 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.99 1.00
HAR 20 7→ 6 0.94 0.95 0.95 0.84 0.92 0.98 0.84 0.65 0.94
HAR 23 7→ 13 0.71 0.82 0.70 0.67 0.74 0.71 0.77 0.54 0.86
HAR 24 7→ 12 0.84 0.92 0.88 0.70 0.93 0.99 0.96 0.81 0.94
HAR Avg 0.73 0.86 0.82 0.76 0.81 0.86 0.87 0.72 0.93
HAR Std of Avg 0.024 0.014 0.015 0.011 0.032 0.005 0.010 0.04 0.005

HHAR 0 7→ 2 0.60 0.70 0.86 0.83 0.76 0.82 0.72 0.73 0.87
HHAR 1 7→ 6 0.64 0.93 0.91 0.93 0.86 0.94 0.88 0.90 0.93
HHAR 2 7→ 4 0.32 0.52 0.45 0.46 0.51 0.44 0.44 0.46 0.59
HHAR 4 7→ 0 0.29 0.27 0.26 0.32 0.30 0.40 0.33 0.20 0.45
HHAR 4 7→ 5 0.78 0.98 0.90 0.76 0.93 0.94 0.93 0.96 0.98
HHAR 5 7→ 1 0.90 0.98 0.90 0.94 0.90 0.96 0.92 0.94 0.98
HHAR 5 7→ 2 0.19 0.35 0.36 0.40 0.36 0.37 0.35 0.41 0.41
HHAR 7 7→ 2 0.31 0.32 0.32 0.37 0.34 0.36 0.41 0.36 0.44
HHAR 7 7→ 5 0.36 0.76 0.50 0.60 0.73 0.65 0.64 0.59 0.86
HHAR 8 7→ 4 0.58 0.97 0.73 0.61 0.64 0.84 0.83 0.95 0.94
HHAR Avg 0.5 0.68 0.62 0.62 0.64 0.67 0.65 0.63 0.75
HHAR Std of Avg 0.022 0.013 0.007 0.013 0.023 0.008 0.003 0.006 0.004

WISDM 2 7→ 32 0.68 0.72 0.71 0.59 0.65 0.64 0.61 0.66 0.68
WISDM 4 7→ 15 0.52 0.44 0.42 0.54 0.41 0.61 0.55 0.41 0.98
WISDM 7 7→ 30 0.77 0.70 0.85 0.76 0.78 0.81 0.84 0.75 0.86
WISDM 12 7→17 0.53 0.50 0.67 0.67 0.56 0.59 0.53 0.62 0.72
WISDM 12 7→19 0.36 0.31 0.35 0.38 0.39 0.41 0.35 0.37 0.78
WISDM 18 7→20 0.81 0.87 0.63 0.66 0.67 0.70 0.71 0.76 0.92
WISDM 20 7→30 0.56 0.64 0.67 0.54 0.65 0.70 0.61 0.72 0.87
WISDM 21 7→31 0.10 0.31 0.27 0.16 0.28 0.27 0.28 0.30 0.43
WISDM 25 7→29 0.15 0.23 0.25 0.24 0.21 0.26 0.28 0.30 0.44
WISDM 26 7→2 0.69 0.71 0.64 0.74 0.54 0.75 0.55 0.70 0.75
WISDM Avg 0.52 0.54 0.52 0.54 0.54 0.57 0.55 0.56 0.74
WISDM Std of Avg 0.031 0.020 0.006 0.015 0.012 0.029 0.013 0.014 0.010

