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Abstract

Polar codes are widely used state-of-the-art codes
for reliable communication that have recently
been included in the 5th generation wireless
standards (5G). However, there remains room
for the design of polar decoders that are both
efficient and reliable in the short blocklength
regime. Motivated by recent successes of data-
driven channel decoders, we introduce a novel
CurRIculum based Sequential neural decoder
for Polar codes (CRISP)*. We design a princi-
pled curriculum, guided by information-theoretic
insights, to train CRISP and show that it out-
performs the successive-cancellation (SC) de-
coder and attains near-optimal reliability per-
formance on the Polar(32, 16) and Polar(64, 22)
codes. The choice of the proposed curriculum is
critical in achieving the accuracy gains of CRISP,
as we show by comparing against other curric-
ula. More notably, CRISP can be readily ex-
tended to Polarization-Adjusted-Convolutional
(PAC) codes, where existing SC decoders are sig-
nificantly less reliable. To the best of our knowl-
edge, CRISP constructs the first data-driven de-
coder for PAC codes and attains near-optimal per-
formance on the PAC(32, 16) code.

1. Introduction
Error-correcting codes (codes) are the backbone of mod-
ern digital communication. Codes, composed of (encoder,
decoder) pairs, ensure reliable data transmission even un-
der noisy conditions. Since the groundbreaking work
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of (Shannon, 1948), several landmark codes have been
proposed: Convolutional codes, low-density parity-check
(LDPC) codes, Turbo codes, Polar codes, and more recently,
Polarization-Adjusted-Convolutional (PAC) codes (Richard-
son & Urbanke, 2008). In particular, polar codes, introduced
by (Arikan, 2009), are widely used in practice owing to their
reliable performance in the short blocklength regime. A fam-
ily of variants of polar codes known as PAC codes further
improves performance, nearly achieving the fundamental
lower bound on the performance of any code at finite lengths,
albeit at a higher decoding complexity (Arıkan, 2019). In
this paper, we focus on the decoding of these two classes of
codes, jointly termed the “Polar code family”.

The polar family exhibits several crucial information-
theoretic properties; practical finite-length performance,
however, depends on high complexity decoders. This search
for the design of efficient and reliable decoders for the Po-
lar family is the focus of substantial research in the past
decade. (a) Polar codes: The classical successive cancella-
tion (SC) decoder achieves information-theoretic capacity
asymptotically, but performs poorly at finite blocklengths
compared to the optimal maximum a posteriori (MAP) de-
coder (Arıkan, 2019). To improve upon the reliability of
SC, several polar decoders have been proposed in the lit-
erature (Sec. 6). One such notable result is the celebrated
Successive-Cancellation-with-List (SCL) decoder (Tal &
Vardy, 2015). SCL improves upon the reliability of SC and
approaches that of the MAP with increasing list size (and
complexity). (b) PAC codes: The sequential “Fano decoder”
(Fano, 1963) allows PAC codes to perform information-
theoretically near-optimally; however, the decoding time is
long and variable (Rowshan et al., 2020a). Although SC
is efficient, O(n log n), its performance with PAC codes
is significantly worse than that of the Fano decoder. Sev-
eral works (Yao et al., 2021; Rowshan et al., 2020b; Zhu
et al., 2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021)
propose ameliorations; it is safe to say that constructing
efficient and reliable decoders for the Polar family is an
active area of research and of utmost practical interest given
the advent of Polar codes in 5G wireless cellular standards.
The design of efficient and reliable decoders for the Polar
family is the focus of this paper.

In this paper, we introduce a novel CurRIculum based
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Figure 1: (a) CRISP achieves near-MAP reliability forPolar(64; 22) code on the AWGN channel. (b) Our proposed
curriculum is crucial for the gains CRISP attains over the baselines; details in Sec. 4.

Sequential neural decoder forPolar code family (CRISP).
When the proposed curriculum is applied to neural network
decoder training, thus trained decoders outperform existing
baselines and attain near-MAP reliabilty onPolar(64; 22),
Polar(32; 16) and PAC(32; 16) codes while maintaining low
computational complexity (Figs. 1, 5, Table 1). CRISP
builds upon an inherent nested hierarchy of polar codes; a
Polar(n; k) code subsumes all the codewords of lower-rate
subcodesPolar(n; i ); 1 � i � k (Sec. 2.2). We provide prin-
cipled curriculum of training on examples from a sequence
of sub-codes along this hierarchy, and demonstrate that the
proposed curriculum is critical in attaining near-optimal
performance (Sec. 4).

Curriculum-learning (CL) is a training strategy to train ma-
chine learning models, starting with easier subtasks and
then gradually increasing the dif�culty of the tasks (Wang
et al., 2021). (Elman, 1993), a seminal work, was one of
the �rst to employ CL for supervised tasks, highlighting the
importance of “starting small". Later, (Bengio et al., 2009)
formalized the notion of CL and studied when and why CL
helps in the context of visual and language learning (Wu
et al., 2020; Wang et al., 2021). In recent years, many em-
pirical studies have shown that CL improves generalization
and convergence rate of various models in domains such
as computer vision (Pentina et al., 2015; Guo et al., 2018;
Wang et al., 2019), natural language processing (Cirik et al.,
2016; Platanios et al., 2019), speech processing (Amodei
et al., 2016; Gao et al., 2016), generative modeling (Karras
et al., 2017; Wang et al., 2018), and neural program gen-
eration (Zaremba & Sutskever, 2014; Reed & De Freitas,
2015). Viewed from this context, our results add decod-
ing of algebraic codes (of the Polar family) to the domain
of successes of supervised CL. In summary, we make the
following contributions:

• We introduce CRISP, a novel curriculum-based sequen-
tial neural decoder for the Polar code family. Guided by
information-theoretic insights, we propose CL-based
techniques to train CRISP, that are crucial for its supe-
rior performance (Sec. 3).

