
AdaBoost is not an Optimal Weak to Strong Learner

Mikael Møller Høgsgaard * 1 Kasper Green Larsen * 1 Martin Ritzert * 2

Abstract
AdaBoost is a classic boosting algorithm for com-
bining multiple inaccurate classifiers produced
by a weak learner, to produce a strong learner
with arbitrarily high accuracy when given enough
training data. Determining the optimal number
of samples necessary to obtain a given accuracy
of the strong learner, is a basic learning theoretic
question. Larsen and Ritzert (NeurIPS’22) re-
cently presented the first provably optimal weak-
to-strong learner. However, their algorithm is
somewhat complicated and it remains an intrigu-
ing question whether the prototypical boosting
algorithm AdaBoost also makes optimal use of
training samples. In this work, we answer this
question in the negative. Concretely, we show that
the sample complexity of AdaBoost, and other
classic variations thereof, are sub-optimal by at
least one logarithmic factor in the desired accu-
racy of the strong learner.

1. Introduction
The algorithm AdaBoost (Freund & Schapire, 1997) is the
textbook example of a boosting algorithm. Boosting algo-
rithms in general make use of a weak learner, i.e. a learning
algorithm that produces classifiers with accuracy slightly
better than chance, and produces from it a so-called strong
learner, achieving arbitrarily high accuracy when given
enough training samples. The question whether one can
always produce a strong learner from a weak learner was
initially asked by Kearns and Valiant (Kearns, 1988; Kearns
& Valiant, 1994) and initiated the field of boosting.

Given a weak learnerW , AdaBoost usesW to train mul-
*Equal contribution 1Group of Algorithms, Data Struc-

tures and Foundations of Machine Learning, Aarhus University,
Aarhus, Denmark 2Neural Data Science, Georg-August-Universität
Göttingen, Göttingen, Germany. Correspondence to: Mikael
Møller Høgsgaard <hogsgaard@cs.au.dk>, Kasper Green Larsen
<larsen@cs.au.dk>, Martin Ritzert <ritzert@informatik.uni-
goettingen.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tiple inaccurate classifiers/hypotheses that focus on differ-
ent parts of the training data and combines them using a
weighted majority vote. In more detail, it runs for some
T iterations, each time invoking W to produce a hypoth-
esis ht. It then computes weights w and outputs the final
voting classifier f(x) = sign(

∑
t wtht(x)). For the calls

ofW , AdaBoost maintains a distribution Dt over the train-
ing samples that puts a large weight on training samples
misclassified by most of h1, . . . , ht−1 and a smaller weight
on samples classified correctly. Using this distribution, in
iteration t AdaBoost invokes the weak learner to produce a
hypothesis ht performing better than chance under Dt. This
way, ht focuses on training examples that are hard for the
voting classifier so far.

In this paper, we study the sample complexity of AdaBoost,
answering the question whether AdaBoost is able to make
optimal use of its training data. To formally answer this
question, we need to introduce a few parameters. A γ-weak
learner is a learning algorithm that, given some constant
number of training samples from an unknown data distri-
bution D, produces a hypothesis h that correctly predicts
the label of a new sample from D with probability at least
1/2+γ. We letH denote the set of possible hypotheses that
the weak learner may output. A strong learner, on the other
hand, is a learning algorithm that for any 0 < ε, δ < 1, with
probability at least 1− δ over a set of m(ε, δ) training sam-
ples from an unknown distribution D, outputs a hypothesis
that correctly predicts the label of a new sample fromD with
probability at least 1−ε. The function m(ε, δ) is referred to
as the sample complexity. A strong learner can thus obtain
arbitrarily high accuracy 1− ε when given enough training
samples m(ε, δ). See Section 1.1 for a formal definition of
weak and strong learning.

Recently, Larsen & Ritzert (2022) showed that the optimal
sample complexity of weak-to-strong learning is given by

m(ε, δ) = Θ

(
d

γ2ε
+

ln(1/δ)

ε

)
, (1)

where d is the VC-dimension of the hypothesis setH of the
weak learner. The paper provides both a learning algorithm
achieving this sample complexity as well as an asymptoti-
cally matching lower bound. Their algorithm is based on a
majority vote among hypotheses produced by a version of
AdaBoost. It is thus a majority of majorities. Is this neces-

1

AdaBoost is not an Optimal Weak to Strong Learner

sary for optimal weak-to-strong learning? Or does it suffice
to use a classic algorithm like AdaBoost? The current best
upper bound on the sample complexity of AdaBoost (for
constant δ) is (Shalev-Shwartz & Ben-David, 2014):

mAda(ε) = O

(
d ln 1

εγ ln d
εγ

γ2ε

)
(2)

However, this is just an upper bound, and until now, it
remained completely plausible that a better analysis could
remove the two logarithmic factors.

The main contribution of this work is to show that AdaBoost
is not always optimal. Concretely, we show that there exists
a weak learnerW , such that if AdaBoost is run withW as
its weak learner, its sample complexity is sub-optimal by at
least one logarithmic factor. This is stated in the following
theorem:

Theorem 1.1. For any 0 < γ < C for C > 0 sufficiently
small, any d = Ω(ln(1/γ)), and any exp(− exp(Ω(d))) ≤
ε ≤ C, there exists a γ-weak learnerW using a hypothesis
set H of VC-dimension d and a distribution D, such that
AdaBoost run withW is sub-optimal and needs

mAda(ε) = Ω

(
d ln(1/ε)

γ2ε

)
samples from D to output with constant probability, a hy-
pothesis with error at most ε under D.

This lower bound does not only apply to AdaBoost but ex-
tends to many of its variants such as AdaBoostν (Rätsch
& Warmuth, 2002), AdaBoost∗ν (Rätsch et al., 2005), and
DualLPboost (Grove & Schuurmans, 1998). The key prop-
erty those algorithms share and that we manage to exploit is
that they run the weak learnerW on the full training data
set. This allowsW to adversarially return hypotheses that
accumulate mistakes outside of the training data, leading to
poor generalization performance.

The rest of the paper is structured as follows. In the remain-
der of this section, we describe some preliminaries and give
an overview of the related work. In Section 2, we present the
high-level ideas of our proof and in Section 3 we sketch the
formal details of the proof. The proofs of the main lemmas
and parts of the formal proof of Theorem 1.1 are deferred
to the appendix due to space constraints.

