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Abstract
Chaotic dynamical systems (DS) are ubiquitous
in nature and society. Often we are interested in
reconstructing such systems from observed time
series for prediction or mechanistic insight, where
by reconstruction we mean learning geometrical
and invariant temporal properties of the system
in question (like attractors). However, training
reconstruction algorithms like recurrent neural
networks (RNNs) on such systems by gradient-
descent based techniques faces severe challenges.
This is mainly due to exploding gradients caused
by the exponential divergence of trajectories in
chaotic systems. Moreover, for (scientific) inter-
pretability we wish to have as low dimensional
reconstructions as possible, preferably in a model
which is mathematically tractable. Here we re-
port that a surprisingly simple modification of
teacher forcing leads to provably strictly all-time
bounded gradients in training on chaotic systems,
and, when paired with a simple architectural rear-
rangement of a tractable RNN design, piecewise-
linear RNNs (PLRNNs), allows for faithful re-
construction in spaces of at most the dimensional-
ity of the observed system. We show on several
DS that with these amendments we can recon-
struct DS better than current SOTA algorithms, in
much lower dimensions. Performance differences
were particularly compelling on real world data
with which most other methods severely strug-
gled. This work thus led to a simple yet powerful
DS reconstruction algorithm which is highly in-
terpretable at the same time.
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1. Introduction
In many scientific and engineering settings we are interested
in learning the dynamics of an unknown, or hard to tackle,
underlying DS that we have observed through a set of time
series measurements. This may, for instance, be temperature
measurements to assess climate dynamics, tracking infected
cases for epidemiological dynamics, or neural recordings
from the brain. Having a faithful model of the underlying
dynamics enables rigorous scientific and mathematical anal-
ysis, as well as optimal predictions of the system’s future
temporal evolution. For many complex DS such as the brain
or social networks we have only rudimentary and insuffi-
cient knowledge about the governing equations. Given the
success of deep learning in so many areas and disciplines,
there has been a burgeoning interest in recent years in purely
data-driven approaches to DS reconstruction to bypass the
traditional tedious and protracted scientific model building
process (Brunton et al., 2016; Chen et al., 2018; Koppe et al.,
2019; Vlachas et al., 2020; Schmidt et al., 2021; Brenner
et al., 2022; Lejarza & Baldea, 2022).

In DS reconstruction one aims to retrieve from data an
(approximate) model of the underlying dynamics that encap-
sulates all its geometrical and invariant temporal properties,
such as attractor states and other invariant sets (for some
applications, even just capturing the topological structure of
the underlying DS may be sufficient; Takens (1981); Sauer
et al. (1991)). Training machine learning systems such as
RNNs on time series observations from DS poses a number
of severe challenges, however. In fact, DS reconstruction al-
gorithms have so far mostly been probed only on simulated
DS (Brunton et al., 2016; Vlachas et al., 2018; Pathak et al.,
2018; Champion et al., 2019; Otto & Rowley, 2019; Bakarji
et al., 2022), such as the Lorenz-63 (Lorenz, 1963) and
Lorenz-96 (Lorenz, 1996) models of atmospheric convec-
tion, or Navier-Stokes equations for turbulent flow. While
evaluation of algorithms on such ground truth benchmarks
is obviously important, the relative sparsity of real-world
applications demonstrates there is still a lot of ground to
make (cf. Brenner et al. (2022); Mikhaeil et al. (2022)).
One important challenge here is that most complex DS are
inherently chaotic (Olsen et al., 1988; Van Vreeswijk &
Sompolinsky, 1996; Durstewitz & Gabriel, 2007a; Duarte
et al., 2010; Faggini, 2014; Kesmia et al., 2020; Mangia-
rotti et al., 2020; Inoue et al., 2021; Kamdjeu Kengne et al.,
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2021). Chaotic DS harbor trajectories diverging exponen-
tially fast, which leads to exploding loss gradients when
training with the most common, scalable gradient-based
techniques (Engelken et al., 2020; Mikhaeil et al., 2022).
Recent theoretical and empirical results emphasized that
this a principle problem which cannot be addressed through
specifically designed network architectures (Mikhaeil et al.,
2022),1 but needs to be addressed at the level of training
algorithms. At the same time, especially for detailed sci-
entific analysis, we are interested in reconstruction models
that are tractable and reproduce the observed data (and the
underlying dynamics) in as low dimensions as possible.2

Here we tackle both these challenges. In particular, we
prove that a simple amendment of teacher forcing (TF), a
classical technique to keep trajectories on track while train-
ing, leads to strictly contained loss gradients, for arbitrary
time horizons, without diminishing a model’s ability to cap-
ture chaotic dynamics. While simple in spirit, this solves
an outstanding problem in the field (Mikhaeil et al., 2022)
and leads to training results that surpass a wide range of pre-
vious SOTA techniques, often by large margins, especially
on real-world data. We also rearrange the tractable PLRNN
structure, previously suggested for DS reconstruction (Bren-
ner et al., 2022), into a ‘shallow’ one-hidden-layer design.
While this yields an almost standard multi-layer-perceptron
(MLP), we observed that – somewhat surprisingly – it al-
lows for reconstruction of DS with at most as many latent
dynamical variables as those of the underlying system, and
makes the resulting architecture particularly well-suited for
our specific variant of TF. Meanwhile, we show the result-
ing model can still be rewritten in standard PLRNN form,
preserving its tractable design.

2. Related Work
Dynamical Systems Reconstruction DS reconstruction
aims at producing a generative model of an unknown DS
underlying a set of observed time series variables. By ‘gen-
erative’ here we mean that, after successful training, the
(not necessarily probabilistic) model should be capable of
producing time series with the same temporal and geometri-
cal properties as those produced by the true (but unknown)
DS, where ‘geometrical’ refers to the geometry of dynam-
ical objects (like attractors) in state space and ‘temporal’
includes invariant properties like a system’s power spec-

1For instance, both classical solutions like LSTM (Hochreiter
& Schmidhuber, 1997) or GRU (Cho et al., 2014) as well as more
recent architectures, like coRNN (Rusch & Mishra, 2020), do not
offer any way out of this conundrum (Mikhaeil et al., 2022).

2Note that classical delay embedding reconstruction theorems
(Takens, 1981; Sauer et al., 1991) demand that the reconstruc-
tion space is larger than two times the box-counting dimension
of the underlying attractor, but latent variable models or deeper
architectures may have other means to ‘fill in’ missing dimensions.

trum. Commonly these models work by approximating the
unknown governing equations (or their flow), e.g. through
a sufficiently expressive library of basis functions (Brun-
ton et al., 2016; Lejarza & Baldea, 2022), or by RNNs
(Vlachas et al., 2018; Pathak et al., 2018; Koppe et al., 2019;
Vlachas et al., 2020; Schmidt et al., 2021; Brenner et al.,
2022), which are universal approximators of DS (Funa-
hashi & Nakamura, 1993; Kimura & Nakano, 1998; Han-
son & Raginsky, 2020). Algorithms for training RNNs on
DS reconstruction problems were based on probabilistic
techniques like Expectation-Maximization and nonlinear
Kalman filters (Voss et al., 2004; Koppe et al., 2019; Zhao &
Park, 2020) or variational inference (Hernandez et al., 2020;
Kramer et al., 2022), but the to date most successful methods
(cf. Brenner et al. (2022)) simply relied on gradient-based
procedures like Back-Propagation-Through-Time (BPTT;
Rumelhart et al. (1986)). Continuous-time RNNs like Neu-
ral ODEs (Chen et al., 2018) were also widely tested for
DS reconstruction (Raissi, 2018), with extensions to sys-
tems of partial differential equations. Other recent ideas
include Fourier Neural Operators for approximating spa-
tially extended systems in function space (Li et al., 2021),
RNNs or other DS approximators embedded within deep
auto-encoders to extract suitable coordinate transformations
or lower-dimensional state space representations (Cham-
pion et al., 2019; Bakarji et al., 2022), and approaches for
extrapolating to ‘unseen’ dynamical regimes (Patel & Ott,
2022; Kirchmeyer et al., 2022; Ricci et al., 2022). For
scientific applications, mathematical tractability and dynam-
ical interpretability3 of trained DS reconstruction models is
imperative. To these ends, often locally linear techniques
like piecewise-linear RNNs (PLRNNs; Durstewitz (2017);
Koppe et al. (2019)) , Koopman operator theory (Lusch et al.,
2018; Brunton et al., 2022) or co-training of switching linear
DS (Smith et al., 2021), were designed, but most of these
require moving to a higher-dimensional space. We show
that this latter issue can be avoided by simply reshaping
PLRNNs into a 1-hidden-layer structure.

Controlling exploding gradients The exploding and van-
ishing gradient problem has long been recognized as a se-
vere challenge in training RNNs on time series prediction or
classification tasks which involve large time spans between
relevant pieces of information (Bengio et al., 1994; Hochre-
iter et al., 2001). For DS, a related problem is that these
may contain dynamics evolving on widely differing, includ-
ing very slow, time scales (Schmidt et al., 2021). Many
approaches tried to address this issue by designing specific
RNN architectures (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014; Rusch & Mishra, 2020; 2021; Rusch et al.,
2022) or imposing specific constraints on RNN parameters

3Note we mean ‘interpretability’ in a DS sense, i.e. such that
topological and geometrical properties of the resulting system can
easily be analyzed, visualized, and understood.
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(Arjovsky et al., 2016; Chang et al., 2019; Erichson et al.,
2021). However, all of these either severely limit expressive-
ness such that chaotic dynamics cannot be learned to begin
with (because constraints or design prevent maximum Lya-
punov exponents from exceeding 0), or they still struggle
with exploding gradients and hence time series from chaotic
systems (Mikhaeil et al., 2022). Mikhaeil et al. (2022) there-
fore suggested to address the problem in training by control-
ling trajectory divergence through ‘sparse TF’, based on the
older control-theoretic idea of TF (Pineda, 1988; Pearlmut-
ter, 1989; Williams & Zipser, 1989; Jordan, 1990). Sparse
TF (STF) resets RNN states to control values inferred from
the data, thus pulling diverging trajectories back on track
and cutting off exploding gradients, at times determined
from the underlying system’s Lyapunov spectrum. However,
this requires knowledge or empirical estimates of the sys-
tem’s Lyapunov exponents, and – on the other hand – it does
not strictly avoid exploding gradients either, just attempts to
strike an optimal balance between gradient divergence and
not loosing relevant longer time scales. Here we suggest a
simple modification of TF that solves both these problems
such that gradients are strictly contained yet chaotic dynam-
ics can be learned, without any knowledge required of the
underlying DS’ maximum Lyapunov exponent. This is one
of the main results of the present work.