• CRISP attains near-optimal reliability performance
on Polar(64; 22) and Polar(32; 16) codes whilst
achieving improved throughput (Sec. 4.1 and Sec. 4.2).

• CRISP further achieves near-MAP reliability for the
PAC(32; 16) code with signi�cantly higher throughput
compared to the Fano decoder. To the best of our
knowledge, this is the �rst learning-based PAC decoder
to achieve this performance (Sec. 4.5).

2. Problem formulation

In this section we formally de�ne the channel decoding
problem and provide background on the Polar code family.
Our notation is the following: we denote Euclidean vectors
by small bold face lettersx ; y , etc. [n] , f 1; 2; : : : ; ng.
For m 2 Rn ; m <i , (m1; : : : ; mi � 1). N (0; I n ) denotes
a standard Gaussian distribution inRn . u � v denotes the
bitwise XOR of two binary vectorsu ; v 2 f 0; 1g` .

2.1. Channel decoding

The primary goal of channel decoding is to design ef�cient
decoders that can correctly recover the message bits upon
receiving codewords corrupted by noise (Fig. 2). More
precisely, letu = ( u1; : : : ; uk ) 2 f 0; 1gk denote a block
of information/messagebits that we wish to transmit. An
encoderg : f 0; 1gk ! f 0; 1gn maps these message bits
into a binary codewordx of lengthn, i.e. x = g(u ). The
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Figure 2: Channel decoding problem.

encoded bitsx are modulated via Binary Phase Shift Keying
(BPSK), i.e. x 7! 1 � 2x 2 f� 1gn , and are transmitted
across the channel. We denote both the modulated and
unmodulated codewords asx . The channel, denoted as
PY jX (�j� ), corrupts the codewordx to its noisy versiony 2
Rn . Upon receiving the corrupted codeword, the decoderf �

estimates the message bits asû = f � (y ). The performance
of the decoder is measured using standard error metrics
such as Bit-Error-Rate (BER) or Block-Error-Rate (BLER):
BER( f � ) , (1=k)

P
i P[û i 6= u i ], whereasBLER( f � ) ,

P[û 6= u ].

Given an encoderg with code parameters(n; k) and a chan-
nel PY jX , the channel decoding problem can be mathemati-
cally formulated as:

� 2 arg min
�

BER( f � ); (1)

which is a joint classi�cation ofk binary classes. To train
the parameters� , we use the mean-square-error (MSE) loss
as a differentiable surrogate to the objective in Eq. 1. It is
well known in the literature that naively parametrizingf �

by general-purpose neural networks does not work well and
they perform poorly even for small blocklengths liken = 16
(Gruber et al., 2017). Hence it is essential to use ef�cient
decoding architectures that capitalize on the structure of the
encoderg (Kim et al., 2018b; Chen & Ye, 2021). To this end,
we focus on a popular class of codes, thePolar code fam-
ily, that comprises two state-of-the-art codes: Polar codes
(Arikan, 2009) and Polarization-Adjusted-Convolutional
(PAC) codes (Ar�kan, 2019). Both these codes are closely
related and hence we �rst focus on polar codes in Sec. 2.2.
In Sec. 3, we present CRISP, our novel curriculum-learning
based neural decoder to decode polar codes. In Sec. 4.5 we
detail PAC codes.

2.2. Polar codes

Encoding. Polar codes, introduced in (Arikan, 2009), were
the �rst codes to be theoretically proven to achieve capacity
for any binary-input discrete memoryless channel. Their
encoding is de�ned as follows: let(n; k) be the code param-
eters withn = 2 p; 1 � k � n. In order to encode a block of
message bitsu = ( u1; : : : ; uk ) 2 f 0; 1gk , we �rst embed
them into a source message vectorm , (m1; : : : ; mn ) =
(0; : : : ; u1; 0; : : : ; u2; 0; : : : ; uk ; 0; : : :) 2 f 0; 1gn , where

m I k = u andm I C
k

= 0 for someI k � [n]. Since the
message blockm contains the information bitsu only
at the indices pertaining toI k , the setI k is called the
information set, and its complementI C

k the frozen set.
For the setI k , we �rst compute the capacities of then
individual polar bit channels and rank them in their in-
creasing order (Tal & Vardy, 2013). ThenI k picks the
top k out of them. For example,Polar(4; 2) has the or-
dering m1 < m 2 = m3 < m 4 and I k = f 2; 4g,
and thusm = (0 ; m2; 0; m4). Similarly, Polar(8; 4) has
m1 < m 2 < m 3 < m 5 < m 4 < m 6 < m 7 < m 8,
I 4 = f 4; 6; 7; 8g andm = (0 ; 0; 0; m4; 0; m6; m7; m8).

Finally, we obtain the polar codewordx =
PlotkinTree( m ), where the mappingPlotkinTree :
f 0; 1gn ! f 0; 1gn is given by a complete binary tree,
known as Plotkin tree (Plotkin, 1960). Fig. 3(a) details the
Plotkin tree forPolar(4; 2). Plotkin tree takes the input
message blockm 2 f 0; 1gn at the leaves and applies the
“Plotkin " function at each of its internal nodes recursively
to obtain the codewordx 2 f 0; 1gn at the root. The
functionPlotkin : f 0; 1g` � f 0; 1g` ! f 0; 1g2` , ` 2 N, is
de�ned as

Plotkin( u ; v) , (u � v; v):

For example, in Fig. 3(a), starting with the message block
m = (0 ; m2; 0; m4) at the leaves, we �rst obtainu =
Plotkin(0 ; m2) = ( m2; m2) andv = Plotkin(0 ; m4) =
(m4; m4). Applying the function once more, we obtain
the codewordx = Plotkin( u ; v) = ( m2 � m4; m2 �
m4; m4; m4).

