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Abstract
A treatment policy defines when and what treat-
ments are applied to affect some outcome of
interest. Data-driven decision-making requires
the ability to predict what happens if a policy is
changed. Existing methods that predict how the
outcome evolves under different scenarios assume
that the tentative sequences of future treatments
are fixed in advance, while in practice the treat-
ments are determined stochastically by a policy
and may depend, for example, on the efficiency of
previous treatments. Therefore, the current meth-
ods are not applicable if the treatment policy is
unknown or a counterfactual analysis is needed.
To handle these limitations, we model the treat-
ments and outcomes jointly in continuous time,
by combining Gaussian processes and point pro-
cesses. Our model enables the estimation of a
treatment policy from observational sequences of
treatments and outcomes, and it can predict the
interventional and counterfactual progression of
the outcome after an intervention on the treat-
ment policy (in contrast with the causal effect of
a single treatment). We show with real-world and
semi-synthetic data on blood glucose progression
that our method can answer causal queries more
accurately than existing alternatives.

1. Introduction
What policy should we adopt? In healthcare, for example,
we observe patients’ physiological markers (outcomes) that
change over time. We want to (positively) affect these out-
comes by actions (treatments) such as doses of a medicine.
Sequences of outcomes and treatments are recorded as a
time series. A policy dictates what actions to take and when.
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To improve our policies, we must be able to assess their con-
sequences: What is the effect of a given policy? What will
be the effect of a change to a different policy? What would
have happened if a patient had followed a different treat-
ment policy? These questions correspond to observational,
interventional, and counterfactual queries, and answering
them is crucial, especially in domains such as public health
and healthcare, where quantifying risks and expectations
accompanying a policy decision, as well as evaluating past
policies, is essential (Schulam & Saria, 2017; Bica et al.,
2020; Oberst & Sontag, 2019; Tsirtsis & Gomez Rodriguez,
2020; Tsirtsis et al., 2021). Answering the interventional
and counterfactual queries requires modeling policy inter-
ventions using a causal model.

We want to infer a causal model of recurrent treatments
from sequential treatment–outcome data. Such data are al-
ways created by some policy, which induces dependencies
between past events and future treatments. However, the
policy itself is generally not recorded and may be known
only implicitly from the observed distribution of treatments
and outcomes. In epidemiology, this problem has been stud-
ied using linear models for discrete-time sequences (Robins,
1986; Robins & Hernán, 2009; Taubman et al., 2009; Zhang
et al., 2018), though these works are unable to capture non-
linear, long-term dependencies in real-world, continuous-
time treatment–outcome sequences (Bica et al., 2021).

To handle such complex, long-term dependencies, sequen-
tial treatment–outcome models based on Bayesian nonpara-
metrics and neural networks have been proposed (Xu et al.,
2016; Schulam & Saria, 2017; Soleimani et al., 2017; Bica
et al., 2020; Seedat et al., 2022). However, they neglect the
policy-induced link between past events and future treat-
ments, and their causal analyses are limited to estimating
the impact of a fixed sequence of treatments set by hand or
generated by a simplistic parametric model. Such models do
not generalize beyond simulations to the analysis of realistic
treatment policies in real-world applications. Recently, Hua
et al. (2021) modeled treatments explicitly; however, they
focused on optimizing treatment strategies instead of causal
estimation and only considered a parametric model tailored
for a particular application.

With an appropriate causal model, we can also evaluate
treatment policies using counterfactual reasoning, which
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Figure 1: (a) Sequential treatment–outcome data for patients A (top) and B (bottom). Patients follow distinct policies πA

and πB in the observation period [0, 10], where patient A is treated more frequently. A treatment causes a (slightly delayed)
increase or ‘bump’ in the outcome. (b, c) We now focus on patient A and show outcome trajectory f (top) and treatment
intensity λ (bottom) in dashed lines. The estimates based on the observational data are in blue. (b) The interventional
query corresponds to how the outcome trajectory of A will progress after the observation period (shaded area) under a
treatment intensity induced by a different policy πB , shown in red. (c) The counterfactual query corresponds to how the
outcome trajectory of A would have progressed if the policy in the observation period [0, 10] had been set to πB instead. The
observational data and estimations are shown in the background, while the counterfactual data and predictions are shown in
red. Notice some of the observed treatments are kept as counterfactual treatments acf, where the counterfactual intensity λcf

is higher than the observational intensity λobs. Counterfactual treatments in turn affect the counterfactual trajectory fcf.

allows for learning from mistakes by considering alternative
scenarios to past events (Epstude & Roese, 2008; Oberst
& Sontag, 2019). This is not considered by most of the
literature, which focuses on future outcome progression.
One recent work (Noorbakhsh & Rodriguez, 2022) applies
counterfactual reasoning to event data using a counterfactual
temporal point process, but does not consider a treatment–
outcome setup (for further related work, see Appendix A).

To address these limitations, we propose a joint treatment–
outcome model to estimate treatment policies and treatment
responses in continuous time. Our contributions are:

Joint treatment–outcome model. We combine a marked
point process and a conditional Gaussian process (GP). Our
non-parametric model can be learned from observational
sequential treatment–outcome data (Fig. 1(a)) and can esti-
mate future and counterfactual progression.

Interventional and counterfactual queries of interven-
tions on policies. We show that an intervention on a treat-
ment policy is equivalent to a sequence of stochastic inter-
ventions on treatments, which we can model with our joint
model, and use this to answer interventional (Fig. 1(b)) and
counterfactual queries (Fig. 1(c)).

Counterfactual sampling of arbitrary point processes.
We extend the algorithm of Noorbakhsh & Rodriguez (2022)
from Poisson processes (independent events) to arbitrary
point processes, allowing events to depend on past events.

We fit our model to a real-world data set on blood glucose
progression, and from this generate realistic semi-synthetic

use cases, where we show that our model accurately answers
interventional and counterfactual policy queries.

2. Preliminaries
Our work builds on Gaussian processes (for more details
see Williams & Rasmussen (2006)), marked point processes
(Section 2.1) and causal inference (Section 2.2).

2.1. Marked Point Processes (MPP)

A temporal point process is a stochastic process that models
a set of ordered random points {ti}Ni=1 on an interval [0, T ]
(Daley & Vere-Jones, 2003; Rasmussen, 2011). This process
is uniquely determined by its conditional intensity function
λ∗(τ) = λ(τ | H<τ ), where the star superscript ∗ denotes
dependence on the past history H<τ . The intensity function
describes the instantaneous rate, i.e., the expected number
of events in an infinitesimal interval [τ, τ + dτ).

When each event time ti is associated with additional in-
formation (‘mark’) mi, we model D = {(ti,mi)}Ni=1 with
a marked point process (MPP). For an MPP, the conditional
intensity function additionally includes the conditional mark
probability p∗(m | t): λ∗(t,m) = λ∗(t)p∗(m | t). The
likelihood of D observed in the interval [0, T ] is given by

p(D | λ∗(t,m)) =

(
N∏
i=1

λ∗(ti)p
∗(mi | ti)

)
exp(−Λ),

where Λ denotes the integral term Λ =
∫
[0,T ]

λ∗(τ)dτ .
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2.2. Causal Inference

Causal effects are widely studied in the language of potential
outcomes (PO, Neyman, 1923; Rubin, 1978) or structural
causal models (SCM, Pearl, 2009). In this section, we briefly
introduce both frameworks, as we use POs to define causal
queries formally and show their identifiability, while using
SCMs to emphasize the distinction between probability dis-
tributions induced by different types of target causal queries.

2.2.1. POTENTIAL OUTCOMES

Let A and Y denote a treatment and an outcome variable.
In the PO framework, the primitive building block is the
potential outcome Y [ã], which is a random variable that
represents the value of the outcome Y under a treatment
intervention [A = ã]. The treatment intervention [ã] corre-
sponds to the do-operator do(A = ã) in the SCM frame-
work: P (Y [ã]) ≡ P (Y | do(A = ã)) (Pearl, 2009).

2.2.2. OBSERVATIONAL, INTERVENTIONAL AND
COUNTERFACTUAL DISTRIBUTIONS

For a set of variables X = {Xk}Kk=1, an SCM M =
(S, p(N)) consists of (i) a set of structural assignments S =
{Xk := fk(pa(Xk), Nk)}Kk=1, where pa(·) returns the par-
ents of a given variable, and (ii) a distribution over noise
variables N ∼ p(N). A causal graph G is obtained by repre-
senting each variable Xk as a node and drawing edges to Xk

from its parents pa(Xk). The SCM defines a generative pro-
cess for X by sampling N from p(N) and performing ances-
tral sampling over structural assignments S, inducing an ob-
servational distribution X ∼ p(X). Each data point x(n) =

{x(n)
k }Kk=1 in the observed data D = {x(n)}Nn=1 is consid-

ered an i.i.d. sample from the observational distribution.

An intervention do(Xk = x̃k) is performed by removing
the assignment fk(·, ·) and setting Xk to x̃k. This yields an
interventional SCM Mint = (Sint, p(N)), inducing an inter-
ventional distribution: p(X | do(Xk = x̃k)) ≡ p(X[x̃k]).

In the context of an observed data point x(n), we define a
counterfactual SCM by plugging in the individual’s poste-
rior noise distribution p(N | x(n)) in place of the general
(prior) noise distribution p(N) and then updating the rele-
vant structural assignment: Mcf = (Sint, p(N | x(n))). The
resulting joint distribution p(X | x(n),do(Xk = x̃k)) ≡
p(X[x̃k] | x(n)) is called the counterfactual distribution.

We categorize causal queries by the required joint distribu-
tion to answer them: (i) an interventional query requires
access to the interventional distribution and (ii) a counterfac-
tual query requires access to the counterfactual distribution.
The key difference between the two queries is that a coun-
terfactual query requires the posterior distribution of noise
variables p(N | x(n)) before performing the intervention,
while the interventional query uses the noise prior p(N).

t1 t2 t3 tn tn + 1 tn + 2 tn + 3

. . .o1
a1

o2

ai

oj

ai+1

oj+1

π

Figure 2: The causal graph G assumes a sequential
treatment–outcome setup in continuous time, where past
treatments and outcomes have a causal effect on future treat-
ments and outcomes. The causal effect of the policy π on
outcomes is fully mediated through treatments, i.e. there are
no direct edges between the policy π and outcomes o.

3. Problem Definition
Consider an observational data set D:

D =
{

π[0,T ]︸ ︷︷ ︸
policy label

, {(ti,mi)}Na
i=1︸ ︷︷ ︸

treatments a

, {(tj , yj)}No
j=1︸ ︷︷ ︸

outcomes o

}
, (1)

in a period [0, T ]. For notational ease, the data set is defined
for a single patient. Our model can be trivially generalized
to multiple patients, under exchangeability.

A policy is a pair (π[0,T ], λ
∗
π(t,m)) that defines when and

how treatments are applied, and is effectively determined
by its treatment intensity function λ∗

π(t,m). The policy
label π[0,T ] is assumed fixed for the period [0, T ] stated in
the subscript, and it is assumed observed, while the corre-
sponding intensity λ∗

π(t,m) is unobserved. We assume that
patients belong to different groups, and each group is charac-
terized by a shared policy (treatment intensity). Background
knowledge of having, e.g., different hospitals, countries,
or environments in the observed data set implies distinct
policies. In the absence of such information, each patient
can be assumed to have their own policy.

A treatment tuple ai = (ti,mi) consists of an arrival time
ti ∈ [0, T ] and a treatment mark (dosage) mi ∈ R. An
outcome tuple oj = (tj , yj) consists of a measurement
time tj ∈ [0, T ] and an outcome value yj ∈ R. Treatment
times ta = {ti}Na

i=1 and outcome times to = {tj}No
j=1 are

irregularly sampled points on the interval [0, T ]. The history
H≤t = {π≤t,a≤t,o≤t} contains the information about the
past policy π≤t, past treatments a≤t = {(ti,mi) : ti ≤ t}
and past outcomes o≤t = {(tj , yj) : tj ≤ t}.

We observe a continuous-time process Y≤T = {y(τ) : τ ≤
T} as outcome tuples o measured at times to = {tj}No

j=1.
To answer causal queries, we model the potential outcome
trajectory Y>τ̃ [π̃>τ̃ ], under an intervened policy specified
by π̃>τ̃ , where the subscript emphasizes the period when a
policy intervention takes place. When the intervention time
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τ̃ is set to the end of the observation period τ̃ = T , we call
the estimation task a policy intervention, as its computation
requires access to the interventional distribution (Fig. 1(b)):

P (Y>T [π̃>T ] | H≤T ). (2)

Also, we can set the intervention time τ̃ to the start of the ob-
servation period τ̃ = 0 and consider a hypothetical scenario
under an alternative treatment policy specified by π̃[0,T ]. We
call this estimation task a policy counterfactual, as its com-
putation requires access to the counterfactual distribution:

P (Y[0,T ][π̃[0,T ]] | H≤T ). (3)

The difference between a policy intervention and a policy
counterfactual is illustrated in Figs. 1 (b) and (c).

4. Causal Assumptions and Identifiability
In this section, we first show that a policy intervention query,
formalized in Eq. (2), is equivalent to the potential outcome
trajectory of a sequence of stochastic (conditional) interven-
tions on treatments. Then, we show the latter is identifiable
under causal assumptions, i.e., it can be estimated solely
based on statistical terms (Pearl, 2009).

We assume a sequential treatment–outcome setup where past
treatments and outcomes may affect future events (Robins,
1986; 1987). We add the policy label π to this setup, which
has a direct causal effect on sequential treatments a. The in-
terplay between a policy label π, treatments a, and outcomes
o is illustrated in the causal graph G in Fig. 2. We make
the standard causal assumptions of consistency (Assump-
tion 1) and no unobserved confounders (NUC, Assumption
2), and furthermore the continuous-time NUC (Assumption
3, Schulam & Saria, 2017, see formal definitions in Ap-
pendix B). In words, the continuous-time NUC states that
treatments are assigned stochastically in continuous time,
conditioned on the past history. In addition, we assume
that the causal effect of the policy label π on outcomes o
is fully mediated through treatments a, such that the causal
graph G excludes direct edges from the policy label π to the
outcomes o, stated formally as:

Assumption 4: Fully-mediated policy effect. Conditioned
on the past history H≤τ , the causal effect of the policy
specified by π̃>τ on the outcome trajectory Y>τ is fully
mediated through sequential treatments ã>τ :

P (Y>τ [π̃>τ , ã>τ ] | H≤τ ) = P (Y>τ [ã>τ ] | H≤τ ).