3. Theoretical Analysis & Methods
This section will first discuss the basic problem in training
RNNs on time series from chaotic systems. We will then
outline a solution and its mathematical foundation, before
addressing the specific RNN architecture for DS reconstruc-
tion championed in this work.

3.1. Problem setting: Loss gradients and chaotic
dynamics

Our exposition here summarizes the key observations made
in Mikhaeil et al. (2022). Most RNNs are parameterized
discrete-time recursive maps of the form

zt = Fθ

(
zt−1, st

)
, (1)

with states zt, optional external inputs st, and parameter
set θ. If unconstrained, depending on its set of parameters,
an RNN may exhibit any type of limit dynamics, like con-
vergence to fixed points, cycles of any order, quasi-periodic
behavior, or chaos (in fact, RNNs are dynamically univer-
sal, cf. Hanson & Raginsky (2020)). If an RNN is used
to reconstruct a chaotic system, it needs to be chaotic it-
self (otherwise the reconstruction would have failed), which
entails that its maximum Lyapunov exponent needs to be
larger than 0. The Lyapunov exponent quantifies the expo-
nential divergence of initially nearby trajectories. Defining

the Jacobian of (1) by

Jt :=
∂Fθ

(
zt−1, st

)
∂zt−1

=
∂zt
∂zt−1

, (2)

the maximum Lyapunov exponent of an RNN orbit Z =
{z1, z2, . . . ,zT , . . . } is given through the product of Jaco-
bians Jt along the orbit by

λmax := lim
T→∞

1

T
log

∥∥∥∥∥
T−2∏
r=0

JT−r

∥∥∥∥∥
2

, (3)

where ∥·∥2 denotes the spectral norm. Mikhaeil et al. (2022)
showed that the problem of training RNNs on chaotic time
series using gradient descent based algorithms is ill-posed,
as the condition λmax > 0 will inevitably lead to diverging
loss gradients.

Let us illustrate this with the most common algorithm used
for training RNNs, Backpropagation Through Time (BPTT;
Rumelhart et al. (1986); Werbos (1990)). Given a loss func-
tion L =

∑T
t=1 Lt(zt, z̄t) where zt are RNN-generated

and z̄t target states, the BPTT algorithm employs the chain
rule along the RNN unrolled in time to compute loss gradi-
ents w.r.t. model parameters θi ∈ θ,

∂L
∂θi

=

T∑
t=1

∂Lt

∂θi
with

∂Lt

∂θi
=

t∑
r=1

∂Lt

∂zt

∂zt
∂zr

∂+zr
∂θi

,

(4)

where ∂+ denotes the immediate derivative. The crucial
observation now is that Eq. (4) contains the same product
of Jacobians,

∂zt
∂zr

=
∂zt
∂zt−1

∂zt−1

∂zt−2
· · · ∂zr+1

∂zr

= JtJt−1 · · ·Jr+1 =

t−r−1∏
k=0

Jt−k,

(5)

that occurs in the definition of the maximum Lyapunov
exponent in Eq. 3. As Mikhaeil et al. (2022) strictly prove,
this entails exponentially exploding loss gradients for T →
∞ when training RNNs on chaotic systems whose behavior
they are supposed to reproduce. In practice, unreliable
and ill-behaved training sets in even for moderate sequence
lengths T , and architectures like LSTM designed to control
gradient flows or simple gradient clipping techniques are
not sufficient to contain the problem (Mikhaeil et al., 2022).

3.2. Generalized Teacher Forcing

What is needed in addition is a procedure for forcing di-
verging trajectories back onto their targets while training
for DS reconstruction. This has been recognized long ago,
and the classical control technique here is TF (Pineda, 1988;
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Pearlmutter, 1989; Williams & Zipser, 1989; Jordan, 1990).
TF replaces current RNN states after computing the loss
by data-inferred values, classically at each time step, or at
times strategically chosen according to the system’s max-
imum Lyapunov exponent in sparse-TF (Mikhaeil et al.,
2022). Motivated by the problem of unstable solutions after
RNN training with classical TF, Doya et al. (1992) sug-
gested to linearly interpolate between RNN-generated states
zt and target states z̄t:

z̃t := (1− α)zt + αz̄t, (6)

with 0 ≤ α ≤ 1. This simple idea, which we will refer to
as Generalized Teacher Forcing (GTF), has in fact not been
systematically studied so far. It turns out that GTF, with the
right choice of α, can fully rectify the exploding gradients
problem in learning chaotic dynamics.

Now let us unwrap how GTF (6) will impact RNN (1) train-
ing. The state replacement, Eq. (6), is performed prior
to applying RNN map Fθ at each training time step, i.e.
zt = Fθ(z̃t−1). According to the chain rule, this leads to
the following factorization of Jacobians Jt:

Jt =
∂zt
∂zt−1

=
∂zt
∂z̃t−1

∂z̃t−1

∂zt−1
=
∂Fθ(z̃t−1)

∂z̃t−1

∂z̃t−1

∂zt−1

= (1− α)J̃t, (7)

where J̃t is the Jacobian of Fθ evaluated at the forced state
z̃t−1. Plugging into (5) gives the following expression for
the product of Jacobians under GTF:

∂zt
∂zr

=

t−r−1∏
k=0

Jt−k =

t−r−1∏
k=0

(1− α)J̃t−k

= (1− α)t−r
t−r−1∏
k=0

J̃t−k.

(8)

For α = 0 (no forcing) this simply yields vanilla BPTT (5),
while for α = 1 Eq. (8) evaluates to zero and there will
be no gradient propagation. For values in between, GTF
controls the Jacobian product norm

∥∥∥ ∂zt

∂zr

∥∥∥ as illustrated in
Fig. 1. Fig. 2 summarizes the GTF principle and notation.

Now assume that for any fixed given set of parameters θ,
J = {J̃κ}κ∈K is the set of all different Jacobians of an
RNN (which may be countable or uncountable). We define

σ̃max = supS1 := sup

{∥∥∥J̃κ

∥∥∥ = σmax(J̃κ) : J̃κ ∈ J
}
,

λ̃min = inf S2 := inf

{
λmin(J̃κ) : J̃κ ∈ J

}
≥ 0, (9)

where λmin(J̃κ) = min

{
|λj | : λj ∈ eig(J̃κ)

}
.

Figure 1. Norms of Jacobian product series given in Eq. (8) for an
RNN trained by BPTT+GTF on the Lorenz-63 system as function
of sequence length t. The RNN state is initialized based on the
ground truth and then propagated for t time steps. The Jacobians
diverge if α is chosen too small, but converge if too large.

Obviously the nonempty set S2 ⊂ R is bounded from below
by definition, but the set S1 ⊂ R is not necessarily bounded
from above. However, here we will consider the set of
extended real numbers R̄ := R ∪ {−∞,+∞} and define
the supremum of a set not bounded from above as +∞. The
following proposition states a necessary condition for the
existence of chaos in RNNs:
Proposition 1. If the RNN (1) is chaotic, then σ̃max > 1.

Proof. See Appx. 6.1.1.

The next proposition now sets the stage for a proper choice
of the GTF parameter α:
Proposition 2. Consider an RNN given by (1) and let
σ̃max ≥ 1.

(i) If α = α∗ := 1 − 1
σ̃max

, then the Jacobian product
series ∂zt

∂zr
will be bounded from above, i.e. its norm

will not diverge as t− r → ∞.

(ii) Assume that α = α∗ and define γ̃ := λ̃min

σ̃max
(0 ≤ γ̃ ≤

1). If γ̃ = 1, then ∂zt

∂zr
neither explodes nor vanishes

for t− r → ∞. When γ̃ ̸= 1, the Jacobian ∂zt

∂zr
will

not explode, but may potentially vanish as t−r goes to
infinity. Furthermore if limt−r→∞

∥∥∥ ∂zt

∂zr

∥∥∥ = 0, then

the closer γ̃ is to 1, the slower ∂zt

∂zr
tends to zero for

t− r → ∞.

Proof. See Appx. 6.1.2.

3.3. Reconstruction models

We will base our experiments on the specific class of
PLRNNs (Durstewitz, 2017; Koppe et al., 2019), since they
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Figure 2. Principle of Generalized Teacher Forcing.

are mathematically tractable in the sense that fixed points,
cycles, and other invariant sets can, in principle, be com-
puted exactly and semi-analytically for them (Monfared &
Durstewitz, 2020; Schmidt et al., 2021; Brenner et al., 2022).
This facilitates their post-training DS analysis in scientific
contexts. In its simplest form, the PLRNN is given by

zt = Azt−1 +Wϕ(zt−1) + h0, (10)

with diagonal matrix A ∈ RM×M , off-diagonal matrix
W ∈ RM×M , bias h0 ∈ RM , and rectified-linear-unit
nonlinearity ϕ(·) = ReLU(·) = max(0, ·). Brenner et al.
(2022) extended this basic structure by adding a linear
spline basis expansion, dubbed the dendritic PLRNN (dend-
PLRNN), to increase the expressivity of each unit’s nonlin-
earity and thus enable DS reconstructions in lower dimen-
sions,

zt = Azt−1 +W

B∑
b=1

αbϕ(zt−1 − hb) + h0, (11)

with slope-threshold pairs {αb,hb}Bb=1, whereB is the num-
ber of bases. It can be shown that the dendPLRNN can be
reformulated as a higher-dimensional conventional PLRNN
(Brenner et al., 2022).

However, in this work we will specifically consider the
following “1-hidden-layer” ReLU-based RNN, which we
will refer to as shallow PLRNN (shPLRNN):

zt = Azt−1 +W1ϕ(W2zt−1 + h2) + h1, (12)

with latent states zt ∈ RM , diagonal matrix A ∈ RM×M ,
rectangular connectivity matrices W1 ∈ RM×L and W2 ∈
RL×M , and thresholds h2 ∈ RL and h1 ∈ RM . With L >
M , by expanding each unit’s activation into a weighted sum
of ReLU nonlinearities, this formulation appears similar to
the dendPLRNN, and indeed this intuition is confirmed by
the following Proposition:

Proposition 3. Any shPLRNN given by (12) can be rewrit-
ten in the form of the dendPLRNN (11). It follows, in partic-
ular, that fixed points and cycles of (12) can be computed in
an analogous way as for the dendPLRNN. Vice versa, any
M -dimensional dendPLRNN can be reformulated as an M -
dimensional shPLRNN with hidden layer size L =M ·B.

Proof. See Appx. 6.1.3

Similar to the dendPLRNN, the shPLRNN can be equipped
with a clipping mechanism that prevents states from diverg-
ing to infinity due to the unbounded ReLU nonlinearity:

zt = Azt−1 +W1

[
ϕ(W2zt−1 + h2)

−ϕ (W2zt−1)
]
+ h1. (13)

This guarantees bounded orbits provided the largest absolute
eigenvalue of A is smaller than 1 (as shown in Appx. 6.1.4).

