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Abstract

Polar codes are widely used state-of-the-art codes
for reliable communication that have recently
been included in the 5% generation wireless
standards (5G). However, there remains room
for the design of polar decoders that are both
efficient and reliable in the short blocklength
regime. Motivated by recent successes of data-
driven channel decoders, we introduce a novel
CurRIculum based Sequential neural decoder
for Polar codes (CRISP)". We design a princi-
pled curriculum, guided by information-theoretic
insights, to train CRISP and show that it out-
performs the successive-cancellation (SC) de-
coder and attains near-optimal reliability per-
formance on the Polar(32, 16) and Polar(64, 22)
codes. The choice of the proposed curriculum is
critical in achieving the accuracy gains of CRISP,
as we show by comparing against other curric-
ula. More notably, CRISP can be readily ex-
tended to Polarization-Adjusted-Convolutional
(PAC) codes, where existing SC decoders are sig-
nificantly less reliable. To the best of our knowl-
edge, CRISP constructs the first data-driven de-
coder for PAC codes and attains near-optimal per-
formance on the PAC(32, 16) code.

1. Introduction

Error-correcting codes (codes) are the backbone of mod-
ern digital communication. Codes, composed of (encoder,
decoder) pairs, ensure reliable data transmission even un-
der noisy conditions. Since the groundbreaking work
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of (Shannon, 1948), several landmark codes have been
proposed: Convolutional codes, low-density parity-check
(LDPC) codes, Turbo codes, Polar codes, and more recently,
Polarization-Adjusted-Convolutional (PAC) codes (Richard-
son & Urbanke, 2008). In particular, polar codes, introduced
by (Arikan, 2009), are widely used in practice owing to their
reliable performance in the short blocklength regime. A fam-
ily of variants of polar codes known as PAC codes further
improves performance, nearly achieving the fundamental
lower bound on the performance of any code at finite lengths,
albeit at a higher decoding complexity (Arikan, 2019). In
this paper, we focus on the decoding of these two classes of
codes, jointly termed the “Polar code family”.

The polar family exhibits several crucial information-
theoretic properties; practical finite-length performance,
however, depends on high complexity decoders. This search
for the design of efficient and reliable decoders for the Po-
lar family is the focus of substantial research in the past
decade. (a) Polar codes: The classical successive cancella-
tion (SC) decoder achieves information-theoretic capacity
asymptotically, but performs poorly at finite blocklengths
compared to the optimal maximum a posteriori (MAP) de-
coder (Arikan, 2019). To improve upon the reliability of
SC, several polar decoders have been proposed in the lit-
erature (Sec. 6). One such notable result is the celebrated
Successive-Cancellation-with-List (SCL) decoder (Tal &
Vardy, 2015). SCL improves upon the reliability of SC and
approaches that of the MAP with increasing list size (and
complexity). (b) PAC codes: The sequential “Fano decoder”
(Fano, 1963) allows PAC codes to perform information-
theoretically near-optimally; however, the decoding time is
long and variable (Rowshan et al., 2020a). Although SC
is efficient, O(nlogn), its performance with PAC codes
is significantly worse than that of the Fano decoder. Sev-
eral works (Yao et al., 2021; Rowshan et al., 2020b; Zhu
et al., 2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021)
propose ameliorations; it is safe to say that constructing
efficient and reliable decoders for the Polar family is an
active area of research and of utmost practical interest given
the advent of Polar codes in 5G wireless cellular standards.
The design of efficient and reliable decoders for the Polar
family is the focus of this paper.

In this paper, we introduce a novel CurRIculum based
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Figure 1: (a) CRISP achieves near-MAP reliability fdola64; 22) code on the AWGN channel. (b) Our proposed
curriculum is crucial for the gains CRISP attains over the baselines; details in Sec. 4.

Sequential neural decoder f&olar code family (CRISP). * We introduce CRISP, a novel curriculum-based sequen-
When the proposed curriculum is applied to neural network tial neural decoder for the Polar code family. Guided by
decoder training, thus trained decoders outperform existing  information-theoretic insights, we propose CL-based
baselines and attain near-MAP reliabilty Bola(64; 22), techniques to train CRISP, that are crucial for its supe-
Pola32; 16) and PAG32; 16) codes while maintaining low rior performance (Sec. 3).

computational complexity (Figs. 1, 5, Table 1). CRISP
builds upon an inherent nested hierarchy of polar codes; a
Polain; k) code subsumes all the codewords of lower-rate
subcode®olaln;i);1 i k(Sec.2.2). We provide prin-
cipled curriculum of training on examples from a sequence
of sub-codes along this hierarchy, and demonstrate that the + cRISP further achieves near-MAP reliability for the

¢ CRISP attains near-optimal reliability performance
on Pola(64;22) and Pola(32;16) codes whilst
achieving improved throughput (Sec. 4.1 and Sec. 4.2).

proposed curriculum is critical in attaining near-optimal PAC(32; 16) code with signi cantly higher throughput
performance (Sec. 4). compared to the Fano decoder. To the best of our
Curriculum-learning (CL) is a training strategy to train ma-  knowledge, thisis the rstlearning-based PAC decoder

chine learning models, starting with easier subtasks and 0 achieve this performance (Sec. 4.5).

then gradually increasing the dif culty of the tasks (Wang

et al., 2021). (Elman, 1993), a seminal work, was one o2. Problem formulation

the rst to employ CL for supervised tasks, highlighting the ] ] )
importance of “starting small". Later, (Bengio et al., 2009) /N this section we formally de ne the channel decoding
formalized the notion of CL and studied when and why CL Problem and provide background on the Polar code family.
helps in the context of visual and language learning (thur notation is the following: we denote Euclidean vectors
et al., 2020; Wang et al., 2021). In recent years, many enfy Small bold face letters;y, etc. [n] , f1;2;:::;ng.
pirical studies have shown that CL improves generalizatiof ©'M 2 R";m< , (mg;::5;mi 1). N(0;1 ) denotes
and convergence rate of various models in domains such Standard Gaussian distribution®fi. u v denotes the
as computer vision (Pentina et al., 2015; Guo et al., 201&iwise XOR of two binary vectora;v 2 0;1g .