Using Assumptions {1,2,3,4}, we inspect the potential out-
come trajectory Y>T [π̃>T ] at a discrete set of ordered
query times q = {q1, . . . , qm} (all qk > T ): Yq[π̃>T ] =
{y(qk)[π̃>T ] : qk ∈ q} (Schulam & Saria, 2017). We fac-
torize the outcome query Yq[π̃>T ] in temporal order, and

develop Theorem 1 below to reformulate it as the sequential
estimation of treatments and outcomes:

Theorem 1. Under Assumptions {1,2,3,4}, the potential
outcome query Yq[π̃>T ] under a policy π̃>T is equivalent to
the potential outcome query under a sequence of stochastic
(conditional) interventions on treatments ã>T :

P (Yq[π̃>T ] | H≤T ) =
∑
ã>T

m−1∏
k=0

(4)

P (ã[qk,qk+1)[π̃>T ]|H≤qk)P (Yqk+1
[ã[qk,qk+1)]|H≤qk),

where q0 = T , and ã[qk,qk+1) denotes treatments in the
interval [qk, qk+1) without outcome observations between
consecutive query times. Here, the (whole) treatment se-
quence ã>T follows a distribution p(ã>T [π̃>T ]), induced
by the intervened policy label π̃>T . The proof of Theorem 1
is given in Appendix C. Accordingly, the potential outcomes
ã[qk,qk+1)[π̃>T ] and Yqk+1

[ã[qk,qk+1)] can be identified un-
der Assumptions {1,2,3}, using the following conditionals,
both of which can be estimated with a statistical model
(Schulam & Saria, 2017; Seedat et al., 2022):

P (Yq[π̃>T ] | H≤T ) =
∑
ã>T

m−1∏
k=0

(5)

P (ã[qk,qk+1)|π̃>T ,H≤qk)︸ ︷︷ ︸
Treatment Term

P (Yqk+1
|ã[qk,qk+1),H≤qk)︸ ︷︷ ︸

Outcome Term

.

The identifiability result by Schulam & Saria (2017) was
limited to a fixed sequence of treatments. Theorem 1 and
the identifiability result in Eq. (5) generalize that result to a
stochastic (conditional) intervention on a sequence of treat-
ments, and one can recover the fixed sequence of treatments
by assuming that the target density pπ̃(ã>T ) puts all proba-
bility on a single sequence of treatments. The identifiability
of a policy counterfactual is more challenging and discussed
in Section 6, since it requires functional assumptions related
to the model definition (Section 5).

5. Joint Treatment–Outcome Model
To estimate both statistical terms in Eq. (5), (i) Treatment
Term and (ii) Outcome Term, from observational data, we
propose a joint treatment–outcome model, combining a
marked point process and a conditional Gaussian process.

We encode conditional independence statements in the graph
G by defining two dependent MPPs with conditional inten-
sity functions: (i) treatment intensity for a treatment a =
(t,m): λ∗

π(t,m) = λ∗
π(t)p

∗(m | t) and (ii) outcome inten-
sity for an outcome o = (t, y): λ∗

o(t, y) = λ∗
o(t)p

∗(y | t).
The past history H<t = {π<t,a<t,o<t} containing the in-
formation about the policy, past actions, and past outcomes
is a valid history for both conditional intensity functions
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λ∗
π(t,m) and λ∗

o(t, y). The joint distribution for the obser-
vational data set D in Eq. (1) can be written in terms of
treatment and outcome intensity functions:

p(D) =

I∏
i=1

λ∗
π(ti,mi)

J∏
j=1

λ∗
o(tj , yj) exp(−Λ),

with the integral term Λ =
∫
[0,T ]

(
λ∗
π(τ) + λ∗

o(τ)
)
dτ .

We further assume that the measurement times of the out-
comes to = {tj}No

j=1 are given, which is valid for example
when the data are collected through automated patient moni-
toring in healthcare. This assumption is equivalent to setting
the outcome time intensity to an indicator function 1to(t):

1

λ∗
o(t, y) = 1to(t)p

∗(y | t) = p∗(y | t)|t∈to . Then, the
joint distribution becomes

p(D) =

I∏
i=1

λ∗
π(ti)p

∗
π(mi | ti)︸ ︷︷ ︸

Treatment Intensity

J∏
j=1

p∗(yj | tj)︸ ︷︷ ︸
Outcome Model

|tj∈to

× exp(−
∫
[0,T ]

λ∗
π(τ)dτ). (6)

5.1. Treatment Intensity

We consider the treatment time intensity λ∗
π(τ) as the output

of a square transformation of a latent function g∗π(τ), which
we model as the sum of a constant baseline β0 and three
time-dependent functions with GP priors, gb, g∗a, g

∗
o ∼ GP .

We assume the patients who follow the same treatment
policy π share the same treatment model, i.e., the same
hyperparameters, but the intensity curves may differ because
past treatments and outcomes are not the same.

The latent-state function gb(τ) models the history-
independent intensity. The regressive component g∗a(τ)
models the dependence on past treatments by taking the last
Qa treatments as input and the regressive component g∗o(τ)
models the dependence on past outcomes by taking the last
Qo outcomes as input. The treatment intensity λ∗

π(τ) is

λ∗
π(τ) =

(
β0︸︷︷︸

Poisson
Baseline

+ gb(τ)︸ ︷︷ ︸
NHPP

Baseline

+ g∗a(τ ;a)︸ ︷︷ ︸
Treatment

Effect

+ g∗o(τ ;o)︸ ︷︷ ︸
Outcome

Effect

)2
. (7)

The resulting treatment intensity extends the model
proposed by Liu & Hauskrecht (2019) with (i) addi-
tional baseline components β0 and gb(τ) and (ii) the
functional dependence on marks. Without regressive
components g∗a(τ) and g∗o(τ), the treatment model
becomes a non-homogeneous Poisson process (NHPP),
whose instantaneous intensity is independent of past
events: λ(τ) = (β0 + gb(τ))

2. If we further exclude the

1The indicator function is: 1to(t) =

{
1, if t ∈ to
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Figure 3: The outcome model f (red) is the sum of baseline
fb (yellow) and total response fa, which adds up single
treatment responses of different magnitude (3 blue lines).

time-varying baseline gb(τ), the model becomes a simple
Poisson process with constant intensity. We model the
treatment dosages (marks) by a GP-prior: m(τ) ∼ GP .
The model definition is detailed in Appendix E.

5.2. Outcome Model

We model the outcome trajectory Y = {y(τ) : τ ∈ R≥0}
over time τ by a conditional GP model, combining three
independent components: (i) a baseline progression, (ii) a
treatment response curve, and (iii) a noise variable (Schulam
& Saria, 2017; Cheng et al., 2020; Zhang et al., 2020):

y(τ) = fb(τ)︸ ︷︷ ︸
Baseline

+ fa(τ ;a)︸ ︷︷ ︸
Treatment Response

+ ϵ(τ)︸︷︷︸
Noise

, (8)

with independent Gaussian noise ϵ(τ) ∼ N (0, σ2
ϵ ).

Baseline Progression. This is modeled by a GP prior on
fb(τ) ∼ GP . Cheng et al. (2020) proposed a sum of a
squared exponential (SE) and a periodic kernel to model
recurring patterns in heart rates. In our experiments, we
model the baseline progression of blood glucose as a sum
of a constant and a periodic kernel to capture daily blood
glucose profiles of non-diabetic patients fluctuating around
a constant baseline (Ashrafi et al., 2021). We assume that
the outcome baseline fb is patient-specific.

Treatment Response Model. We model the treatment re-
sponses as additive, similar to Cheng et al. (2020):

fa(τ ;a) =
∑

ai=(ti,mi)∈a

fm(mi)ft(τ ; ti), (9)

where the time-dependent response function ft ∼ GP repre-
sents the response ‘shape’ and is shared across patients, and
fm(mi) is a patient-specific linear function that scales the
magnitude of the response for the given treatment dosage
value mi ∈ R, as commonly done in the literature (Cheng
et al., 2020; Zhang et al., 2020). This means the effects
of nearby treatments simply sum up as shown in Fig. 3.
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The scaling function fm has patient-specific parameters
that have hierarchical priors, to share information between
patients. For the response shape function ft we use an SE
kernel, as it provides sufficient performance for our use-case
(Cheng et al. (2020) also propose an extension with a latent
force model (Alvarez et al., 2009)). The model definition is
detailed in Appendix F.

6. Inference
Policy Intervention. To model the policy intervention,
we first fit the joint model to the observational data us-
ing variational inference (see Appendix G), which gives
us the (observational) SCM M = (S, p(N)). An inter-
vention [π̃] on the policy results in an interventional SCM:
Mint = (Sint, p(N)). Following Theorem 1, this interven-
tion is equivalent to a stochastic intervention on the sequence
of treatments, where the treatments now follow the new pol-
icy π̃. In practice, this is modeled by replacing the observed
treatment intensity λ∗

π(·) with the new interventional inten-
sity λ∗

π̃(·), while keeping the outcome model the same.

Policy Counterfactual. The policy counterfactual is cal-
culated in exactly the same way as the policy interven-
tion, except that the generic noise term p(N) is replaced
by individual-specific noise p(N | D(v)) that has been in-
ferred from the observations for that individual (v): Mcf =
(Sint, p(N | D(v))). In our model, the noise consists of two
components, treatment and outcome noise: N = {Ea, Eo}.
The outcome noise Eo is defined in Eq. (8) and its posterior
is available in closed form from the GP. The treatment noise
Ea comprises noise associated with the sampling process of
the treatments. In practice, we estimate the noise and condi-
tion the counterfactual sampling of the treatments with these
estimates using a novel variant of the algorithm proposed by
Noorbakhsh & Rodriguez (2022), which we have extended
to history-dependent point processes (see Appendix H.2.2).

Identifiability of the policy counterfactual. The coun-
terfactual trajectories involve two components: treatments
and outcomes. The counterfactual treatments are identifi-
able, as our algorithm satisfies the monotonicity assumption
(Pearl, 2009; Noorbakhsh & Rodriguez, 2022). On the other
hand, the counterfactual outcomes are not guaranteed to be
identifiable, because this would require identifiability of the
baseline and treatment response separately, which is not
guaranteed as they both are modeled non-parametrically.
To address this, we use priors that encourage the baseline
(slow-changing) and the response functions (fast-changing)
to learn different aspects of the data, and we empirically
show that in practice the response function fa(τ) (Eq. (9))
and hence the counterfactual trajectory can be identified
with good accuracy. The counterfactual algorithm and iden-
tifiability are further detailed in Appendix H.2.3.

7. Experiments
In this section, we validate that our model can estimate
interventional and counterfactual outcome trajectories un-
der policy interventions. The empirical validation is com-
posed of two parts. First, on a real-world observational
dataset, we show the proposed model can learn clinically
meaningful treatment response curves and treatment inten-
sities that can handle time-varying confounding. Second,
we evaluate our model on two causal inference tasks: (i)
the policy intervention and (ii) the policy counterfactual.
To evaluate the performance on interventional and coun-
terfactual predictions, we set up a realistic semi-synthetic
simulation scenario, as the true causal effects are unknown
for real-world observational data sets. To ensure a realis-
tic simulation scenario, we use a subset of learned mod-
els from the real-world study as the ground-truth data
generators. The study is reproducible and our imple-
mentation in GPflow (van der Wilk et al., 2020) can be
found at https://github.com/caglar-hizli/
modeling-policy-interventions.

7.1. Learning Treatment Intensities and Response
Curves on Real-World Observational Data

We first demonstrate that our model can learn clinically
meaningful treatment intensities and response curves from a
real-world observational dataset on physiological dynamics
of blood glucose (Zhang et al., 2020; Wyatt et al., 2021).
The experimental setup is further detailed in Appendix I.1.

Real-world dataset. The dataset consists of treatment–
outcome measurements of 14 non-diabetic patients over a
3-day period (Zhang et al., 2020), corresponding to meals
(treatments) and blood glucose measurements (outcomes).
Patients record their meals in a meal diary and their blood
glucose is measured by a monitoring device at regular time
intervals. Meal ingredients are transformed into five nutri-
ents: sugar, starch, protein, fiber, and fat. As meal dosage
(mark), we preprocess nutrient covariates and use a single
carbohydrate intake covariate equal to the sum of sugar and
starch values, following Ashrafi et al. (2021).

Causal Assumptions. In the real-world dataset, the causal
assumptions do not (exactly) hold and are not statistically
testable. This is why (i) in this section, we perform only
a statistical analysis to show how our joint model works,
and (ii) in Section 7.2, we perform a causal analysis on a
semi-synthetic simulation study.

Assumption 2 states that an interventional meal has non-
zero probability, which is likely to hold since we assume
each patient follows their own diet (policy) and one patient’s
diet includes reasonable meal events that would have non-
zero probability for the others. Assumption 3 does not
hold, since there can be unobserved processes, e.g., physical
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Figure 4: Estimated treatment–outcome model on the real-world meal–glucose data. Top: Glucose (outcome) measurements
(black crosses), inferred baseline (yellow), and predicted glucose levels obtained by adding treatment responses, the baseline,
and the noise (red). The confidence intervals around the means refer to ±1 standard deviation. We see that the increase in
blood glucose is correctly predicted by the outcome model. Bottom: Treatment times and estimated intensities for the best
model λ∗

ao and the simple baseline λb. The baseline treatment model has a large meal intensity at times of the day when the
patient usually eats. In addition, in the best treatment model, λ∗

ao, we see that the intensity of a new meal immediately after
a previous meal decreases either directly through g∗a or indirectly through the increase in blood glucose represented by g∗o .
The intensities of the other models are shown in Appendix I.1.2.

activity, which influence both meal times and daily glucose
profiles. However, the influence of confounding variables
on blood glucose, apart from meals, is expected to be minor
for non-diabetic individuals, as blood glucose is typically
steady between meals (Ashrafi et al., 2021). Assumption 4
states that the policy effect is fully mediated through meals.
For example, a policy that satisfies this is a dietary policy
that dictates how the patient eats and in that way affects
the blood glucose, but does not affect blood glucose in any
other direct or indirect way. In Section 7.2, we perform a
causal analysis under such dietary policy interventions. As
an example that violates this assumption, we could consider
a more generic lifestyle intervention that includes aspects
other than the diet, such as physical activity.