Finally, to map from the PLRNN’s M -dimensional latent to
the N -dimensional observation space, a linear observation
model (i.e., linear output layer) is used:

x̂t = Gφ(zt) = Bzt. (14)

3.4. Model training

We use BPTT combined with GTF to train RNNs on time
series X ∈ RN×T from chaotic DS, where T is the length
of the time series andN is the number of observed variables.
Control signals ẑt used for TF are inferred from the observa-
tions by inversion of the observation model Gφ (Mikhaeil
et al., 2022),

ẑt := G−1
φ (x) = B+xt, (15)

where B+ denotes the Moore–Penrose (pseudo-) inverse
of B.4 In the simplest case, if the RNN’s latent dimension
and the dimension of the observations match, i.e. N =M ,
one could also simply fix B = 1N×N and train on the
observations directly, taking ẑt = xt as the control signal
(see Brenner et al. (2022)).

How to choose the GTF parameter α in practice? Building
on Proposition 2, to avoid exploding gradients altogether,
one would need to set α according to the maximum singular
value of the RNN Jacobians, Eq. (9). However, exactly
computing σ̃max is intractable for most RNN architectures.

4More generally, one may think of invertible neural networks
(INNs; Dinh et al. (2017); Ardizzone et al. (2019)) for linking
latent states to observations, but here we contend ourselves with a
simple linear model.

5



Generalized Teacher Forcing for Learning Chaotic Dynamics

This can easily be seen for the shPLRNN (12), for which
the Jacobian (2) is given by

J
(sh)
t = A+W1D̃Ω(t−1)W2, (16)

where D̃Ω(t−1) = diag
(
d̃1,t−1, d̃2,t−1, · · · , d̃L,t−1

)
is an

L × L diagonal binary indicator matrix with dl,t−1 = 1

if
∑M

j=1 w
(2)
lj zj,t−1 > −h(2)l , for W2 =

[
w

(2)
ij

]
, h2 =[

h
(2)
i

]
, and 0 otherwise. Each possible configuration of 1’s

and 0’s on the diagonal of D̃Ω corresponds to a different
linear subregion of the state space, in which the Jacobian
(16) is constant and the dynamics of (12) is linear. Hence,
to compute σ̃max one would need to evaluate the Jacobians
of all 2L linear subregions, which is generally infeasible,
especially since σ̃max would need to be re-evaluated after
each parameter update during training. The cheapest way
around this issue is to choose α according to an upper bound
of σ̃max:

α(n) = 1− 1

⌈σ̃max⌉(n)
, (17)

where n denotes the n-th optimization step and ⌈σ̃max⌉ is
the upper bound given by

⌈σ̃max⌉ := ∥A∥+ ∥W1∥ ∥W2∥

≥ max
D̃Ω

∥∥∥A+W1D̃ΩW2

∥∥∥ = σ̃max.
(18)

A slightly more expensive alternative heuristic is to approx-
imate σ̃max by computing the Jacobians at states given by
the teacher signals of a given training batch X (since, ul-
timately, the RNN is required to generate time series with
these same signatures). Letting x

(p)
t denote the observation

vector of the p-th sequence in the batch at time t, the teacher
signals are given by ẑ

(p)
t = G−1

φ (x
(p)
t ), for which the Ja-

cobians Ĵ (p)
t (cf. Fig. 2) can be computed using (16). We

then have an estimate σ̂max as

σ̂max = max
t,p

∥∥∥Ĵ (p)
t

∥∥∥ , (19)

and can choose α accordingly.

However, we find that in practice the estimates above are too
conservative, leading to suboptimal performance. Instead,
we derive an estimate directly based on Eq. (8). First,
note that ideal error propagation is achieved when the chain
of Jacobians connecting temporally most distal states in a
training sequence of length T is close to the identity,

∂zT
∂z1

= (1− α)T−1
T−2∏
k=0

J̃T−k
!
= 1. (20)

Provided that the Jacobian product series is non-singular, it

follows that

(1− α)G(J̃T :2)
!
= 1, (21)

where G(J̃T :2) :=

(
T−2∏
k=0

J̃T−k

) 1
T−1

. (22)

Taking the norm on both sides of Eq. (22), rearranging, and
assuming, as above, that we can replace forced Jacobians
J̃

(p)
t of the p-th sequence in the current batch with Jacobians

Ĵ
(p)
t evaluated at data-inferred states, we obtain a collection

{α(p)} which we condense into a single estimate by taking

α = max
p

α(p) = max
p

1− 1∥∥∥G(Ĵ (p)
T :2)

∥∥∥
 . (23)

Since computing (22) requires evaluating Jacobian products
which cause exploding gradients in the first place, we use
an approximation which foregoes computing those products
altogether, see Appx. 6.2 for details. Furthermore, to ensure
that replacing Jacobians J̃t at forced states with data inferred
Jacobians Ĵt remains valid throughout training, we employ
an annealing strategy, which starts with strong forcing (α =
1) that decays throughout training while remaining bounded
from below by (23).5 The full training protocol is detailed
in Appx. 6.2, and will be referred to as adaptive GTF
(aGTF). As a reference, in our experiments below we will
also employ fine-tuning α via grid search. Note that GTF is
only used for training the model, not during actual testing.

4. Results
We evaluate GTF using the shPLRNN on simulated DS
and real-world data sets, and compare its performance to a
variety of other DS reconstruction algorithms. We will first
introduce the data sets and evaluation measures used.

4.1. DS data sets

Lorenz-63, Lorenz-96, and multiscale Lorenz-96 Both
the 3d Lorenz-63 (Lorenz, 1963) and the higher-
dimensional, spatially extended Lorenz-96 (Lorenz, 1996)
ODE systems were conceived as simple models of atmo-
spheric convection with chaotic behavior in some regime
(see Appx. 6.3 for more details). Here we include them
mainly because they often served as DS benchmarks in the
past. But by now almost all DS reconstruction algorithms
achieve satisfactory performance on them, so that the fo-
cus here will be on the much more challenging empirical
data sets. As a somewhat more challenging benchmark, we
also consider a (partially observed) multiscale variant of the
Lorenz-96 system (Thornes et al., 2017).

5More generally, annealing protocols have previously been
observed to improve TF-based training in RNNs (Bengio et al.,
2015; Vlachas & Koumoutsakos, 2023).
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Electrocardiogram (ECG) data ECG recordings of a hu-
man subject were taken from the open-access PPG-DaLiA
dataset (Reiss et al., 2019). The ECG is a scalar physiolog-
ical (heart muscle potential) time series, which we delay-
embed (Sauer et al., 1991) into 5d using the PECUZAL
algorithm (Krämer et al., 2021). The time series shows
signs of chaotic behavior, as indicated by its empirically
determined maximum Lyapunov exponent (cf. Appx 6.3).

Electroencephalogram (EEG) data As another challeng-
ing real-world data set we use open-access EEG recordings
from a human subject under task-free, quiescent conditions
with eyes open (Schalk et al., 2000). The 64d dataset con-
sists of 60 s of brain activity measured through 64 electrodes
placed across the scalp. This dataset has previously been
shown to bear signatures of chaotic activity, like a fractal
dimensionality and positive maximum Lyapunov exponent
(λmax ≈ 0.017; Mikhaeil et al. (2022)).

We emphasize that – unlike common simulated benchmarks
– empirical data often come with a number of additional
challenges, like only a fraction of all dynamical variables ob-
served, from potentially very high-dimensional generating
systems, through only partly known and often intricate ob-
servation functions, with possibly high levels of dynamical
and observation noise and unknown external perturbations,
multiple temporal and spatial scales (brain recordings in
particular), and potentially non-stationary behavior.

4.2. Evaluation measures

To assess DS reconstruction quality, besides short-term pre-
diction, we need to ensure that invariant properties of the
underlying system, like an attractor’s geometrical structure
in state space and its temporal signatures, have been ad-
equately captured. In our choice of measures we follow
Koppe et al. (2019); Brenner et al. (2022); Mikhaeil et al.
(2022). For implementation details we refer to Appx. 6.4.

Geometrical Measure To assess the agreement in true
and reconstructed attractor geometries, we compute a
Kullback-Leibler (KL) divergence based on the natural mea-
sure induced by system trajectories in state space on the
invariant set (Dstsp). Specifically, Dstsp is defined in the
(potentially extended; Sauer et al. (1991)) observation space
between estimated probability distributions p(x), generated
by trajectories of the true system, and q(x), generated by
orbits of the reconstructed system, see Appx. 6.4 for details.

Temporal Measure As in Mikhaeil et al. (2022), we check
for invariant temporal agreement of ground truth and gen-
erated orbits by computing the Hellinger distance (H) be-
tween the power spectra of all dynamical variables (see
Appx. 6.4 for details). The Hellinger distance is a proper
metric with 0 ≤ H ≤ 1, where 0 represents perfect agree-

ment between its arguments. To produce a single number,
the Hellinger distance is averaged across all dynamical vari-
ables of the observed system, referred to here as DH .

Prediction error (PE) We further employ a short-term
prediction error to assess each model’s capability to per-
form forecasts on the chaotic time series. Note that, in
general, accurate prediction of chaotic systems is an ill-
posed problem as even tiny model approximation errors,
differences in initial conditions, or noise sources are expo-
nentially amplified, leading to rapid divergence from ground
truth orbits. Hence, measures based on prediction accuracy
are only of limited validity or unsuitable for assessing recon-
struction quality, and only work for limited time horizons
determined by the system’s Lyapunov spectrum (Mikhaeil
et al., 2022). To assess short-term predictability, here we
compute a mean-squared n-step prediction error between
n-step forward propagated initial states from the test set and
their corresponding ground truth values, see Appx. 6.4.

4.3. Experimental evaluation

We compared DS reconstructions on the benchmarks de-
fined above for the shPLRNN trained by GTF to a variety
of other SOTA reconstruction methods, chosen to represent
four major classes of model architectures and training strate-
gies in use. These include DS reconstruction techniques
based on 1) gated RNN models, specifically LSTMs trained
using truncated BPTT (TBPTT) (Vlachas et al., 2018), 2)
Reservoir Computing (RC) / Echo State Machines (Pathak
et al., 2018), 3) library methods employing symbolic regres-
sion, namely Sparse Identification of Nonlinear Dynamical
Systems (SINDy) (Brunton et al., 2016), and 4) ODE-based
formulations like Neural ODEs (N-ODE) (Chen et al., 2018)
and Long-Expressive-Memory (LEM) (Rusch et al., 2022)6

(we also tested other N-ODE variants like Latent-ODE and
ODE-RNN (Rubanova et al., 2019), with similar results, see
Appx. 6.6). Moreover, we compare our method to the simi-
lar approach of Brenner et al. (2022) using dendPLRNNs
trained with BPTT and a specific sparse TF protocol, dubbed
identity TF (id-TF). For all comparison methods we deter-
mined optimal hyper-parameters through grid search (see
Appx. 6.6), while trying to keep the total number of train-
able parameters about the same (see Table 1).7 For our
shPLRNN we report in Table 1 results with both fixed GTF
parameter α determined by grid search (see Fig. S3) as well
as for aGTF, obtaining similar performance. Of course, GTF
– like TF more generally – is only employed for model train-
ing, not during testing where systems evolve autonomously.