Sleep-EDF 0 7→ 11 0.48 0.54 0.50 0.52 0.53 0.47 0.48 0.50 0.54
Sleep-EDF 2 7→ 5 0.47 0.62 0.53 0.62 0.63 0.66 0.59 0.53 0.65
Sleep-EDF 12 7→ 5 0.59 0.68 0.65 0.66 0.67 0.69 0.64 0.66 0.70
Sleep-EDF 7 7→ 18 0.53 0.69 0.62 0.59 0.71 0.71 0.60 0.61 0.72
Sleep-EDF 16 7→ 1 0.43 0.62 0.58 0.48 0.66 0.67 0.63 0.58 0.70
Sleep-EDF 9 7→ 14 0.61 0.68 0.71 0.67 0.75 0.72 0.68 0.71 0.76
Sleep-EDF 4 7→ 12 0.42 0.59 0.59 0.37 0.59 0.55 0.59 0.58 0.62
Sleep-EDF 10 7→ 7 0.58 0.67 0.72 0.37 0.68 0.71 0.72 0.71 0.73
Sleep-EDF 6 7→ 3 0.67 0.73 0.70 0.62 0.75 0.73 0.72 0.70 0.75
Sleep-EDF 8 7→ 10 0.41 0.43 0.36 0.46 0.39 0.65 0.46 0.38 0.61
Sleep-EDF Avg 0.52 0.63 0.60 0.54 0.64 0.65 0.61 0.60 0.68
Sleep-EDF Std of Avg 0.026 0.005 0.015 0.004 0.005 0.007 0.003 0.012 0.008

Boiler 1 7→ 2 0.52 0.63 0.63 0.64 0.65 0.68 0.73 0.73 0.98
Boiler 1 7→ 3 0.74 0.95 0.93 0.94 0.95 0.95 0.96 0.97 0.98
Boiler 2 7→ 1 0.70 0.81 0.83 0.83 0.85 0.86 0.88 0.91 0.97
Boiler 2 7→ 3 0.60 0.91 0.90 0.91 0.91 0.90 0.90 0.91 0.91
Boiler 3 7→ 1 0.70 0.94 0.90 0.93 0.92 0.94 0.94 0.95 0.97
Boiler 3 7→ 2 0.55 0.59 0.60 0.54 0.61 0.58 0.69 0.70 0.99
Boiler Avg 0.635 0.80 0.80 0.80 0.82 0.82 0.85 0.86 0.97
Boiler Std of Avg 0.008 0.010 0.007 0.008 0.010 0.006 0.007 0.005 0.005
Higher value indicates better performance. Best value in bold.

L = λ1 · L1 + λ2 · L2 + λ3 · L3. The weights λ1, λ2, and λ3 are normalized such that their sum is equal to 1:

λ1 = a/(a+ b+ c);λ2 = b/(a+ b+ c);λ3 = c/(a+ b+ c),

where a, b, and c are non-negative constants representing the desired relative importance of each loss term. To determine
the optimal values of the weights λ for each dataset, we perform a grid search using an independent source-target transfer
scenario. Subsequently, we conduct experiments using the obtained weights across all transfer scenarios. The results of
these experiments are presented in Table 14, which displays the average prediction accuracy for the target domains in the
HAR dataset (closed-set DA). By employing weight balancing and optimizing the weights, we ensure that each loss term
contributes appropriately to the overall objective of RAINCOAT. This allows us to achieve better performance and more
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Table 12. Accuracy of UniDA using WISDM, WISDM→HHAR, HHAR→WISDM, Shown: mean Accuracy over 5 independent runs.
Closed-Set DA baselines are colored in blue.

Source 7→ Target No. Tar Private Class CLUDA UAN DANCE OVANet UniOT RAINCOAT (A) RAINCOAT (with A&C)