1.1. Preliminaries and Notation

We now formally define our setup. Weak and strong learning
are studied in the general framework of probably approxi-
mately correct (PAC) learning, see e.g. (Shalev-Shwartz &
Ben-David, 2014) for an introduction. In the PAC learning
framework, one assumes that training samples are chosen
i.i.d. from an underlying distribution D over elements of

Algorithm 1: AdaBoost
Input: training set S = {(x1, c(x1)), . . . , (xm, c(xm))},

number of rounds T
Result: A majority hypothesis hout

1 D(1) ←
(

1
m , . . . 1

m

)
// uniform init of D

2 for t = 1, . . . , T do
3 ht ←W(D(t), S) // invoke weak learner W
4 γt ←

∑m
i=1D(t) sign(c(xi)ht(xi)) // error

5 wt =
1
2 ln

(
1−γt

γt

)
// weight for ht

6 for i ∈ {1, . . . ,m} do
/* update D based on success of ht */

7 D(t+1)
i ← D(t)

i exp
(
−wtc(xi)ht(xi)

)
∑m

j=1 D(t)
j exp

(
−wtc(xj)ht(xj)

)
8 return hout(x) = sign

(∑T
t=1 wtht(x)

)

some universe X . Furthermore, we assume an underlying
but unknown ‘correct’ labeling function c : X → {−1, 1}
called the concept, which assigns every element from the
universeX its ‘true’ label. The concept is assumed to belong
to a concept class C ⊆ X → {−1, 1}.

A learning algorithm A is a γ-weak learner for C, if for
every distribution D over X and every concept c ∈ C, there
is a constant number of samples m0 and a constant δ0 < 1,
such that with probability at least 1 − δ0 over m0 i.i.d.
samples x1, . . . , xm0

fromD and their corresponding labels
c(x1), . . . , c(xm0

), A outputs a hypothesis h with error

LD(h) = Pr
x∼D

[h(x) ̸= c(x)] ≤ 1/2− γ.

We refer to γ as the advantage of the weak learner. We letH
denote the hypothesis set used by the weak learner, i.e. we
assume that h ∈ H and thatH has a finite VC-dimension d.

A learning algorithmA is a strong learner for C, if for every
0 < ε, δ < 1, there exists some number of samples m(ε, δ),
such that with probability at least 1 − δ over m(ε, δ) i.i.d.
samples from D and their corresponding labels, A outputs
a hypothesis with error LD(h) ≤ ε.

AdaBoost is the classic algorithm for constructing a strong
learner from a γ-weak learner. For completeness, we have
included the full algorithm as Algorithm 1.

Related Work

In terms of sample complexity, most previous works prove
generalization bounds for voting classifiers in general. A
voting classifier over a hypothesis setH, is a majority vote
f(x) = sign

(∑
h∈H αhh(x)

)
for coefficients αh > 0 such

that
∑

h αh = 1. AdaBoost can be seen to output a voting
classifier by appropriate normalization of the coefficients
wt chosen in Algorithm 1. The generalization bounds for

2

AdaBoost is not an Optimal Weak to Strong Learner

voting classifiers are typically data-dependent in the sense
that they depend on the so-called margin of the voting clas-
sifier. For a voting classifier f(x) = sign

(∑
h∈H αhh(x)

)
and a sample (x, c(x)), the margin of f on (x, c(x)) is
defined as c(x)

∑
h∈H αhh(x). The margin is thus a

number between −1 and 1 and is positive if and only if
f(x) = c(x). Intuitively, large margins correspond to high
certainty/agreement among the hypotheses. In terms of up-
per bounds, Breiman (Breiman, 1999) showed that with
probability 1 − δ over a training set S of m samples, all
voting classifiers f with margin at least γ on all samples in
S have

LD(f) = O

(
d ln(m/d) lnm

γ2m

)
. (3)

A small tweak to AdaBoost, known as AdaBoost∗ν (Rätsch
et al., 2005), guarantees that the output hypothesis f has
margins Ω(γ) on all samples when AdaBoost∗ν is run with
a γ-weak learner. Solving for ε = LD(f) in Equation (3)
matches the sample complexity bound for AdaBoost from
Equation (2).

In terms of sample complexity lower bounds for boosting,
or for AdaBoost in particular, there are some relevant works.
First, as mentioned earlier and stated in (1), it is known that
any weak-to-strong learner must have a sample complex-
ity of Ω

(
d/(γ2ε) + ln(1/δ)/ε

)
(Larsen & Ritzert, 2022).

While not directly comparable, work by Grønlund et al.
(2019) showed that there are data distributions, such that
with constant probability over a set of m = (d/γ2)1+Ω(1)

samples, there exists a voting classifier f with margin at
least γ on all samples, yet its generalization error is at least
Ω
(
d ln(m)/(γ2m)

)
. This lower bound is in some sense

similar to our work, as it manages to squeeze out a logarith-
mic factor. However, the voting classifier f is only shown
to exist and as such might not correspond to the output of
any reasonable learning algorithm, certainly not AdaBoost.

At this point, we would like to compare AdaBoost to the op-
timal weak-to-strong learning algorithm given by Larsen &
Ritzert (2022). First, their learning algorithm is more com-
plicated. It runs AdaBoost∗ν on various sub-samples of the
training data to obtain voting classifiers f1, . . . , fT which it
then combines in a majority vote g(x) = sign(

∑
i fi(x)). It

thus outputs a majority of majorities. Moreover, the number
of sub-samples is a rather large T = mlg4 3 ≈ m0.79 and
their size is linear in the overall number of training sam-
ples m, thus resulting in somewhat slow training time. The
sub-samples are constructed with a very careful overlap as
pioneered by Hanneke (2016) in his optimal algorithm for
PAC learning in the realizable setting. A recent manuscript
by one of the authors of this paper (Larsen, 2022) shows
that one may replace the T sub-samples by just O(lg(m/δ))
bootstrap samples (sub-samples each consisting of m sam-
ples with replacement from the training data) in the algo-

rithm from Larsen & Ritzert (2022). While reducing the
number of sub-samples, it still remains a majority of majori-
ties. It would thus have been desirable if one could show that
AdaBoost also had an optimal sample complexity. Sadly, as
already stated in Theorem 1.1, this is not true.