Decoding.The successive-cancellation (SC) algorithm is
one of the most ef�cient decoders for polar codes, with a
decoding complexity ofO(n logn). The basic principle be-
hind the SC algorithm is to sequentially decode one message
bit mi at a time according to the conditional log-likelihood
ratio (LLR), L i , log(P[mi = 0 jy ; m̂ <i ]=P[mi =
1jy ; m̂ <i ]), given the corrupted codewordy and previous
decoded bitsm̂ <i for i 2 I k . Fig. 3(b) illustrates this
for thePolar(4; 2) code: for both the message bitsm2 and
m4, we compute these conditional LLRs and decode them
via m̂2 = 1f L 2 < 0g and m̂4 = 1f L 4 < 0g. Given
the Plotkin tree structure, these LLRs can be ef�ciently
computed sequentially using a depth-�rst-search based al-
gorithm (App. A).

As discussed in Sec. 1, SC achieves the theoretically opti-
mal performance only asymptotically, and its reliability is
sub-optimal at �nite blocklengths. SC-list (SCL) decoding
improves upon its error-correction performance by maintain-
ing a list ofL candidate paths at any time step and choosing
the best among them in the end. In fact, for a reasonably
large list sizeL , SCL achieves MAP performance at the
cost of increased complexityO(Ln logn), as highlighted in
Table 1.
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(a) Polar encoder (b) Successive cancellation decoder

Figure 3: Polar(4; 2): (a) Polar encoding via Plotkin tree; (b) Blue arrows indicate the decoding order.

3. CRISP: Curriculum based sequential
neural decoder for Polar family

We design CRISP, a curriculum-learning-based sequential
neural decoder for polar codes that strictly outperforms
the SC algorithm and existing baselines. CRISP uses a
sequential RNN decoder, powered by gated recurrent units
(GRU) (Cho et al., 2014; Chung et al., 2014), to decode one
bit at a time. Instead of standard training techniques, we
design a novel curriculum, guided by information-theoretic
insights, to train the RNN to learn good decoders. Fig. 4
illustrates our approach.

CRISP decoder.We use thePolar(4; 2) code as a guiding
example to illustrate our CRISP decoder (Fig. 4(a)). This
code has two message bits(m2; m4) and the message block
is m = (0 ; m2; 0; m4). Upon encoding it to the polar code-
word x 2 f� 1g4 and receiving its noisy versiony 2 R4,
the decoder estimates the message asm̂ = (0 ; m̂2; 0; m̂4).
Similar to SC, CRISP uses the sequential paradigm of de-
coding one bitm̂i at a time by capitalizing on the previous
decoded bitŝm <i andy . To that end, we parametrize the
bit estimatem̂i conditioned on the past as a fully connected
neural network (FCNN) that takes the hidden stateh i as its
input. Hereh i denotes the hidden state of the GRU that im-
plicitly encodes this past information(m̂ <i ; y ) via GRU's
recurrence equation, i.e.

h i = GRU� (h i � 1; m̂i � 1; y ); i 2 f 1; 2; 3; 4g;
(2)

m̂i jy ; m̂ <i = FCNN� (h i ); i 2 f 2; 4g; (3)

where� denotes the FCNN and GRU parameters jointly.
Henceforth we refer to our decoder as either CRISP or

CRISP� . Note that while the RNN is unrolled forn = 4
time steps (Eq. 2), we only estimate bits atk = 2 informa-
tion indices, i.e.m̂2 andm̂4 (Eq. 3). A key drawback of SC
is that a bit error at a positioni can contribute to the future
bit errors (> i ), and it does not have a feedback mechanism
to correct these error events. On the other hand, owing to
the RNN's recurrence relation (Eq. 2), through the gradient
it receives during training, CRISP can learn to better predict
the bits.

Curriculum-training of CRISP. Given the decoding archi-
tecture of CRISP in Fig. 4(a), a natural approach to train
its parameters via supervised learning is to use a joint MSE
loss function for both the bits(m̂2; m̂4): MSE(m̂2; m̂4) =
(m̂2(� ) � m2)2 +( m̂4(� ) � m4)2. However, as we highlight
in Sec. 4.1 such an approach learns to fail better decoders
than SC and gets stuck at local minima. To address this
issue, we propose a curriculum-learning based approach to
train the RNN parameters.

The key idea behind our curriculum training of CRISP is to
decompose the problem of joint estimation of bits(m̂2; m̂4)
into a sequence of sub-problems with increasing dif�culty:
start with learning to estimate only the �rst bit (m̂2) and
progressively add one new message bit at each curriculum
step (̂m4) until we estimate the full message blockm =
(m̂2; m̂4). We freeze all the non-trainable message bits to
zero during any curriculum step. In other words, in the
�rst step, we freeze the bitm4 and train the decoder only
to estimate the bit̂m2 (i.e. the subcode corresponding to
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(a) CRISP decoder (b) Curriculum to train CRISP

Figure 4: CRISP decoder and its training by curriculum-learning for Polar(2; 4).

k = 1 ):

(m2; m4 = 0) ! m = (0 ; m2; 0; 0) Polar���! x

x Channel����! y
CRISP�����! m̂2: (4)

We use this trained� as an initialization for the next task of
estimating both the bits(m̂2; m̂4):

(m2; m4) ! m = (0 ; m2; 0; m4) Polar���! x

x Channel����! y
CRISP�����! (m̂2; m̂4): (5)

Fig. 4(b) illustrates this curriculum-learning approach. We
note that the knowledge of decodinĝm2 whenm4 = 0
(Eq. 4) serves as a good initialization when we learn to de-
codem̂2 for a generalm4 2 f 0; 1g (Eq. 5). With such a
curriculum aided training, we show in Sec. 4.1 (Figs. 1, 5)
that the CRISP decoder outperforms the existing baselines
and attains near-optimal performance for a variety of block-
lengths and codes. We interpret this in Sec. 4.4. We defer
the training details to App. E.