WISDM 3 7→ 2 1 31.71 8.04 8.53 25.61 26.78 28.05 28.05
WISDM 3 7→ 7 1 23.96 8.19 8.33 34.38 30.31 25.92 25.92
WISDM 13 7→ 15 2 54.58 9.85 14.58 10.42 16.46 58.33 64.58
WISDM 14 7→ 19 2 30.30 39.03 44.00 42.42 40.32 46.21 53.78
WISDM 27 7→ 28 2 8.98 6.94 6.74 7.87 10.98 22.92 53.70
WISDM 1 7→ 0 2 71.05 70.34 75.71 74.29 73.14 73.68 82.57
WISDM 1 7→ 3 3 0.00 32.85 38.46 61.54 36.31 11.54 35.54
WISDM 10 7→ 11 4 60.52 31.80 30.26 35.53 39.35 72.37 76.36
WISDM 22 7→ 17 4 26.32 27.87 23.68 40.79 38.31 40.79 48.16
WISDM 27 7→ 15 4 56.25 22.18 27.08 60.42 52.34 58.17 66.42
WISDM Avg 36.37 25.71 27.70 33.28 36.43 44.08 53.51
WISDM Std of Avg 1.05 2.09 1.95 0.97 1.25 1.06 1.41

W→H 4 7→ 0 1 32.43 24.5 30.73 35.24 36.51 34.32 44.14
W→H 5 7→ 1 1 20.32 31.0 15.32 26.31 28.14 27.94 35.65
W→H 6 7→ 2 1 60.32 34.7 32.32 40.35 48.94 65.12 69.01
W→H 7 7→ 3 1 51.84 21.10 36.84 39.46 50.35 55.10 60.88
W→H 17 7→ 4 1 12.31 24.50 15.94 25.31 26.32 24.98 28.41
W→H 18 7→ 5 1 35.85 26.60 29.65 36.14 33.46 35.70 40.76
W→H 19 7→ 6 1 46.39 32.75 38.13 47.98 49.32 50.17 54.76
W→H 20 7→ 7 1 62.32 39.83 42.90 58.11 60.31 64.98 64.98
W→H 23 7→ 8 1 53.76 32.71 40.87 58.32 52.47 60.71 62.84
W→H Avg 37.55 29.74 39.06 40.80 42.87 46.55 51.35
W→H Std of Avg 1.04 1.38 1.98 1.65 1.74 1.31 1.22

H→W 0 7→ 4 1 59.32 55.30 61.94 63.14 64.07 62.98 64.84
H→W 1 7→ 5 1 56.17 50.33 58.10 60.14 61.46 60.94 62.85
H→W 2 7→ 6 1 50.44 49.85 52.51 54.84 56.15 55.95 57.11
H→W 3 7→ 7 1 52.21 53.01 55.91 55.71 58.91 56.42 60.95
H→W 4 7→ 17 1 39.87 37.04 41.39 41.01 42.50 41.94 44.95
H→W 5 7→ 18 1 47.72 47.80 50.35 51.87 52.22 49.95 51.27
H→W 6 7→ 19 1 44.50 43.09 46.19 44.08 45.93 46.05 51.86
H→W 7 7→ 20 1 50.92 54.01 59.85 61.35 61.06 47.00 62.59
H→W 8 7→ 23 1 44.50 42.06 43.66 48.14 49.71 47.77 52.64
H→W Avg 44.47 48.05 52.22 53.36 54.67 52.11 56.57
H→W Std of Avg 1.31 1.39 1.21 0.94 1.05 0.97 1.08
Higher accuracy is better. Best value in bold.

effective adaptation in various transfer scenarios. The results in Table 14 demonstrate the impact of weight balancing and
highlight the average prediction accuracy attained for the target domains.

Investigation of Sample Complexity. We conducted an investigation into the impact of varying the amount of labeled source
data on the performance of RAINCOAT, along with several baseline methods. Specifically, we examined different proportions
of labeled source data relative to the total source data (30%, 50%, 70%, and 100%) and evaluated the performance using
prediction accuracy and F1 score on the target domain. The results of these experiments are presented in Table 15.The
results demonstrate that RAINCOAT consistently outperforms the baseline methods across all sample sizes. Even when only
a limited amount of labeled source data is available, RAINCOAT still achieves competitive performance, showcasing its
robustness and effectiveness in scenarios with varying amounts of labeled source data. These findings provide valuable
insights into the practical use of RAINCOAT, particularly in real-world situations where obtaining labeled data can be
challenging or resource-intensive. The ability of RAINCOAT to leverage limited labeled source data and still achieve superior
performance highlights its potential for practical applications and its capability to adapt well in settings where labeled data
may be scarce.