2. Proof Overview
In this section, we give an overview of the main ideas in
our proof that AdaBoost is not always an optimal weak-
to-strong learner. Concretely, for any γ, m, and d =
Ω(ln(1/γ)) we show that there exists an input domain X ,
a distribution D over X , a concept c : X → {−1, 1}, a
hypothesis set H of VC-dimension at most d, and a γ-
weak learner W for c that outputs hypotheses from H,
such that with constant probability over a set of m samples
S ∼ Dm and their corresponding labels c(S), AdaBoost
run with the weak learner W produces a voting classifier
f with LD(f) = Ω

(
d ln(γ2m/d)/(γ2m)

)
. Solving for

ε = LD(f) gives m = Ω
(
(d ln(1/ε))/(γ2ε)

)
as claimed

in Theorem 1.1.

When proving the lower bound for AdaBoost, we consider
just one fixed concept c, namely the concept that assigns
the label 1 to all elements of X . AdaBoost of course does
not know this but executes precisely as in Algorithm 1. As
distribution D we consider the uniform distribution U over
the input domain X . Thus, if f is the output of AdaBoost
andX = [u] = {1, . . . , u}, thenLU (f) is precisely equal to
the fraction of elements i ∈ [u] for which f(i) = −1. Our
goal is thus to show that AdaBoost will produce a voting
classifier f with a negative prediction on many i ∈ [u].

To prove the above, we need to construct a weak learnerW
that somehow returns hypotheses that result in AdaBoost
making many negative predictions. Although the formal
definition of a γ-weak learner given in Section 1.1 allows
W to sometimes (with probability δ0) return a hypothesis
with advantage less than γ, we will not do so in our con-
struction. Thus, our adversarial weak learner always returns
hypotheses with advantage at least γ which only makes our
lower bound stronger.

To define our adversarial weak learner W , we carefully
examine the “interface” it must support. Concretely, the way
AdaBoost accesses a weak learner is to feed it the training
data S = {(xi, c(xi))}mi=1 and a distribution Dt over S.
From this, AdaBoost expects thatW returns a hypothesis
ht with advantage at least γ under the distribution Dt which
is supported only on S. Our adversarial weak learner W
will support this interface. In fact, it will completely ignore
the set S and return a hypothesis that is solely a function of
Dt. Our weak learner thus needs to be a function, that for
any probability distributionD over X returns a hypothesis h
with advantage at least γ under D (for the all-1 concept c).

3

AdaBoost is not an Optimal Weak to Strong Learner

Our main challenge is now to design a weak learner that
always has advantage γ under the distributions fed to it by
AdaBoost, yet under the uniform distribution U over X =
[u], the voting classifier produced by AdaBoost must often
make negative predictions. Here, our first observation is that
if the universe size u is cm/ ln(γ2m/d) for a sufficiently
small constant c > 0, then by a coupon collector argument,
with constant probability there are Ω(d/γ2) elements i ∈ [u]
that are not sampled into the training set S. Our basic idea
is to force that the final voting classifier f produced by
AdaBoost makes negative predictions on a constant fraction
of these non-sampled elements. This would imply LU (f) =
Ω
(
(d/γ2)/u

)
= Ω

(
d ln(γ2m/d)/(γ2m)

)
as claimed.

Our next key observation is that all distributions Dt fed to
W by AdaBoost put a non-zero probability on every ele-
ment in the training data set. Crucially, this implies that the
weak learner knows the complete training set and can thus
compute the Ω(d/γ2) points S̄ that were not sampled. Our
adversarial weak learner does precisely this and chooses an
arbitrary subset S̄′ ⊆ S̄ of size O(d/γ2) (the same deter-
ministic choice for a given S̄). It then returns a hypothesis
h that has advantage γ under Dt but at the same time under
the uniform distribution over S̄′ is wrong with probability
1/2 + γ. Notice that it is wrong on S̄′ with probability
more than half which we call a negative advantage of −γ.
Intuitively, since this holds for every h returned byW on
an execution of AdaBoost (for the same S̄′), the output f of
AdaBoost will be mistaken on about half the points in S̄′

which is sufficient for the lower bound.

To carry out the above argument, we need to construct a
hypothesis setH that contains hypotheses with advantage
γ on S under Dt and negative advantage over S̄′. Then the
weak learner can essentially just return such a hypothesis.
For this construction, we use a probabilistic argument and
show that by sampling a random hypothesis set H in an
appropriate manner and defining an associated weak learner
WH, there is a constant probability that the weak learner
satisfies all of the above. Hence, a weak learner must exist.
The point of considering a random H is that it allows us
to give simple probabilistic arguments that show that all
the hypotheses thatWH needs to return on an execution of
AdaBoost indeed exist inH. We illustrateH in Figure 1.

For the random construction ofH, we sample at most 2d−1

hypotheses h : X → {−1, 1} independently and uniformly
at random. This clearly implies that the VC-dimension of
H is less than d. We now have to argue that we can use
H to design a γ-weak learner for the all-1 concept. Here,
we distinguish two cases. First, consider any distribution D
over [u] where most of the probability mass is concentrated
on some r entries. Anti-concentration results imply that
a random hypothesis has an advantage of Ω(

√
ln(1/δ)/r)

with probability at least δ. We need the advantage to be at

1, 2, 3, 4, 5, . . . , u− 2, u− 1, uXuniverse

c 1 1 1 · · · 1 1 1concept

h0 1 1 1 · · · 1 1 1 -1 -1 -1

h1

...
hk

1-1-1-11 1
-1-1 1 11-1

fully random hypotheses
H

Figure 1. Illustration of our hypothesis set H

least γ and we have exp(Ω(d)) hypotheses to choose from.
Thus, if we plug in δ = exp(−Ω(d)), we see that for r =
O(d/γ2) we expect that the randomH contains a hypothesis
with advantage γ underD. Thus, for distributions with small
support, we can get a high advantage. A similar argument
shows that we can at the same time get a negative advantage
of −γ on S̄′ as required earlier. However, AdaBoost might
feedW a distribution Dt that is not concentrated on some
O(d/γ2) entries. In this second case, we would intuitively
like to add the all-ones hypothesis h⋆

0 to H to achieve an
advantage on suchDt. ThenWH can always return h⋆

0 when
being fed a distribution that is far from concentrated on a
few entries. This is problematic for our lower bound since
now AdaBoost could put a large weight on h⋆

0 which would
cancel out any mistakes/negative advantage we accumulated
in S̄′.