Left-to-Right (L2R) curriculum for Polar(n; k). For
a generalPolar(n; k) code, we follow a similar curricu-
lum to train CRISP� . Denoting the index set byI k =
f i 1; i 2; : : : ; i k g � [n] in the increasing order of indices
i 1 < i 2 < : : : < i k , our curriculum is given by: Train
� on m̂i 1 ! Train � on (m̂i 1 ; m̂i 2 ) ! : : : ! Train �
on (m̂i 1 ; : : : ; m̂i k ). We term this curriculumLeft-to-Right
(L2R). The anti-curriculumR2Lrefers to progressively train-
ing in the decreasing order of the indices inI k .

4. Main results

In this section, we present numerical results for the CRISP
decoder on the Polar code family.

4.1. AWGN channel

Data generation. The input messageu 2 f 0; 1gk is
randomly drawn uniformly from the boolean hypercube
and encoded as a polar codewordx 2 f� 1gn . The
classical additive white Gaussian noise (AWGN) channel,
y = x + z, z � N (0; � 2I n ), generates the training/test
data(y ; u ) for the decoder. The signal-to-noise ratio, i.e.
SNR = � 10 log10 � 2, characterizes the noise level in the
channel. Here we �x the channel to be AWGN in all our
experiments, as per the standard convention (Kim et al.,
2018b), and refer to App. D for additional results on fad-
ing and t-distributed channels. App. E details the training
procedure. Once trained, we use the CRISP models for
comparison against the baselines.

Baselines. The optimal channel decoder is the MAP es-
timator: û = arg maxu 2f 0;1gk P[u jy ], whose complexity
grows exponentially ink and is computationally infeasible.
Given this, we compare our CRISP decoder with the SCL
(Tal & Vardy, 2015), which has near-MAP performance for a
largeL , along with the classical SC. Among learning-based
decoders, we choose the state-of-the-art Neural-Successive-
Cancellation (NSC) as our baseline (Doan et al., 2018).
NSC replaces sub-components of the existing successive
cancellation decoder with NNs to scale decoding to block
lengths longer than 32. Each of these neural networks are
trained with the LLR outputs of the SC algorithm. Since
this training procedure with SC probabilities as the target is
sub-optimal, we consider an improved version with end-to-
end training (Fig. 2) for a fair comparison. We also include
the performance of CRISP trained directly without the cur-
riculum. We also compare with the curriculum training
procedure of (Lee et al., 2020) (the original work achieves
a reliability worse than SC decoding for block length 32).
All these baselines have the same number of parameters as
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Figure 5: CRISP outperforms baselines and attains near-MAP performance forPolar(32; 16) and PAC(32; 16) codes on the
AWGN channel.

CRISP.

Results. Fig. 1(a) highlights that the CRISP decoder out-
performs the existing baselines and attains near-MAP per-
formance over a wide range of SNRs for thePolar(64; 22)
code. Fig. 1(b) illustrates the mechanism behind these gains
at 0dB: the curriculum-guided CRISP slowly improves upon
the overall BER (over the22 bits) during the training and
eventually achieves much better performance than SC and
other baselines. In contrast, the decoder trained from scratch
makes a big initial gain but gets stuck at local minima and
only achieves a marginal improvement over SC. Moreover,
we see that decoders trained using other curricula, e.g. R2L,
also fail to show signi�cant improvements over SC (Figs.
1(b), 11). We observe a similar trend forPolar(32; 16) code
in Fig. 5(a), where CRISP achieves near-MAP performance.
We posit that aided by a good curriculum, CRISP avoids
getting stuck at bad local minima and converges to better
minima in the optimization landscape. Further, CRISP is
robust to deviations from the AWGN channel, while at-
taining similar performance gains over SC on fading and
T-distributed channels (App. D). For additional results, we
refer to App. D which highlights similar reliability gains
for other blocklengths and rates, App. C for the ablation
analysis, and App. E for the training hyperparameters and
architectures.

Sequential vs Block decoding.We note that the sequen-
tial RNN architecture for CRISP is inspired in part by the
sequential SC algorithm. Notwithstanding, we also de-
sign block decoders that estimate all the information bits
mi in one shot giveny . We choose1D Convolutional
Neural Networks (CNNs) to parameterize this block de-
coder,CRISP_CNN. CRISP_CNN, trained with the L2R
curriculum, achieves similar BER performance as CRISP

(App. C.2).

4.2. Reliability-throughput comparison

Table 1: Throughput and reliability comparison of various
decoders on Polar(n; k).

Decoder
Throughput (in Mbps) Gap to SCL, L=32 (in dB)

(32; 16) (64; 22) (32; 16) (64; 22)

GPU CPU GPU CPU

SC 0:17 27 0:08 15 0:80 0:40
FastSC N/A 47 N/A 40 0:80 0.40
SCL, L=4 0:01 8:5 0:02 6:27 0:05 0:10
FastSCL, L=4 N/A 30 N/A 24 0:05 0:10
SCL, L=32 (MAP) 5e-3 0:81 2e-3 0:60 0.00 0.00
FastSCL, L=32 N/A 7:7 N/A 5:5 0.00 0.00
NSC N/A N/A 32:6 0:02 N/A 0:35
CRISP_GRU (Ours) 80 0.04 38.7 0:02 0.15 0.20
CRISP_CNN (Ours) 250 0.02 133 0:13 0:15 0:20
CRISP_GRU - No curriculum 80 0.04 38:7 0:02 0:60 0:35

In the previous section, we demonstrated that CRISP
achieves better reliability than the baselines. Here we ana-
lyze these gains through the lens ofdecoding complexity. To
quantitatively compare the complexities of these decoders,
we evaluate their throughput on a single GTX 1080 Ti GPU
as well as a CPU (Intel i7-6850K, 12 threads). For the
GPU version, we use our implementation of SC/SCL ow-
ing to the lack of publicly available implementations. On
the other hand, for the CPU column we use an optimized
multithreaded implementation of SC/FastSC, SCL/FastSCL
(Léonardon et al., 2019) in C++ by (Cassagne et al., 2019).
As Table 1 highlights, CRISP exploits the GPUs' inherent
optimization towards NNs to achieve excellent throughput,
whilst achieving near-SCL BER performance. We note
that CRISP_CNN (App. C.2) attains better throughput than
CRISP_GRU, while maintaining gains in BER. We posit
that further improvement in throughput can be realized us-
ing techniques like pruning and knowledge distillation. This
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is beyond the scope of this paper and is an important and
separate direction of future research. Note that we use
BER= 10 � 3 to compute the gap to SCL (Figs. 1(a), 5(a)).
We refer to App. F for further discussion.