Model. The sequential meal–blood glucose data of a pa-
tient is modelled jointly, as detailed in Section 5. To show
how the treatment intensity λ∗(τ) handles the time-varying
confounding due to previous treatments and outcomes, we
define five treatment intensities {λb, λ

∗
ba, λ

∗
bo, λ

∗
ao, λ

∗
bao} for

comparison. In the most complex model λ∗
bao, the inten-

sity of treatments depends on the baseline (b), previous
treatments (a for ‘action’), and previous outcomes (o); the
simpler models have only some of these components as
specified in their respective subscripts, see the functional
forms in Table 1.

Results. We show an example fit of the joint model for one
patient in Fig. 4. The treatment- and outcome-dependent

Table 1: Comparison of models for real-world data. The
last column shows the test log-likelihood (TLL, higher is
better; mean ± standard deviation) for the different models.
Models are trained on the first 2 days of meal–glucose data.
Day 3 is used to compute the TLL.

INTENSITY COMPONENTS TLL ↑

λb

(
β0 + gb(τ)

)2 −13.3± 0.5

λ∗
ba

(
β0 + gb(τ) + g∗a(τ ;a)

)2 −12.2± 0.3

λ∗
bo

(
β0 + gb(τ) + g∗o(τ ;o)

)2 −11.0± 0.3

λ∗
ao

(
β0 + g∗a(τ ;a) + g∗o(τ ;o)

)2 −10.7± 0.4

λ∗
bao

(
β0 + gb(τ) + g∗a(τ ;a) + g∗o(τ ;o)

)2 −12.5± 0.4

intensity λ∗
ao (blue dashed line) correctly estimates that the

probability of a meal event decreases (i) right after a new
meal or (ii) with increasing blood glucose. This empiri-
cal finding suggests that functions g∗a and g∗o are useful in
handling time-varying confounding due to past meal and
glucose values.

We compare the different models in terms of the test log
likelihood (TLL) for 14 patients in Table 1. We see that
the simple history-independent intensity λb(τ) produces the
lowest TLL. The treatment- and outcome-dependent inten-
sity λ∗

ao(τ) produces the highest TLL mean, and slightly
better results than the more complex intensity λ∗

bao(τ).
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Table 2: Causal tasks on semi-synthetic data: The observed policy is π[0,1d] = πA, and we report mean squared error
(MSE, lower is better) for observational [π̃>1d = πA] and interventional [π̃>1d = πB ] queries as well as for the policy
counterfactual [π̃[0,1d] = πB ]. The best results are bolded. Methods developed by us are highlighted in blue.

QUERY (MSE ↓) QUERY (MSE ↓)

TREATMENT
MODEL

RESPONSE
MODEL

MSCM
OBSERVATIONAL INTERVENTIONAL MSCM

COUNTERFACTUAL
[π̃>1d = πA] [π̃>1d = πB ] [π̃[0,1d] = πB ]

Gamma(H21) Param.(H21) H21int 0.50± 0.02 0.50± 0.02 H21cf 0.49± 0.02
Gamma(H21) GP AB1int 0.30± 0.02 0.30± 0.01 AB1cf 0.21± 0.01
NHPP(L15) Param.(S17) AB2int 0.97± 0.03 1.00± 0.03 AB2cf 0.59± 0.02
NHPP(L15) GP AB3int 0.34± 0.02 0.32± 0.01 AB3cf 0.23± 0.01
GP-PP Param.(H21) AB4int 0.46± 0.01 0.46± 0.01 AB4cf 0.45± 0.02
GP-PP Param.(S17) AB5int 0.96± 0.03 1.00± 0.03 AB5cf 0.56± 0.02
GP-PP GP OURobs 0.19 ± 0.01 0.52± 0.02 OURobs 0.82± 0.03
GP-PP GP OURint 0.19 ± 0.01 0.20 ± 0.01 OURint 0.71± 0.03
GP-PP GP OURcf 0.19 ± 0.01 0.20 ± 0.01 OURcf 0.14 ± 0.01

7.2. Causal Tasks on Semi-Synthetic Data

In this section, we set up a semi-synthetic simulation study
to demonstrate the ability of the proposed model to answer
interventional and counterfactual queries resulting from an
intervention on the treatment policy. Due to space con-
straints, the experimental setup is detailed in Appendix I.2.3.

Simulator. We obtain the ground-truth simulator by fitting
our joint model to the meal–glucose data set, as discussed
in Section 7.1. To be able to assess the sequential causal
inference tasks, we have to include both sources of time-
varying confounding. Therefore, we select as the ground-
truth meal simulator the intensity that depends on both meal
and glucose histories: λ∗

π ∼ λ∗
ao.

Semi-synthetic dataset. The ground-truth simulator is used
to simulate samples from observational, interventional and
counterfactual distributions of each patient (v). Simulated
patients are divided into (i) two policy groups {πA, πB}
representing different diets and (ii) three patient groups with
distinct baseline and response functions, enabling individu-
alization among patients. The meal simulators of two diets
correspond to learned intensity functions of two real-world
patients. The glucose simulators of three groups are learned
from three real-world patients.

For the observational data set, we simulate 1-day long meal–
glucose time-series for 50 patients: D = {D(v)}50v=1. For
the interventional data set, we sample the next day of each
patient under the specified policy intervention [π̃>1d]. For
the counterfactual data set, we condition on the observed
data D(v) for each patient and sample a hypothetical first
day under a policy intervention [π̃[0,1d]], using the noise pos-
teriors. We train all models on the observational dataset, and
use interventional and counterfactual datasets for testing.

Benchmarks. First, we compare the proposed model with a
parametric joint model (H21, Hua et al., 2021), which uses

a renewal process with a parametric Gamma-shaped trigger
function as the treatment model, and a linear mixed effects
function as the outcome model. Next, we create ablations
with different treatment and outcome model combinations,
since other existing methods do not model treatments. With
ablations having different treatment intensities, we measure
the impact of having a flexible treatment intensity that can
handle complex time-varying confounding scenarios. With
ablations having different outcome models, we measure the
impact of predicting the glucose trajectory well. The abla-
tion AB1 combines the Gamma-based treatment intensity
with our GP-response model. Ablations AB2 and AB3 com-
bine a history-independent treatment model (NHPP, Lloyd
et al., 2015, (L15)) with (i) a parametric response model
proposed by Schulam & Saria (2017, (S17)) and (ii) our
GP-response model. Ablations AB4 and AB5 combine our
flexible treatment intensity (GP-PP) with two parametric
response models proposed by Hua et al. (2021, (H21)) and
Schulam & Saria (2017, (S17)).

The columns MSCM in Table 2 specify the combination of
(i) a joint model identifier M, e.g., OUR, and (ii) the tar-
get distribution of the SCM stated as a subscript: (·)obs for
observational, (·)int for interventional, and (·)cf for coun-
terfactual. Similar to Schulam & Saria (2017), we use our
own observational model (OURobs) as another baseline in
the interventional task. In the counterfactual task, we use
both our observational (OURobs) and interventional model
(OURint) as baselines. Our counterfactual model is denoted
by OURcf. To give our baseline and ablation models the
most strength, we use their interventional version, (·)int, for
estimating the interventional query and their counterfactual
version, (·)cf, for estimating the counterfactual query.

Metric. We report the mean squared error (MSE) between
ground-truth and estimated glucose trajectories under the
interventional and counterfactual distributions, over all pa-
tients and all measurement times. To obtain estimated tra-
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jectories comparable to the ground-truth trajectories, we
fix the noise variables of the point process (meal) sampling
algorithm between the ground-truth simulator and each es-
timated model. Each experiment is repeated 10 times. We
report mean and standard deviation of the MSE metric.

Policy Intervention. We estimate the interventional query:
What will happen if patient (v) with the diet π(v) = πA

will continue for the next day in the future, adopting another
patient’s diet πB? Following Eq. (2), the causal query for
this task is formalized as the interventional query:

P (Y
(v)
>1d[π̃>1d = πB ] | π[0,1d] = πA,H(v)

≤1d).

MSE results are shown in Table 2. We see that the inter-
ventional model OURint is able to estimate observational
and interventional trajectories with low error when the in-
tervention policy is (i) the same as the observed policy
[π̃>1d = πA] and (ii) different from the observed policy
[π̃>1d = πB ], while the observational model OURobs fails in
the latter case. This is because OURobs can only answer a sta-
tistical query of the following form: Observing the history of
patient (v), how will the patient state progress for the next
day, P (Y

(v)
>1d | π[0,1d] = πA,H(v)

≤1d)? Furthermore, our
empirical findings suggest that simplistic models with para-
metric glucose responses (Param.(S17,H21)) perform badly,
even when they target the interventional distribution.

Policy Counterfactual. We estimate the counterfactual
query: What would have happened if patient (v) with the
diet π(v) = πA had followed another patient’s diet πB in
the observation period [0, 1d]? Following Eq. (3), the causal
query for this task is formalized as the counterfactual

P (Y
(v)
≤1d[π̃[0,1d] = πB ] | π[0,1d] = πA,H(v)

≤1d).

MSE results are shown in the last column of Table 2. We
see that the interventional model OURint fails to estimate
counterfactual trajectories, as it does not take into account
the noise posterior of each patient. On the other hand, the
counterfactual model OURcf accurately samples counterfac-
tual trajectories and has the smallest error of the methods
considered.

8. Discussion
To study what happens if the (possibly implicit) treatment
policy of one individual (hospital, unit, country, . . . ) is
or had been adopted by another individual, we proposed a
model that jointly considers sequences of treatments and
outcomes of each individual. Theoretically, we showed
that an intervention on a treatment policy is equivalent to a
sequence of stochastic interventions on treatments, whose
potential outcomes can be estimated from observational data
with the joint model. In a real-world scenario, we demon-
strated that our non-parametric model can be learned from

observational sequences of treatments and outcomes, and
it can handle time-varying confounding in continuous time.
In a semi-synthetic experiment, we demonstrated that the
joint model can answer causal queries about the interven-
tional and counterfactual distributions of the outcome after
an intervention on the treatment policy.

8.1. Limitations and Future Work

Modeling Limitations. The main limitation of the pro-
posed outcome model is scalability, as it is not trivial to use
inducing point approximations for the current ‘time-marked’
treatment response function. This could be improved in
future work, e.g., by clever inducing point selections. Fur-
thermore, we considered treatment responses to be additive,
which does not allow for modeling interactions of nearby
treatments. This could be improved by integrating more
sophisticated kernels into the treatment response function.

The thinning algorithm for sampling the point process is se-
quential and known to be slow, which can raise a challenge
in using our method for downstream tasks such as opti-
mizing the policy by a model-based reinforcement learning
algorithm. It could be possible to adapt an inverse sampling
method with O(1) time complexity (Rasmussen, 2011), but
this would require a completely different treatment model
definition as in Shchur et al. (2020), whose applicability
would need to be studied separately.

Causal Assumptions. For real-world observational
datasets, our causal assumptions do not necessarily hold, in
which case our method should not be used for causal anal-
ysis (the model may still be useful for statistical analysis).
For example, the violation of the NUC assumption would
result in an error in the causal effect estimates due to the
unblocked back-door paths, whose magnitude depends on
the size of the violation. An interesting future direction is to
extend existing sensitivity analysis methods (Robins et al.,
2000b) in order to estimate the size of the error in causal
effects of continuous-time treatment sequences.
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Table 3: Taxonomy of the related work, with respect to treatment model type, outcome model type, continuity of time-steps
and their target distributions: observational (Obs.), interventional (Int.) and counterfactual (Cf.).

Target Distribution

Treatment Response Continuous-
Model Model time Obs. Int. Cf. Reference

✗ Parametric ✓ ✓ ✓ ✗ Schulam & Saria (2017)
✗ RNN ✗ ✓ ✓ ✗ Lim et al. (2018)
✗ RNN ✗ ✓ ✓ ✗ Bica et al. (2020)
✗ Neural CDE ✓ ✓ ✓ ✗ Seedat et al. (2022)
✗ NHPP ✓ ✓ ✓ ✓ Noorbakhsh & Rodriguez (2022)
Gamma Parametric ✓ ✓ ✗ ✗ Hua et al. (2021)
GP-PP Non-parametric ✓ ✓ ✓ ✓ Our Work

A. Further Related Work
Treatment Responses for Sequential Treatment–Outcome Data. Estimating sequential treatment effects has been
studied by a large number of works (Schulam & Saria, 2017; Xu et al., 2016; Soleimani et al., 2017; Lim et al., 2018; Bica
et al., 2020; Zhang et al., 2020; Cheng et al., 2020; Seedat et al., 2022). Recurrent marginal structural networks (RMSN,
Lim et al., 2018) extend marginal structural models (MSM, Robins et al., 2000a) using a recurrent neural network (RNN)
architecture to estimate propensity weights and treatment effects over time. The counterfactual recurrent network (CRN,
Bica et al., 2020) also uses an RNN architecture, but extends the previous work by using domain adversarial training instead
of estimating the propensity weights explicitly. Both works focus on a discrete-time sequential treatment–outcome setup.

For continuous-time treatments and outcomes, a number of works have proposed generative models over the outcome
trajectory (Schulam & Saria, 2015; Xu et al., 2016; Soleimani et al., 2017; Zhang et al., 2020; Cheng et al., 2020), in the
direction of the g-computation method (Robins, 1986; 1987). These works model the outcome trajectory as a sum of (i) a
counterfactual baseline that captures the no-treatment case and (ii) an additive treatment response function. Most of these
methods use a Bayesian non-parametric baseline and a parametric treatment response (Schulam & Saria, 2015; Xu et al.,
2016; Soleimani et al., 2017; Zhang et al., 2020). In our work, we combine a non-parametric baseline with a more flexible,
non-parametric treatment response function, similar to Cheng et al. (2020). In addition to these continuous-time methods,
Seedat et al. (2022) estimate continuous-time treatment responses, by combining (i) neural controlled differential equations
(Neural CDE) to model the latent outcome trajectory, and (ii) domain adversarial training to deal with the time-varying
confounding. However, none of these methods model treatments, so they require a fixed sequence of treatment interventions
as input at test time. Besides, they do not consider counterfactuals of observed time-series.