To remedy this, we introduce the hypothesis h0 which re-
sembles h⋆

0 on most elements (returning 1 there) but returns
−1 on cd/γ2 elements of X for some constant c > 0. Then,
similar to h⋆

0, the hypothesis h0 has a γ advantage under all
D that are “spread out”, i.e. do not have most of its mass on
O(d/γ2) entries. Thus, we can letWH return h0 for such
D. If on the other handD is concentrated on few entries, we
can find one of the random h that has advantage at least γ
underD and at most−γ for a uniform element in S̄′. But S̄′

might be (mostly) among the coordinates where h0 returns 1.
Thus, if AdaBoost puts too large a weight on h0, then the
negative advantage we accumulated on S̄′ is still canceled
out by h0. This is where we use that h0 has many −1’s.
Concretely, we show that if h0 receives a weight of more
than some O(γ), then there is no way to cancel out the−1’s
that h0 produces. In summary, if AdaBoost assigns a large
weight to h0 in its output classifier f , then f makes negative
predictions where h0 is negative. If AdaBoost assigns a
small weight to h0, then f makes negative predictions in S̄′.
In both cases, we have Ω(d/γ2) negative predictions. We
illustrate this in Figure 2.

Finally, let us summarize precisely what properties of Ad-
aBoost we exploited above. As mentioned earlier, the key
point is that the adversarial weak learner can determine the
elements S̄ of X that are not part of the training set S. It

4

AdaBoost is not an Optimal Weak to Strong Learner

Case 1: High weight on h0

S̄ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦◦

h0 1 1 1 · · · 1 1 1 -1 -1 -1

Ω(d/γ2) mistakes

fully random hypotheses
(dominated by h0)

err E E E E E

Case 2: Low weight on h0

S̄ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

h0 1 1 1 · · · 1 1 1 -1 -1 -1

Ω(d/γ2) mistakes
adversarially accumulated

E E E E E E

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

fully random hypotheses
(adversarially weighted)

Chosen by W

err

Figure 2. Illustration of where errors will occur

can thus return hypotheses that have a negative advantage
of −γ on some Ω(d/γ2) elements of S̄. This negative ad-
vantage is enough that it is not canceled out by any weight
that AdaBoost assigns to a nearly all-1 hypothesis h0. Note
though that it is crucial that the negative advantage achieved
byW is −γ and not just negative as AdaBoost may use h0

“a little bit”, i.e. with a weight of up to some small constant
times γ. If AdaBoost would put more weight on h0, this
would induce negative predictions where h0 is negative.

Let us also remark that it is vital for our argument that every
distribution Dt fed to W by AdaBoost is non-zero on all
of the training data. Assume for instance that Dt was only
non-zero on a random constant fraction of S. Then the
weak learner could only identify some random superset of
S̄ having linear size in u. But the weak learner needs to
force a negative advantage of −γ on some Ω(d/γ2) points
to cancel out the positive contributions by h0. Concentration
results show that this can only be done on O(d/γ2) points
and thus the adversarial weak learner would have to pick

O(d/γ2) points among the random Ω(u) with zero mass
under Dt. If these are in the training data S, which is the
most likely case as S̄ has cardinality only Θ(d/γ2), then
these O(d/γ2) points will have non-zero mass in most other
Dt′ , allowing a boosting algorithm to correct the negative
predictions.

The above proof outline can be seen to work for any boost-
ing algorithm producing voting classifiers and that always
invokes the weak learner with a probability distribution that
is strictly positive on all of the training data. For this reason,
our lower bound argument also applies to many other classic
boosting algorithms as mentioned in Section 1. In addition
to showing that these algorithms are sub-optimal, we believe
our lower bound may help inspire new boosting algorithms.
Concretely, as just sketched above, if the weak learner was
invoked with probability distributions that have mass on
only a constant fraction of the training data, our argument
breaks down. Broadly speaking, if no subsampling happens
when invoking the weak learner, the boosting algorithm
will be suboptimal by our lower bound. Thus, better algo-
rithms should try to use subsampling. In fact, the optimal
weak-to-strong learner by Larsen & Ritzert (2022) precisely
samples subsets of the training data and runs AdaBoost∗ν on
those subsets. Perhaps a similar sub-sampling could be used
without the two-level majority. We leave this as an exciting
direction for future research.

3. AdaBoost is not Optimal
In this section, we prove our main result that AdaBoost is
not an optimal weak-to-strong learner.

In the following, we let X = [u] = {1, . . . , u} be the uni-
verse where u is the universe size. Further we let ∆X be the
set of probability distributions over X . In our construction,
we use the all ones hypothesis, i.e. h⋆

0(x) = 1 for all x ∈ X ,
as the underlying concept that is to be learned. Since we do
not consider any other concept, the error of a hypothesis f
under a distribution D ∈ ∆X is given as

LD(f) = Px∼D [f(x) ̸= 1] .

This is equivalent to LD(f) =
∑u

i=1D(i)(1−f(i))/2 such
that we can write the error requirement of a γ-weak learner
as

u∑
i=1

D(i)f(i) ≥ 2γ

which we will use in the analysis. Note that the choice of the
all ones hypothesis h⋆

0 as the target concept is arbitrary, in-
stead we could use any fixed concept and interpret “positive”
as agreeing with this fixed hypothesis and correspondingly
negative as disagreeing. This way, the proof would still
work. Since we only need a single setting in which Ad-
aBoost is not optimal, we use the all ones hypothesis as the
simplemost target concept to improve readability.

5

AdaBoost is not an Optimal Weak to Strong Learner

In our construction, we will need the hypothesis h0, which
is “close” to the all ones hypothesis h⋆

0. Let h0 be the
hypothesis from X into {−1, 1} such that h0(i) = 1 for
i = 1, . . . , u−r1 and h0(i) = −1 for i = u−r1+1, . . . , u,
for r1 to be defined later (think of r1 as small compared to
u). Let A be any learning algorithm which takes as input a
sample S and a weak learnerW , and satisfies the following:

Properties
1. A outputs a weighted majority classifier, i.e. a clas-

sifier of the form sign(
∑

i wihi) where wi are non-
negative weights with

∑
i wi = 1 and hi are hypothe-

ses obtained from the weak learnerW . The computed
weights wi depend only on the outcome of (potentially
all) hypotheses hj on the examples in S, but not on
any value hj(x) for x /∈ S.

2. In every query to the weak learnerW , the algorithm
A provides a distribution D ∈ ∆X with supp(D) = S
(Di > 0 for i ∈ S and 0 otherwise).