4.3. Computational complexity

Running CRISP on suitable hardware architectures allows
it to attain signi�cant throughput gains. Nevertheless, to
provide a more comprehensive performance evaluation, it's
important to also consider other metrics such as power con-
sumption. This necessitates an analysis of the computational
complexity of the algorithm, which we present below.

The decoding complexity of SCL isO(Ln logn), where
L represents the list size. On the other hand, CRISP em-
ploys a 2-layer GRU neural network, the computational
complexity of which isn(2h(n + 1) + 6 h2), whereh de-
notes the dimension of the GRU's hidden state. The bulk of
this computational complexity involves matrix-vector mul-
tiplications; modern hardware like GPUs which allow for
signi�cant speedups in these operations. This, in turn, al-
lows for an improved performance and ef�ciency of CRISP
on such platforms.

4.4. Interpretation

This section describes why L2R is a better curriculum than
others. To this end, we �rst claim that learning to decode
uncorrupted codewords (y = x ) is critical to learning a
reliable decoder. This claim follows from the following key
observation: while training our model (sequential or block)
at a speci�c SNR, we observe that whenever our model
reaches SC or better performance, its BER on uncorrupted
codewords, aka the noiseless BER, drops to zero very early
in the training (App. B, Fig. 7(a)). On the other hand, when
the model gets stuck at bad minima even after a lot of train-
ing, its noiseless BER is high (Fig. 7(b)). Hence, without
loss of generality, we focus on the settingy = x . Under this
noiseless scenario, we analyze how the optimal bit decoding
rules evolve for different curricula. In particular, we focus
on the least reliable bits as they contribute the largest to
noiseless BER (Fig. 8(a) and Fig. 8(b)).

For thePolar(4; 4) code, Fig. 6(a) illustrates how the opti-
mal rule evolves for its least reliable bitm1. In this case,
the MAP decoding rule form1 is: m̂1 = x1x2x3x4. Un-
der the L2R curriculum, we arrive at this expression via
x1 ! x1x2 ! x1x2x3 ! x1x2x3x4, whereas R2L fol-
lows 1 ! 1 ! 1 ! x1x2x3x4. This highlights that L2R
reaches the optimal rule more gracefully by learning to in-
clude one coordinatex i at a time while this change for R2L
(and no-curriculum) is abrupt, making it harder to learn.
Fig. 9 illustrates a similar evolution for the remaining bits
(m2; m3; m4).

More concretely, we de�ne the notion oflearning dif�culty
for a bit: the number of bits multiplied in its optimal decod-
ing rule. This metric roughly captures the number of opera-
tions a model has to learn at any curriculum step. Fig. 6(b)
illustrates how it evolves over the L2R and R2L curricula
for the least reliable bit inPolar(64; 22). If we take the
maximum learning dif�culty over all bits, we obtain a sim-
ilar plot (Fig. 10). Note that in both the plots, the jumps
in learning dif�culty are larger for R2L, thus indicating a
harder transfer than L2R, where it increases smoothly (at
most one bit per step).

4.5. PAC codes

A recent breakthrough work (Ar�kan, 2019) introduces a new
class of codes called Polarization-Adjusted-Convolutional
(PAC) codes that match the fundamental lower bound on
the performance of any code under the MAP decoding at
�nite-lengths (Moradi et al., 2020). The motivating idea
behind PAC codes is to overcome two key limitations of
polar codes at �nite blocklengths: the poor minimum dis-
tance properties of the code and the sub-optimality of SC
compared to the MAP (Mondelli et al., 2014). This is ad-
dressed by adding aconvolutional outer code, with an ap-
propriate indexingI k , before polar encoding to improve
the distance properties of the resulting code. More for-
mally, the message blocku 2 f 0; 1gk is embedded into the
source vectorm 2 f 0; 1gn according to the Reed-Muller
(RM) indicesI (RM)

k : compute the Hamming weights of
integers0; 1; : : : ; n � 1 and choose the topk. Now we en-
code the messagem via a rate-1 convolutional code, i.e.
v = c � m 2 f 0; 1gn , vi =

P
j cj mi � j , for some1D

convolutional kernelc 2 f 0; 1g` . Finally we obtain the PAC
codewordx by polar encodingv: x = PlotkinTree( v).

PAC codes can be decoded using the classical Fano algo-
rithm (Fano, 1963), a sequential decoding algorithm that
uses backtracking. Coupled with the Fano decoder, PAC
codes achieve impressive results outperforming polar codes
(with SCL decoder) and matching the �nite-length capacity
bound (Polyanskiy et al., 2010). However, the Fano decoder
has signi�cant drawbacks like variable running time, large
time complexity at low-SNRs (Rowshan et al., 2020b), and
sensitivity to the choice of hyperparameters (Moradi, 2020).
To overcome these issues, several non-learning techniques,
such as stack/list decoding, adaptive path metrics, etc., have
been proposed in the literature (Yao et al., 2021; Zhu et al.,
2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021). In
contrast, we design a curriculum-learning-based CRISP de-
coder for PAC codes trained directly from the data. We use
the same L2R curriculum to decode PAC codes.