6LEMs, although not specifically designed for DS reconstruc-
tion, are universal approximators that have been exemplified on
DS problems and are a current SOTA for addressing the EVGP.

7This was, however, not fully possible. For instance, RC re-
quired many more trainable parameters than other methods to yield
any sensible reconstruction results.
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Table 1. SOTA comparisons. Reported values are median ± median absolute deviation over 20 independent training runs. ‘dim’ refers to
the model’s state space dimensionality (number of dynamical variables). |θ| denotes the total number of trainable parameters.

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

ECG (5d)

shPLRNN + GTF 4.3 ± 0.6 0.34 ± 0.02 (2.4 ± 0.1) · 10-3 5 2785

shPLRNN + aGTF 4.5 ± 0.4 0.34 ± 0.02 (2.4 ± 0.2) · 10-3 5 2785
shPLRNN + STF 7.1± 1.8 0.38± 0.03 (5± 2) · 10−3 5 2785
dendPLRNN + id-TF 5.8± 0.6 0.37± 0.06 (4.0± 0.4) · 10−3 35 3245
RC 5.3± 1.7 0.39± 0.05 (4± 1) · 10−3 1000 5000
LSTM-TBPTT 15.2± 0.5 0.73± 0.02 (2.5± 0.5) · 10−2 70 5920
SINDy diverging diverging diverging 5 3960
N-ODE 12.2± 0.7 0.7± 0.03 (4.1± 0.1) · 10−1 5 4955
LEM 16.3± 0.2 0.56± 0.04 (7.4± 0.1) · 10−1 62 4872

EEG
(64d)

shPLRNN + GTF 2.1 ± 0.2 0.11 ± 0.01 (5.5± 0.1) · 10−1 16 17952
shPLRNN + aGTF 2.4 ± 0.2 0.13 ± 0.01 (5.4± 0.6) · 10−1 16 17952

shPLRNN + STF 14± 7 0.50± 0.16 (2.5 ± 0.3) · 10-1 16 17952
dendPLRNN + id-TF 3± 1 0.13± 0.04 (3.4± 0.1) · 10−1 105 18099
RC 14± 7 0.54± 0.15 (5.9± 0.3) · 10−1 448 28672
LSTM-TBPTT 30± 21 0.2± 0.1 (9.2± 2.3) · 10−1 160 51584
SINDy diverging diverging diverging 64 133120
N-ODE 20± 0.5 0.47± 0.01 (5.5± 0.2) · 10−1 64 17995
LEM 10.2± 1.5 0.38± 0.06 (8.2± 0.6) · 10−1 76 18304

As Table S3 in Appx. 6.6 reveals, shPLRNN+GTF outper-
forms, or performs about on par with, the other methods on
the simulated DS benchmarks Lorenz-63, Lorenz-96, and
multiscale Lorenz-96 (see also Figs. S6, S7, S8). However,
as noted above, by now almost any recent DS reconstruction
method performs reasonably well on these, essentially lead-
ing to a ‘ceiling effect’. More importantly, shPLRNN+GTF
has a clear edge over all other methods on the empirical
EEG and ECG data, in some comparisons by almost an
order of magnitude (Table 1).8 This is significant, as DS
reconstruction methods have so far mostly been tested on
simulated DS models only, like the Lorenz equations, but
rarely on empirical data. As noted above, real-world data
usually contain multiple additional complexities not present
in most simulated benchmarks. The reconstruction algo-
rithm advanced here is apparently better able to deal with
these various complicating factors met in empirical data.

This is particularly evident in Fig. 3 which provides exam-
ples of reconstructed time series on the EEG data for all of
the compared methods, illustrating the trained models’ long-
term behavior (see Fig. S11 for all EEG channels, and Fig.
S12 for ECG data). For creating these graphs, each method
was initialized with a value inferred from the data, and then
freely evolved forward for a long time (unconstrained by the

8As observed previously (Brenner et al., 2022), SINDy severely
struggles if the “right” functional terms are not in its library, as
is likely for any empirical situation. Unlike for the Lorenz-63/96,
we only observed diverging solutions for SINDy on the EEG and
ECG data.

data) from that one initial condition. As the underlying sys-
tem is likely chaotic (according to an estimate of its maximal
Lyapunov exponent and fractal dimensionality; Mikhaeil
et al. (2022)), in each case reliable forecasts can only be
obtained for a couple of time steps ahead. Importantly, how-
ever, the temporal structure of the real data is conserved in
the simulated data for the shPLRNN+GTF, and a bit less so
for dendPLRNN, but for none of the other methods which
often just converge to an equilibrium point after some time,
or even diverge. Thus, other methods were not able to re-
construct the systems’ attractors (although they may still
produce reasonable short-term predictions; cf. Tab. 1 & Fig.
S13). At the same time, shPLRNN+GTF requires only 16
latent states to reconstruct the EEG, compared to 105 for
dendPLRNN (and 64 for some of the others methods).

Finally, replacing GTF by the previously proposed STF
(Mikhaeil et al., 2022) in shPLRNN training led to worse
performance on the reconstruction measures (Table 1, sh-
PLRNN+STF), suggesting an important role for GTF.9

5. Conclusions
In this paper we develop and test the idea of GTF for learn-
ing chaotic DS. GTF addresses the central challenge posed
in Mikhaeil et al. (2022), namely that exploding gradients
cannot be avoided by architectural or parameter constraints

9As in Mikhaeil et al. (2022), the forcing interval was simply
set according to the predictability time (ECG: τpred ≈ 221, EEG:
τpred ≈ 41, see Appx. 6.3) and not by systematic grid search.
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Figure 3. Example time traces of EEG reconstructions provided
by the methods employed in Table 1. For each method we took
the best model out of 20. For most runs (≈ 90%), the shPLRNN
trained with GTF and the dendPLRNN (Brenner et al., 2022)
provide similarly good results, while all other methods have highly
variable outcomes and overall poor reconstructions of the long-
term behavior.

in RNNs trained on chaotic systems, and hence should be
targeted at the level of the training procedure itself. Al-
though the basic idea of GTF has been introduced a long
time ago (Doya et al., 1992), to our knowledge it never
has been systematically empirically tested or theoretically
examined. Here, for the first time, we show this training
strategy can be amended such that exploding gradients can
be completely avoided along theoretically infinite-length
trajectories, resolving the training issue for chaotic systems.
Another mechanism by which GTF may enhance training is
by smoothing the loss landscape (Fig. S10), as observed for
other control and annealing methods (Abarbanel, 2013).

Especially when paired with a simple modification of the

PLRNN, the shPLRNN, GTF results in a powerful DS re-
construction algorithm which outperforms a diversity of
other models and techniques on the empirical datasets by
sometimes large margins. At the same time, it returns a dy-
namically interpretable DS model for which fixed points and
cycles can be determined semi-analytically (cf. 3.3), and
which achieves the lowest-dimensional reconstructions of
all methods tested, requiring at most as many dimensions as
the observed system, potentially even less than empirically
observed (Tab. 1). Although (or perhaps because) conceptu-
ally our advancements are simple, this sets a new standard
in the field, especially for more relevant real-world data with
which many algorithms profoundly struggle with. In fact, up
to now most of the DS reconstruction literature has focused
on simulated DS benchmarks only. While studying ground
truth systems with known properties is clearly important,
ultimately, of course, these algorithms are to be taken to the
real world, where additional and partly unforeseeable issues
may wait (some of them pointed out in sect. 4.1).

Chaotic dynamics are ubiquitous in natural and many
human-made systems (Durstewitz & Gabriel, 2007a; Duarte
et al., 2010; Faggini, 2014; Mangiarotti et al., 2020; Kamd-
jeu Kengne et al., 2021). In fact they are essentially the rule
in any type of complex multi-component system with some
heterogeneity in its elements or connections (Van Vreeswijk
& Sompolinsky, 1996), including the brain (Durstewitz &
Gabriel, 2007b), climate systems (Bury et al., 2021), or so-
cial and economical networks (Xu et al., 2011). By strictly
controlling the gradients in training, without imposing any
other constraints, GTF may prove valuable more generally
for any time series prediction, regression or classification
tasks. While in principle applicable to any other RNN ar-
chitecture, however, we point out that it is also the specific
design of the shPLRNN which may make it particularly
well suited for straightforward implementation of GTF. For
instance, we were not able to obtain similar performance
boosts through GTF for the dendPLRNN (at least in a naive
implementation) which lacks the shPLRNN’s 1:1 relation
between observations and latent states (nor did we achieve
similar performance with tanh rather than ReLU activation;
see Appx. 6.5). Thus, despite its general design, how to best
utilize GTF in other model architectures, as well as how it
compares to STF, will still require further research.

All code is available at https://github.com/
DurstewitzLab/GTF-shPLRNN.
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6. Appendix
6.1. Theorems: Proofs

6.1.1. PROOF OF PROPOSITION 1

Proof. Let J = {J̃κ}κ∈K be the set of all Jacobians of the RNN (1), and Oz1
= {zT }∞T=1 be a chaotic orbit of the

system. Then, the largest Lyapunov exponent of Oz1
is positive, i.e.

λ = lim
T→∞

1

T
log
∥∥∥J̃T J̃T−1 · · · J̃2

∥∥∥ > 0, (24)

which implies

lim
T→∞

∥∥∥J̃T J̃T−1 · · · J̃2

∥∥∥ = lim
T→∞

∥∥DF T
θ (z1)

∥∥ = ∞. (25)

Accordingly,

∃ n̂ ∈ N s.t. ∀m ≥ n̂ ∥DFm
θ (z1)∥ > 1. (26)

Therefore
∥∥∥J̃s

∥∥∥ > 1 for some s ∈ {2, 3, · · · ,m} (m ≥ n̂). Otherwise

∥DFm
θ (z1)∥ =

∥∥∥J̃m J̃m−1 · · · J̃2

∥∥∥ ≤
∥∥∥J̃m

∥∥∥ ∥∥∥J̃m−1

∥∥∥ · · · ∥∥∥J̃2

∥∥∥ ≤ 1, (27)

which is in contradiction to eq. (26). Since J̃s ∈ J , so σ̃max = sup

{∥∥∥J̃k

∥∥∥ = σmax(J̃k) : J̃k ∈ J
}
> 1.