3. The learning algorithm A provides the true labels to
the items in the sample in its query toW .

The conditions above are necessary and sufficient for our
construction of the adversarial weak learner. Property 1
ensures that the learning algorithm actually uses the weak
learner to compute the majority classifier with weights based
only on the samples in S (and not S̄). Property 2 gives
away the sample to the adversarial weak learner such that
it can accumulate errors outside the sample i.e. on points
in S̄ = X\S. And Property 3 ensures that the weak learner
is always asked to learn the all ones hypothesis, so we only
need to guarantee an advantage of γ on that. Under those
conditions,D already encodes S such that we view the weak
learner as a function of a distribution D ∈ ∆X , instead of
a function of D and the sample S. Furthermore, we write
WH to make the hypothesis set H that is used by a weak
learner explicit.

The following lower bound is a more general version of
Theorem 1.1. Since AdaBoost satisfies the above properties,
the lower bound applies to AdaBoost as well.

Theorem 3.1. There exist a universal constant c ≤ 1
such that for γ ≤ c, d ≥ ln(1/γ), and dγ−2/16 ≤
m ≤ exp(exp(d)) there exist a universe X , a distribution
D ∈ ∆X , a hypothesis setH of VC-dimension O(d), and a
weak learnerWH onH for the all one hypothesis i.e.

∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ,

such that for any learning algorithmA satisfying Properties
1 to 3 from above, we have with constant probability over
S ∼ Dm:

LD(A(S,WH)) = Ω

(
d ln

(
mγ2/d)

)
mγ2

)

Formally, Theorem 1.1 follows from Theorem 3.1 by invok-
ing it with d′ = O(d) (implying m = exp(exp(O(d)))
and solving the loss LD(AdaBoost(S,WH)) = ε =

C
d ln(mγ2/d)

mγ2 for m.

To prove Theorem 3.1 we use the following three lemmas
whose proofs are deferred to Appendix B. The first lemma
is a concentration inequality for linear combinations of inde-
pendent, negatively biased {−1, 1}-variables. Notationwise,
we denote a fixed hypothesis set byH and a random one by
H. Similarly, a concrete hypothesis (which can be encoded
by a vector) is denoted by h and a random hypothesis by h.

Lemma 3.2. Let w ∈ Rd such that ∥w∥1 = 1 and let
α̃ ≥ 1. Let further h be a random vector in {−1, 1}d
with i.i.d. entries such that P [h(i) = 1] = 1/2 − α̃β and
P [h(i) = −1] = 1/2 + α̃β where β < 1/(2α̃). We then
have for α′ < α̃ that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ min

(
1

4
,
1

2
− 4α̃α′

(2α̃− α′)2

)
.

The lemma will be used to get the −γ advantages outside
the sample S as described in the proof overview. The second
lemma is of a coupon collector style.

Lemma 3.3. Let ζm/ ln (m/r) be the number of coupons
where m ≥ 4r, r ≥ 1, and ζ ≥ 8. Let X denote the number
of samples with replacement from the coupons before seeing
ζm/ ln (m/r)− 2r distinct coupons, then P [X ≤ m] ≤ 1

2

In the proof we virtually split the universe into a main part
and the last r1 points and are interested in the probability of
sampling a training set S ∈ Spart1 := {S : |S̄ ∩ [u− r1]| ≥
r} (for some r and r ≤ r1) capturing the case that there are
“enough” unsampled points in the main part of the universe.
We will use Lemma 3.3 and carefully chosen constants to
show that this probability is at least constant.

The third lemma describes properties of two functions which
we combine to get the random adversarial weak learnerWH.

Lemma 3.4. Let c0, c1 ≤ 1, and c2 ≥ 1 denote universal
constants. For a universe X of size u, integers r, r1 with
r1 = α2r for α ≥ 1, and γ ≤ c0/(2α) there exist two
independent random hypothesis sets H1 and H2 such that

• For H := H1 ∪H2 and k = ln (u) γ−2,

|H| ≤ 4c−2
1 k ln (k/δ) exp(8c2γ

2r1) + 1 (4)

• There exists a mapping gH1 : ∆X → H1 such that for
r1 ≥ 40 lg(|H1|) and S ∈ Spart1 := {S : |S̄ ∩ [u −
r1]| ≥ r}, the mapping gH1 and the hypothesis set H1

satisfy the following four properties with probability at
least 1− δ − 2−0.01r1 (over the outcome of H1):

6

AdaBoost is not an Optimal Weak to Strong Learner

1. For any distribution D ∈ DS := {D : D(i) >
0 for i ∈ S else D(i) = 0, ∥D∥1 = 1} supported
on S,

∑
i∈S D(i)gH1(D)(i) ≥ γ/4.

2. Let Fr,S denote the first r points from S̄∩ [u−r1]
and recall that supp(D) = S. If for D ∈ DS ,
gH1(D) ̸= h0, then the hypothesis gH1(D) has
(1/2 + αγ/2)r minus signs in Fr,S . Further,
the outcome of gH1(D) on Fr,S is uniformly dis-
tributed among all vectors in {−1, 1}r which
have at least (1/2 + αγ/2)r minus signs.

3. The randomness over Fr,S in Item 2 is indepen-
dent for all hypotheses in {gH1(D) for D ∈ ∆X }.
Further, the outcome of gH1 on Fr,S is indepen-
dent of gH1 on Fr,S .

4. For any weight vector w ∈ ∆H1\h0
:= {w ∈

R|H1| : 0 ≤ wi, w0 = 0,
∑

i∈|H1| wi = 1}
weighing the hypotheses in H1, we have for at
least r1/10 of the i’s in {u− r1 +1, . . . , u}, that∑

j∈|H1| wjhj(i) ≤ 14
√
lg (|H1|) /r1.

• There exists a mapping tH2 : D → H2 such that with
probability at least 1 − δ over H2, it holds for all
D ∈ ∆X that

∑
i∈[u]D(i)tH2(D)(i) ≥ γ/4.

Let us carefully go over the statements in Lemma 3.4. The
first bullet bounds the size of the hypothesis set H, ensuring
that its VC-dimension is at most O(d). The second and third
bullet consider the functions gH1 and tH2 from which we
construct the weak learnerWH. These functions, as well
asWH, take as input a distribution and output a hypothesis
from H. The key idea is that whenever gH1 outputs a hy-
pothesis with sufficient advantage on D,WH will use that
hypothesis (and therefore gH1 to compute it), and otherwise
WH will use the hypothesis computed by tH2 . We thus
think of tH2 as a safety mechanism that ensures that we can
always get the required advantage Ω(γ) which is guaranteed
by the last bullet of Lemma 3.4. We will call the lemma
with 8γ instead of γ to achieve an advantage of 2γ.