Fig. 5(b) highlights that the CRISP decoder achieves near-
MAP performance for the PAC(32; 16) code. While Fano
decoding achieves similar reliability, it is inherently non-
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(a) L2R vs. R2L for decodingm1

L2R curriculum
R2L curriculum
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Figure 6: L2R vs. R2L: (a) Bit estimates evolve more smoothly under L2R than R2L forPolar(4; 4), (b) Learning dif�culty
increases more gracefully for L2R than R2L for Polar(64; 22).

parallelizable. In contrast, CRISP allows for batching, and
achieves a higher throughput, as highlighted in Table 2. Here
we measure the throughput of Fano (Rowshan et al., 2020a)
atSNR= 1 dB. We note that the existing implementation
of Fano is not supported on GPUs. These preliminary results
suggest that curriculum-based training holds a great promise
for designing ef�cient PAC decoders, especially for longer
blocklengths, which is an interesting topic of future research
(App. D.2).

Table 2: Throughput and reliability comparison of various
decoders on PAC(32; 16).

Decoder
Throughput (in Mbps)

Gap to SCL, L=128 (in dB)
GPU CPU

SC N/A 27 1:0
SCL, L=128 N/A 0:02 0.0
Fano N/A 4e-3 0:1
CRISP_GRU (Ours) 80 0:03 0:4
CRISP_CNN (Ours) 250 0:15 0:4
CRISP_GRU - No curriculum 80 0:03 0:8

5. Information theory guided curricula

In Sec. 4, we demonstrated the superiority of L2R curricu-
lum over other schemes. Here we introduce an alternate
curriculum,Noisy-to-Clean (N2C), that slightly bests the
L2R, inspired by the polarization property of polar codes.
The key idea behind N2C curriculum is to capitalize on
the polar index setI k . Recall that the setI k is obtained
by ranking then polar bit channels (under SC decoding)
in the increasing order of their reliabilities (from noisy to
clean) and choosing the topk indices. Formally, given
I k = f i r 1; i r 2; : : : ; i rk g � [n] in the increasing order of
reliabilities, ourN2C curriculum is given by: Train� on
m̂i r 1 ! Train � on (m̂i r 1 ; m̂i r 2 ) ! : : : ! Train � on

(m̂i r 1 ; : : : ; m̂i rk ). For both the sequential and block de-
coders, we observe that N2C is the best curriculum and
we haveN2C � L2R > C2N � R2L (Fig. 11). This
ordering is consistent with our interpretation in Sec. 4.4
of how the learning dif�culty evolves over a curriculum
(Fig. 12). For both N2C and L2R, the learning dif�culty
evolves smoothly but is abrupt for C2N and R2L, thus mak-
ing transfer harder in these curricula. Note that theC2N
curriculum refers to progressively training on subcodes of
Polar(n; k): Polar(n; 1) ! : : : ! Polar(n; k) (Lee et al.,
2020).

6. Related work

To address the sub-optimality of SC at �nite lengths, a pop-
ular technique is to use list decoding (Tal & Vardy, 2015;
Balatsoukas-Stimming et al., 2015), aided by cyclic redun-
dancy checks (CRC) (Li et al., 2012; Niu & Chen, 2012a;
Miloslavskaya & Trifonov, 2014). Several alternate decod-
ing methods have also been proposed such as stack decoding
(Niu & Chen, 2012b; Trifonov, 2018), belief propagation
decoding (Yuan & Parhi, 2014; Elkelesh et al., 2018). Deep
learning for communication (Qin et al., 2019; Kim et al.,
2020) has been an active �eld in the recent years and has
seen success in many problems including the design of
neural decoders for existing linear codes (Nachmani et al.,
2016; O'shea & Hoydis, 2017; Lugosch & Gross, 2017;
Vasíc et al., 2018; Liang et al., 2018; Bennatan et al., 2018;
Jiang et al., 2019a; Nachmani & Wolf, 2019; Buchberger
et al., 2020; He et al., 2020), and jointly learning channel
encoder-decoder pairs. (O'Shea et al., 2016; Kim et al.,
2018a; Jiang et al., 2019b; Makkuva et al., 2021; Jamali
et al., 2021; Chahine et al., 2021a;b).

Earlier works on designing neural polar decoders (Gross
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et al., 2020) used off-the-shelf neural architectures. These
were only able to decode codes of small blocklength (� 16)
(Lyu et al., 2018; Cao et al., 2020). Later works augmented
belief propagation decoding (Xu et al., 2018; Doan et al.,
2019), with neural components and improved performance.
In (Cammerer et al., 2017a) and (Doan et al., 2018), the
authors replace sub-components of the existing SC decoder
with NNs to scale decoding to longer lengths. However,
these methods fail to give reasonable reliability gains com-
pared to SC. In contrast, we use curriculum learning to train
neural decoders, and show non-trivial gains over SC perfor-
mance. (Lee et al., 2020) consider a curriculum training of
polar decoder, but do not achieve SC reliability for block
length 32. This is owing to the sub-optimality of both the
architecture and training curriculum (the C2N scheme). In
contrast, we design a principled curriculum guided by in-
formation theoretic insights, and a neural architecture that
fully capitalizes on the sequential polar decoding. Fig. 11
and Fig. 5(a) show that these design choices are essential
for achieving the reliability gains over SC.

Recent research by Choukroun and Wolf (Choukroun &
Wolf, 2022b;a) introduces transformer-based neural de-
coders for block channel codes. A distinctive feature of
their approach is the use of a sparse attention mask, which
harnesses the structure of the parity check matrix. The ap-
plication of a similar curriculum training procedure, as used
in our work with CRISP, to these transformer-based archi-
tectures might potentially expedite the convergence process.
Furthermore, such enhancements in the training procedure
could potentially close the gap to MAP performance for
higher block lengths.