6.1.2. PROOF OF PROPOSITION 2

Proof. (i) According to (8) we have∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

=

∥∥∥∥∥(1− α)t−r
t−r−1∏
k=0

J̃t−k

∥∥∥∥∥
2

≤ (1− α)t−r
t−r−1∏
k=0

∥∥∥J̃t−k

∥∥∥
2
≤
[
(1− α)σ̃max

]t−r
, (28)

and

[
(1− α)λ̃min

]t−r ≤ (1− α)t−r
t−r−1∏
k=0

λmin(J̃t−k) ≤ (1− α)t−r λmin(

t−r−1∏
k=0

J̃t−k)

≤ (1− α)t−r ρ(
t−r−1∏
k=0

J̃t−k) ≤

∥∥∥∥∥(1− α)t−r
t−r−1∏
k=0

J̃t−k

∥∥∥∥∥
2

=

∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

. (29)

Therefore, [
(1− α)λ̃min

]t−r ≤
∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

≤
[
(1− α)σ̃max

]t−r
. (30)

Inserting α = α∗ = 1− 1
σ̃max

(for σ̃max ≥ 1) into the r.h.s. of (30) gives

lim
t→∞

∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

≤ lim
t→∞

[
(

1

σ̃max
)σ̃max

]t−r
= 1, (31)

and so ∂zt

∂zr
will not diverge for t→ ∞.

(ii) If γ̃ = 1, then σ̃max = λ̃min ≥ 1. Hence, substituting α∗ = 1− 1
σ̃max

= 1− 1
λ̃min

in (30) yields

lim
t→∞

∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

= 1. (32)
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For γ̃ ̸= 1, inserting α∗ = 1− 1
σ̃max

in (30) results in

0 = lim
t→∞

(
γ̃
)t−r ≤ lim

t→∞

∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

≤ 1, (33)

and so limt→∞

∥∥∥ ∂zt

∂zr

∥∥∥
2

may go to zero for t→ ∞. Moreover, obviously, the closer γ̃ is to 1, the slower ∂zt

∂zr
may vanish as

t→ ∞.

Remark 1. According to Rademacher’s theorem, for Lipschitz-continuous RNNs Fθ is differentiable almost everywhere and
has a bounded derivative. Therefore, for such RNNs, the nonempty set S1 (defined in (9)) is bounded from above and so
always has a supremum in R.

Remark 2. Assume that

σ̃min = inf

{
σmin(J̃k) : J̃k ∈ J

}
≥ 0. (34)

Since λ̃min ≥ σ̃min ≥ 0, from (30) we have

[
(1− α)σ̃min

]t−r ≤
[
(1− α)λ̃min

]t−r ≤
∥∥∥∥ ∂zt∂zr

∥∥∥∥
2

≤
[
(1− α)σ̃max

]t−r
. (35)

6.1.3. PROOF OF PROPOSITION 3

Proof. First, the dendPLRNN (11) can be rewritten in the following form:

zt = WB
Ω(t−1) zt−1 +W hB

Ω(t−1) + h0, (36)

in which

DB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1),

hB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1)(−hb),

WB
Ω(t−1) := A+W DB

Ω(t−1), (37)

and D
(b)
Ω(t−1) = diag

(
d
(b)
1,t−1, d

(b)
2,t−1, · · · , d

(b)
M,t−1

)
are diagonal binary indicator matrices with d(b)m,t−1 = 1 if zm,t−1 > hm,b

and 0 otherwise. Similarly, the shPLRNN (12) can be brought into the form

zt =
(
A+W1 D̃Ω(t−1)W2

)
zt−1 +W1D̃Ω(t−1)h2 + h1

=: W̃Ω(t−1)zt−1 +W1h̃Ω(t−1) + h1, (38)

where D̃Ω(t−1) = diag
(
d̃1,t−1, d̃2,t−1, · · · , d̃L,t−1

)
denotes an L× L diagonal binary indicator matrix with dl,t−1 = 1 if∑M

j=1 w
(2)
lj zj,t−1 > −h(2)l and 0 otherwise, where we used the notation W2 =

[
w

(2)
ij

]
and h2 =

[
h
(2)
i

]
. In other words, it

can be rewritten as the dendPLRNN (36). Consequently, fixed points of (12) can be computed analogously to dendPLRNNs
as

z∗1 =
(
I − W̃Ω(t∗1)

)−1[
W1 h̃Ω(t∗1) + h1

]
, (39)
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where z∗1 = zt∗1 = zt∗1−1, and det(I − W̃Ω(t∗1)) = PW̃Ω(t∗1)
(1) ̸= 0, i.e. W̃Ω(t∗1) has no eigenvalue equal to 1

(otherwise we are dealing with a bifurcation or with a continuous set of marginally stable points). The same holds for cycles
of (12): Letting t+ n− 1 =: t∗n, the periodic point z∗n of an n-cycle is

z∗n =

(
I −

n∏
i=1

W̃Ω(t∗n−i)

)−1( n∑
j=2

[ n−j+1∏
i=1

W̃Ω(t∗n−i)W1 h̃Ω(t∗n−n+j−2)

]

+ W1 h̃Ω(t∗n−1) +
( n∑

j=2

n−j+1∏
i=1

W̃Ω(t∗n−i) + I
)
h1

)
, (40)

where z∗n = zt∗n = zt∗n−n, if (I −
∏n

i=1 W̃Ω(t∗n−i)) is invertible, i.e.

det

(
I −

n∏
i=1

W̃Ω(t∗n−i)

)
= P∏n

i=1 W̃Ω(t∗n−i)
(1) ̸= 0.

Now consider an M -dimensional dendPLRNN given by (11) with B bases and L = M · B. Furthermore, set Ã := A,
h̃1 := h0, and

W̃1 :=
[
Wα1 Wα2 . . . WαB

]
∈ RM×L, (41)

W̃2 :=


1M×M

1M×M

...
1M×M

 ∈ RL×M , h̃2 := −


h1

h2

...
hB

 ∈ RL. (42)

Then it follows that eq. (11) can be written as an M -dimensional shPLRNN with hidden layer size L,

zt = Ãzt−1 + W̃1ϕ
(
W̃2zt−1 + h̃2

)
+ h̃1, (43)

which completes the proof.

6.1.4. PROOF OF BOUNDED ORBITS OF (13)

Proposition 4. If ρ(A) = ∥A∥ < 1, then every orbit of the clipped shPLRNN (13) will be bounded.

Proof. Consider the clipped shPLRNN of the form

zt = Azt−1 +W1

[
ϕ(W2zt−1 + h2)− ϕ (W2zt−1)

]
+ h1

:= Azt−1 + W1 ψ(zt−1) + h1. (44)

Obviously, for h2 =
[
h
(2)
l

]
and every l ∈ {1, 2, · · · , L}

ψl(zt−1) = max
(
0,

M∑
j=1

w
(2)
lj zj,t−1 + h

(2)
l

)
−max

(
0,

M∑
j=1

w
(2)
lj zj,t−1

)
≤
∣∣h(2)l

∣∣. (45)

This implies

∥ψ(zt−1)∥ =

√√√√ L∑
l=1

(
ψl(zt−1)

)2 ≤
√
Lhmax := h̄max, (46)

where hmax = max
1≤l≤L

{∣∣h(2)l

∣∣} .
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Let {z1, z2, · · · , zt, · · · } be an orbit of (44). For T ∈ N, recursively computing z2, z3, · · · , zT yields

z2 = Az1 + W1 ψ(z1) + h1

z3 = A2 z1 + AW1 ψ(z1) +W1 ψ(z2) +
[
A+ I

]
h1

...

zT = AT−1 z1 +

T−2∑
j=0

Aj W1 ψ(zT−1−j) +

T−2∑
j=0

Aj h1. (47)

Hence, due to (46), one concludes that

∥zT ∥ ≤ ∥A∥T−1 ∥z1∥ + h̄max ∥W1∥
T−2∑
j=0

∥A∥j +
T−2∑
j=0

∥A∥j ∥h1∥ . (48)

If ∥A∥ < 1, then lim
T→∞

∥A∥T−1
= 0 , and so

lim
T→∞

∥zT ∥ ≤ h̄max ∥W1∥
∞∑
j=0

∥A∥j +
∞∑
j=0

∥A∥j ∥h1∥ =
h̄max ∥W1∥+ ∥h1∥

1− ∥A∥
< ∞, (49)

which completes the proof.

6.2. Training Protocol

General procedure Given a times series x1:T , we train the model using BPTT with GTF in the following manner:
Per epoch, we sample sub-sequences of length T̃ from the observed orbit, x̃(p)

1:T̃
:= xtp:tp+T̃ , where tp ∈ [1, T − T̃ ] is

drawn at random. We arrange multiple sequences in a batch
{
x̃
(p)

1:T̃

}S

p=1
, where S denotes the batch size. For a single

parameter update, we first estimate forcing signals for the entire batch using Eq. (15) applied to each time step in each
sequence, i.e. ẑ(p)

t = G−1
φ (x̃

(p)
t ). We then take the estimated teacher signal for the first time step of each batch, ẑ(p)

1 , as the
initial condition for the RNN, which we propagate forward in time according to zt = Fθ(z̃t−1) (see sect. 3.3) to produce

predictions z(p)

2:T̃
. These are mapped back into observation space via ˆ̃x

(p)

t = Gφ(z
(p)
t ). The MSE between ground truth and

predicted orbits is then minimized according to

LMSE

({
x̃
(p)

2:T̃

}
,
{
ˆ̃x
(p)

2:T̃

})
=

1

S(T̃ − 1)

S∑
p=1

T̃∑
t=2

∥∥∥ x̃(p)
t − ˆ̃x

(p)

t

∥∥∥2
2
. (50)

In all experiments, we use the RAdam (Liu et al., 2020) optimizer with a learning rate starting at 10−3 which is exponentially
reduced to reach 10−6 at the end of training. For all datasets, we trained for 5000 epochs, where one epoch is defined as
processing of 50 batches of size S = 16. This comes down to a total of 250, 000 parameter updates in each training run. For
the Lorenz-63 and Lorenz-96 and the empirical ECG data, we used a sequence length of T̃ = 200. For the EEG data, we
used only T̃ = 50.

aGTF annealing protocol Note that the Jacobians J̃t in Eq. (22) implicitly depend on α. Hence, we replace the
Jacobians of the forced model by data-inferred Jacobians Ĵt evaluated at estimated teacher signals ẑt in latent space. This
approximation generally holds when the model is either strongly forced or when the model dynamics is already close to that
of the observed teacher system. To approach this scenario, we employ an α-annealing protocol which starts with strong
forcing at the beginning of training when the model is still far off from the observed system, and then smoothly decreases
forcing throughout training depending on the model’s Jacobians as the observed system is captured increasingly better. This
procedure is formally described in Algorithm 1. Given a batch of teacher signals, we first compute Jacobians at each time
step for each sequence in the batch and the norm of Eq. (22). We then set α = 0 if the maximum norm for the current
batch is smaller than 1, and else compute α according to (23). Starting with strong forcing at the beginning of training, i.e.
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α0 = 1, αn is set up to decay exponentially over the course of training until it hits a lower bound given by the norm of (22)
of the converged model. This is achieved by using an exponential moving average for αn throughout training, which is
controlled by the hyperparameter γ:

αn =

{
(1− γ)α+ γαn−1, if α < αn−1

α, otherwise,
(51)

where the index-free α is given by Eq. (23). Note that we replace αn with the estimated α of the current training batch if it
exceeds the current value αn−1. This is to avoid exploding gradients caused by sudden bifurcations during RNN training.