With this in mind, consider the second bullet of Lemma 3.4
and consider some S ∈ Spart1. Let us denote by ES the event
that the four properties in the bullet hold for S and H1. Now
assume a weak-to-strong learning algorithm A that satisfies
Property 1, 2, and 3 (from before Theorem 3.1) and that
receives an S ∈ Spart1, i.e. at least r of the unsampled points
receive a positive label under the hypothesis h0. Assume
further that ES occurs. Then our weak learnerWH has the
following interesting properties.

First, in this case, the weak learner WH always returns a
hypothesis produced by gH1 . This holds as Item 1 of the
second bullet guarantees a sufficient advantage regardless
of what distribution A queries the weak learner with.

From the second bullet’s Item 2 and Item 3, we get that A

can not put too much mass on the hypotheses provided by
gH1 (those different from h0), without making at least Ω(r)
mistakes on the r unsampled points Fr,S . These mistakes
would imply an error of at least Ω

(
(d ln(mγ2/d))/(mγ2)

)
.

Finally, Item 4 gives us thatA can neither put too much mass
on h0, without making Ω(r) mistakes on the last r1 points of
X . Combining this with the previous point gives the desired
lower bound. We now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let γ, d, and m be as in Theo-
rem 3.1. Let the concept that A is trying to learn be the
all ones hypothesis h⋆

0. We now show the existence of a
universe X , a hypothesis set H of VC-dimension at most
d, and a γ-weak learnerWH : ∆X → H for h⋆

0 (mapping
distributions over X to hypotheses fromH), such that when
A uses hypotheses fromWH and receives samples from the
uniform distribution U on X , then with constant probability
over the sample S ∼ Um, it has an error of

LU (A(S,WH)) = Ω

(
d ln

(
mγ2/d)

)
mγ2

)
.

To show the existence of such a hypothesis set and weak
learner, we show for a random hypothesis set H (with VC-
dimension O(d)) that we have

EH

[
PS

[
LU (A(S,WH)) ≥ C

d ln
(
mγ2/d)

)
mγ2

,

∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]

= ES

[
PH

[
LU (A(S,WH)) ≥ C

d ln
(
mγ2/d)

)
mγ2

,

∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
≥ 1

64
(5)

for some universal constant C. Here, the first part states
that A has a large error while the second part ensures that
WH is indeed a weak learner. As the event of WH be-
ing a weak learner is independent of S, the expectation
implies that there exists a concrete hypothesis set H such
that WH is a weak learner and with constant probability
over the sample S, the algorithm A has error probability
Ω
(
d ln

(
mγ2/d)

)
)/(mγ2)

)
when using WH as its weak

learner. The equality uses that a probability can be written
as the expectation of an indicator variable.

Establishing Equation (5). Our adversarial weak learner
accumulates errors on r elements in S̄, such that the overall
error is connected to the fraction r/u. In the appendix we
show that we can invoke Lemma 3.4 with parameters such
that r/u ≥ C(d ln

(
mγ2/d)

)
)/(mγ2) for some universal

7

AdaBoost is not an Optimal Weak to Strong Learner

constant C, and where tH2 is a weak learner with probability
at least 1 − δ for δ = 1/4. Using this, we can phrase
Equation (5) as

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
,

∀D∈∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
>

1

64
. (6)

We now construct our weak learnerW in the following way
using gH1 and tH2 from Lemma 3.4.

WH(D) = 1∑u
i=1 D(i)gH1 (D)(i)≥2γ gH1

+ 1∑u
i=1 D(i)gH1 (D)(i)<2γ tH2(D) ∀D ∈ ∆X ,

Said in words,WH is gH1 when gH1 achieves an advantage
of 2γ and it defaults back to tH2 otherwise.

First, we notice that if tH2 is a weak learner, thenWH is
also a weak learner. Thus we can replace the weak learn-
ing requirement onWH by a similar requirement on tH2 ,
implying

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
,

∀D ∈ ∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
,

∀D ∈ ∆X :
∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]
.

Further notice that if we have a sample S, then A would by
Property 2 from before Theorem 3.1 only give inputs D in
DS := {D : D(i) > 0 for i ∈ S else D(i) = 0, ∥D∥1 =
1, } to the weak learner WH. Thus, we have for a fixed
sample S and the definition ofWH that

{
H = (H1 ∪H2) : LU (A(S, gH1)) ≥ r

10u
,

∀D ∈ DS

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ
}

⊆
{
H : LU (A(S,WH)) ≥ r

10u

}

where we use thatWH becomes gH1 when gH1 produces

large margins. Thus, we conclude that

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
,

∀D ∈ ∆X :
∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S, gH1)) ≥ r

10u
,

∀D ∈ DS :
∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ,

∀D ∈ ∆X :
∑
i∈[u]

D(i) tH2(D)(i) ≥ 2γ

]]

≥ ES

[
PH

[
LU (A(S, gH1)) ≥ r

10u
,

∀D ∈ DS

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]]
(1− δ)

(7)

where the last inequality follows from the last point of
Lemma 3.4, which says that tH2 is a weak learner with
probability at least 1− δ and tH2 is independent of gH1 .

We will now show that

PS[S ∈ Spart1] ≥ 1/4, (8)

and for any sample S in the set Spart1 := {S : S̄∩[u−r1]| ≥
r} (from Lemma 3.4) we have that

PH

[
LU (A(S, gH1)) ≥ r

10u
,

∀D∈DS :
∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

12
. (9)

Now combining Equation (7), Equation (8), Equation (9),
and δ = 1/4 we get

ES

[
PH

[
LU (A(S,WH)) ≥ r

10u
,

∀D∈∆X :
∑
i∈[u]

D(i)WH(D)(i) ≥ 2γ

]]
≥ 1

64

as desired. Thus, if we can show Equation (8) and Equa-
tion (9) we are done. Essentially, Equation (8) makes sure
that we (often enough) have space in S̄ to accumulate errors
using gH1 . Equation (9) gives us that if there is space to
accumulate errors, many of the random hypothesis sets H1

allow us to actually do so. Equation (7) accounts for the be-
havior of the weak learner, i.e. its decision rule between the
adversarial function gH1 and the ‘normal’ weak learner tH2 .
We postpone the proofs of Equation (8) and Equation (9) to
the appendix due to space constraints.