Treatment (Event) Models in Continuous Time. Continuous-time treatments can be modeled by temporal point processes
(TPP), which have been investigated from a causal inference perspective by a large body of work (Lok, 2008; Schulam
& Saria, 2017; Gao et al., 2021; Aalen et al., 2020; Ryalen et al., 2020; Hua et al., 2021). Lok (2008) estimates the
causal effect of interventions on continuous-time treatments, by extending structural nested models (Robins, 1992) using a
martingale approach. The methods proposed by Aalen et al. (2020) and Ryalen et al. (2020) consider interventions affecting
continuous-time events on a survival outcome, where the TPP terminates after a single survival/death event. Gao et al. (2021)
investigate the average treatment effect between pairs of event variables of a multivariate point process. Similar to our
work, Schulam & Saria (2017) estimate interventional outcome (mark) trajectories affected by continuous-time treatments;
however, they assume a fixed sequence of treatment interventions as input. Instead, we model continuous-time treatments
jointly with the outcome trajectories. This enables our model to make predictions under more realistic, alternative scenarios.

From a modeling perspective, the model proposed in Hua et al. (2021) is the closest to our work, as they propose a Bayesian
joint model for the sequences of treatments and outcomes. However, their goal is to find an optimal treatment policy for
continuous-time treatments, while our goal is to estimate interventional and counterfactual outcome trajectories resulting
from policy interventions. Besides, they use parametric models for both treatment and outcome models, heavily-tailored for
their kidney transplantation application, which do not generalize trivially to other problem setups.
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Counterfactual Treatments. Counterfactual reasoning has recently raised interest in the machine learning literature,
where it has been used for evaluating and explaining model predictions (Oberst & Sontag, 2019; Tsirtsis & Gomez Rodriguez,
2020; Tsirtsis et al., 2021; Abid et al., 2022; Aalen et al., 2020; Ryalen et al., 2020; Noorbakhsh & Rodriguez, 2022). Most
of these work focus on discrete-time treatment–outcome setups (Oberst & Sontag, 2019; Tsirtsis & Gomez Rodriguez,
2020; Tsirtsis et al., 2021; Abid et al., 2022). Aalen et al. (2020) and Ryalen et al. (2020) consider counterfactuals of a
continuous-time survival outcome as discussed in the previous paragraph. From the perspective of counterfactual treatments,
the closest to our work is counterfactual TPPs proposed in Noorbakhsh & Rodriguez (2022). However, Noorbakhsh &
Rodriguez (2022) consider continuous-time event occurrences as target outcomes, while our main target is an outcome (mark)
trajectory that is causally affected by a treatment policy intervention through continuous-time treatment events. Besides, the
counterfactual sampling algorithm proposed in Noorbakhsh & Rodriguez (2022) is limited to non-homogeneous Poisson
processes (NHPP) (independent events) or their Hawkes process variants since they choose Lewis’ thinning algorithm (Lewis
& Shedler, 1979) as the generative process. This limits the capacity of the algorithm to handle time-varying confounding in
a sequential treatment–outcome setup. Therefore, we extend their counterfactual sampling algorithm to history-dependent
point processes, by choosing Ogata’s thinning algorithm (Ogata, 1981) as the generative process.

A taxonomy of the related work is presented in Table 3, which classifies the closest of the aforementioned works in terms of
the treatment model type, the outcome model type, the continuity of time-steps and their target distributions: observational
(Obs.), interventional (Int.) and counterfactual (Cf.).

B. Causal Assumptions
Assume a structural causal model (SCM) with an intervention variable A ∈ A, outcome variable Y ∈ R and all other
variables Z ∈ Z .

B.1. Intervention Types

In practice, an intervention on a variable A removes the structural equation A := fa(pa(A), Ua). Intervention types differ
in terms of the way they set the intervention value do(A).

Atomic intervention. Sets A to a static value ã. Under identifiability conditions, the effect of the intervention on the
outcome variable is as follows:

p(Y | do(A = ã)) =
∑
z

p(Y | A = ã, Z = z)p(Z = z).

Conditional intervention. Sets A by a deterministic function h̃ : Z → A. Under identifiability conditions, the effect of the
intervention on the outcome variable is as follows:

p(Y | do(A = h̃(z))) =
∑
z

p(Y | do(A = h̃(z)), Z = z)p(Z = z | do(A = h̃(z)))

=
∑
z

p(Y | a, z)|a=h̃(z)p(z).

Stochastic (conditional) intervention. Sets A by a stochastic relationship p̃(A | Z). Given Z, the intervention do(A = ã)
occurs with probability p̃(A | Z). Therefore, the effect of an atomic intervention do(A = ã) is averaged over all possible
ã ∼ p̃(A|Z):

p(Y |do(A ∼ p̃(A | Z)))

=
∑
ã

∑
z

p(Y | do(A = ã), z = z)p̃(A = ã | Z = z)p(Z = z)

=
∑
ã

∑
z

p(Y | ã, z)p̃(ã | z)p(z).

B.2. Formal Definitions of Causal Assumptions

Consistency, no-unmeasured confounding (NUC) and positivity are standard causal assumptions required for the identifiabil-
ity of a static causal effect (Pearl, 2009; Hernán & Robins, 2010; Schulam & Saria, 2017; Bica et al., 2020).

14



Causal Modeling of Policy Interventions

Assumption 1: Consistency. The potential outcome Y [a] under an action a ∈ A is consistent with its factual outcome,
provided that the outcome Y is observed under the action A = a: P (Y [a] | A = a) = P (Y | A = a).

Assumption S1: Positivity (Overlap). For a well-defined causal effect, the intervention must be have a non-zero probability:
P (A = a | Z) > 0.

Assumption S2: No-Unmeasured Confounding (NUC). The potential outcome Y [a] is independent of the action A
conditioned on Z, if the action assignment is done at random given Z: Y [a] ⊥⊥ A | Z.

For continuous-time interventions, we require a continuous-time version of the positivity assumption (Assumption 2). In
addition, Schulam & Saria (2017) propose the continuous-time NUC assumption (Assumption 3), for the continuous-time
sequential treatment–outcome setup. Furthermore, we assume that a policy intervention affects the outcome trajectory only
through the sequence of treatments, i.e., there is no direct effect from the policy variable to the outcomes (Assumption 4).

Assumption 2: Continuous-Time Positivity. The conditional treatment intensity λ∗
π(t,m) is non-zero for all intervention

times t and all intervention marks m, given any intervention history H<t: λ∗
π(t,m) > 0,∀t ∈ R≥0,∀m ∈ R.

Assumption 3: Continuous-time NUC. Let sequential treatments a occur at a discrete set of time points on a given interval,
characterized by the conditional intensity function λ∗

π(t,m). The conditional treatment intensity λ∗
π(t,m) of a treatment

a = (t,m), is independent of the potential outcome trajectory Y>t[ã], conditioned on the past history H<t, ∀t ∈ R≥0
2.

Assumption 4: Fully-mediated policy effect. Conditioned on the past history H<τ , the causal effect of the policy π>τ on
the outcome trajectory Y>τ is fully mediated through sequential treatments a>τ :

P (Y>τ [π̃>τ , ã>τ ] | H≤τ ) = P (Y>τ [ã>τ ] | H≤τ ).

C. Causal Identifiability
We evaluate the potential outcome trajectory Y>T [π̃>T ] at a discrete set of ordered query points q = {q1, ..., qm : qi >
T, ∀i ∈ 1, ...,m}: Yq[π̃>T ] = {y(qk)[π̃>T ] : qk ∈ q}, similar to Schulam & Saria (2017). We denote the outcome value
y(qk) at time qk by Yqk = y(qk). Under the NUC Assumption (Assumption S2), the assignment of the target policy label π̃
is independent of the potential outcome query Yq[π̃>T ]:

P (Yq[π̃>T ] | H≤T ) = P (Yq[π̃>T ] | π̃>T ,H≤T ) (10)

The causal graph G suggests that future sequential treatments a>T act as mediators for the causal effect of the policy
intervention [π̃>T ] on the outcome query Yq. To consider this mediation effect, we include future sequential treatments
a>T to Eq. (10):

P (Yq[π̃>T ] | π̃>T ,H≤T ) =
∑
a>T

P (Yq[π̃>T ],a>T | π̃>T ,H≤T ). (11)

Now, let us consider an intermediate outcome Yqk at query time qk. The intermediate outcome Yqk acts as a common
cause for some future actions a[qk,qk+1) and a future outcome Yqk+1

. However, it is not possible to adjust for Yqk as
it simultaneously acts as a mediator for a different set of causal paths from previous actions a<qk to a future outcome
Yqk+1

. This phenomenon is known as time-varying confounding (Robins, 1986; Pearl & Robins, 1995). To eliminate the
time-varying confounding effect, we factorize the counterfactual query Yq[π̃>T ] and sequential actions a>T in Eq. (11) in
time-order:

P (Yq[π̃>T ] | H≤T ) =
∑
a

m∏
k=1

(
P (Yqk [π̃>T ] | a<qk ,Y≤qk−1

[π̃>T ], π̃>T ,H≤T )

P (a[qk−1,qk) | a<qk−1
,Y≤qk−1

[π̃>T ], π̃>T ,H≤T )
)
, (12)

2In fact, the history H<t can be extended to include an outcome variable that occurs at time t, if it exists: H≤t ∪ {ot}, assuming
instantaneous effects from outcomes to treatments: o → a. However, it would clutter the notation and in practice, the probability of an
outcome o = (t, y) to occur at time t is 0. Therefore, assuming no instantaneous effects between variables can be made without any
practical effects.
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similar to the g-estimation formula (Robins, 1986). By consistency assumption (Assumption 1), the potential outcome
Y≤qk−1

[π̃>T ] is equal to the factual outcome when we observe (condition on) the policy specified by π̃>T :

P (Yq[π̃>T ] | H≤T ) =
∑
a

m∏
k=1

(
P (Yqk [π̃>T ] | π̃>T ,a<qk ,Y≤qk−1

,H≤T︸ ︷︷ ︸
Hqk−1

)P (a[qk−1,qk) | π̃>T ,a<qk−1
,Y≤qk−1

,H≤T︸ ︷︷ ︸
Hqk−1

)
)
.

(13)

For both the outcome variable Yqk and actions a[qk−1,qk), the set of variables {a<qk−1
,Y≤qk−1

,H≤T } is a valid history
until the query point qk−1: Hqk−1

= H≤qk−1
\ {aqk−1

} = {a<qk−1
,Y≤qk−1

,H≤T }. Hence, Eq. (13) can be simplified as
follows:

P (Yq[π̃>T ] | H≤T ) =
∑
a

m∏
k=1

(
P (Yqk [π̃>T ] | a[qk−1,qk), π̃>T ,Hqk−1

)︸ ︷︷ ︸
Outcome Factor

P (a[qk−1,qk) | π̃>T ,Hqk−1
)︸ ︷︷ ︸

Treatment Factor

)
. (14)

Under Assumptions {1, S2}, the treatment factor term in Eq. (14) is equivalent to the potential outcome a[qk−1,qk)[π̃>T ]:

P (a[qk−1,qk) | π̃>T ,Hqk−1
) = P (a[qk−1,qk)[π̃>T ] | π̃>T ,Hqk−1

) A.1

= P (a[qk−1,qk)[π̃>T ] | Hqk−1
). A.S2 (15)

Conditioned on the past history Hqk−1
, the causal effect of the policy intervention [π̃>T ] on the outcome value Yqk is fully

mediated through sequential treatments a[qk−1,qk). Using Assumptions {1, 2, 3, 4}, the outcome factor term in Eq. (14) is
equivalent to the potential outcome Yqk [ã[qk−1,qk)]:

P (Yqk [π̃>T ] |a[qk−1,qk), π̃>T ,Hqk−1
)

= P (Yqk | a[qk−1,qk), π̃>T ,Hqk−1
) A.1

= P (Yqk | a[qk−1,qk),Hqk−1
) A.4

= P (Yqk [a[qk−1,qk)] | a[qk−1,qk),Hqk−1
) A.1

= P (Yqk [a[qk−1,qk)] | Hqk−1
). A.3 (16)

Plugging the potential outcome representations of the treatment factor (Eq. (15)) and of the outcome factor (Eq. (16)) into
Eq. (14), the potential query can be considered as a sequence of stochastic (conditional) interventions on treatment variables:

P (Yq[π̃>T ] | H≤T ) =
∑
ã

m∏
k=1

P (Yqk [ã[qk−1,qk)] | Hqk−1
)P (ã[qk−1,qk)[π̃>T ] | Hqk−1

). (17)

Under Assumptions {1, 2, 3}, a sequence of interventions on treatments is identified (Schulam & Saria, 2017; Seedat et al.,
2022):

P (Yq[π̃>T ] | H≤T ) =
∑
ã

m∏
k=1

P (Yqk | ã[qk−1,qk),Hqk−1
)P (ã[qk−1,qk) | π̃>T ,Hqk−1

). (18)
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D. Nonparametric Modeling approaches for TPPs
TPPs can be modeled by two nonparametric approaches: (i) latent-state point processes (Møller et al., 1998; Adams et al.,
2009; Lloyd et al., 2015) and (ii) regressive point processes (Hawkes, 2018; Liu & Hauskrecht, 2019). The difference
between the two approaches is shown in Figure 5.

t1 t2 t3 t4

(a) Latent-state point processes.

t1 t2 t3 t4

t2 t1 t3 t2 t4 t3

(b) Regressive point processes.

Figure 5: (a) An example of the conditional intensity function λ for a latent-state point process, which takes absolute times
as input. (b) An example of the conditional intensity function λ for a regressive point process, which takes relative times as
input.

D.1. Latent-state point processes

Latent-state point processes, e.g. a log/sigmoidal Gaussian Cox process (Møller et al., 1998; Adams et al., 2009) and a
variational Bayes point process (VBPP, Lloyd et al., 2015), model the temporal dependence of the intensity indirectly, in the
form of smoothness assumptions encoded by a latent (GP) prior (Williams & Rasmussen, 2006). For example, the VBPP
model defines a latent GP prior f ∼ GP with a squared-exponential (SE) kernel over a period [0, T ]. The latent function f is
passed through a square transformation to obtain the conditional intensity function λ(τ). The latent function f : R≥0 → R
takes an absolute time τ ∈ [0, T ] as input and outputs the latent rate for the same time point. The choice of the SE kernel
assumes a smooth latent function, which implicitly enforces some temporal dependence of nearby intensity values. For
example, the intensity values for points {ti}4i=1 in Fig. 5a is given by:

λ∗



t1
t2
t3
t4


 = f



t1
t2
t3
t4




2

.