Algorithm 1 Adaptive GTF

Require: αn−1 estimate at previous optimization step, update interval k, decay rate γ, batch of forcing signals {ẑ(p)
1:T }Sp=1,

RNN Fθn

1: if n mod k == 0 then ▷ Update only every k-th opt. step
2: Ĵ

(p)
t = Jacobian(Fθn , ẑ

(p)
t ) ▷ Compute Jacobians manually or via automatic differentiation

3: κ = max
p

∥∥∥G(Ĵ (p)
T :2)

∥∥∥ ▷ Approximate ∥G∥ using one of (52), (53), (54)

4: α = max
(
0, 1− 1

κ

)
▷ Set α = 0 when Jacobians converge

5: if α > αn−1 then
6: αn = α
7: else
8: αn = (1− γ)α+ γαn−1

9: end if
10: else
11: αn = αn−1

12: end if

To reduce the resulting training slow-down caused mainly by computation of Jacobians for each and every batch, one could
update αn only every k-th optimization step. On the other hand, too sparse α-updates may lead to rather lazy reactions to
sudden bifurcations in RNN dynamics. In practice, we found k = 5 to work well, not significantly harming convergence in
training. For all experiments on aGTF we fixed k = 5, α0 = 1, and γ = 0.999 (i.e., these parameters do not need a grid
search but could simply be set to the reasonable ad-hoc values used here).

Approximation of G To determine the optimal forcing α (23), we need an efficient and numerically stable estimate of Eq.
(22). To this end, we approximate the principal logarithm of the Jacobian product by a sum of principal logarithms:

G(ĴT :2) =

(
T−2∏
k=0

ĴT−k

) 1
T−1

1
= exp

(
1

T − 1
log

(
T−2∏
k=0

ĴT−k

))
≈ exp

(
1

T − 1

T∑
t=2

log Ĵt

)
. (52)

Note that equality 1 strictly holds if the Jacobian product is non-singular (Higham & Lin, 2011). The approximation made
here is exact if Jacobians ĴT :2 commute under multiplication. While this assumption does not hold in general, we find that
at least for the shPLRNN trained on the systems and data introduced in this work, Jacobians approximately commute (Fig.
S1). Furthermore, in practice we find that in most cases the arithmetic mean of Jacobians

G
(
ĴT :2

)
≈ 1

T − 1

T∑
t=2

Ĵt (53)

can be used as a plug-in replacement for the approximation above, as it produces similar α estimates, as shown in Fig. S2.
This replacement is mainly motivated by the runtime improvement for the arithmetic mean over the matrix exponentiation
and logarithms involved in computing (52).

18



Generalized Teacher Forcing for Learning Chaotic Dynamics

||[Jt,Jt']||F

�2 ||Jt||F||Jt'||F

0.00 0.05 0.10 0.15

co
un

t

0

5.0×10⁵

1.0×10⁶

Lorenz-63
ECG
EEG

Figure S1. Histograms of relative Jacobian commutator norms for converged shPLRNNs (13) trained on different datasets. We measure
the commutativity of Jacobians by first drawing an orbit of length T = 5000 and computing the ratio between the Frobenius norm of the
commutator of all possible permutations of pair-wise Jacobians in the orbit, and the respective tight upper bound on the commutator norm
(Böttcher & Wenzel, 2008). For all of the systems shown (Lorenz-63, ECG and EEG), most mass is concentrated below 5% of the upper
bound, which is a reference point for maximally non-commuting Jacobians.

We can also approximate
∥∥∥G(ĴT :2)

∥∥∥ by using the upper bound

∥∥∥G(ĴT :2)
∥∥∥ =

∥∥∥∥∥∥
(

T−2∏
k=0

ĴT−k

) 1
T−1

∥∥∥∥∥∥ ≤

(
T−2∏
k=0

∥∥∥ĴT−k

∥∥∥)
1

T−1

= exp

(
1

T − 1

T∑
t=2

log
∥∥∥ĴT−k

∥∥∥)

= exp

(
1

T − 1

T∑
t=2

log σmax

(
ĴT−k

))
.

(54)

While technically accurate, the upper bound is biased towards higher values for α than generally required in practice, similar
to the estimates in Eq. (18) and (19) (cf. Fig. S2).

Line search for optimal α For comparison to the performance of our aGTF procedure outlined above, we also determined
optimal settings for α through a line search over different values α ∈ [0, 1] in steps of 0.05. Figure S3 shows Dstsp and DH

values for shPLRNNs (13) on different datasets against α. As some of the graphs indicate, performance is often not overly
sensitive to the precise choice of α, and generally on par with the automatic adjustment of α in aGTF, remediating the need
for grid search.

Latent model regularization Performance of the annealing protocol can be improved even further with the manifold
attractor regularization suggested in Schmidt et al. (2021), which adds the following term with regularization factor λreg to
the loss:

Lreg = λreg

(
∥1 −A∥2F + ∥W1∥2F + ∥W2∥2F + ∥h1∥22 + ∥h2∥22

)
(55)

This has two benefits: 1) It pushes the shPLRNN’s Jacobian towards the identity, thereby improving error propagation
(Schmidt et al., 2021) and reducing the amount of necessary forcing by already taming exploding/ vanishing gradients, and
2) it improves accuracy of the approximation of G (see Eq. (52)).
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Figure S2. Histograms of different α estimates for a shPLRNN trained on the Lorenz-63 system (left) and on the ECG data (right) after
convergence to the desired dynamics. Legend labels refer to the different approximations: ‘arithmetic mean’ (53), ‘exp-log’ (52), ‘upper
bound’ (54) and ‘maximum’ (19). To produce this plot, we sampled 5000 sequences of length T ∈ [100, 200] and computed α according
to Eq. (23). Estimates for the ‘arithmetic mean’ and ‘exp-log’ approximations highly correlate for both datasets (Pearson’s r ≈ 0.996
across all data points in both datasets). For comparison, estimates of α computed through the Jacobian norm upper bound of the shPLRNN
given by Eq. (18) are α ≈ 0.87 for the ECG and α ≈ 0.79 for the Lorenz-63.

Observation model regularization When using a trainable linear observation model (14), we need to invert the model to
obtain teacher signals in latent space (15). However, we found that very occasionally B becomes ill-conditioned, i.e. close
to singular. To avoid this, one can regularize the condition number of B:

Lcn = λcn

(
1− σmax(B)

σmin(B) + ϵ

)2

, (56)

where σmax(B) and σmin(B) are the largest and smallest singular values of B, respectively, λcn is a hyperparameter and ϵ
(= 10−8) a small number added for numerical stability. This regularization pushes the condition number towards 1, thus
ensuring invertibility.

6.3. Benchmark Systems and Real-World Data

Benchmark: Lorenz-63 Introduced in Lorenz (1963) as one of the first ODE systems for which chaotic behavior was
demonstrated, the 3d Lorenz-63 system has become the most common benchmark in the DS reconstruction literature.
Designed as a simple model of atmospheric convection, the system exhibits different routes to chaos like period doubling
and homoclinic bifurcations and, due to a fundamental symmetry, exhibits the famous butterfly-wing shape (see Fig. S4,
Perko (2001)). The system is described by the following set of ODEs:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz,

where we place the system into the chaotic dynamical regime with σ = 10, β = 8
3 and ρ = 28. For each of the

training and test sets we simulate a trajectory of length T = 105, each starting at a different random initial condition
u0 = (x0, y0, z0)

T ∼ N (0,13×3), using the DynamicalSystems.jl (Datseris, 2018) Julia library. The ODE system is
integrated using a Runge-Kutta scheme with adaptive step size and a read-out interval of ∆t = 0.01. Furthermore, we
contaminate the training set with Gaussian observation noise, using a noise level of 5% of the data standard deviation.
Finally, we standardize each dimension of both training and test set to zero mean and unit variance.
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Figure S3. Line search over different α values. The minima lie at αmin ≈ 0.15 for the Lorenz-63, and αmin ≈ 0.1 for the Lorenz-96
and EEG data, respectively, while for the ECG data we find αmin ≈ 0.3. There appears to be a somewhat larger α-range over which
performance is similarly good, and thus some lenience regarding the precise adjustment of this value. Dashed blue (Dstsp) and green (DH )
lines indicate performance levels of aGTF on ECG and EEG data, respectively.
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Figure S4. Example reconstruction of the Lorenz-63 system by shPLRNN+GTF. Note that the model freely generates the dynamics given
the first time point of the test set.

Benchmark: Lorenz-96 A higher-dimensional, spatially extended system for atmospheric convection with local neigh-
borhood interactions was suggested in Lorenz (1996). The system can be formulated in arbitrarily high dimensions:

ẋk = (xk+1 − xk−2)xk−1 − xk + F, k = 1 . . . N

with dynamical variables {xk}, constant forcing term F and dimension N . For our experiments we choose N = 20 and
F = 16, such that the system is situated within the chaotic regime. We create a training and test set using the same protocol
as for the Lorenz-63 model, i.e. we draw two trajectories, one for training and one for testing. The training trajectory is
contaminated with 5% Gaussian noise, and both resulting datasets are standardized to have zero mean and unit variance on
each dimension. See Fig. S5 for an excerpt of the system dynamics in form of a heatmap, together with a reconstruction
using the method employed in this work.

Benchmark: Multiscale Lorenz-96 Building on the original Lorenz-96 model, Thornes et al. (2017) introduced an
extended version which models atmospheric weather phenomena evolving on multiple temporal and spatial scales through
nested sets of dynamical variables. The set of ODEs is given by

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F − hc

b

J∑
j=1

Yj,k,

dYj,k
dt

= −cbYj+1,k(Yj+2,k − Yj−1,k)− cYj,k +
hc

b
Xk − he

d

I∑
i=1

Zi,j,k,

dZi,j,k

dt
= edZi−1,j,k(Zi+1,j,k − Zi−2,j,k)− gZeZi,j,k +

he

d
Yj,k.