8

AdaBoost is not an Optimal Weak to Strong Learner

4. Conclusion
We have presented a lower bound on the sample complexity
of AdaBoost, establishing that AdaBoost is sub-optimal
by at least one logarithmic factor. In the proof, we make
use of an adversarial weak learner that accumulates errors
outside of the training set. Technically, this is achieved by
relying on concentration and anti-concentration bounds to
show that a random hypothesis set will be able to achieve
both an advantage within the training set and a negative
advantage on a small subset of points outside of it. In order
to work, the weak learner needs to know the training set
S, which happens to be the case in AdaBoost and many
of its variants. This makes our lower bound applicable to
a variety of boosting algorithms, showing that they are all
sub-optimal.

In contrast, the optimal weak-to-strong learner from Larsen
& Ritzert (2022) precisely calls the weak learner on subsets
of S, avoiding the lower bound. One key question here is
whether a generalization of their idea allows to reach opti-
mal generalization performance with a simple majority vote
as in AdaBoost instead of their two-level majority scheme.
Another interesting open question is the exact sample com-
plexity of AdaBoost which currently has a logarithmic gap
between our lower bound and the best known upper bound.

Acknowledgements
This work was funded by the Independent Research Fund
Denmark (DFF) Sapere Aude Research Leader grant No
9064-00068B.

References
Breiman, L. Prediction games and arcing algorithms. Neural

computation, 11(7):1493–1517, 1999.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Grønlund, A., Kamma, L., Green Larsen, K., Mathiasen, A.,
and Nelson, J. Margin-based generalization lower bounds
for boosted classifiers. Advances in Neural Information
Processing Systems, 32, 2019.

Grove, A. J. and Schuurmans, D. Boosting in the limit: Max-
imizing the margin of learned ensembles. In AAAI/IAAI,
pp. 692–699, 1998.

Hanneke, S. The optimal sample complexity of pac learning.
The Journal of Machine Learning Research, 17(1):1319–
1333, 2016.

Janson, S. Tail bounds for sums of geometric and exponen-
tial variables. Statistics and Probability Letters, 135:1–6,
2018.

Kearns, M. Learning boolean formulae or finite automata is
as hard as factoring. Technical Report TR-14-88 Harvard
University Aikem Computation Laboratory, 1988.

Kearns, M. and Valiant, L. Cryptographic limitations on
learning boolean formulae and finite automata. Journal
of the ACM (JACM), 41(1):67–95, 1994.

Larsen, K. G. Bagging is an optimal PAC learner. arXiv
preprint, arXiv/2212.02264, 2022.

Larsen, K. G. and Ritzert, M. Optimal weak to strong
learning. Advances in Neural Information Processing
Systems (NeurIPS 2022), 2022. To appear.

Montgomery-Smith, S. J. The distribution of rademacher
sums. Proceedings of the American Mathematical Society,
109(2):517–522, 1990.

Rätsch, G. and Warmuth, M. K. Maximizing the margin with
boosting. In International Conference on Computational
Learning Theory, pp. 334–350. Springer, 2002.

Rätsch, G., Warmuth, M. K., and Shawe-Taylor, J. Efficient
margin maximizing with boosting. Journal of Machine
Learning Research, 6(12), 2005.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

9

AdaBoost is not an Optimal Weak to Strong Learner

A. Remaining Proof of the Main Theorem
In this section, we present the remaining details of Theorem 3.1. For this, we need to establish Equation (8) and Equa-
tion (9). Furthermore, we also assumed we would choose parameters that allow us to invoke Lemma 3.4 such that
r/u ≥ C(d ln

(
mγ2/d)

)
)/(mγ2) and that tH2 is a weak learner with probability at least 1− δ where δ = 1/4. We start by

setting some parameters in order to invoke Lemma 3.4 accordingly.

Preliminary Setting of Parameters. Let m ≥ 8 be the sample size and γ′ = 8γ where γ is the (sufficiently small)
advantage needed for the weak learner. This choice implies that the weak learner constructed in Lemma 3.4 has a 2γ
advantage.

Now, let u = 8α2m/ ln (m/r) be the universe size where r := dγ′−2 and where the value of α will be chosen larger than 1.
From the assumption m ≥ dγ−2/16 in the theorem we get that m/r ≥ 4 and thus ln(m/r) is non-negative. We now choose
r1 = α2r = α2dγ′−2. In the definition of h0 the last r1 positions return −1, thereby splitting the universe in a “first” and
“second” part. Note that u ≥ 8α2m/ ln(m/r) ≥ 8α2r ≥ 8r1 (using that x/ lnx > 1 for x > 1 in the second inequality),
thus we may assume that the set of samples Spart1 := {S : |S̄ ∩ [u− r1]| ≥ r} is not ∅.

We wish to invoke Lemma 3.4 with u, γ = γ′, r, α, and δ = 1/4 as above. First, Equation (4) guarantees that the size of H
in Lemma 3.4 is upper bounded by 4c−2

0 k ln (k/δ) exp(8c2γ
′2r1) + 1 ≤ 5c−2

0 k ln (k/δ) exp(8c2γ
′2r1). Lemma 3.4 only

holds when γ′ ≤ c0/(2α). We guarantee this with the constraint in Theorem 3.1 saying that γ ≤ c, where c is less than
c0/(16α).

We now decide on the choice of α. Later in the proof, we will need that ln(|H|)/r1 ≤ c3γ
2 where c3 is a universal constant

that will determine the concrete value of α. To upper bound ln(|H|)/r1, we first notice that since m ≤ exp(exp(d)) we get
that ln(ln(u)) ≤ ln(ln(8α2m)) ≤ ln(ln(8α2)) + d. Further, since d ≥ ln(1/γ) (one of the conditions in Theorem 3.1) we
get that ln(k) = ln(ln (u) γ′−2) ≤ ln(ln(8α2)) + 3d. By these two inequalities as well as δ = 1/4 and r1 = α2dγ′−2 we
get that

ln(|H|) ≤ 8c2γ
′2r1 + ln(5c−2

0) + ln(k) + ln(ln (k/δ)) ≤ ln(5c−2
0) + 5(ln(ln(8α2)) + (8c2α

2 + 3)d. (10)

implying that for any α, d ≥ 1 if we choose c3 =
(
ln(5c−2

0) + 5 ln(ln(8)) + (8c2 + 3)
)
82

ln(|H|)
r1

≤
(
ln(5c−2

0) +
5 ln(ln(8α2))

α2d
+ 8c2+

3

α2

)
82γ2 ≤ c3γ

2 (11)

since the middle expression in Equation (11) is decreasing in α, d ≥ 1. This allows us to fix α = 5 · 28√c3.