Wang et al., 2019), natural language processing (Cirik et al.,

2016; Platanios et al., 2019), speech processing (Amodé-1. Channel decoding

etal, 2016; Gao et al., 2016), generative modeling (Karragyg primary goal of channel decoding is to design ef cient
etal.,, 2017; Wang et al., 2018), and neural program gefygcqders that can correctly recover the message bits upon

eration (Zaremba & Su_tskever, 2014; Reed & De Freitasreceiving codewords corrupted by noise (Fig. 2). More
2015). Viewed from this context, our results add decod -:1:1u) 2 £0; 1g¢ denote a block

ing of algebraic codes (of the Polar family) to the domain intormation/messagits that we wish to transmit. An
of successes of supervised CL. In summary, we make th@ncoderg - £0;1g¢ ! f 0;1g" maps these message bits

following contributions: into a binary codeword of lengthn, i.e. x = g(u). The
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m;,, =u andm,kc = 0 for somel [n]. Since the
message blockn contains the information bita only

at the indices pertaining tby, the setly is called the
information set and its complementS the frozen set
For the setly, we rst compute the capacities of thre
individual polar bit channels and rank them in their in-
creasing order (Tal & Vardy, 2013). ThdR picks the
top k out of them. For example?olal(4;2) has the or-
deringm; < m, = m3g < my4 andly = f2;4qg,
encoded bitx are modulated via Binary Phase Shift Keying and thusm = (0;m2;0;m,). Similarly, Polal8; 4) has
(BPSK),i.e.x 711 2x 2f 1g", and are transmitted M1 < Mz < M3 < M5 < My < Mg < M7 < Mg,
across the channel. We denote both the modulated ard = f4;6;7;8gandm = (0;0;0; m4; 0; mg; m7; Mg).
unmod_ulated codewords as The _chan_nel, der_woted aS Finally, we obtain the polar codewordx -
Pyjx (] ), corrupts the codewond to its noisy versiory 2 pigtkinTree(m), where the mappingPlotkinTree
R”.. Upon receiving the cqrrupted codeword, the decdder fO;1g" ! f 0;1g" is given by a complete binary tree,
estimates the message bitsas f (y). The performance ynown as Plotkin tree (Plotkin, 1960). Fig. 3(a) details the
of the decoder is measured using standard error metrigs|otkin tree forPola(4: 2). Plotkin tree takes the input
such as Bit-Error-Rate (BER) or Block-Error-Rate (BLER): message blockn 2 f 0;1g" at the leaves and applies the
BER(f ), (1=k) ;P[& 6 ui], whereaBLER(f ), “Plotkin " function at each of its internal nodes recursively
P2 6 u]. to obtain the codewordd 2 f0;1g" at the root. The
Given an encodey with code parametei®: k) and a chan- functionPlotkin : f0;1g f 0;1g !f 0;1g*," 2 N,is

nel Py x , the channel decoding problem can be mathematide ned as

cally formulated as: Plotkin(u;v), (u v;v):

2 argmin BER(f ); (1) Forexample, in Fig. 3(a), starting with the message block
m = (0;my;0;my,) at the leaves, we rst obtain =
Plotkin(0; m;) = ( m2; m;) andv = Plotkin(0 ;my) =

{ma;my). Applying the function once more, we obtain

Jdhe codewordx = Plotkin( u;v) = (mz  mg;m;

My; Mg, My).

Figure 2: Channel decoding problem.

which is a joint classi cation ok binary classes. To train
the parameters, we use the mean-square-error (MSE) los
as a differentiable surrogate to the objective in Eq. 1. It
well known in the literature that naively parametrizihg

by general-purpose neural networks does not work well angbecoding. The successive-cancellation (SC) algorithm is
they perform poorly even for small blocklengths like= 16 one of the most ef cient decoders for polar codes, with a
(Gruber et al., 2017). Hence it is essential to use ef cientdecoding complexity 0©(n logn). The basic principle be-
decoding architectures that capitalize on the structure of thgind the SC algorithm is to sequentially decode one message
encodeg (Kim etal., 2018b; Chen & Ye, 2021). To this end, pit m; at a time according to the conditional log-likelihood
we focus on a popular class of codes, Rudar code fam-  ratio (LLR), L; , log(P[m; = Ojy;r ]=P[m; =
ily, that comprises two state-of-the-art codes: Polar codegjy ; rh ; ]), given the corrupted codewoydand previous
(Arikan, 2009) and Polarization-Adjusted-Convolutional decoded bitsf.; fori 2 1. Fig. 3(b) illustrates this
(PAC) codes (Ar kan, 2019). Both these codes are closeljor the Pola(4; 2) code: for both the message hits and
related and hence we rst focus on polar codes in Sec. 2.2n4, we compute these conditional LLRs and decode them
In Sec. 3, we present CRISP, our novel curriculum-learningsia m, = 1fL, < Ogandrh, = 1fLs < 0g. Given
based neural decoder to decode polar codes. In Sec. 4.5 Wge Plotkin tree structure, these LLRs can be ef ciently
detail PAC codes. computed sequentially using a depth- rst-search based al-
gorithm (App. A).