7. Conclusion

We introduce a novel curriculum based neural decoder,
CRISP, that attains near-optimal reliability on the Polar code
family in the short blocklength regime. We design a princi-
pled curriculum to train CRISP, which is crucial to achieve
reliability gains for both the Polar and PAC codes. To the
best of our knowledge, this is the �rst learning-based PAC
decoder to achieve near-MAP reliability with signi�cantly
better throughput than the Fano decoder. Extending our re-
sults to medium blocklengths (100-1000) and codes outside
the Polar family are interesting future directions. While
optimizing the decoder complexity is not the primary focus
of this paper, our preliminary results already show gains in
throughput over standard methods. Further improvement in
decoding complexity whilst maintaining reliability gains is
another exciting future research direction.
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A. Successive Cancellation decoder

Here we detail the successive-cancellation (SC) algorithm
for decoding polar codes. As a motivating example, let's
consider thePolar(2; 2) code. Let the two information bits
be denoted byu andv, whereu; v 2 f 0; 1g. The codeword
x 2 f 0; 1g2 is given byx = ( x1; x2) = ( u � v; v). Let
y 2 R2 be the corresponding noisy codeword received by
the decoder. First we convert the receivedy into a vector of
log-likelihood-ratios (LLRs),L y 2 R2, which contains the
soft-information about coded bitsx1 andx2, i.e.

L y = ( L (1)
y ; L (2)

y )

,
�

log
P[y1jx1 = 0]
P[y1jx1 = 1]

; log
P[y2jx2 = 0]
P[y2jx2 = 1]

�
2 R2:

Once we have the soft-information about the codewordx ,
the goal is to now obtain the same for the message bitsu and
v. To compute the LLRs for these information bits, SC uses
the following principle: �rst, compute the soft-information
for the left bitu to estimatêu. Use the decoded̂u to compute
the soft-information for the right bitv and decode it. More
concretely, we compute the LLR for the bitu as:

L u = LSE( L (1)
y ; L (2)

y ) = log
1 + eL (1)

y + L (2)
y

eL (1)
y + eL (2)

y

2 R; (6)

whereLSE(a; b) , log(1 + ea+ b)=(ea + eb) for a; b 2 R.
The expression in Eq. 6 follows from the fact thatu =
(u � v) � v = x1 � x2 and hence the soft-informationL u

can be accordingly derived from that ofx1 andx2, i.e. L y .
Now we estimate the bit aŝu = 1f L u < 0g. Assuming
that we know the bitu = û, we observe that the codeword
x = ( û� v; v) can be viewed as a two-repitition ofv. Hence
its LLR L v is given by

L v = L (1)
y � (� 1)û + L (2)

y 2 R: (7)

Finally we decode the bit aŝv = 1f L v < 0g. To summarize,
given the LLR vectorL y we �rst compute the LLR for the
bit u, L u , using Eq. 6 and decode it. Utilizing the decoded
versionû, we compute the LLRL v according to Eq. 7 and
decode it.

For a more genericPolar(n; k), the underlying principle
is the same: to decode a polar codewordx = ( u � v; v),
�rst decode the left childu and utilize this to decode the
right child v. This principle is recursively applied at each
node of the Plotkin tree until we reach the leaves of the tree
where the decoding is trivial. In view of this principle, the
SC algorithm forPolar(2; 4), illustrated in Fig. 3(b), can be

mathematically expressed as (in the sequence of steps):

y 2 R4

L y = ( L (1)
y ; L (2)

y ; L (3)
y ; L (4)

y ) 2 R4;

L u = (LSE( L (1)
y ; L (3)

y ); LSE(L (2)
y ; L (4)

y )) 2 R2;

frozen�! m̂1 = 0 ;

L 2 = LSE( L (1)
y ; L (3)

y ) + LSE( L (2)
y ; L (4)

y ) 2 R;

m̂2 = 1f L 2 < 0g 2 f 0; 1g;

û = ( m̂2; m̂2) 2 f 0; 1g2;

L v = ( L (1)
y ; L (2)

y ) � (� 1)û + ( L (3)
y ; L (4)

y ) 2 R2;

frozen�! m̂3 = 0 ;

L 4 = L (1)
v + L (2)

v 2 R;

m̂4 = 1f L 4 < 0g 2 f 0; 1g:

In Fig. 3(b), the above equations are succinctly represented
by two set of arrows: the black solid arrows represent the
�ow of soft-information from the parent node to the children
whereas the green dotted arrows represent the �ow of the
decoded bit information from the children to the parent. We
note that we use a simpler min-sum approximation for the
functionLSE that is often used in practice, i.e.

LSE(a; b) � min( jaj ; jbj)sign(a)sign(b); a; b2 R:

B. Interpretation

As discussed in Sec. 4.4, we observe that whenever our
decoder reaches SC or better performance eventually when
training at a speci�c SNR, its BER (over all the bits) on
uncorrupted codewords, noiseless BER, drops to0 early
on in the training. Fig. 7(a) illustrates this forPolar(32; 16).
Conversely, if the model gets stuck at a BER worse than
that of SC, then we observe that its noiseless BER is also
stuck at a non-zero value. This is highlighted in Fig. 7(b)
for Polar(64; 32). In particular, we notice that the least
reliable bits contribute the most to the noiseless BER, while
a majority of the cleaner bits have zero individual BER
(Fig. 8(a)). Viewed from this context, we focus on the
noiseless scenario, i.e.y = x .