(57)

These equations describe a system with K slow large-scale variables X , each of which coupled to J faster and smaller-scale
variables Y , which in turn are coupled to I very fast small-scale variables Z. Parameters h, b, c, e and d determine
the coupling strength between different scales, F is the external forcing strength and gZ is a damping parameter. It has
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Figure S5. Heatmaps of an excerpt of the Lorenz-96 test set (see 6.3) and an example reconstruction using the shPLRNN+GTF.

previously been used to assess the capability of different machine learning models to predict future DS states (Chattopadhyay
et al., 2020), some of which – like RCs and LSTMs – also included in this work. Chattopadhyay et al. (2020) assess
forecasting abilities on a subset of the dynamical variables, using I = J = K = 8, which results in a 584-dimensional
system, with parameters b = c = e = d = gZ = 10, h = 1, and forcing F = 20. This places the system into a
highly chaotic regime. However, the authors assumed that only the K = 8 slow, large-scale variables X are observed,
i.e. all methods were trained on partial observations from the 584-dimensional system. To enable direct comparison, we
trained N-ODE, dendPLRNN and the shPLRNN on the dataset provided within the authors’ codebase. We find that all
tested methods (N-ODE, shPLRNN+GTF, dendPLRNN+id-TF) produce both accurate short-term forecasts of the partially
observed system,10 as well as statistically indistinguishable reconstructions of the long-term behavior (all within a 10%
median absolute deviation and 34% SEM margin; Kruskal-Wallis test p = 0.84; see Tab. S1 and Figs. S6, S7, S8).

Table S1. Results for the partially observed multiscale Lorenz-96 system. Reported values are median ± median absolute deviation
(MAD) over 20 independent training runs. ‘dim’ refers to the model’s state space dimensionality (number of dynamical variables). |θ|
denotes the total number of trainable parameters.

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

multiscale
Lorenz-
96

shPLRNN + GTF (6.1± 1.1) · 10−2 (7.3± 0.4) · 10−2 (5.7± 0.6) · 10−3 8 1780
dendPLRNN + id-TF (6.3± 1.4) · 10−2 (6.9± 0.4) · 10−2 (3.4± 1.6) · 10−3 25 1845
Neural-ODE (6.2± 0.3) ·10−2 (7.8± 0.3) ·10−2 (4.6± 0.3) · 10−3 8 1708

Empirical Dataset: ECG The ECG data used here consists of a single time series with T = 419, 973 time points. Given a
sampling frequency of 700Hz, this corresponds to 600s of recording time. We first preprocessed the ECG data by smoothing
the time series using a Gaussian filter (σ = 6, l = 8σ + 1 = 49), followed by standardization of the time series. We then
delay-embed the signal using the PECUZAL algorithm (Krämer et al., 2021) implemented in the DynamicalSystems.jl
(Datseris, 2018) Julia library. The algorithm uses the L-statistic and non-uniform delays to find an optimal delay embedding
(for details, see Krämer et al. (2021) or the documentation of the algorithm). We set ∆L = 0.05, and use a Theiler window
based on the first minimum of the mutual information, leading to an embedding dimension of m = 5. For our experiments,
we use the first T = 100, 000 samples (≈ 143s) as the training set and the next T = 100, 000 samples as the test set. The
maximum Lyapunov exponent is estimated as λmax = (2.19± 0.05) 1

s by fitting a line to the average log-distance log(d(t))
between trajectories evolving from neighboring states for different embedding dimensions m (Fig. S9; cf. Kantz (1994);
Skokos et al. (2016)), and agrees well with the literature (Govindan et al., 1998).

Empirical Dataset: EEG The Electroencephalogram (EEG) dataset used here is the same as in Brenner et al. (2022)
and Mikhaeil et al. (2022) (the latter authors using a different preprocessing). The dataset consists of recordings from 64

10See Chattopadhyay et al. (2020) for performance of RCs and LSTMs.
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Figure S6. Long term spatio-temporal behavior for the three best performing methods trained on the partially observed multiscale
Lorenz-96 model from Chattopadhyay et al. (2020).

electrodes placed across the scalp of a human subject sitting still in a chair with eyes open (first subject performing task 1
labeled “S001R01”). The EEG sampling frequency was 160Hz. These data are part of a larger study conducted by Schalk
et al. (2000), openly available at PhysioNet (Goldberger et al., 2000). Here the data was preprocessed as in Brenner et al.
(2022), standardizing and smoothing each signal using a Hann filter with window length 15 time bins. For computing the
invariant (long-term) statistics Dstsp and DH on the EEG data, tested models were (as for all other comparisons) simulated
freely starting from just a data-inferred initial condition, but EEG reference values were taken from the training data since
EEG time series were much shorter than ECG series (less than 10, 000 time steps for EEG compared to more than 400, 000
for ECG). Robust and reliable estimation of long-term properties like power spectra and attractor geometries would thus have
been difficult for only a short (left-out) fraction of that time series. Apart from the fact that this was of course handled equally
for all methods tested, however, note that this should not affect our measures Dstsp and DH much, since (by definition) these
long-term properties would not be expected to change on shorter time scales. To also make predictions more challenging
under these conditions (without separate left-out set), we chose a relatively large prediction step n. For STF, the predictabiliy
time for the EEG data was directly taken from Mikhaeil et al. (2022). However, reliably determining the predictability
time from data is exactly one of the issues with STF as proposed, and while we did not perform systematic grid search
on the forcing interval for STF, we observed that other intervals could improve performance for shPLRNN+STF. A more
systematic comparison between GTF and STF therefore still warrants further research.
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Figure S7. For direct comparison with Fig. 5 in Chattopadhyay et al. (2020): Short-term forecasts on the partially observed multiscale
Lorenz-96 system for the three best performing methods, starting from the first time step of the test set. Time is in model time units
(MTU), where 1 MTU= 200∆t ≈ 4.5/λmax. The vertical line indicates the approximate prediction horizon, which for chaotic systems
is limited by the system’s maximum Lyapunov exponent.

6.4. Details on Evaluation Measures

Geometrical measure (Dstsp) Given p(x), generated by trajectories of the true system, and q(x), generated by the model,
the state space divergence is defined as

Dstsp := DKL (p(x) || q(x)) =
∫
x∈RN

p(x) log
p(x)

q(x)
dx (58)

For low dimensional observation spaces, p(x) and q(x) can be estimated directly from a binning of space (Koppe et al.,
2019; Brenner et al., 2022), with the minimum-to-maximum range for binning determined by the extent of the observed
(ground truth) attractor. Eq. (58) is then approximately given by

Dstsp = DKL (p̂(x) || q̂(x)) ≈
K∑

k=1

p̂k(x) log
p̂k(x)

q̂k(x)
(59)

where K = mN is the total number of bins, with m the number of bins per dimension, p̂k(x) is the relative number of
ground truth orbit data points in bin k and, likewise, q̂k(x) that for generated orbits. For high-dimensional systems, a
binning approach is no longer sensible. Instead, Gaussian Mixture Models (GMMs) were placed along orbits (see (Brenner
et al., 2022)), i.e. p̂(x) = 1/T

∑T
t=1 N (x; xt,Σ) and q̂(x) = 1/T

∑T
t=1 N (x; x̂t,Σ), where xt and x̂t are observed

and generated states, respectively, N (x; xt,Σ) is a multivariate Gaussian with mean vector xt and covariance matrix
Σ = σ21N×N , and T is the orbit length. Hershey & Olsen (2007) provide a Monte Carlo approximation to the KL
divergence between two GMMs, which is given by

Dstsp = DKL (p̂(x) || q̂(x)) ≈
1

n

n∑
i=1

log
p̂(x(i))

q̂(x(i))
, (60)

with n Monte Carlo samples x(i) randomly drawn from the GMM based on observed orbits. We follow Brenner et al. (2022)
in using m = 30 for the binning approach and σ2 = 1.0 for the GMM approach.
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Figure S8. Short term spatio-temporal forecasts for the three best performing methods trained on the partially observed multiscale
Lorenz-96 model from Chattopadhyay et al. (2020).

Figure S9. Estimation of the maximum Lyapunov exponent of the ECG time series for different embedding dimensions m and fixed delay
τ = 59. The delay was determined as the first minimum of the mutual information of the original time series.
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Temporal Measure (DH ) Given power spectra fi(ω) and gi(ω) of the i-th dynamical variable of the observed and
reconstructed orbits, respectively, with

∫∞
−∞ fi(ω)dω = 1 and

∫∞
−∞ gi(ω)dω = 1, the Hellinger distance is given by

H(fi(ω), gi(ω)) =

√
1−

∫ ∞

−∞

√
fi(ω)gi(ω) dω (61)

In practice, we approximate power spectra by performing a Fast Fourier Transform (FFT; Cooley & Tukey (1965)) yielding
f̂i =|Fxi,1:T |2 and ĝi = |F x̂i,1:T |2, with vectors f̂i and ĝi discrete power spectra of ground truth traces xi,1:T and model
generated traces x̂i,1:T . Power spectra are then smoothed using a Gaussian filter with standard deviation σ̃ = 20 and window
length l = 8σ + 1. Before computing the Hellinger distance, the power spectra are normalized to fulfill

∑
ω f̂i,ω = 1 and∑

ω ĝi,ω = 1. Finally, H (61) is computed as

H(f̂i, ĝi) =
1√
2

∥∥∥∥√f̂i −
√
ĝi

∥∥∥∥
2

, (62)

where the square root is applied elementwise. The final measure DH is obtained by averaging H across all dimensions:

DH =
1

N

N∑
i=1

H(f̂i, ĝi). (63)

Prediction Error We compute an n-step prediction error as the MSE between ground truth data and n-step ahead
predictions of the model:

PE(n) =
1

N(T − n)

T−n∑
t=1

∥xt+n − x̂t+n∥22 . (64)

Note that for chaotic systems, due to the exponential divergence of trajectories, the invariant statistics (Dstsp, DH ) and the
n-step prediction error may dissociate, as illustrated in Koppe et al. (2019) and Schmidt et al. (2021).

Evaluation Setup For computing Dstsp and DH , we first draw a single long orbit of the generative model at hand (i.e.
either the shPLRNN or any of the comparison methods employed, cf. Table 1) of length 1.25 · T , where T is the total
length of the available (test) data. We then discard the first 0.25 · T time steps of the model-generated orbit to make sure the
measures are evaluated on the limit sets and not on transients of the dynamics.11 We then use the remaining T time steps to
compute both measures. The initial condition for the model is determined from the first time step of the observed ground
truth orbit. For comparison methods requiring a dynamical warm-up phase, such as RC, multiple time steps of the ground
truth orbit are provided. The prediction error (PE(n)) is computed across the entire test set.