D. Additional Discussion
We first describe the importance of describing the application scenarios and the necessity of the task cannot be ignored.
the goal of RAINCOAT is to enhance the generalization of a machine learning model to an unlabeled target domain. The
presence of feature and label shift between the source and target domains can lead to a decrease in model performance and
accuracy. This emphasizes the need for Domain Adaptation techniques to improve the generalization and robustness of
machine learning models in real-world scenarios. RAINCOAT addresses both closed-set and universal domain adaptation,
catering to different application scenarios and requirements. In closed-set domain adaptation, the focus is on adapting the
model to a specific target domain while considering a fixed set of known classes or labels. On the other hand, universal
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Table 13. H-Score of UniDA using WISDM, WISDM→HHAR, HHAR→WISDM, Shown: mean Accuracy over 5 independent runs.
Source 7→ Target No. Tar Private Class UAN DANCE OVANet UniOT RAINCOAT

WISDM 3 7→ 2 1 0 0 0.07 0.11 0.51
WISDM 3 7→ 7 1 0 0 0.2 0.22 0.52
WISDM 13 7→ 15 2 0 0.14 0.33 0.36 0.50
WISDM 14 7→ 19 2 0.24 0.28 0.31 0.28 0.55
WISDM 27 7→ 28 2 0.07 0.07 0.23 0.35 0.59
WISDM 1 7→ 0 2 0.41 0.39 0.38 0.40 0.43
WISDM 1 7→ 3 3 0.46 0.49 0.45 0.43 0.51
WISDM 10 7→ 11 4 0 0 0.34 0.41 0.53
WISDM 22 7→ 17 4 0.13 0 0.32 0.41 0.52
WISDM 27 7→ 15 4 0.43 0.51 0.46 0.52 0.57
WISDM Avg 0.17 0.19 0.31 0.35 0.52
WISDM Std of Avg 0.04 0.05 0.04 0.05 0.04

W→H 4 7→ 0 1 0 0.14 0.15 0.19 0.49
W→H 5 7→ 1 1 0.24 0.22 0.25 0.28 0.53
W→H 6 7→ 2 1 0.14 0.12 0.20 0.25 0.55
W→H 7 7→ 3 1 0 0.15 0.04 0.14 0.51
W→H 17 7→ 4 1 0.35 0.28 0.41 0.45 0.57
W→H 18 7→ 5 1 0.20 0.27 0.29 0.32 0.47
W→H 19 7→ 6 1 0.19 0.22 0.25 0.28 0.51
W→H 20 7→ 7 1 0.11 0.17 0.35 0.41 0.49
W→H 23 7→ 8 1 0.21 0.28 0.47 0.51 0.57
W→H Avg 0.16 0.21 0.24 0.28 0.52
W→H Std of Avg 0.03 0.02 0.03 0.02 0.02

H→W 0 7→ 4 1 0.23 0.28 0.33 0.37 0.45
H→W 1 7→ 5 1 0.19 0.31 0.38 0.42 0.47
H→W 2 7→ 6 1 0.04 0.17 0.23 0.29 0.39
H→W 3 7→ 7 1 0.25 0.32 0.34 0.40 0.42
H→W 4 7→ 17 1 0.31 0.39 0.41 0.40 0.51
H→W 5 7→ 18 1 0.28 0.34 0.37 0.36 0.48
H→W 6 7→ 19 1 0.42 0.42 0.46 0.47 0.49
H→W 7 7→ 20 1 0.39 0.41 0.41 0.44 0.52
H→W 8 7→ 23 1 0.19 0.28 0.32 0.35 0.46
H→W Avg 0.26 0.32 0.36 0.39 0.47
H→W Std of Avg 0.05 0.05 0.03 0.04 0.03
Higher H-Score is better. Best value in bold.