D.2. Regressive Point Processes

Unlike a latent-state formulation, the regressive point processes model the dependence on past events explicitly, by using
relative times as input instead of absolute times (Hawkes, 2018; Liu & Hauskrecht, 2019). Liu & Hauskrecht (2019)
propose the conditional GP regressive point process (CGPRPP), which defines a latent function f ∼ GP that takes time
differences of the last D events relative to a future time point τ as input: f : RD

≥0 → R. They define τ to be a query time
and r : R≥0 → {R≥0 ∪∞}D be a function that returns the relative times of the last D events: r(τ) = (∆t1, . . . ,∆tD),
where ∆τd denotes the relative time between τ and dth last event: ∆τd = τ − td for d ∈ 1, . . . , D:

r(τ) = {∆τd}Dd=1 = (τ − t1, . . . , τ − tD).

If dth last event does not exist, the function r(τ) returns the placeholder value ∞ for the dth index.

CGPRPP regresses relative times {∆τd}Dd=1 on the latent intensity f(τ), which is passed through a square transformation
to obtain the conditional intensity value λ∗(τ). As an example, the intensity values for points {ti}4i=1 in Figure 5b, with
D = 2, is given by:

λ∗



t1
t2
t3
t4


 = f




∞ ∞
t2 − t1 ∞
t3 − t2 t3 − t1
t4 − t3 t4 − t2




2

.
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E. Treatment Model Details
E.1. Model Definition

Similar to the CGPRPP model proposed by Liu & Hauskrecht (2019), we model the treatment time intensity λ∗(τ) as the
square transformation of a latent function, which is a sum of a constant scalar β0 and three time-dependent functions with GP
priors, gb, g∗a, g

∗
o ∼ GP . The latent-state function gb : R≥0 → R models the baseline intensity. The regressive component

g∗a : {R≥0×R}Qa → R models the dependence on past treatments by taking the last Qa treatment pairs (treatment time and
dosage) as input. Similarly, the regressive component g∗o : {R≥0 × R}Qo → R models the dependence on past outcomes by
taking the last Qo outcome pairs (measurement time and value) as input.

The treatment time intensity λ∗(τ) is defined as follows:

λ∗(τ) =
(

β0︸︷︷︸
PP

baseline

+ gb(τ)︸ ︷︷ ︸
NHPP

Baseline

+ g∗a(τ)︸ ︷︷ ︸
Treatment

Effect

+ g∗o(τ)︸ ︷︷ ︸
Outcome

Effect

)2
.

E.2. Kernel Definition

Regressive components g∗a and g∗o explicitly model how the intensity depends on the past history. They take relative times to
the last Qa treatments and Qo outcomes as input, while the baseline function gb takes the absolute time. For example, let τ
be a query time. Let (ta1

, . . . , taQa
) be the arrival times of last Qa treatments before time τ . Similarly, let (to1 , . . . , toQo

)
be the list of arrival times of the last Qo outcomes, before time τ . Then, three function components has the following
1 + 2 ∗Qa + 2 ∗Qo dimensional vector as input:

τ, (τ − ta1
,m1), . . .︸ ︷︷ ︸

last Qa Treatments

, (τ − to1 , y1), . . .︸ ︷︷ ︸
last Qo Outcomes

To represent the information regarding the last Qa +Qo events, we define retrieval functions:

• Let rki,t : R≥0 → R≥0 denote a retrieval function that takes time τ as input and outputs the time of the ith last
event of type k ∈ {a, o}. For example, the retrieval function ra1,t outputs the time of the last action occurred before
time τ : ra1,t(τ) = ta1

. Similar to rki,t, let ∆ki,t : R≥0 → R≥0 be a retrieval function that returns the relative time:
∆a1,t(τ) = τ − ta1 .

• Let rki,m : R≥0 → R denote a retrieval function that takes time τ as input and returns the mark m ∈ R of ith last tuple
of type k ∈ {a, o}.

• Let rki
: R≥0 → R≥0 × R denote a retrieval function that outputs both the relative time and the mark of the ith last

event of type k ∈ {a, o}. For example, the retrieval function ra1 outputs the relative time and the mark of the last
action occurred before time τ : ra1(τ) = (τ − ta1 ,m1).

• For a query time τ , the retrieval function r(τ) : R≥0 → X returns the overall input vector:

r(τ) = {τ, ra1(τ), . . . , raQa
(τ)︸ ︷︷ ︸

last Qa Treatments

, ro1(τ), . . . , roQo
(τ)︸ ︷︷ ︸

last Qo Outcomes

},

where X denotes the input domain X = R≥0 × {R≥0 × R}Qa × {R≥0 × R}Qo .

We represent the unavailable past information by an identifier value rki
= (∞,∞), similar to (Liu & Hauskrecht, 2019). To

set covariance values concerning the unavailable information to 0, an indicator function 1k : R≥0 × R → {0, 1} is defined:

1k[rki(τ)] =

{
1, if rki,t < ∞, rki,m < ∞
0, otherwise

Using the indicator function, the kernel function is defined as follows:

K(v, v′) = Kb(τ, τ
′) +

∑
k∈{a,o}

Qk∑
i=1

1[rki(τ)]1[rki(τ
′)]Kki(rki(τ), rki(τ

′)),
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where Kb is an SE kernel, v = r(τ) and v′ = r(τ ′) are input vectors, and the single-event kernel function Kki
: R≥0×R →

R is a sum of SE kernels acting on relative time and mark dimensions independently:

Kki
(rki

(τ), rki
(τ ′))) = γi exp

(
− (∆ki,t(τ)−∆ki,t(τ

′))2

σi,t

)
︸ ︷︷ ︸

Relative Time Kernel Kt

exp

(
− (rki,m(τ)− rki,m(τ ′))2

σi,m

)
︸ ︷︷ ︸

Mark Kernel Km

= γiKt(∆ki,t(τ),∆ki,t(τ
′))Km(rki,m(τ), rki,m(τ ′))

The overall kernel is a sum of the baseline SE kernel and Qa +Qo two-dimensional single-event kernels Kk, each of which
is an SE kernel on two dimensions: relative time and mark.

E.3. Likelihood

The likelihood for a set of treatments D = {(tn,mn)}Nn=1 can be written in terms of the conditional intensity function
λ∗(t,m) = λ∗(t)p∗(m | t):

p(D | λ∗(·)) =
∏
n

λ∗(tn)p
∗(mn | tn)× exp

{
−
∫
T
λ∗(τ)dτ

}
(19)

The mark intensity p∗(mn | tn) factorizes and is modeled by a GP prior independent from the time intensity λ∗(t). The
inference for the mark intensity p∗(mn | tn) is straightforward. Therefore, in the following, we derive the inference
objective for the time intensity λ∗(t).

E.3.1. MULTIPLE OBSERVATIONS

We assume multiple observations D = {D1, ...,DO}Oo=1 are conditionally independent given the treatment intensity λ∗,
e.g., daily meals for a patient for O days, where we consider each day as conditionally independent. Then, the likelihood
factorizes over multiple observations:

p(D1, ...,DO | λ∗(·)) =
∏
o

p(Do | λ∗(·)).

where the term p(Do | λ∗(·)) follows Eq. (19).

E.4. Variational Inference

In variational inference, a lower bound (ELBO), denoted by L, of the log likelihood log p(D) is maximized, which is
equivalent to minimizing the KL divergence between the variational distribution q(f) and the true posterior p(f | D):

log p(D) = L+ KL[q(f) || p(f | D)],

where the lower bound L is given by:

L = Eq[log p(D | f)]− KL[q(f) || p(f)]
= LD − KL[q(f) || p(f)].

E.4.1. INDUCING POINTS

Inducing point approximations are commonly used for scalable inference in GPs. Let Z = {zm}Mm=1 be a set of inducing
points. Their function evaluations are collected in a set of inducing variables u = f(Z) ∈ RM , where each um = f(zm).
Conditioned on inducing variables u, we assume that the variational conditional distribution q(f | u) is equal to the true
conditional p(f | u). Then, the variational distribution q(f ,u) can be written as follows:

q(f ,u) = p(f | u)q(u),
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where q(u) ∼ N(u;m,S). Generally, we integrate out u:

q(f) =

∫
U
p(f | u)q(u)du = GP(f ; µ̃, Σ̃),

µ̃(x) = kxzK
−1
zz m,

Σ̃(x,x′) = Kxx′ − kxzK
−1
zz kzx + kxzK

−1
zz SK

−1
zz kzx′ .

E.4.2. EVIDENCE LOWER BOUND (ELBO)

The lower bound L is:

L = LD − KL[q(f) || p(f)].

Similar to Lloyd et al. (2015); Matthews et al. (2016); John & Hensman (2018), we compute the KL term KL[q(f) || p(f)]
by computing the KL divergence at inducing points KL[q(u) || p(u)]:

L = LD − KL[q(u) || p(u)]

We now consider the log-likelihood expectation term LD = Eq[log p(D | f)]:

LD =
∑
o

∑
n

Eq[log λ
∗(t(o)n )]−

∑
o

Eq

[ ∫
T
λ∗(t)dt

]
=
∑
o

L(o)
n −

∑
o

L(o)
t

First, we start with the data term L(o)
n for a single observed point process realization, indexed by (o):

L(o)
n =

∑
n

Eq[log λ
∗(tn)]

=
∑
n

Eq[log(f(r(tn)) + β)2],

As John & Hensman (2018), we use a change of variables f = fn + β and exploit the computational trick used in Lloyd
et al. (2015) to compute the one-dimensional integral Eq[log f

2
n]:

Eq[log f
2] =

∫ ∞

−∞
log(f2)N (f ; µ̃, σ̃2)df

= −G̃
(
− µ̃2

2σ̃2

)
+ log

( σ̃2

2

)
− C

where C is the Euler-Mascheroni constant and G̃ is defined by the confluent hyper-geometric function, which is approximated
by a look-up table for faster computation.

To compute the integral term L(o)
t , we divide the observation period into N + 1 intervals with end points (0, t1, . . . , tN , T ),

where {ti}Ni=1 includes all event points that have an effect on the conditional intensity value. In each interval [tn, tn+1],
the conditional intensity values {λ∗(τ) : τ ∈ [tn, tn+1]} can be estimated using the past history H<tn . Using a shorthand
notation for r = r(t) ∈ X , we write the integral term as a sum of three integrals:

L(o)
t = Eq

[ ∫
T
λ∗(τ)dτ

]
,

= Eq

[ ∫
T
(f(r(τ)) + β)2dτ

]
,

=
[ ∫

T

(
Eq[f

2(r)] + 2β Eq[f(r)] + β2
)
dτ
]
,

=
[ ∫

T
Eq[f(r)]

2dτ +

∫
T

Varq[f(r)]dτ + 2β

∫
T
Eq[f(r)]dτ + β2|T |

]
,

=

N+1∑
n=1

[ ∫ tn

tn−1

Eq[f(r)]
2dτ +

∫ tn

tn−1

Varq[f(r)]dτ + 2β

∫ tn

tn−1

Eq[f(r)]dτ + β2|T |
]
. (20)
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We can compute each integral term as follows:∫ tn

tn−1

Eq[f(r(τ))]
2dτ = mTK−1

zz ΨnK
−1
zz m,

∫ tn

tn−1

Varq[f(τ)]dτ =

D∑
d=1

γd

∫ tn

tn−1

1[hd(t)]dt+ Tr(K−1
zz Ψn) + Tr(K−1

zz SK−1
zz Ψn),∫ tn

tn−1

Eq[f(τ)]dτ = ΦT
nK

−1
zz m,

Ψn(z, z
′) =

∫ tn

tn−1

K(z, r(τ))K(r(τ), z′)dτ,

Φn(z) =

∫ tn

tn−1

K(z, r(τ))dτ.

Then, we plug in all integral terms into Eq. (20):

L(o)
t = mTK−1

zz ΨnK
−1
zz m

+

D∑
d=1

γd

∫ tn

tn−1

1[hd(t)]dt+ Tr(K−1
zz Ψn) + Tr(K−1

zz SK−1
zz Ψn)

+ 2βΦT
nK

−1
zz m+ β2|To|.

The phi vector Φn and the psi matrix Ψn have closed form solutions, obtained by evaluating the integrals for the sum of SE
kernels. The difference to Liu & Hauskrecht (2019) is the inclusion of the SE mark kernel terms km(·, ·).

Φn(z) =

Qa+Qo∑
q=1

1[zq]1[rq(tn)]γq

√
παq,t√
2

exp

(
(mzq − rq,m(tn))

2

αq,m

)
[

erf

(
tn − rq,t(tn)− tzq√

2αq,t

)
− erf

(
tn−1 − rq,t(tn)− tzq√

2αq,t

)]
,

Ψn(z, z
′) =

Qa+Qo∑
i,j=1

1[zi]1[zj ]1[ri(tn)]1[rj(tn)]γiγj

√
παi,tαj,t√

2(αi,t + αj,t)

exp

(
(mzi − ri,m(tn))

2

αi,m

)
exp

(
(mzj − rj,m(tn))

2

αj,m

)
exp

(
−
(tzi + ri,t(tn)− t′z′

j
− rj,t(tn))

2

2(αi,t + αj,t)

)
[

erf

(
αi(tn − rj,t(tn)− t′z′

j
) + αj(tn − ri,t(tn)− tzi)√

2αi,tαj,t(αi,t + αj,t)

)

− erf

(
αi(tn−1 − rj,t(tn)− t′z′

j
) + αj(tn−1 − ri,t(tn)− tzi)√

2αi,tαj,t(αi,t + αj,t)

)]
.

F. Outcome Model Details
We model the outcome trajectory Y = {y(τ) : τ ∈ R≥0} by a conditional GP model, combining three independent function
components: (i) a baseline progression, (ii) a treatment response function and (iii) a noise variable (Schulam & Saria, 2017;
Zhang et al., 2020):

y(τ) = fb(τ)︸ ︷︷ ︸
Baseline

+ fa(τ ;a)︸ ︷︷ ︸
Treatment Response

+ ϵ(τ)︸︷︷︸
Noise

, (21)
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Baseline progression. The baseline progression fb(τ) over time τ can be modeled by a GP prior. The kernel function is
chosen depending on the application context. For example, a baseline function fb(τ) ∼ GP(0,Kse +Kper), with a zero
mean and a kernel function equal to the sum of a squared exponential (SE) and a periodic (PER) kernel was proposed to
model blood pressure and the heart rate measurements in Cheng et al. (2020). A combination of two non-stationary kernel
functions was chosen as the baseline kernel function to model creatinine measurements in Schulam & Saria (2017). In Xu
et al. (2016), the baseline kernel function was chosen as the sum of a linear and an exponential kernel. In our experiments,
we model the baseline progression of blood glucose as a sum of a constant and a periodic kernel to capture daily blood
glucose profiles of non-diabetic patients fluctuating around a constant baseline (Ashrafi et al., 2021).