As a motivating example, we �rst consider thePolar(4; 4)
code. Letm = ( m1; m2; m3; m4) 2 f 0; 1g4 be the block
of message bits andx 2 f 0; 1g4 be the codeword. Hence
under the L2R curriculum, the subcodes evolve as

• k = 1 : m1 7! (m1; 0; 0; 0) 7! x = ( m1; 0; 0; 0),

• k = 2 : (m1; m2) 7! (m1; m2; 0; 0) 7! x = ( m1 �
m2; m2; 0; 0),

• k = 3 : (m1; m2; m3) 7! (m1; m2; m3; 0) 7! x =
(m1 � m2 � m3; m2; m3; 0),
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(b) Noiseless BER is high when the model is worse than SC

Figure 7: Evolution of training BER at1dB and noiseless BER for CRISP.

• k = 4 : (m1; m2; m3; m4) 7! (m1; m2; m3; m4) 7!
x = ( m1 � m2 � m3 � m4; m2 � m4; m3 � m4; m4).

Correspondingly, their optimal bit decoding rules under the
MAP evolve as

• k = 1 : y = x = ( m1; 0; 0; 0) 7! m̂1 = x1,

• k = 2 : y = x = ( m1 � m2; m2; 0; 0) 7! (m̂1; m̂2) =
(x1 � x2; x2),

• k = 3 : y = x = ( m1 � m2 � m3; m2; m3; 0) 7!
(m̂1; m̂2; m̂3) = ( x1 � x2 � x3; x2; x3),

• k = 4 : y = x = ( m1 � m2 � m3 � m4; m2 �
m4; m3 � m4; m4) 7! (m̂1; m̂2; m̂3; m̂4) = ( x1 �
x2 � x3 � x4; x2 � x4; x3 � x4; x4).

Similarly, we can compute the subcodes and their corre-
sponding decision rules under the R2L curriculum. Fig. 9
illustrates this evolution for both L2R and R2L. For the
least reliable bitm1, we observe that the L2R curriculum
reaches the optimal rule more gracefully by including one
coordinatex i at a time while this change for R2L (and no-
curriculum) is abrupt, making it harder to learn. We observe
the same trend for other bitsm2; m3 andm4. Note that for
Polar(4; 4), the reliability order ism1 < m 2 = m3 < m 4

and hence the L2R curriculum is same as N2C and R2L is
same as C2N.

For a generalPolar(n; k), we can likewise compute the
optimal MAP rules using the fact that the mapping
PlotkinTree : f 0; 1gn ! f 0; 1gn is its own inverse, i.e.
x = PlotkinTree( m ) =) m = PlotkinTree( x ).

To concretely compare different curricula, we de�ne the no-
tion of learning dif�culty for a bit: the number of codeword
bits multiplied in its optimal decoding rule. This metric
roughly captures the number of multiplication operations
a model has to learn at any curriculum step. For exam-
ple, for Polar(4; 4), the learning dif�culty form1 evloves
as 1 ! 2 ! 3 ! 4 for the L2R curriculum and as
0 ! 0 ! 0 ! 4 for the R2L curriculum. Fig. 10 illustrates
the evolution of learning dif�culty (taking maximum over
all bits) for Polar(32; 16) and Polar(64; 22) codes. We ob-
serve here that the jumps in the learning dif�culty are larger
for R2L, thus indicating a harder transfer than L2R, where
it increases smoothly (at most one bit per step).

Fig. 12 highlights a similar phenomenon forPolar(64; 22)
for L2R, R2L, N2C and C2N curricula. We observe that the
learning dif�culties of the L2R and N2C curricula evolve
smoothly while that of R2L and C2N are abrupt. Corre-
spondingly, their �nal BER reliability performance follows
the order N2C� L2R < R2L� C2N (Fig. 11).

B.1. Error analysis

To interpret the CRISP decoder, we compare its bitwise error
patterns against the SCL decoder. As shown in Fig. 8(b), we
plot the contribution of each bit to the block error rate; we
condition on having no previous errors. We observe that the
typical error events of CRISP, unlike CRISP_CNN, closely
resemble that of the SCL decoder. This aligns with our ex-
pectation since CRISP uses a sequential decoding paradigm
similar to that of the successive cancellation framework.
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Figure 8: Error analysis forPolar(64; 22) : (a) Noiseless BER for the two least reliable bits gets stuck at0:5 whereas it
converges to0 for the two most reliable bits, (b) Contribution of each bit (conditioned on no previous errors) to the BLER.

(a) L2R curriculum (b) R2L curriculum

Figure 9: Evolution of the MAP decoding rules for L2R and R2L forPolar(4; 4). Dotted lines indicate new coded bits being
introduced into the decoding rule at each curriculum step.

C. Ablation studies

Recall that our CRISP decoder consists of the sequential
RNN (512-dim hidden state) trained with the L2R curricu-
lum. To understand the contribution of each of these com-
ponents to its gains over SC, we did the following ablation
experiments for Polar(64; 22) code.

C.1. Effect of model size

We �x the decoder to be GRU and consider different model
sizes via the hidden state sizeh 2 f 256; 512g, and different
curricula amongf L2R, R2L, Without curriculum (w/o C)g.
Fig. 13(a) demonstrates that the accuracy gains of the L2R
curriculum are more pronounced forsmallermodels (h =
256). On the other hand, we observe minimal reliabilty
gains for L2R with large models (h = 512). We also tried

other sequential architectures such as LSTMs (Hochreiter
& Schmidhuber, 1997) and Transformers (Radford et al.,
2019), but found GRUs to be the best (App. D).

C.2. Sequential vs. block decoding

The sequential GRU architecture for CRISP is inspired in
part by the sequential SC algorithm. Alternatively, we also
design CRISP_CNN, a block decoder parameterized by
1D Convolutional Neural Networks (CNNs). CRISP_CNN
estimates all the information bitsmi in one shot giveny .
Similar to sequential decoders, curriculum learning; in par-
ticular, the L2R scheme works the best for block decoding
in achieving near-MAP reliability.

Fig. 14(b) compares RNNs and CNNs in terms of BLER
for Polar(64; 22) with L2R and R2L curricula. We observe
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