domain adaptation expands the scope by handling the more challenging task of adapting to an unlabeled target domain that
may contain unknown or novel classes. By addressing both closed-set and universal domain adaptation, RAINCOAT provides
a versatile framework that can be applied in a wide range of scenarios

Closed-Set Domain Adaptation (Closed-set DA). Closed-set DA is the problem of adapting a machine learning model
trained on a labeled source domain to perform well on an unlabeled target domain where the set of classes is known in
advance. Mitigating the feature shift is a common goal in this problem, where the distribution of features in the source
domain differs from that in the target domain. Below are several examples of applications in different domains where
Closed-Set Domain Adaptation is necessary:

• Consider a time series classification task that aims to classify human activity based on accelerometer data. The
distribution of features in accelerometer data collected during a weekday morning commute (source domain) may differ
from that collected during a weekend hike (target domain). In this case, feature shift can occur due to changes in the
distribution of features related to the user’s movement patterns, such as walking speed, stride length, and acceleration
profiles.

• Consider a speech recognition task; the acoustic features of speech signals may vary between different recording
environments or speakers. For instance, a speech recognition model trained on speech data recorded in a quiet room
(source domain) may have a different distribution of acoustic features when applied to speech data recorded in a noisy
environment (target domain). In this case, feature shifts can occur due to changes in the distribution of features related
to the background environment.

Universal Domain Adaptation (UniDA). In real-world applications, little information may be available on the feature or
label distribution of the target domain. Private labels in either the source or target domain may exist, i.e., classes present in
one domain but absent in the other. This means feature and label shifts exist between source and target domains. Universal
Domain Adaptation refers to the problem of adapting a machine learning model to perform well on a target domain under
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Table 14. Investigation on loss weights a, b, and c for UniDA on WISDM using 1D-CNN as encoder.

a for Cross Entropy b for Sinkhorn c for Reconstruction Accuracy

1 0.1 0.9 79.82
1 0.2 0.8 80.54
1 0.4 0.6 84.75
1 0.6 0.4 86.37
1 0.8 0.2 88.66
1 1 0.2 94.26
1 1 0 92.66

Table 15. Comparison of accuracy and F1 score on the HAR dataset for different domain adaptation methods with varying percentages of
available source samples.

Accuracy F1 Score
% of Ds CDAN DIRT-T CLUDA RAINCOAT CDAN DIRT-T CLUDA RAINCOAT

30% 67.46±0.67 69.28±2.16 73.17±1.53 73.67±1.48 0.63±0.016 0.64±0.015 0.69±0.007 0.69±0.007
50% 72.20±0.65 71.75±2.57 76.86±1.75 77.75±1.56 0.67±0.012 0.68±0.011 0.73±0.006 0.75±0.007
70% 79.66±0.72 78.75±1.57 80.86±1.35 83.75±1.56 0.77±0.015 0.76±0.016 0.79±0.005 0.81±0.004
100% 85.78±0.91 83.26±2.18 85.53±1.78 91.43±1.32 0.85±0.014 0.81±0.015 0.86±0.005 0.91±0.005

both feature and label shifts. UniDA allows machine learning models to generalize to new and diverse domains, improving
their overall robustness and applicability in real-world scenarios. For example,

• Consider a time series classification task to identify driving behaviors based on data collected from a car’s sensors. The
labels (e.g., aggressive driving, normal driving, or cautious driving) may vary between different drivers, depending on
drivers’ driving style and data labeling methods. For example, the data from one driver (source domain) may record
only aggressive and normal driving. In contrast, data from another driver (target domain) may record only normal and
cautious driving due to differences in driving behaviors. In this case, the label shift can occur due to changes in the
distribution of labels related to the driving habitats.