2.2. Pol d . . . . .
olar codes As discussed in Sec. 1, SC achieves the theoretically opti-

Encoding. Polar codes, introduced in (Arikan, 2009), were mal performance only asymptotically, and its reliability is
the rst codes to be theoretically proven to achieve capacitysub-optimal at nite blocklengths. SC-list (SCL) decoding
for any binary-input discrete memoryless channel. Theiimproves upon its error-correction performance by maintain-
encoding is de ned as follows: l€h; k) be the code param- ing a list ofL candidate paths at any time step and choosing
eterswithn =2P;1 k n. Inorder to encode a block of the best among them in the end. In fact, for a reasonably
message bita = (uq;:::;uK) 2 f0;1g¢, we rstembed large list sizelL, SCL achieves MAP performance at the
them into a source message vegtor, (my;:::;mp) = cost of increased complexity(Ln logn), as highlighted in
(O;:::;ug;0;5::05U2; 050005 uk; 0;::)) 2 £0;19", where  Table 1.
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(a) Polar encoder (b) Successive cancellation decoder

Figure 3: Pola@; 2): (a) Polar encoding via Plotkin tree; (b) Blue arrows indicate the decoding order.

3. CRISP: Curriculum based sequential CRISP . Note that while the RNN is unrolled for = 4
neural decoder for Polar family time steps (Eq. 2), we only estimate bitkat 2 informa-
tion indices, i.erh, andr, (Eq. 3). A key drawback of SC
We design CRISP, a curriculum-learning-based sequential that a bit error at a positioincan contribute to the future
neural decoder for polar codes that strictly outperformsyjt errors ¢ i ), and it does not have a feedback mechanism
the SC algorithm and existing baselines. CRISP uses g correct these error events. On the other hand, owing to
sequential RNN decoder, powered by gated recurrent unithe RNN's recurrence relation (Eq. 2), through the gradient

(GRU) (Cho et al., 2014; Chung et al., 2014), to decode ong; receives during training, CRISP can learn to better predict
bit at a time. Instead of standard training techniques, wghe pits.

design a novel curriculum, guided by information-theoretic

insights, to train the RNN to learn good decoders. Fig. /Curriculum-training of CRISP. Given the decoding archi-
illustrates our approach. tecture of CRISP in Fig. 4(a), a natural approach to train

its parameters via supervised learning is to use a joint MSE
CRISP decoder.We use thé>ola(4; 2) code as a guiding |oss function for both the bith,; ): MSE(th,; M) =
example to illustrate our CRISP decoder (Fig. 4(a)). Thiqmz( ) my)2+(Ma( ) ma)2. However, as we highlight
code has two message bftsz; m4) and the message block iy Sec. 4.1 such an approach learns to fail better decoders
ism = (0;m3;0;my). Upon encoding it to the polar code- than SC and gets stuck at local minima. To address this

wordx 2 f 1g* and receiving its noisy version 2 R*,  issue, we propose a curriculum-learning based approach to
the decoder estimates the messagéas (0;M2;0,M4).  train the RNN parameters.

Similar to SC, CRISP uses the sequential paradigm of de- _ _ _ o _
coding one bith; at a time by capitalizing on the previous 1N€ key idea behind our curriculum training of CRISP is to
decoded bitsh ; andy. To that end, we parametrize the décompose the problem of joint estimation of I{its,; )

bit estimatet; conditioned on the past as a fully connected Nt0 @ sequence of sub-problems with increasing dif culty:
neural network (FCNN) that takes the hidden statasits ~ Start with leaming to estimate only the rst bifh¢) and
input. Hereh; denotes the hidden state of the GRU that im-Progressively add one new message bit at each curriculum
plicitly encodes this past informatiqim ; ;y) via GRU's  Step (ha) until we estimate the full message block =

recurrence equation, i.e. (Mg; r'h4): We freeze gll the non-trainable message .bits to
_ zero during any curriculum step. In other words, in the
hi = GRU (hi ;i 17y); 12112;34g, rst step, we freeze the bin, and train the decoder only

to estimate the bith, (i.e. the subcode corresponding to
mijy;hi< = FCNN (hi); i2f24g; 3)

where denotes the FCNN and GRU parameters jointly.
Henceforth we refer to our decoder as either CRISP or

4
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(a) CRISP decoder

(b) Curriculum to train CRISP

Figure 4: CRISP decoder and its training by curriculum-learning for F2jld).

k=1):

(mz;m4:O) ' m :(01m270,01 Polar X

X !Channel y !CRISP mz: (4)

We use this trained as an initialization for the next task of
estimating both the bitéh,; rh,):

(Ma;mg) ! m = (0;my;0;mg) 7o x

X !Channel y !CRISP (mz; m4): (5)

Fig. 4(b) illustrates this curriculum-learning approach. We

note that the knowledge of decodiryp, whenm, = 0

(Eq. 4) serves as a good initialization when we learn to det

coderh, for a generam, 2 f 0;1g (Eqg. 5). With such a

4.1. AWGN channel

Data generation The input messaga 2 f0;1g¢ is
randomly drawn uniformly from the boolean hypercube
and encoded as a polar codeword2 f 1g". The
classical additive white Gaussian noise (AWGN) channel,
y=x+2z,z N (0; ?,), generates the training/test
data(y;u) for the decoder. The signal-to-noise ratio, i.e.
SNR= 10log, 2, characterizes the noise level in the
channel. Here we x the channel to be AWGN in all our
experiments, as per the standard convention (Kim et al.,
2018b), and refer to App. D for additional results on fad-
ing and t-distributed channels. App. E details the training
procedure. Once trained, we use the CRISP models for
omparison against the baselines.