Treatment Response Model. We define the treatment response function fa(τ ;a) as a Gaussian process: fa(τ ;a) ∼ GP ,
similar to Cheng et al. (2020). While Cheng et al. (2020) propose an extension using a latent force model (Alvarez et al.,
2009), we use an SE kernel, as it produces sufficient performance for our use case. For each treatment, we consider the
treatment response as additive:

fa(τ ;a) =
∑

ai=(ti,mi)∈a

fm(mi)ft(τ ; ti),

where the scaling function fm : R → R is a function of the treatment mark mi ∈ R. Each treatment type is assumed to have
a distinct pair of a scaling function fm and a time-dependent response function ft. The scaling function f

(v)
m (mi) is a linear

function that captures the individualized treatment response magnitude for each patient (v):

f (v)
m (mi) = β

(v)
0 + β

(v)
1 mi,

where a hierarchical Gaussian prior is placed on parameters {β(v)
0 , β

(v)
1 }: β(v)

0 ∼ N (β0, σ
2
0), β

(v)
1 ∼ N (β1, σ

2
1).

The time-dependent function ft(τ ;a) is defined as a piecewise function that is equal to 0 outside treatment response intervals
Tti = [ti, ti + Ti] and Tt′i = [t′i, t

′
i + T ′

i ]:

ft(τ ; ti) =

{
GP(0, kft,f ′

t
(τ, τ ′; ti, t

′
i)), if τ ∈ Tti , τ ′ ∈ Tt′i

0, otherwise
,

where the treatment response interval Ti is set by domain knowledge. The kernel function works with non-negative relative
times ∆τi = RELU(τ − ti), rather than the absolute time τ :

kft,f ′
t
(τ, τ ′; ti, t

′
i) = exp

(
− (∆τi −∆τ ′i))

2

l2t

)
.

The adoption of the piecewise definition and relative times is enforcing a ‘causal’ kernel for the treatment response, as in
‘causal’ GP proposed by Cunningham et al. (2012). Here, the term ‘causal’ is used differently than in the causality discussion
in previous sections and has more of a common sense meaning implying the time direction.

G. Learning
For the treatment model, we maximize the ELBO L with respect to variational parameters θa,z = {mz,Sz} and kernel
hyperparameters θa,h = {γq, αq}Qa+Qo

q=0 (see Appendix E.4 for details). For the outcome model, we maximize the marginal

likelihood p(D | θo,h) with respect to model hyperparameters θo,h = {b(v)b , ℓ
(v)
b , α

(v)
b }Npatient

v=1 ∪{ℓt, β0, β1, {β(r)
0 , β

(v)
1 }Npatient

v=1 },
where {b(v)b , α

(v)
b , ℓ

(v)
b } denote the parameters of the individual-specific baseline function and {β0, β1, β

(v)
0 , β

(v)
1 } denote

the parameters of the linear, hierarchical model for the scale function f
(v)
m (·).

H. Inference
H.1. Test Log-Likelihood (TLL)

The outcome model is a GP prior with an independent Gaussian noise. The posterior of the latent function fq at query
times q follows a multivariate normal distribution and its mean and covariance functions have closed form solutions:
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fq | y ∼ N (µ̃q, Σ̃q), with µ̂q = kT
∗ (K + σ2

ϵ I)
−1y and Σ̂q = K∗∗ − kT

∗ (K + σ2
ϵ I)

−1k∗. The test log-likelihood has a
closed form solution and can be computed by integrating out the posterior fq | y:

log p(Dtest | D) = log

∫
fq

log p(Dtest | fq)p(fq | D)dfq.

For the treatment model, the marginal log-likelihood is intractable. A lower-bound on the test log-likelihood log p(Dtest | D)
can be computed as follows:

log p(Dtest | D) = log

∫
g∗

log p(Dtest | g∗)p(g∗ | D)dg∗,

= logEp(g∗|D) [p(Dtest | g∗)] ,
≈ logEq(g∗) [p(Dtest | g∗)] ,
≥ Eq(g∗) [log p(Dtest | g∗)] ,

where we approximate the true posterior p(g∗ | D) by the variational distribution q(g∗) = p(g∗ | u)q(u). The term
Eq(g∗) [log p(Dtest | g∗)] can be computed as in the steps detailed in Appendix E.4.2, as it has the same form as the expected
log likelihood component of the ELBO.

Algorithm 1 Ogata’s Thinning algorithm
Input: Start T1, End T2, Interval function l(·), Conditional intensity λ∗(·).
Output: Point process sample T = {t1, . . . , tn}in the interval [T1, T2].

1: function SAMPLE-OGATA(T1, T2, l, λ
∗)

2: τ = T1, T = ∅. ▷ Initialize
3: while τ < T2 do
4: λub = sups∈[τ,τ+l(τ)] λ

∗(s). ▷ Upper-bound.
5: uub, ua ∼ U(0, 1). ▷ Sample noise variables.
6: ti = −1/λub ∗ log(uub) ▷ Draw the inter-arrival time, ti ∼ Exp(λub).
7: if ti ≤ l(τ) then ▷ Candidate in the interval.
8: if ua ≤ λ∗(τ + ti)/λub then ▷ Keep with probability λ∗/λub

9: T = T ∪ {τ + ti}. ▷ Point accepted.
10: end if
11: τ = τ + ti. ▷ Continue from the candidate point.
12: else ▷ No candidate point in the interval.
13: τ = τ + l(τ). ▷ Continue from the end of the interval.
14: end if
15: end while
16: return T = {t1, . . . , tn}.
17: end function

H.2. Counterfactual Query

For a policy counterfactual, we estimate the potential outcome of the past trajectory P (Y≤T [π̃≤T ] | H≤T , π≤T ), under a
new treatment policy specified by π̃≤T different than the observed policy specified by π≤T . To answer a counterfactual
query, we require access to the posterior distribution of noise variables N in addition to the counterfactual intensity λ∗

cf .

In our model, the noise consists of two components: treatment and outcome noise, N = {Ea, Eo}. The outcome noise Eo is
defined in Eq. (8) and it is equal to the difference between the outcome measurement y(τ) and the latent function f(τ).
Hence, its posterior is available in closed form from the GP posterior:

ϵ(τ) | y = y(τ)− f(τ) | y.

In our experiments, we use the mean of the noise posterior as a point estimate:

E
[
ϵ(τ) | y

]
= y(τ)− E

[
f(τ) | y

]
.
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The treatment noise Ea comprises noise associated with the sampling process of the treatments. In practice, we extend
the counterfactual sampling algorithm for non-homogeneous Poisson processes provided in Noorbakhsh & Rodriguez
(2022) to history-dependent point processes where future events depend on past events. The key difference in algorithms
is that the counterfactual sampling algorithm provided in Noorbakhsh & Rodriguez (2022) is based on Lewis’ thinning
algorithm (Lewis & Shedler, 1979), while our algorithm is based on Ogata’s thinning algorithm (Ogata, 1981). Both
thinning algorithms follow a general recipe: they first sample candidate points from an upper-bounding intensity and then
perform rejection sampling with a probability proportional to the target intensity, so that the intensity of accepted points is
equivalent to the target intensity. Different than Lewis’ algorithm, Ogata’s algorithm considers smaller intervals where the
target intensity can be upper-bounded. In the following, we first discuss Ogata’s thinning algorithm and then present our
counterfactual sampling algorithm. We conclude by discussing the identifiability of the counterfactual query.

H.2.1. OGATA’S THINNING ALGORITHM

Consider an initial time point s, where we start sampling. Ogata’s algorithm first selects an interval such as [s, s+ l(s)],
where the function l(·) specifies the length of the interval l(s) until which it is possible to upper bound the conditional
intensity λ∗(τ) (Rasmussen, 2011). The upper bound intensity should be greater than or equal to the supremum of the
conditional intensity λ∗(τ) in the interval [s, s+ l(s)]:

λub ≥ sup
τ∈[s,s+l(s)]

λ∗(τ).

Using the constant upper bound intensity, one can sample a candidate point from an upper-bounding Poisson process
ti ∼ PP(λub). After sampling ti, the algorithm considers two options:

• If ti > l(s), then there exists no candidate points in the interval [s, s + l(s)] and the sampling procedure continues
from s+ l(s).

• If ti < l(s), ti is kept with the probability λ∗(ti)/λub. In practice, a noise variable Ui is sampled from a uniform
distribution: ui ∼ U(0, 1) and the point is kept if ui ≤ λ∗(ti)/λub. Regardless of the thinning decision, the procedure
continues from the time point ti.

The sampling process is illustrated in Algorithm 1.

H.2.2. COUNTERFACTUAL SAMPLING ALGORITHM FOR TPPS

To estimate the policy counterfactual, we use the counterfactual treatment intensity λ∗
cf and individual-specific noise

distribution p(N | D(r)) (see Section 6). We define treatment noise variables Ea by assuming that the generative process for
observed treatments follows Ogata’s thinning algorithm (Ogata, 1981; Noorbakhsh & Rodriguez, 2022). Since the sampling
algorithm is not actually used to generate the observed data, the noise variables are latent variables of the model.

In Ogata’s algorithm, there are two sources for the stochasticity: (i) the candidate proposal noise and (ii) the acceptance
noise. The candidate proposal noise tells us where the candidate points are. Since we already observe the accepted points,
the missing part is the rejected points. Similar to Noorbakhsh & Rodriguez (2022), we sample the rejected points from the
‘rejected’ intensity equal to λ∗

rej = λub − λ∗
obs, at each interval of the Ogata’s algorithm. In addition to this, a noise variable

is defined as the acceptance noise at every candidate point, i.e., at all rejected and accepted points.

For accepted points, rejected points and the noise posteriors to be well defined, we choose an upper-bound intensity λub

that is an upper bound for both the observational intensity λ∗
obs and the counterfactual intensity λ∗

cf , for each interval
[τ, τ + l(τ)]:

λub ≥ sup
s∈[τ,τ+l(τ)]

{λ∗(s) : λ∗ ∈ {λ∗
obs, λ

∗
cf}}.

In practice, we select the function l(τ) so that it returns the next event after time τ , which can be a future treatment or an
outcome. The observation period [0, T ] is split into intervals with end points (0, t1, . . . , tN , T ), so that we can compute
both the observational intensity λ∗

obs and the counterfactual intensity λ∗
cf for all points in each interval, conditioned on their

respective histories Hobs and Hcf . Here, the ordered set of events t1, . . . , tN are equal to the sorted union of all treatments
and outcomes: t1, . . . , tN = SORT(ta ∪ to).
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Algorithm 2 Counterfactual Sampling Algorithm for TPPs (Based on Ogata’s)
Input: Start T1, End T2, Interval function l(·), Observational intensity λ∗

obs(·), Counterfactual intensity λ∗
cf (·), Observed

points Tobs
Output: Counterfactual point process sample Tcf = {t1, . . . , tn}

1: function SAMPLE(T, l, λ∗)
2: τ = T1, T = ∅. ▷ Initialize
3: while τ < T2 do
4: λub = sups∈[τ,τ+l(τ)]{λ∗(s) : λ∗ ∈ {λ∗

obs, λ
∗
cf}}. ▷ Shared upper-bound.

5: trej = SAMPLE-OGATA(τ, τ + l(t), λub, λub − λ∗
obs). ▷ Draw a rejected point (Algorithm 1).

6: if trej ≤ l(τ) and trej + τ ≤ T then
7: urej ∼ U(λ∗

obs(τ + tr,Hobs), λub). ▷ Noise posterior.
8: if urej ≤ λ∗

cf (τ + tr) then
9: Tcf = Tcf ∪ {τ + tr}.

10: end if
11: τ = τ + tr.
12: else ▷ No rejections in interval.
13: if τ + l(τ) ∈ Tobs then ▷ Check if the end point is observed.
14: tobs = τ + l(τ).
15: uobs ∼ U(0, λ∗

obs(tobs,Hobs)). ▷ Noise posterior.
16: if uobs ≤ λ∗

cf (tobs,Hcf ) then
17: Tcf = Tcf ∪ {tobs}.
18: end if
19: end if
20: τ = τ + l(τ).
21: end if
22: end while
23: return Tcf = {t1, . . . , tn}.
24: end function

The algorithm performs three main tasks, for each interval [τ, τ + l(τ)]. This procedure is described below in words and
illustrated in Fig. 6.

1. (Figs. 6b and 6e) The algorithm finds the upper-bound intensity λub for the interval [τ, τ + l(τ)] and it samples rejected
events by using the difference of the upper bound intensity and the observational intensity: λ∗

rej = λub − λ∗
obs.

2. (Figs. 6c and 6f) It computes the posterior distribution of each acceptance noise variable Ui in the interval [τ, τ + l(τ)],
e.g. a rejected point trej or an observed point tobs. By inspecting the sampling process in Algorithm 1, we can compute
the noise posterior for a noise variable Ui as follows:

p(Ui | ti, λub, λ
∗
obs) =

{
U(0, λ∗

obs(ti)), if ti is observed,
U(λ∗

obs(ti), λub), if ti is rejected.

3. (Figs. 6d and 6g) Then, it uses the counterfactual intensity and the noise posteriors to re-thin the candidate accepted
and rejected points.

As a result, once we have access to (i) observed (accepted) events, (ii) rejected events, (iii) posterior distributions of noise
variables, (iv) the observational intensity and (v) the counterfactual intensity, we can sample point process realizations from
the counterfactual distribution, in a similar fashion to the forward sampling process of Ogata’s algorithm. The counterfactual
sampling algorithm is presented in Algorithm 2. There are three key differences to the observational sampling process in
Algorithm 1: (i) in each interval, the algorithm samples hypothetical rejected events using the rejection intensity λub − λ∗

obs

(Line 5), (ii) the counterfactual algorithm uses the noise posteriors (p(Ui | ti)) instead of noise priors U(0, λub) (Lines 7,15)
and (3) the accept/reject decisions are based on the counterfactual intensity λ∗

cf instead of the observational intensity λ∗
obs

(Line 8,16).
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obs

cf

aobs

(a) Initial: Observed treatments, observational and counterfactual intensity.

obs

rej

cf

ub

aobs
arej

(b) Step 1: Sample rejected events for the first interval.

obs

cf

ub

p(Uacc|tacc)
p(Urej|trej)

(c) Step 2: Noise posteriors for the first interval.

obs

cf

aobs
acf

(d) Step 3: Re-thin using the noise posteriors and the counter-
factual intensity for the first interval.

obs

rej

cf

ub

aobs
acf
arej

(e) Step 4: Sample rejected events for the second interval.

obs

cf

ub

p(Uacc|tacc)
p(Urej|trej)

(f) Step 5: Noise posteriors for the second interval.

obs

cf

aobs
acf

(g) Step 6: Re-thin using the noise posteriors and the counter-
factual intensity for the second interval.

obs

cf

aobs
acf

(h) Final: Counterfactual treatments.