• Consider another time series EHR classification task where the goal is the prediction of hospital readmission. In the
source domain, the labels could be defined as readmitted within 30 days, while in the target domain, the labels could be
defined as readmitted within either 30 days or 60 days. This means the target domain has a different set of labels than
the source domain, which could cause a label shift. In this case, the label shift could make it difficult for a machine
learning model trained on the source domain to generalize well on the target domain.

In each of these examples, the feature and label shift between the source and target domains can decrease model performance
and accuracy, highlighting the need for designing Domain Adaptation techniques to improve the generalization and
robustness of machine learning models. Therefore, domain adaptation techniques like RAINCOAT could be applied to align
both feature and label shifts between the two domains and improve the model’s generalization performance on the target
domain.

D.1. The Use of Frequency Features

It is important to consider the nature of the time series data when deciding whether frequency domain features are beneficial.
In some cases, using frequency domain features may offer limited value, particularly when the data exhibits non-periodic
or non-stationary patterns. For instance, in a time series dataset with a 2-way classification problem where both classes
are driven by distinct temporal patterns at the same frequency rate, frequency features might not be as informative as
time-based features. However, it is worth noting that RAINCOAT is specifically designed to jointly model both time and
frequency features, allowing the model to prioritize learning time features when frequency features are less informative.
Thus, in RAINCOAT, the potentially adverse effects of frequency features can be minimized due to the careful design of the
time-frequency encoder.

It is essential to consider specific scenarios where the domain gap between the source and target domains is solely due to
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Table 16. The comparison of accuracy (%) with other approaches on UCF-HMDB.

Dataset HDMB to UCF UCF to HDMB

DANN 76.4 75.3
TA3N 81.8 78.3

RAINCOAT 78.2 77.2

frequency changes. For example, in situations where the same data is collected using different experimental platforms that
are calibrated differently in the source and target domains, methods that do not utilize frequency features may perform poorly.
In RAINCOAT, we adopt a simple approach by concatenating time and frequency features to ensure fair comparisons with
baseline methods. However, it is worth exploring whether incorporating a transformer architecture could further improve the
performance of RAINCOAT over the existing time-frequency encoder. Transformers have demonstrated their effectiveness
in capturing both local and global dependencies in sequential data, and their application to the time-frequency encoder in
RAINCOAT could potentially yield additional improvements.

To summarize, while frequency domain features may offer limited value in certain scenarios, RAINCOAT is designed
to handle such cases by allowing the model to prioritize time features when frequency features are less informative.
Additionally, RAINCOAT offers flexibility in adapting to scenarios where frequency changes contribute more to the feature
shifts. The exploration of transformer architectures within RAINCOAT presents an interesting direction for future research,
as it may bring further improvements to the performance and adaptability of the model.

D.2. Extension to Video Domain Adaptation

In terms of interesting extensions, exploring the application of RAINCOAT to video data can provide a more comprehensive
evaluation and broaden its scope. Videos are more complex data types compared to simple time series, as they incorporate
both spatial and temporal features. This complexity introduces additional challenges, such as varying visual styles, lighting
conditions, and camera viewpoints, which can significantly impact the performance of machine learning models.

One relevant work in the field is the Temporal Attentive Adversarial Adaptation Network (TA3N) developed by Chen
et al. (Chen et al., 2019a). TA3N addresses video domain adaptation by simultaneously aligning and learning temporal
dynamics without relying on sophisticated domain adaptation methods. It explicitly attends to temporal dynamics using
domain discrepancy for effective domain alignment. Another notable framework is the unified framework for video domain
adaptation presented by Kim et al. (Kim et al., 2021), which focuses on regularizing cross-modal and cross-domain feature
representations, as well as feature spaces.