Baselines The optimal channel decoder is the MAP es-

curriculum aided training, we show in Sec. 4.1 (Figs. 1, S}timator: @ = argmax, ¢.1gx P[ujy], whose complexity
that the CRISP decoder outperforms the existing baselinegrows exponentially ik and is computationally infeasible.
and attains near-optimal performance for a variety of blockGiven this, we compare our CRISP decoder with the SCL
lengths and codes. We interpret this in Sec. 4.4. We defgfTal & Vardy, 2015), which has near-MAP performance for a

the training details to App. E.

Left-to-Right (L2R) curriculum for Polar(n; k). For
a generalPola(n; k) code, we follow a similar curricu-
lum to train CRISP. Denoting the index set bl =
fiq;io;iir;ikg [n] in the increasing order of indices
iy <lip < :::<iy,ourcurriculum is given by: Train
onrh, ! Train on(f;;r;,) ! ::: ! Train
on (i, ;:::;m;, ). We term this curriculunteft-to-Right
(L2R). The anti-curriculunR2Lrefers to progressively train-
ing in the decreasing order of the indiced in

4. Main results

In this section, we present numerical results for the CRIS

decoder on the Polar code family.

largeL, along with the classical SC. Among learning-based
decoders, we choose the state-of-the-art Neural-Successive-
Cancellation (NSC) as our baseline (Doan et al., 2018).
NSC replaces sub-components of the existing successive
cancellation decoder with NNs to scale decoding to block
lengths longer than 32. Each of these neural networks are
trained with the LLR outputs of the SC algorithm. Since
this training procedure with SC probabilities as the target is
sub-optimal, we consider an improved version with end-to-
end training (Fig. 2) for a fair comparison. We also include
the performance of CRISP trained directly without the cur-
riculum. We also compare with the curriculum training
procedure of (Lee et al., 2020) (the original work achieves
R reliability worse than SC decoding for block length 32).
All these baselines have the same number of parameters as
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sc sc
SC-List, L=32 SC-List, L=128.
:::::

Bit Error Rate
Bit Error Rate

Signal-to-noise ratio (SNR) [dB] Signal-to-noise ratio (SNR) [dB]
(a) Polaf32; 16) (b) PAC(32; 16)

Figure 5: CRISP outperforms baselines and attains near-MAP performarfeel&(32; 16) and PAG32; 16) codes on the
AWGN channel.

CRISP. (App. C.2).

Results. Fig. 1(a) highlights that the CRISP decoder out- > Reliabilitv-th h .

performs the existing baselines and attains near-MAP pef‘-' - Reliability-throughput comparison

forman(_:e over a wide range of SNR.S for “’i‘a‘(G“? 22) . Table 1: Throughput and reliability comparison of various
code. Fig. 1(b) illustrates the mechanism behind these 9aiNg. .oders on Polém; k)
at 0dB: the curriculum-guided CRISP slowly improves upon T

the overall BER (over th@2 bits) during the training and Throughput (inMbps)  Gap to SCL, L=32 (in dB)
eventually achieves much better performance than SC andpecoder (3216)  (6422) (3216)  (6422)
other baselines. In contrast, the decoder trained from scratch GPU CPU GPU CPU
makes a big initial gain but gets stuck at local minima and SC¢ 01727 008 15 080 040
. . . FastSC N/A 47  N/A 40 0:80 0.40
only achieves a marginal improvement over SC. Moreover, sci, L=4 001 85 002 627 005 010
H H . FastSCL, L=4 N/A 30 NA 24 0:05 Q10
we see_that decod(_ars .tralnec.i using other curricula, e.g..RZLSCL, L=32 (MAP) 563 081 263 060  0.00 0.00
also fail to show signi cant improvements over SC (Figs. FastsCL, L=32 N/A 77 N/A 55  0.00 0.00
.. NSC N/A  N/A 326 002 N/A 0:35
1(b), 11). We observe a similar trend feolai32; 16) code CRISP_GRU (Ours) 80 004 387 002 015 0.20
H H H CRISP_CNN (Ours) 250 0.02 133 013 Q15 020
in Fig. 5(a), where CRISP achieves near-MAP performance.gisp cru - no curicuum 80 0,04 387 002 060 ass

We posit that aided by a good curriculum, CRISP avoids
getting stuck at bad local minima and converges to bettef, he previous section, we demonstrated that CRISP
minima in the optimization landscape. Further, CRISP is,chieves better reliability than the baselines. Here we ana-
robust to deviations from the AWGN channel, while at-jy;¢ these gains through the lensidaicoding complexityTo

taining similar performance gains over SC on fading andyantitatively compare the complexities of these decoders,

T-distributed channels (App. D). For additional results, weyye evaluate their throughput on a single GTX 1080 Ti GPU
refer to App. D which highlights similar reliability gains o5 well as a CPU (Intel i7-6850K, 12 threads). For the

for other blocklengths and rates, App. C for the ablationgpyy version, we use our implementation of SC/SCL ow-
analysis, and App. E for the training hyperparameters anghq 1o the lack of publicly available implementations. On

architectures. the other hand, for the CPU column we use an optimized
Sequential vs Block decodingWe note that the sequen- Multithreaded implementation of SC/FastSC, SCL/FastSCL

tial RNN architecture for CRISP is inspired in part by the (Léonardon et al., 2019) in C++ by (Cassagne et al., 2019).
sequential SC algorithm. Notwithstanding, we also deAs Table 1 highlights, CRISP exploits the GPUs' inherent
sign block decoders that estimate all the information bitsoPtimization towards NNs to achieve excellent throughput,
m in one shot givery_ We chooselD Convolutional whilst aChiEVing near-SCL BER performance. We note
Neural Networks (CNNs) to parameterize this block dethat CRISP_CNN (App. C.2) attains better throughput than
coder,CRISP_CNNCRISP_CNN, trained with the L2R CRISP_GRU, while maintaining gains in BER. We posit

curriculum, achieves similar BER performance as CRISRhat further improvement in throughput can be realized us-
ing techniques like pruning and knowledge distillation. This
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is beyond the scope of this paper and is an important anMore concretely, we de ne the notion &farning dif culty
separate direction of future research. Note that we us#or a bit: the number of bits multiplied in its optimal decod-
BER= 10 3 to compute the gap to SCL (Figs. 1(a), 5(a)).ing rule. This metric roughly captures the number of opera-