Figure 6: The algorithm is illustrated on a toy example. (a-h) The observed (cyan), rejected (pink) and counterfactual (red)
points are shown by filled circles. The observational (blue), rejected (pink) and counterfactual (red) intensities are shown in
dashed lines. The noise posteriors for the accepted points (cyan) and the rejected points (pink) are shown by filled rectangles.
(a) The initial setup with observed treatments, the observational and the counterfactual intensities. (b-d) We demonstrate the
three tasks for the first interval, which is up until the first observed point. (b-d) The same procedure for the second interval,
which is between two observed points. (h) The final counterfactual treatments. Notice how the algorithm chooses to keep
the observed treatments where the counterfactual intensity is larger than the observed intensity.

H.2.3. IDENTIFIABILITY OF THE COUNTERFACTUAL QUERY

In this section, we first describe the monotonicity condition for binary SCMs. Then, we show that our counterfactual TPP
algorithm satisfies the monotonicity condition and hence the counterfactual identifiability. We conclude by discussing the
identifiability of the counterfactual outcome trajectory.

Consider an SCM with a binary intervention variable π and a binary target variable A. For the binary SCM, the monotonicity
condition (Pearl, 2009; Oberst & Sontag, 2019; Noorbakhsh & Rodriguez, 2022) is a sufficient condition to render the
counterfactuals of the target variable A identifiable. It is stated formally as:

Monotonicity (Noorbakhsh & Rodriguez, 2022). The binary target variable A is monotonic with respect to the binary
intervention variable π, if the following condition holds for a ̸= a′:

E[A = a | do(π = 1)] ≥ E[A = a | do(π = 0)] =⇒ P (A = a′ | A = a, π = 0, do(π = 1)) = 0. (22)

The monotonicity condition states that an intervention which increases the probability of an already observed event A = a
can not produce a counterintuitive counterfactual value A = a′.

Let us denote the observational regime by π = 0 and the interventional regime by π = 1, such that π ∈ {0, 1}. Similarly,
we denote their corresponding intensities by λ∗

0 and λ∗
1. For a given point at time t, the probability of acceptance A under a
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regime π ∈ {0, 1} is proportional to its intensity and the upper bound, e.g., for π = 0:

p(A | t, λub, do(π = 0)) = p(A | t, λub, π = 0) =
λ∗
0(t)

λub
.

Without loss of generality, we consider a single time point t for our algorithm. An input point to the algorithm at time t is
either an accepted (A = 1) or a rejected (A = 0) point:

• For a rejected point t with A = 0, the probability of the point to be kept as a counterfactual point is zero, after an
intervention that decreases the intensity at time t:

E[A = 0 | do(π = 1)] ≥ E[A = 0 | do(π = 0)] =⇒ P (A = 1 | A = 0, π = 0, do(π = 1)) = 0. (23)

This follows from the posterior distribution of the rejected point Urej ∼ U(λ∗
0(t), λub) being larger than the interven-

tional intensity λ∗
1(t) ≤ λ∗

0(t).

• For an accepted point t with A = 1, the probability of the point to be removed from the counterfactual set is zero after
an intervention that increases the intensity at time t:

E[A = 1 | do(π = 1)] ≥ E[A = 1 | do(π = 0)] =⇒ P (A = 0 | A = 1, π = 0, do(π = 1)) = 0. (24)

This follows from the posterior distribution of the accepted point Uacc ∼ U(0, λ∗
0(t)) being smaller than the interven-

tional intensity λ∗
1(t) ≥ λ∗

0(t).

Eqs. (23) and (24) imply that the counterfactual sampling algorithm satisfies the monotonicity condition in Eq. (22), and
hence the counterfactual treatments are identifiable.

The counterfactual algorithm either adds or removes a treatment to the observed treatment sequence, which produces a new
or removed bump in the outcome trajectory, formalized by the treatment response function fa, while the baseline function fb
remains unchanged. Therefore, the counterfactual outcome trajectory is identifiable, conditioned on the identifiability of the
treatment response function fa(τ ;a), which is not possible without further functional assumptions. In our semi-synthetic
experiments, we empirically show that it is possible to identify the treatment response function using distinctive functional
priors for the baseline and the treatment response, when the outcome trajectory follows our model definition. When this is
the case, the counterfactual trajectory can be empirically estimated with good accuracy.

I. Experiment Details
I.1. Real-World Study Details

I.1.1. DATA PREPROCESSING

The real-world data set consists of meal-blood glucose measurements for 14 non-diabetic individuals, where individuals are
monitored over a 3-day period (Zhang et al., 2020). The blood glucose is measured by a continuous monitoring device,
which takes a sample approximately every 15 minutes. The meal data is collected through a meal diary, recorded daily by
individuals. Later, meal records in the diary are translated into nutrient values by a look-up table.

As the meal data set is collected by individuals, it inherently contains measurement errors (Zhang et al., 2020). To deal
with the measurement errors, we take a data preprocessing step before fitting our treatment model to the meal data. For our
application, there are two main measurement errors that may lead to incorrect results: (i) individuals may record their meals
in parts, where a single meal is recorded as 2-3 meal occurrences, and (ii) individuals record their meal times with error.

To deal with measurement errors of type (i), we remove redundant meals by keeping only a single meal event if two meals
co-occur in a 2-hour interval. To deal with measurement errors of type (ii), we update the meal time if a meal seems to occur
at a time where the blood glucose is changing rapidly. For example, if an individual reports a meal with a delay, the meal
seems to occur at a time point where the blood glucose measurements have already increased rapidly and is about to decline.
The recorded meal time (with error) implies an incorrect result that the meal leads to a decrease in the blood glucose, or
similarly, that the meal likelihood increases with increasing blood glucose. On the contrary, the bump in the glucose level is
most likely caused by the same meal in the first place. In practice, we move a meal time to the next possible time point
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where the blood glucose derivative is less than a threshold, 0.5. At each time point ti, we approximate the derivative of the
blood glucose by averaging derivative values for two consecutive regions, (ti−1, ti) and (ti, ti+1):

dyi ≈
1

2

(
(yi − yi−1)

ti − ti−1
+

(yi+1 − yi)

ti+1 − ti

)
.

I.1.2. JOINT MODEL DEFINITION

Treatment Intensity. We assume each patient’s meal habits are different, corresponding to a distinct treatment policy.
Furthermore, we define five model variants {λb, λ

∗
ba, λ

∗
bo, λ

∗
ao, λ

∗
bao} for each patient (see Table 1 for details). Each treatment

model is defined and trained independently on each patient’s meal–glucose measurements.

We choose the constant baseline intensity β0 to be equal to 0.1. For the treatment-dependent function g∗a(τ ;a), we use a
relative-time kernel kt only, i.e. we assume meal dosages (marks) do not have an affect on the next meal time. For the
outcome-dependent function g∗o(τ ;o), we use a combination of a mark kernel km and a relative-time kernel kt. We choose
the dimensionality parameters {Qa, Qo} of the kernels as Qa = 1, Qo = 1, i.e., the meal intensity depends only on the last
treatment and the last outcome observations. This is a simplification of complex real-world dynamics between meals and
blood glucose. Yet, our goal is not to model these dynamics in the best possible way in this work, but rather to understand if
our joint model can learn clinically meaningful treatment intensities, that can handle time-varying confounding.

At a query time τ , the retrieval function r(τ) returns the input vector r(τ) = r ∈ R4, as defined in Appendix E.2:

r(τ) = { τ︸︷︷︸
Input for
Baseline

, τ − ti︸ ︷︷ ︸
Input for
last Qa
treatment

, τ − tj , yj︸ ︷︷ ︸
Input for
last Qo
outcome

}.

The intensities {λb, λ
∗
ba, λ

∗
bo, λ

∗
ao, λ

∗
bao} use the relevant dimensions of the input. For example, the intensity λb uses only

the absolute time information (first dimension) τ , which is for the baseline input.

We choose M = 20 inducing points: Z ∈ RM×4. We place the inducing points in regular intervals inside the target domain
of the treatment intensity component gb, g∗a or g∗o . For example, the baseline component’s input domain is the observation
period [0, T ] and inducing points for the baseline dimension are placed onto [0, T ] regularly. Similarly, input domains of
treatment-effect and outcome-effect kernels include relative times to the last Qa actions and Qo outcomes. For these two
dimensions, we place inducing points between 0 and the maximum (or some quantile) time between the last Qa actions or
Qo outcomes. Inducing points are assumed to be independent along each dimension similar to Liu & Hauskrecht (2019).

We choose kernel hyperparameters θa,h = {γq, ℓq}Qa+Qo

q=0 by inspection, since our data set is small and there exists
identifiability issues when one optimizes the effect of each component on the treatment effect simultaneously. As the
number of meal events are small in the data set, we choose relatively small values for the variance parameters (γb, γa, γo) =
(0.1, 0.05, 0.15). We choose lengthscale parameters as (ℓb, ℓa, ℓo,t, ℓo,m) = (7.0, 1.0, 100.0, 2.5). Each lengthscale value
represents an underlying assumption based on the domain knowledge: (i) the baseline lengthscale ℓb = 7.0 assumes a
slow-changing smooth baseline function, (ii) the treatment-effect time lengthscale ℓa is 1.0 as the last meal generally has an
effect on the next meal in the next 2-3 hours time span, (iii) a very large outcome-effect time lengthscale ℓo,t = 100 is chosen
so that the outcome-effect is constant in time for a given glucose value y, mimicking a simultaneous outcome-effect on the
meal intensity with a large number of regular glucose measurements, (iv) the outcome-effect mark lengthscale ℓo,m = 2.5 is
chosen so that the mark effect is also a slow-changing, smooth function, as the glucose level should gradually affect meal
intensity.

Outcome Model. We define a single hierarchical outcome model for all patients, as detailed in Appendix F.

The baseline progression fb for each patient (v) is the sum of a constant kernel and a periodic kernel whose period is set
to 24 hours. The periodic kernel captures daily glucose profiles of patients. The constant kernel function has an intercept
parameter {b(v)b }, initialized to {1.0}. Each periodic kernel has parameters {α(v)

b , ℓ
(v)
b }, initialized to {1.0, 1.0}.

The treatment response function is equal to the sum of two components: fa(τ ;a = (m, t)) = fm(m)ft(τ ; t). The response
shape function ft(τ ; t) has an SE kernel with hyperparameters {ℓ(m)

t } for each treatment type (m). We assume all meals
are of the same type: m = 1. We initialize the lengthscale to 0.5: ℓ(m)

t = ℓt = 0.5. The effective interval Tti for each
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meal ti is set to 3 hours: Tti = 3. The treatment response scaling function f
(v)
m specifies the amplitude of the treatment

response for each patient (v), using patient-specific intercept and slope parameters: {β(v)
0 , β

(v)
1 }. A hierarchical model

is imposed on the intercept and the slope parameters {β(v)
0 , β

(v)
1 }14v=1 by defining a hierarchical Gaussian prior on them:

β
(v)
0 ∼ N (β0, σ

2
0), β

(v)
0 ∼ N (β1, σ

2
1),∀v ∈ {1, . . . , 14}. All scaling function parameters {{β(v)

0 , β
(v)
1 }14v=1, β0, β1, σ0, σ1}

are initialized to 0.1.

Training. We assume each day of meal observations as conditionally independent given the conditional intensity function.
We train each model on the first two days of observations and use the third day as the test set. For the outcome model, the
measurements follow a Gaussian likelihood, i.e., an exact GP model. We maximize the log marginal likelihood with respect
to the hyperparameters θo = {β0, β1, {b(v), γ(v)

b , ℓ
(v)
b , β

(v)
0 , β

(v)
1 }14r=1}. We fix hyperparameters {σ0, σ1} at their initialized

values. For the treatment model, we maximize the training objective ELBO with respect to the variational parameters
θa,z = {mz,Sz}, while the treatment hyperparameters θa,h are fixed at their initial values.

Table 4: Results for the test log likelihood (TLL) values for treatment models with distinct meal intensities, for all patients.
Models are trained on first 2-days of meal-glucose data. The last day is used for computing the TLL. The intensity λ∗

ba(τ)
provide the highest TLL value for all patients.

MEAL INTENSITIES

PATIENT-ID METRIC λ∗
b λ∗

ba λ∗
bo λ∗

ao λ∗
bao

PATIENT 1

TLL

−10.38 −9.89 −9.84 −7.68 −10.68
PATIENT 2 −14.37 −11.39 −10.57 −10.58 −11.85
PATIENT 3 −12.07 −12.85 −12.05 −12.78 −12.79
PATIENT 4 −12.90 −12.75 −9.38 −9.61 −11.52
PATIENT 5 −14.93 −11.93 −10.99 −11.12 −12.35
PATIENT 6 −13.46 −9.52 −8.51 −8.59 −9.73
PATIENT 7 −13.87 −12.19 −12.47 −10.86 −13.98
PATIENT 8 −12.79 −12.62 −10.85 −9.70 −12.20
PATIENT 9 −13.60 −14.07 −13.01 −12.91 −13.95
PATIENT 10 −16.29 −13.10 −11.37 −11.39 −12.61
PATIENT 11 −13.49 −12.95 −12.33 −12.10 −14.00
PATIENT 12 −15.75 −13.82 −12.07 −13.61 −14.79
PATIENT 13 −9.71 −10.81 −10.07 −9.99 −11.67
PATIENT 14 −12.08 −12.50 −10.95 −9.13 −12.88

ALL TLL −13.26± 0.49 −12.17± 0.36 −11.03± 0.34 −10.72± 0.46 −12.50± 0.37

Results. For the treatment model, we report the test log-likelihood (TLL) for the third day to compare different treatment
intensity variants. The computation of TLL is detailed in Appendix H.1. TLL results for all patients are shown in Table
4. In agreement with the mean TLL value, the intensity λ∗

ao produce largest TLL values for most patients. In addition,
the simplest (baseline) intensity λb with no past treatment-outcome effect and the most complex intensity λ∗

bao with all
components provide low TLL values in general. This suggests that a treatment model independent of the past history is not
able to explain the meal intensity well. Similarly, the intensity with all components seem to be overly complex for this small
data set. In addition, we demonstrate the model fits for all intensities in Fig. 7.