To evaluate RAINCOAT in the context of video domain adaptation, we conducted experiments on the publicly available
benchmark dataset based on the UCF-HMDB benchmark, as assembled by Chen et al. (Chen et al., 2019b). This benchmark
dataset consists of an overlapped subset of the original UCF and HMDB datasets, containing 3209 videos across 12 classes.
We utilized the source code provided by the authors of TA3N (Chen et al., 2019a) and directly quoted the performance
reported in their work. The results, shown in Table 16, highlight the effectiveness of RAINCOAT on the UCF-HMDB dataset,
providing promising outcomes and serving as a solid foundation for further research in video domain adaptation.

Exploring video domain adaptation within the framework of RAINCOAT opens up new possibilities for addressing real-world
challenges and enhancing the generalization and adaptability of machine learning models in video analysis tasks. This
extension enables the consideration of both spatial and temporal features, contributing to more robust and accurate model
performance in video domains. We plan to explore the efficacy of our RAINCOAT on video domain adaptation in future
work by considering efficient feature extraction through tensor decomposition and acceleration algorithms (He et al., 2020;
2022; 2023; Cai et al., 2022).

D.3. Extension to Source-Free Domain Adaptation

Source-free domain adaptation attracts increasing attention because, in many real-world scenarios, collecting labeled data
from the source domain may be expensive, time-consuming, or even impossible (Liu et al., 2021; Kundu et al., 2020; Yang
et al., 2021; Xu et al., 2022). In such cases, source-free domain adaptation allows leveraging a pre-trained model from a
different source domain to adapt to a target domain to adapt without using labeled data from the source domain. It is a
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challenging and critical problem in machine learning, especially in computer vision tasks, where the source domain and
target domain data have no overlap. SFDA aims to improve the performance of a model on a target domain with no access to
any labeled data from the source domain. For example, (Liu et al., 2021) proposed a method that leverages the structure of
the image to learn domain-invariant features for the target domain via pixel-and patch-level optimization objectives tailored
for semantic segmentation. Another approach to SFDA is generalized SFDA (G-SFDA) (Yang et al., 2021), which aims to
handle the more challenging case where the target domain contains multiple domains. G-SFDA proposed a method using a
structural clustering algorithm to group the target domain data into clusters based on their feature similarity. They then
trained a model on each cluster to handle the domain shift. Universal source-free domain adaptation (USFDA) (Kundu et al.,
2020) is another variation of SFDA. It utilizes a novel instance-level weighting mechanism, source similarity metric (SSM),
to handle both feature and label shifts. Recently, ATCoN (Xu et al., 2022) is proposed to address Source-Free Video Domain
Adaptation by learning temporal consistency, guaranteed by two novel consistency objectives, namely feature consistency
and source prediction consistency, performed across local temporal features.

Indeed, one can extend RAINCOAT to Source Free Domain Adaptation (SF-DA) by only modifying the pre-training stage.
During the pre-training stage of RAINCOAT, the encoder GTF is trained to learn well-separated, compact clusters of source
domain data. This can be achieved by enforcing intra-class compactness and inter-class separability through negative
classes, such as Triplet Loss. By doing so, the pre-trained model is better equipped for source-free deployment without
prior knowledge of upcoming feature or label shifts. Once a pre-trained model is obtained, it can be adapted to a target
domain using the two-stage algorithm proposed in RAINCOAT. In the first stage, the model encounters unlabeled target
domain samples and obtains a target feature vector denoted as ztbefore. The correction step then updates the encoder GTF

and decoder DTF by solving a reconstruction task on target samples, which repositions the target features ztbefore into ztafter.
According to the cluster assumption that input data is separated into clusters with samples within the same cluster having the
same label, the corrected encoder maintains the features of common target samples close to their originally assigned label
while allowing the features of target unknown samples to diverge from their assigned label. RAINCOAT can leverage this
finding during deployment by detecting target unknown samples based on the movement of target features before and after
the correction step. It assumes that if the distribution of the movement exhibits a bimodal structure, indicating the presence
of unknown labels, it can easily detect private samples by training a 2-mean cluster while keeping common samples to their
original assigned label.
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