We refer to App. F for further discussion. tions a model has to learn at any curriculum step. Fig. 6(b)
illustrates how it evolves over the L2R and R2L curricula
4.3. Computational complexity for the least reliable bit irPola(64; 22). If we take the

) ) ) maximum learning dif culty over all bits, we obtain a sim-
Running CRISP on suitable hardware architectures allowg - plot (Fig. 10). Note that in both the plots, the jumps

it to attain signi cant throughput gains. Nevertheless, to;, learning dif culty are larger for R2L, thus indicating a

provide a more comprehensive performance evaluation, it§,5der transfer than L2R, where it increases smoothly (at
important to also consider other metrics such as power cofqast one bit per step).

sumption. This necessitates an analysis of the computational
complexity of the algorithm, which we present below. 4.5. PAC codes

The decoding comple>.<|ty of SCL #(Ln logn), where A recent breakthrough work (Ar kan, 2019) introduces a new
L represents the list size. On the other hand, CRISP em- i . .

: class of codes called Polarization-Adjusted-Convolutional
ploys a 2-layer GRU neural network, the computational

complexity of which isn(2h(n + 1) + 6 h2), whereh de- (PAC) codes that match the fundamental lower bound on

notes the dimension of the GRU's hidden state. The bulk o{he performance of any code under the MAP decoding at

. ) . . nite-lengths (Moradi et al., 2020). The motivating idea
this computational complexity involves matrix-vector mul- . . T
L . . behind PAC codes is to overcome two key limitations of
tiplications; modern hardware like GPUs which allow for

signi cant speedups in these operations. This, in turn, alpolar codes at nite blocklengths: the poor minimum dis-

; . tance properties of the code and the sub-optimality of SC
lows for an improved performance and ef ciency of CRISP compared to the MAP (Mondelli et al., 2014). This is ad-
on such platforms.

dressed by adding@nvolutional outer codewith an ap-
propriate indexind i, before polar encoding to improve
the distance properties of the resulting code. More for-
This section describes why L2R is a better curriculum tharmally, the message bloak 2 f 0; 1g* is embedded into the
others. To this end, we rst claim that learning to decodesource vectom 2 f 0; 1g" according to the Reed-Muller
uncorrupted codewordy (= x) is critical to learning a (RM) indicesllﬁRM): compute the Hamming weights of
reliable decoder. This claim follows from the following key integersD; 1;:::;n 1 and choose the top. Now we en-
observation: while training our model (sequential or block)code the messaga via a rated convolutional code, i.e.
at a speci c SNR, we observe that whenever our modev = ¢ m 2f0;19", v = pGmij, for somelD
reaches SC or better performance, its BER on uncorruptegonvolutional kernet 2 f 0; 1g . Finally we obtain the PAC
codewords, aka the noiseless BER, drops to zero very earyodewordx by polar encoding: x = PlotkinTree( v).

in the training (App. B, Fig. 7(a)). On the other hand, when ) .
the model gets stuck at bad minima even after a lot of trainEAC codes can be decoded using the classical Fano algo-

ing, its noiseless BER is high (Fig. 7(b)). Hence, without'ithm (Fano, 19.63), a sequentigl decoding algorithm that
loss of generality, we focus on the setting x. Under this ~ US€S backtracking. Coupled with the Fano decoder, PAC

noiseless scenario, we analyze how the optimal bit decodin?o_deS achieve impressive results outperforming polar codes
rules evolve for different curricula. In particular, we focus (With SCL decoder) and matching the nite-length capacity

on the least reliable bits as they contribute the largest t§°und (Polyanskiy etal., 2010). However, the Fano decoder
noiseless BER (Fig. 8(a) and Fig. 8(b)). has signi can't drawbacks like variable running time, large
time complexity at low-SNRs (Rowshan et al., 2020b), and
For thePolax4; 4) code, Fig. 6(a) illustrates how the opti- sensitivity to the choice of hyperparameters (Moradi, 2020).
mal rule evolves for its least reliable bit;. In this case, To overcome these issues, several non-learning techniques,
the MAP decoding rule fom; is: My = X1X2X3Xs4. UN-  such as stack/list decoding, adaptive path metrics, etc., have
der the L2R curriculum, we arrive at this expression viapeen proposed in the literature (Yao et al., 2021; Zhu et al.,
X1 ! XiXz2 ! XiXaX3 ! X1X2X3Xs, Whereas R2L fol-  2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021). In
lows1! 1! 1! XiXpX3Xs. This highlights thatL2R contrast, we design a curriculum-learning-based CRISP de-

reaches the optimal rule more gracefully by learning to incoder for PAC codes trained directly from the data. We use
clude one coordinate; at a time while this change for R2L the same L2R curriculum to decode PAC codes.

(and no-curriculum) is abrupt, making it harder to learn.
Fig. 9 illustrates a similar evolution for the remaining bits
(M2; m3;my).