6.5. GTF and RNN architecture

In theory, GTF is independent of the specific RNN architecture or, more generally, map Fθ employed. In practice, we
observed training the dendPLRNN (Brenner et al., 2022) with GTF does not lead to similarly strong performance boosts over
STF-based training as observed for the shPLRNN (Tab. S2), implying that certain RNN designs like the shPLRNN might be
more amenable to GTF. This could be because for the dendPLRNN we do not have a 1:1 relation between observations
and latent states as for the shPLRNN (rather, we need to go to higher dimensions, cf. Tab. 1). This makes implementation
of GTF for the dendPLRNN less straightforward, since - unlike for the shPLRNN - the mapping onto latent states is
underdetermined. For the experiments in Tab. S2, we used an implementation of GTF similar to id-TF (Brenner et al., 2022),
only forcing the dendPLRNN’s first N latent states and leaving the remaining M −N states unforced. Alternatively, one
may use inversion of a trainable linear observation model for projecting the teacher signal into the model’s latent space
(Mikhaeil et al., 2022). However, this does not resolve the underdeterminacy (on the contrary, it seemed to even exacerbate
the problem, possibly because the additional degrees of freedom introduced by the trainable projection operator might
make the GTF forcing even less tight). Hence, it needs to be concluded that the shPLRNN also appears to bear a specific
architectural advantage, while for other models the best way for implementing GTF needs more consideration. We also
observed that replacing the ReLU activation of the shPLRNN by tanh diminished performance (Tab. S2).

11This is important, since otherwise erroneously a good reconstruction may be indicated, while truly the reconstructed system may
converge to a limit set topologically different from that of the true system, e.g. an equilibrium rather than a chaotic attractor.
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Table S2. Ablation study. Reported values are median ± median absolute deviation (MAD) over 20 independent training runs. ‘dim’
refers to the model’s state space dimensionality (number of dynamical variables). |θ| denotes the total number of trainable parameters.
Values for shPLRNN+GTF are copied from Tab. 1.

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

ECG (5d)

shPLRNN + GTF 4.3 ± 0.6 0.34 ± 0.02 (2.4 ± 0.1) · 10-3 5 2785
shPLRNN + GTF (tanh) 7.8± 2.1 0.37± 0.03 (8.6± 0.3) · 10−3 5 2785
dendPLRNN + GTF 5.2± 1.2 0.34± 0.02 (5.5± 1.3) · 10−3 35 3245
dendPLRNN + STF 5.8± 0.6 0.37± 0.06 (4.0± 0.4) · 10−3 35 3245

EEG
(64d)

shPLRNN + GTF 2.1 ± 0.2 0.11 ± 0.01 (5.5 ± 0.1) · 10-1 16 17952
shPLRNN + GTF (tanh) 17± 3 0.37± 0.07 (6.6± 0.1) · 10−1 16 17952

6.6. More Details on Comparison Methods

Table S3. SOTA comparisons on the Lorenz-63 and Lorenz-96 benchmark systems. Reported values are median ± median absolute
deviation over 20 independent training runs. ‘dim’ refers to the model’s state space dimensionality (number of dynamical variables). |θ|
denotes the total number of trainable parameters. Note that SINDy has an inbuilt advantage for these two benchmarks over all other
methods: Both the Lorenz-63 and Lorenz-96 ODEs are second-order polynomials, and SINDy’s polynomial function library included
terms up to second order as well. Hence, all that SINDy needs to do in these cases is to determine the appropriate parameters (rather than
approximating the underlying system). While the library method may be an advantage for systems with known functional form (as in
these cases), it may become a severe disadvantage if no detailed structural knowledge is available (as commonly the case in complex
empirical scenarios like those evaluated in Table 1).

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

Lorenz-
63 (3d)

shPLRNN + GTF 0.26 ± 0.03 0.090 ± 0.007 (6.0 ± 0.5) · 10-4 3 365
dendPLRNN + id-TF 0.9± 0.2 0.15± 0.03 (2.2± 0.7) · 10−3 10 361
RC 0.52± 0.12 0.19± 0.04 (5± 2) · 10−3 201 603
LSTM-TBPTT 0.46± 0.22 0.11± 0.03 (1.1± 0.3) · 10−3 30 1188

SINDy 0.24 ± 0.00 0.091 ± 0.000 (6.1 ± 0.0) · 10-4 3 30
N-ODE 0.63± 0.2 0.15± 0.05 (2.3± 0.3) · 10−3 3 353
LEM 0.39± 0.24 0.12± 0.05 (6.0± 0.9) · 10−3 14 360

Lorenz-
96 (20d)

shPLRNN + GTF 1.68± 0.06 0.072 ± 0.001 (1.21± 0.02) · 10−1 20 4540
dendPLRNN + id-TF 1.65 ± 0.05 0.083± 0.005 (1.1 ± 0.1) · 10-1 60 5740
RC 2.40± 0.15 0.14± 0.02 (4.9± 0.4) · 10−1 600 12000
LSTM-TBPTT 5± 1 0.31± 0.04 (1.14± 0.04) · 100 80 10580

SINDy 1.59 ± 0.00 0.06 ± 0.00 (4.6 ± 0.0) · 10-3 20 4620
N-ODE 1.77± 0.07 0.076± 0.01 (2.5± 0.02) · 10−1 20 4530
LEM 7.2± 2.3 0.54± 0.13 (1.3± 0.06) · 100 46 4620

SINDy For SINDy we used the PySINDy package (de Silva et al., 2020; Kaptanoglu et al., 2022) with the sequentially
thresholded least squares (STLSQ) optimizer. We scanned the threshold hyperparameter, which determines the sparsity of the
final solution (the higher the threshold, the sparser the solution), in the range [0, 1). Furthermore, since all employed datasets
are noisy, we used PySINDy’s SmoothedFiniteDifference for empirical vector field estimates, leading to more
robust estimates. For the Lorenz-63 and Lorenz-96 systems, we used a polynomial basis library (PolynomialLibrary)
up to order 2. Note that this essentially means SINDy only needs to figure out the right values of the parameters for these
problems, as its set of equations is almost the same as in the ground truth systems to begin with. For the empirical ECG and
EEG data, we experimented with terms up to 5-th order and also tried a Fourier basis (FourierLibrary), but did not
manage to obtain any solution which would not quickly diverge during numerical integration. Orbits for the Lorenz-63 and
Lorenz-96 systems were drawn using the LSODA integrator with absolute tolerance 10−4 and relative tolerance 10−6.

RC and LSTM For RC and LSTM we used the official repository provided by the authors (Pathak et al., 2018; Vlachas
et al., 2018; 2020). For RC (Pathak et al., 2018), we searched for optimal hyperparameters for {dynamics length,
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regularization, noise level}. For LSTMs trained with truncated BPTT (Vlachas et al., 2018), we determined
optimal hyperparameters for {hidden state propagation length, regularization, learning rate,
noise level, sequence length}.

dendPLRNN + id-TF For comparison to the method in Brenner et al. (2022), we used the corresponding repository.
We scanned across different values for the sparse TF interval τ (teacher forcing interval) and sequence length
(seq len), biased by the values reported in Brenner et al. (2022).

LEM For comparison to the method proposed in Rusch et al. (2022), we used code provided by the authors on their public
respository. The size of the network was determined such that a comparable number of trainable parameters was obtained
as for the other methods, while optimal hyperparameters for the learning rate and time constant ∆t were selected via grid
search.

Neural ODE For comparison to N-ODEs (Chen et al., 2018), we used the implementation provided in the torchdiffeq
package. As hyperparameters we considered the employed activation function {relu, tanh} and the sequence length
∈ {1, 5, 10, 25, 50} used per minibatch. We further tried several fixed-step numerical solvers (rk4, euler, midpoint),
which had little influence on the results, while an adaptive-step solver (adaptive heun) led to unacceptably long training
times. We further probed the N-ODE variants Latent-ODE and ODE-RNN proposed in (Rubanova et al., 2019), using the
implementation provided on the authors’ github page. The results in Table S4 imply that neither of these accomplishes more
faithful reconstructions of EEG data than ‘vanilla’ N-ODE. In fact, the values for Dstsp and DH obtained for ODE-based
methods essentially all reflect “chance level” in the sense that the resulting long-term dynamics bears no similarity with the
one observed.

We stress that most of these methods achieved fairly good reconstruction results on the simulated benchmarks (i.e., the
various Lorenz systems introduced in Appx. 6.3), see Tables S1 and S3. They may also be competitive in their short-term
forecasts on the empirical data (EEG & ECG, see Table 1 and Fig. S13). However, as Figs. 3, S11 and S12 demonstrate,
unlike shPLRNN+GTF and dendPLRNN, they failed to reproduce the long-term behavior of the empirically observed
systems, i.e. they failed to reconstruct underlying geometrical and invariant temporal properties as essential in this context.

Table S4. Results for Latent-ODE and ODE-RNN (Rubanova et al., 2019) on the EEG data. Reported values are median ± median
absolute deviation (MAD) over 20 independent training runs. ‘dim’ refers to the model’s state space dimensionality (number of dynamical
variables). |θ| denotes the total number of trainable parameters. Values for shPLRNN+GTF and N-ODE are copied from Table 1.

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

EEG
(64d)

shPLRNN + GTF 2.1 ± 0.2 0.11 ± 0.01 (5.5 ± 0.1) · 10-1 16 17952
N-ODE 20± 0.5 0.47± 0.01 (5.5± 0.2) · 10−1 64 17995
Latent ODE 16.1± 3 0.47± 0.02 (5.6± 0.2) · 10−1 64 17915
ODE-RNN 13.9± 2.1 0.59± 0.03 (9.1± 0.6) · 10−1 64 17859
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Figure S10. GTF smoothens loss landscapes. Loss as a function of two arbitrarily chosen (θ1 = w
(1)
1,2, θ2 = w

(1)
2,1) shPLRNN parameters.

The shPLRNN (13) was first trained on the Lorenz-63 system for a couple of epochs (α = 0.15, T̃ = 200, S = 16), after which the loss
was determined for various α values based on a random batch of the training data. For larger α the loss landscape smoothens out.

30



Generalized Teacher Forcing for Learning Chaotic Dynamics

Figure S11. Example heatmaps of EEG reconstructions provided by the methods employed in Table 1. We used the same models as for
Fig. 3. To make the heatmaps comparable, each channel was standardized for each method separately.
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Figure S12. Example time traces of ECG reconstructions provided by the methods employed in Table 1. For each method we picked the
best reconstruction out of 20.
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Figure S13. Model short-term predictions: Excerpt of EEG time series (blue) vs. 5-step-ahead predictions (yellow) for the different DS
reconstruction models & methods compared in this work. Note that essentially all methods provide reasonable short-term forecasts, yet
most fail to produce non-trivial limiting dynamics (cf. Fig. 3).
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