For the outcome model, we examine train and test fits for patients qualitatively. We show train/test fits for a subset of
patients {3, 8, 12} in Fig. 8. The empirical findings suggest that the outcome model is able to capture clinically meaningful
treatment responses that are close to bell-shaped curves reported in Wyatt et al. (2021). It is important to note that the
treatment response curves are the main learning objective in continuous-time treatment–outcome setups (Schulam & Saria,
2015; Xu et al., 2016; Schulam & Saria, 2017; Soleimani et al., 2017; Cheng et al., 2020; Seedat et al., 2022).

I.2. Semi-Synthetic Simulation Study Details

We perform a semi-synthetic simulation study to evaluate our model’s performance on the causal tasks, as the true causal
effects are unknown in a real-world observational data set.
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Figure 7: Estimated treatment–outcome model on the real-world meal–glucose data, similar to Fig. 4. (Top) Estimated
outcome model on the glucose measurements (see Fig. 4 for details). (Bottom) Estimated intensities for all five treatment
models {λb, λ

∗
ba, λ

∗
bo, λ

∗
ao, λ

∗
bao} are shown. Inspecting intensities λ∗

ba (pink), λ∗
ao (green) and λ∗

bao (blue), we see that
the intensity of a new meal immediately after a previous meal decreases through g∗a. Similarly, inspecting intensities λ∗

bo

(yellow), λ∗
ao (green) and λ∗

bao (blue), we see that the intensity of a new meal immediately after a previous meal decreases
indirectly through the increase in blood glucose represented by g∗o .

I.2.1. SIMULATOR

Simulator functions. Our ground-truth joint simulator is composed of a treatment and an outcome simulator. The ground-
truth treatment simulator, has the form of a treatment- and outcome-dependent intensity λ∗

ao (defined in Table 1) to include
both sources of time-varying confounding. The ground-truth outcome simulator has the form of the hierarchical outcome
model (defined in Eq. (8)). The model definitions, initialization and the training procedures are detailed in Appendix I.1.2.

We fit our joint model to a subset of the real-world meal–glucose data set to obtain ground-truth simulator functions
M(v)

gt = {λ∗
πv
(τ), f

(v)
b (τ), f

(v)
a (τ ;a)}. In the rest of this section, we show the characteristics of these functions and what

kind of observational trajectories they produce.

Treatment simulator. We divide simulated patients into two policy groups {πA, πB}, representing distinct treatment
policies of different hospitals, countries, etc. The simulator intensities of two policies correspond to learned intensity
functions of two real-world patients: Patients {4,13}. We choose these two intensities, so that the treatment distributions
induced by two policies show different characteristics, i.e. observational and interventional distributions are not similar.
Otherwise, an intervention on the treatment policy might not have a visible effect on the treatment distribution. For example,
consider the limiting case of having the same treatment intensity for both policies {πA, πB}, then the observational and the
interventional distributions are identical.

Comparing simple statistics of two patients, Patient 4 has 5 meals on average per day, while Patient 13 has 4 meals on
average per day, which leads to higher intensity values for Patient 4, and hence lower expected meal arrival times. Besides,
the learned mark intensity functions p(m | τ) for both policies are distinct. The ground-truth functions g∗a g∗o and p(m | τ),
that are learned from Patients {4,13} are shown in Fig. 9.

Outcome simulator. To enable individualization among the blood glucose dynamics of patients, we assume there are
three patient groups {gr0, gr1, gr2}. Patients in the same group share the baseline and treatment response functions, e.g.,
patients in the group gr1 have the following functions: {fb,gr1 , fa,gr1}.

We choose three outcome simulator functions corresponding to the learned outcome models of three real-world patients
(Patients {3,8,12}), by qualitatively assessing the learned functions with respect to the domain knowledge and findings
about the effect of a meal on the blood glucose in Wyatt et al. (2021): (i) they have distinct daily baseline characteristics,
fluctuating around a constant value (Fig. 10a) (Ashrafi et al., 2021) (ii) their treatment response curves are smooth functions
with similar shapes to the bell-shaped response curves argued in Wyatt et al. (2021) (Fig. 10b) . The train and test fits of the
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Figure 8: The learned ground-truth functions fb(τ), fa(τ) and f(τ) = fb(τ)+fa(τ) for Patients {3,8,12}. The grey-shaded
area is the test period. The baseline kernels are sums of (i) a constant kernel (Ashrafi et al., 2021) and (ii) a periodic kernel
(combined with a long-lengthscale SE kernel) whose period is fixed to 1-day in order to capture the daily blood glucose
profiles. The treatment shape function is close to a Gaussian bump (Wyatt et al., 2021).

outcome simulators for these patients are shown in Figure 8.

I.2.2. BENCHMARKS

For our estimation model, we use a joint model that has the same form with the simulator. In addition to ablations, we use
two benchmark models used for comparison in Experiments:

H21 (Hua et al., 2021). They propose a joint treatment–outcome model, with a publicly available implementation.
However, they assume treatments and outcomes occur jointly at the same continuous-time points, which is a strong
assumption that does not hold for our problem definition. Therefore, we adapt their implementation by separating the joint
likelihood into treatment and outcome parts, so that the model can work with treatments and outcomes that occur at different
time points. Besides, we remove the irrelevant survival outcome part from the joint likelihood. The implementation uses a
Markov chain Monte Carlo (MCMC) algorithm. We run the algorithm for 20000 iterations, with a burn-in period of 5000
iterations. To deal with sample correlation, we use every 50th sample after the burn-in period for inference. During inference,
we use the mean values for the treatment and outcome model parameters.
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Patient 4 is more likely to have higher carbohydrate intake after 5pm.
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Figure 10: Baseline progression and treatment response functions of Patient 3 (blue), Patient 8 (orange) and Patient 12
(green), i.e., of the ground-truth outcome simulator.

S17 (Schulam & Saria, 2017). The outcome model proposed in Schulam & Saria (2017) is a conditional GP, with
additive baseline and treatment response functions. We use their publicly available implementation that uses (i) the sum of a
mixture of B-splines and a GP prior with a Matern kernel for the baseline function and (ii) a constant treatment response. It
uses marginal likelihood for learning and GP posteriors for inference.

I.2.3. SEMI-SYNTHETIC DATASET

We use the selected treatment and outcome simulators described in Appendix I.2.1 to simulate semi-synthetic samples
from observational, interventional and counterfactual distributions. For the observational data set, we simulate 1-day long
treatment–outcome sequences for 50 patients: D = {D(v)}50v=1. We assume the outcome trajectory is measured in regular
intervals, similar to a continuous glucose monitoring device. We divide the 1-day long observation period into 40 intervals
and sample joint trajectories using the treatment and outcome simulators. We show some of the sampled outcome trajectories
in Fig. 11, together with 1-day long examples of treatment–outcome sequences of two real-world patients {3,8}. We train
all benchmark models on the observational data set, while using interventional and counterfactual data sets for test.

We train our hierarchical outcome model on the observational data set to obtain estimated outcome model components for
all patients: {f̂ (v)

b (τ), f̂
(v)
a (τ ;a), ϵ̂(v)(τ)}50v=1. For each policy π ∈ {πA, πB}, we train a treatment model on the population

data which follows the target policy: {λ̂∗
A(τ), λ̂

∗
B(τ)}. Overall, we have the following estimated model components:

Mest = {λ̂∗
A(τ), λ̂

∗
B(τ)} ∪ {f̂ (v)

b (τ), f̂
(v)
a (τ ;a), ϵ̂(v)(τ)}50v=1.
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(a) 1-day treatment–outcome data of real-world Patient 3.
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(b) 1-day treatment–outcome data of real-world Patient 8.
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(c) Outcome trajectory samples for 3 synthetic patients that use the
baseline and response functions of Patient 3.
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(d) Outcome trajectory samples for 3 synthetic patients that use the
baseline and response functions of Patient 8.

Figure 11: Observational outcome trajectory samples of patients belonging to two different patient groups: (left) patient
group 1 and (right) patient group 2. (a-b) 1-day long examples of treatment–outcome sequences for Patient 3 and Patient 8,
on which we learn the simulator functions for patient groups {1,2}. (c-d) Three joint trajectory samples from both patient
groups.

Test datasets and metric. After learning model components on the observational data, we sample test data sets from
the interventional and counterfactual distributions resulting from the policy interventions [π̃>1d] and [π̃≤1d] respectively.
For the interventional data set, we sample the second day of each patient under the policy intervention [π̃>1d], where the
treatment policy of the patient is switched. For the counterfactual data set, we condition on the observed data D(r) for each
patient and sample a hypothetical first day under a policy intervention [π̃≤1d], using the posterior of the noise variables. This
is performed using the simulator functions and the counterfactual sampling algorithm detailed in Appendix H.2.2.

More specifically, our policy intervention target has the following form:

P (Yq[π̃>T ] | H≤T ) =
∑
ã>T

m−1∏
k=0

P (ã[qk,qk+1) | π̃>T ,H≤qk)︸ ︷︷ ︸
Treatment Model

P (Yqk | ã[qk,qk+1),H≤qk)︸ ︷︷ ︸
Outcome Model

. (25)

Notice that the marginal distribution of the outcome trajectory Yq[π̃>T ] is not available in closed form, as we cannot
integrate out treatments a in Eq. (25). Nevertheless, we have a generative treatment–outcome model, from which we can
sample joint treatment–outcome trajectories to compare how close estimated outcome trajectories are to the ground-truth
outcome trajectories in terms of the mean squared error (MSE).

Naively sampling joint trajectories leads to misaligned treatment times, and hence misaligned treatment response curves, no
matter how close estimated intensities {λ̂∗

A, λ̂
∗
B} are to the ground-truth simulator intensities {λ∗

A, λ
∗
B}. As an example, see

three i.i.d. treatment samples a(v) ∼ p(a(v) | λ∗
A), v = 1, ..., V from the same simulator intensity λ∗

A in Fig. 12, where the
misaligned treatment responses are annotated by red circles. This misalignment is due to the inherent stochasticity of the
point process sampling.

The source of the stochasticity in the Ogata’s sampling algorithm is two-folds: (i) the candidate point sampled from the
upper-bound Poisson process and (ii) the uniform noise variable sampled for an accept/reject decision. To achieve aligned
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Algorithm 3 Ogata’s Thinning algorithm for P processes with Fixed Noise
Input: Start T1, End T2, Interval function l(·), P conditional intensities {λ∗

p}Pp=1.
Output: Samples T = {t1, . . . , tn} for P point processes in the interval [T1, T2].

1: function SAMPLE-FIXED-NOISE(T1, T2, l(·), {λ∗
p}Pp=1, P)

2: Tp = ∅,∀p ∈ {1, · · · , P}. ▷ Initialize point sets.
3: τ = T1. ▷ Initialize time.
4: while τ < T2 do
5: λub = sups∈[τ,τ+l(τ)]{λ∗

p(s) : p ∈ {1, · · · , P}} ▷ Shared upper-bound.
6: uub, ua ∼ U(0, 1). ▷ Sample and fix noise var. for current interval.
7: ti = −1/λub ∗ log(uub) ▷ Draw the inter-arrival time, ti ∼ Exp(λub).
8: if ti ≤ l(τ) then ▷ Candidate in the interval.
9: for p ∈ {1, · · · , P} do

10: if ua ≤ λ∗
p(τ + ti)/λub then ▷ Keep with probability λ∗

p/λub for each process p.
11: Tp = Tp ∪ {τ + ti}. ▷ Point accepted.
12: end if
13: end for
14: τ = τ + ti. ▷ Continue from the candidate point.
15: else ▷ No candidate point in the interval.
16: τ = τ + l(τ). ▷ Continue from the end of the interval.
17: end if
18: end while
19: return {Tp}Pp=1.
20: end function

point process realisations and hence comparable treatment responses, we fix the noise variables responsible for both sources
of randomness and sample a ground-truth and an estimated trajectory simultaneously. If an estimated intensity λ̂est and a
simulator (oracle) intensity λoracle are close, the fixed-noise sampling algorithm will produce a similar set of treatments. In
the case where two intensities λ̂est and λoracle are equal, we will obtain an equal set of treatments a(v)est ≡ a

(v)
oracle, v = 1, ..., V .

The algorithm is shown in Algorithm 3.

For the policy intervention task, we illustrate the sampling process that compares the ground-truth (oracle) simulator with
a set of estimated models (OURint, OURobs, AB1int, AB3int) in Fig. 13, where the subscripts ‘obs’ (observational) and
‘int’ (interventional) denote the target distribution. Similarly, the superscripts ‘oracle’, ‘ab1’, ‘ab3’ and ‘our’ denote the
target model. The ground-truth intensity λoracle

int , the ground-truth treatments aoracle
int and the ground-truth trajectory Yoracle

int
are shown in blue, while the predictions of our model OURint are shown in red. For the model OURint, the estimated
treatment intensity λour

int and the outcome trajectory Your
int follow the ground-truth intensity and trajectory well. For the model

OURobs, the estimated treatment distribution is different than the ground-truth treatment distribution and the estimated
trajectory Your

int is not close to the ground-truth trajectory. For the model AB3int, we see that the history-independent (NHPP)
intensity λab3

int does not take past treatments and outcome into account and only predicts a conservative approximation on the
treatment distribution. The Gamma-based treatment intensity λab1

int of the model AB1int is a better approximation than the
history-independent intensity λab3

int , however, it lacks the flexibility of our non-parametric intensity λour
int .
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Figure 12: Three ground-truth i.i.d. treatment samples from policy A and patient group 0. Notice that sampled treatments
(cyan) are not aligned, i.e., they do not occur at similar times each day. Hence, their treatment responses (annotated by red
circles) are also misaligned and estimating the MSE between them naively would lead to high values.
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Figure 13: Interventional trajectory examples from the fixed-noise sampling algorithm (Algorithm 3), where treatment noise
variables Ea are fixed for the ground-truth and the estimated models. The ground-truth intensity λoracle

int , the ground-truth
treatments aoracle

int and the ground-truth trajectory Yoracle
int are shown in blue, while the predictions of our model OURint are

shown in red. The estimated treatment intensity λour
int and the estimated outcome trajectory Your

int follow the ground-truth
intensity and trajectory well, while benchmark models fail to do so.
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