4.4. Interpretation

Fig. 5(b) highlights that the CRISP decoder achieves near-
MAP performance for the PA@B2; 16) code. While Fano
decoding achieves similar reliability, it is inherently non-
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L2R curriculum
R2L curriculum

Learning Dif culty

Curriculum Step
(a) L2R vs. R2L for decodingn1 (b) Evolution of learning dif culty

Figure 6: L2R vs. R2L: (a) Bit estimates evolve more smoothly under L2R than RRdian(4; 4), (b) Learning dif culty
increases more gracefully for L2R than R2L for P¢tdr; 22).

parallelizable. In contrast, CRISP allows for batching, and;, ,;:::;r;, ). For both the sequential and block de-
achieves a higher throughput, as highlighted in Table 2. Hereoders, we observe that N2C is the best curriculum and
we measure the throughput of Fano (Rowshan et al., 2020a&je haveN2C  L2R > C2N  R2L (Fig. 11). This
atSNR=1 dB. We note that the existing implementation ordering is consistent with our interpretation in Sec. 4.4
of Fano is not supported on GPUs. These preliminary resultef how the learning dif culty evolves over a curriculum
suggest that curriculum-based training holds a great promis@=ig. 12). For both N2C and L2R, the learning dif culty
for designing ef cient PAC decoders, especially for longer evolves smoothly but is abrupt for C2N and R2L, thus mak-
blocklengths, which is an interesting topic of future researching transfer harder in these curricula. Note that @&N
(App. D.2). curriculum refers to progressively training on subcodes of
Pola(n; k): Pola(n;1) ! :::! Polal(n;k) (Lee et al.,
Table 2: Throughput and reliability comparison of various 2020).
decoders on PA@G2; 16).

6. Related work

Throughput (in Mbps)

Decoder Gap to SCL, L=128 (in dB)

— GN'j: C;U — To address the sub-optimality of SC at nite lengths, a pop-
SCL, L=128 N/A 0:02 0.0 ular technique is to use list decoding (Tal & Vardy, 2015;

Fano N/A 4e-3 01 Balatsoukas-Stimming et al., 2015), aided by cyclic redun-
CRISP_GRU (Ours) 80 0:03 04 . .

CRISP_CNN (Ours) 250 0:15 04 dancy checks (CRC) (Li et al., 2012; Niu & Chen, 2012a;

CRISP_GRU - No curriculum 80 003 08

Miloslavskaya & Trifonov, 2014). Several alternate decod-
ing methods have also been proposed such as stack decoding
(Niu & Chen, 2012b; Trifonov, 2018), belief propagation
5. Information theory guided curricula decoding (Yuan & Parhi, 2014, Elkelesh et al., 2018). Deep
learning for communication (Qin et al., 2019; Kim et al.,
In Sec. 4, we demonstrated the superiority of L2R curricu2020) has been an active eld in the recent years and has
lum over other schemes. Here we introduce an alternatéeen success in many problems including the design of
curriculum,Noisy-to-Clean (N2C)that slightly bests the neural decoders for existing linear codes (Nachmani et al.,
L2R, inspired by the polarization property of polar codes2016; O'shea & Hoydis, 2017; Lugosch & Gross, 2017;
The key idea behind N2C curriculum is to capitalize onvasic et al., 2018; Liang et al., 2018; Bennatan et al., 2018;
the polar index sel. Recall that the selt, is obtained  Jiang et al., 2019a; Nachmani & Wolf, 2019; Buchberger
by ranking then polar bit channels (under SC decoding) et al., 2020; He et al., 2020), and jointly learning channel
in the increasing order of their reliabilities (from noisy to encoder-decoder pairs. (O'Shea et al., 2016; Kim et al.,
clean) and choosing the tdpindices. Formally, given 2018a; Jiang et al., 2019b; Makkuva et al., 2021; Jamali

Ik = firgiir2;::0ikg  [n] in the increasing order of et al., 2021; Chahine et al., 2021a;b).
reliabilities, ourN2C curriculum is given by: Train on i K desiani I polar decod
M, ! Train on(m ;) ! :::1! Train on Earlier works on designing neural polar decoders (Gross
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et al., 2020) used off-the-shelf neural architectures. ThesAcknowledgement

were only able to decode codes of small blocklengthL) . . .
(Lyu et al., 2018: Cao et al., 2020). Later works augmentecf\ShOK would like to thank his colleague Unnat Jain for a

belief propagation decoding (Xu et al., 2018; Doan et al_crucial advice about the project to switch from a RL based

2019), with neural components and improved pen‘ormancéa?pproaCh to a supervised one, which turned out to be the

In (Cammerer et al., 2017a) and (Doan et al., 2018), thgame changer for this paper. This work is supported by
authors replace sub-components of the existing SC decod&N\ R grants WO11INF-18-1-0332, N00014-21-1-2379, and

with NNs to scale decoding to longer lengths. However,NSF grants CNS-2002664, CNS-2002932, CCF-2312753

these methods fail to give reasonable reliability gains comad CNS-2112471 as a part of NSF Al Institute for Future

pared to SC. In contrast, we use curriculum learning to trair-d9€ Nétworks and Distributed Intelligence (Al-EDGE).
neural decoders, and show non-trivial gains over SC perfor-
mance. (Lee et al., 2020) consider a curriculum training of
polar decoder, but do not achieve SC reliability for block
length 32. This is owing to the sub-optimality of both the
architecture and training curriculum (the C2N scheme). In
contrast, we design a principled curriculum guided by in-
formation theoretic insights, and a neural architecture that
fully capitalizes on the sequential polar decoding. Fig. 11
and Fig. 5(a) show that these design choices are essential
for achieving the reliability gains over SC.

Recent research by Choukroun and Wolf (Choukroun &
Wolf, 2022b;a) introduces transformer-based neural de-
coders for block channel codes. A distinctive feature of
their approach is the use of a sparse attention mask, which
harnesses the structure of the parity check matrix. The ap-
plication of a similar curriculum training procedure, as used
in our work with CRISP, to these transformer-based archi-
tectures might potentially expedite the convergence process.
Furthermore, such enhancements in the training procedure
could potentially close the gap to MAP performance for
higher block lengths.

7. Conclusion

We introduce a novel curriculum based neural decoder,
CRISP, that attains near-optimal reliability on the Polar code
family in the short blocklength regime. We design a princi-
pled curriculum to train CRISP, which is crucial to achieve
reliability gains for both the Polar and PAC codes. To the
best of our knowledge, this is the rst learning-based PAC
decoder to achieve near-MAP reliability with signi cantly
better throughput than the Fano decoder. Extending our re-
sults to medium blocklength4Q0-1000 and codes outside
the Polar family are interesting future directions. While
optimizing the decoder complexity is not the primary focus
of this paper, our preliminary results already show gains in
throughput over standard methods. Further improvement in
decoding complexity whilst maintaining reliability gains is
another exciting future research direction.
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A. Successive Cancellation decoder mathematically expressed as (in the sequence of steps):

Here we detail the successive-cancellation (SC) algorithm y 2 R
for decoding polar codes. As a motivating example, let's L, =(LO: L@ . @) R

consider thdolal2; 2) code. Let the two information bits y y 'Ty o my Ty '

be denoted by andv, whereu; v 2 f 0; 1g. The codeword Ly =(LSE(L{M;LP ) LSE(LP ;L)) 2 R
x 2 f0;1¢? is given byx = (x1;%x2) = (u Vv;V). Let frozen! thy =0:

y 2 R? be the corresponding noisy codeword received by ' ’
the decoder. First we convert the receiyeihto a vector of L2 =LSE(L{Y; L) +LSE(LY;L{Y) 2 R;
log-likelihood-ratios (LLRs)Ly 2 R?, which contains the M, = 1fL, < 0g 2 f 0; 1g;

soft-information about coded bitg andxy, i.e. 0 = (fny:hy) 21 0; 1%

Ly =(L{PiL@) () +(LP5L{Y) 2 R
frozen! m3;=0;
R?: La=L® + L@ 2R,
ry = 1fL4 < Og 2 f 0; 1g:

Ly = (L L)
Ply1jx1 = 0] o Ply2jx2 = 0]
Ply1jx1 =1] "~ Ply2jx2 = 1]

Once we have the soft-information about the codewagrd . ) ]

the goal is to now obtain the same for the messageutirsd In Fig. 3(b), the above equations are succinctly represented
v. To compute the LLRs for these information bits, SC used?Y two set of arrows: the black solid arrows represent the
the following principle: rst, compute the soft-information OW of soft-information from the parent node to the children
for the left bitu to estimate. Use the decodetiito compute ~ Whereas the green dotted arrows represent the ow of the

the soft-information for the right bit and decode it. More decoded bit information from the children to the parent. We
concretely, we compute the LLR for the bias: note that we use a simpler min-sum approximation for the

functionLSE that is often used in practice, i.e.

®.L @ 1+ +Ly LSE(a;b)  min(jaj ; jbj)sign(a)sign(b); a;b2 R:
Ly =LSE(Ly’;Ly”)=log T 2R; (6)
B. Interpretation

whereLSE(a;b) , log(1l+ e**P)=(e? + &) fora;b2 R.  As discussed in Sec. 4.4, we observe that whenever our
The expression in Eq. 6 follows from the fact that= decoder reaches SC or better performance eventually when
(u V) Vv=xi Xpandhence the soft-informatidn, training at a speci ¢ SNR, its BER (over all the bits) on
can be accordingly derived from thatxof andx,, i.e.L,.  uncorrupted codewords, noiseless BER, drop6 &arly
Now we estimate the bit a& = 1fL, < 0g. Assuming ©Oninthe training. Fig. 7(a) illustrates this fBiola(32; 16).

that we know the biti = %1, we observe that the codeword Conversely, if the model gets stuck at a BER worse than
X = (M v;V) can be viewed as a two-repititionof Hence  that of SC, then we observe that its noiseless BER is also

its LLR L, is given by stuck at a non-zero value. This is highlighted in Fig. 7(b)
for Pola64; 32). In particular, we notice that the least

— 0 @ _ reliable bits contribute the most to the noiseless BER, while

Ly=Ly" ( )"+ Ly 2R (M) a majority of the cleaner bits have zero individual BER

(Fig. 8(a)). Viewed from this context, we focus on the

Finally we decode the bitas= 1fL, < Og. To summarize, NCISeless scenario, i.g.= x.

given the LLR vectoL y, we rst compute the LLR forthe  As a motivating example, we rst consider tR®la(4; 4)
bit u, L, using Eq. 6 and decode it. Utilizing the decodedcode. Letm = (mq;my;ms; my) 2 f0;1g* be the block
versiona, we compute the LLR y according to Eq. 7 and  of message bits and 2 f 0; 1g* be the codeword. Hence
decode it. under the L2R curriculum, the subcodes evolve as

For a more generi€ola(n; k), the underlying principle

is the same: to decode a polar codeword (u  V;V), ck=1:my 7! (my;0;0,0) 7! x =(m3;0;0;0),
rst decode the left childu and utilize this to decode the
right childv. This principle is recursively applied at each
node of the Plotkin tree until we reach the leaves of the tree
where the decoding is trivial. In view of this principle,the « k = 3 : (m1;mz;m3) 7! (mg;my;m3;0) 7! x =
SC algorithm forPolax2; 4), illustrated in Fig. 3(b), can be (my  myz mg3;my; mg;0),

e k=2:(mg;my) 7! (Mmy;my;0;0) 7! x = (my
mz; mz; 0; 0),
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Noiseless Noiseless
CRISP-1dB CRISP-1dB

SC-1dB SC-1dB

Bit Error Rate
Bit Error Rate

Training iterations Training iterations
(a) Noiseless BER goes to zero when the model is better than S®) Noiseless BER is high when the model is worse than SC

Figure 7: Evolution of training BER dtdB and noiseless BER for CRISP.

e k=4 :(mg;my;mz;my) 7! (Mg;My;mz;my) 7! To concretely compare different curricula, we de ne the no-
X=(m1 my mz Mg My mMy,M3 My, My). tion of learning dif culty for a bit: the number of codeword
bits multiplied in its optimal decoding rule. This metric
Correspondingly, their optimal bit decoding rules under the"ughly captures the number of multiplication operations
MAP evolve as a model has to learn at any curriculum step. For exam-
ple, for Pola(4; 4), the learning dif culty form; evloves
asl! 21! 31! 4forthe L2R curriculum and as

ck=1ty=x=(my;000)7! hy =Xy, 0! 0! 0! 4forthe R2L curriculum. Fig. 10 illustrates
the evolution of learning dif culty (taking maximum over
. = : = = . O | . =
b T ma mamai 0O 7MY il i) for Pola(s2: 16) and Polaf64; 22) codes. We ob-
v Ran2)h serve here that the jumps in the learning dif culty are larger

for R2L, thus indicating a harder transfer than L2R, where

. = . = = . - . |
k=3:y=x=(m mz Msmy;ms;0) 7! it increases smoothly (at most one bit per step).

(ha;zims) = (X1 X2 X3;X2;X3),
Fig. 12 highlights a similar phenomenon feéola(64; 22)

ck=4:1y=x=(mg my mz mym; for L2R, R2L, N2C and C2N curricula. We observe that the
Mg, Mz Mg;my) 70 (Mg sims) = (Xg learning dif culties of the L2R and N2C curricula evolve
X2 X3 Xa;X2  Xa;X3  Xg4;Xa). smoothly while that of R2L and C2N are abrupt. Corre-

spondingly, their nal BER reliability performance follows

Similarly, we can compute the subcodes and their corredhe order N2C L2R <R2L  C2N (Fig. 11).
sponding decision rules under the R2L curriculum. Fig. 9
illustrates this evolution for both L2R and R2L. For the B.1. Error analysis

least reliable bitny, we observe that the L2R curriculum To interpret the CRISP decoder, we compare its bitwise error

reaches the optimal rule more gracefully by including one . -
coordinatex; at a time while this change for R2L (and no- patterns against the SCL decoder. As shown in Fig. 8(b), we

; . L plot the contribution of each bit to the block error rate; we
curriculum is abrupt, making it harder to learn. We Observecondition on having no previous errors. We observe that the
the same trend for other bits,; m3; andmy. Note that for gnop .

) o . _ typical error events of CRISP, unlike CRISP_CNN, closely
Polail(4; 4), the reliability orderism; <m,; = mz <my L .
and hence the L2R curriculum is same as N2C and R2L iéesem_ble that of the SCL decoder. Th_|s aligns Wlth our ex-
same as C2N p.ec.tat|on since CRISP uses a sequential Qecodmg paradigm
' similar to that of the successive cancellation framework.
For a generaPolaln; k), we can likewise compute the
optimal MAP rules using the fact that the mapping
PlotkinTree : f0;1g" ! f 0;1g" is its own inverse, i.e.
x = PlotkinTree( m) =) m = PlotkinTree( x).
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Noisy bit 1
Noisy bit 2
Clean bit 1
Clean bit2

Bit Error Rate

Training iterations
(a) Bitwise BER for clean and noisy bits (b) Bitwise contribution to the total BLER

Figure 8: Error analysis fdPola64; 22) : (a) Noiseless BER for the two least reliable bits gets stucktatvhereas it
converges t® for the two most reliable bits, (b) Contribution of each bit (conditioned on no previous errors) to the BLER.

(a) L2R curriculum (b) R2L curriculum

Figure 9: Evolution of the MAP decoding rules for L2R and R2L Rmiai4; 4). Dotted lines indicate new coded bits being
introduced into the decoding rule at each curriculum step.

C. Ablation studies other sequential architectures such as LSTMs (Hochreiter

) . & Schmidhuber, 1997) and Transformers (Radford et al.,
Recall that our CRISP decoder consists of the sequentlagmg) but found GRUS to be the best (App. D).

RNN (512dim hidden state) trained with the L2R curricu-
lum. To understand the contribution of each of these com(—:

ponents to its gains over SC, we did the following ablation 2. Sequential vs. block decoding

experiments for Pol§84; 22) code. The sequential GRU architecture for CRISP is inspired in
part by the sequential SC algorithm. Alternatively, we also
C.1. Effect of model size design CRISP_CNN, a block decoder parameterized by

) _ 1D Convolutional Neural Networks (CNNs). CRISP_CNN
We x the decoder to be GRU and consider different mOdeIestimates all the information bits; in one shot givery.

sizes via the hidden state siae f 256 5129, and different  gjpjiar 19 sequential decoders, curriculum learning; in par-

Cl.Jmcma among L2R, R2L, Without C“”'CU'“”.‘ (wio @) ticular, the L2R scheme works the best for block decoding
Flg..13(a) demonstrates that the accuracy gains of the L2 achieving near-MAP reliability.

curriculum are more pronounced femallermodels b =

256). On the other hand, we observe minimal reliabilty Fig. 14(b) compares RNNs and CNNs in terms of BLER
gains for L2R with large model$i(= 512). We also tried ~ for Pola64; 22) with L2R and R2L curricula. We observe
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