Further notice that Equation (11), the before mentioned constraint γ ≤ c0/(16α), c0 ≤ 1 implied by Lemma 3.4, and the
now fixed α = 5 · 28√c3, c3 ≥ 1 implies that r1 ≥ ln(|H|)/(c3γ2) ≥ 40 lg(|H1|). This a condition for the second bullet
of Lemma 3.4 to hold. We thus have that we can invoke Lemma 3.4 as claimed.

Bounded VC-Dimension. Using the parameters we have chosen above, we can now bound the VC-dimension of H.
Here we use that the VC-dimension of H is trivially bounded by ln |H|/ ln(2). Together with the size bound on H from
Equation (10) we get that the VC-dimension of H is O(d) as claimed.

Establishing Equation (8): Recall that we chose the universe size to be u = 8α2m/ ln(m/r) and the sample distribution
to be uniform on X = [u] (corresponding to drawing with replacement from X). Further we had r = dγ′−2 which by
the assumption m ≥ dγ−2/16, implied that m/r ≥ 4. Using this, we get from Lemma 3.3 with ζ = 8α2 ≥ 8 that with
probability at least 1/2 there are 2r points in u that are not sampled into S. Further, by the choice of r1 = α2r we noticed
that u = 8α2m/ ln(m/r) ≥ 8r1 thus the universe has at least 8 times the size of r1. Using this together with r ≤ r1 (since
α ≥ 1) and the sampling distribution being uniform/with replacement, we conclude that at least half of the samples where
2r points were not sampled in X have r entries outside of {u− r1 + 1, . . . , u} implying r ≤ |S̄ ∩ [u− r1]|, i.e. S ∈ Spart1.
Thus, we conclude that PS [S ∈ Spart1] ≥ PS [|S| ≤ u− 2r] /2 ≥ 1/4 which shows Equation (8).

Establishing Equation (9): For Equation (9) let S be in Spart1 and notice that by Lemma 3.4 we have with probability at
least 1− δ − 2−0.01r1 over H that all the 4 items regarding gH1 in Lemma 3.4 hold. Let ES denote the corresponding event

10

AdaBoost is not an Optimal Weak to Strong Learner

that those 4 properties regarding gH1 in Lemma 3.4 hold. In particular, Item 1 says that gH1 is indeed a weak learner on DS .
Using this event ES we get that

PH

[
LU (A(S, gH1)) ≥ r

10u
, ∀D∈DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ PH

[
LU (A(S, gH1)) ≥ r

10u

∣∣∣ES

]
(1− δ − 2−0.01r1). (12)

We now show that conditioned on ES , with probability at least 1/6 the algorithm A has an out-of-sample error of at least
r/(10u) when using gH1 as the weak learner, formally PH

[
LU (A(S, gH1)) ≥ r

10u |ES

]
≥ 1/6. We further show that

1− δ − 2−0.01r1 ≥ 1/2 which combined with Equation (12) implies Equation (9).

By the definition of the event ES we know we know that in the event ES the random hypothesis set H satisfies the 4 items
of the second bullet of Lemma 3.4 (the ones about gH1). Thus, gH1 is a weak learner on S by Item 1 and A terminates
using only hypotheses given by gH1 , which satisfy the conditions given in the 4 items. Let wA = (wA

0 , . . . , wA
|H1|) be

the weights that A calculates, where wA
0 is the weight put on h0. Notice that the weights are random as they depend on

the outputs of gH1 which themselves depend on the random hypothesis set H. From the first item of the second bullet
in Lemma 3.4 we know that the weights wA depend only on gH1(·)(i) for i ∈ S. Thus, we get by Item 2 and Item 3 in
Lemma 3.4 that the minus signs of gH1 in the first r points of S̄ ∩ [u− r1], which we denoted as Fr,S , are independent of
the weights wA. We will use this property below in the second case. In the following let {hi}i=1,...,|H1| be the hypotheses
in H1. Note that whenever a hypothesis hi has a positive weight wi > 0, there must be a distribution D ∈ ∆X such that
gH1(D) = hi. We now consider two cases for the weight wA

0 of the all-one hypothesis h0. For this let Esmall be the event
that wA

0 < 14
√
c3γ2/(1 + 14

√
c3γ2).

Case 1: wA
0 ≥ 14

√
c3γ2/(1 + 14

√
c3γ2) (Esmall). Consider the r1 last points in the universe X = [u], i.e. the points

where h0 is −1. Thus, for i ∈ {u − r1 + 1, . . . , u} we have that the prediction of A is wA
0 h0(i) +

∑|H1|
j=1 wA

j hj(i) =

−wA
0 + (1 − wA

0)
∑|H1|

j=1 wA
j /(1 − wA

0)hj(i), where we have used that h0(i) = −1 for i ∈ {u − r1 + 1, . . . , u}.
Now, conditioned on ES we know by Item 4 in Lemma 3.4 that for any weighted combination of (hj)1,...,|H1| there
are at least r1/10, i’s in {u − r1 + 1, . . . , u} where the linear combination is at most 14

√
lg(|H1|)/r1 i.e. for such

i’s we have
∑H1

j=1 wjhj(i) ≤ 14
√
lg(|H1|)/r1. By Equation (11) and |H1| < |H| we know that 14

√
lg(|H1|)/r1

is strictly less than 14
√
c3γ2. Thus, we get for such elements i that −wA

0 + (1 − wA
0)
∑|H|

j=1 w
A
j /(1 − wA

0)hj(i) <

−wA
0 + (1− wA

0)14
√
c3γ2, which for wA

0 ≥ 14
√

c3γ2/(1 + 14
√

c3γ2) is less than zero. Thus, conditioned on ES , if A
puts more than 14

√
c3γ2/(1 + 14

√
c3γ2) mass on wA

0 , then A gets at least r1/10 ≥ r/10 points misclassified, resulting in
an out of sample error of at least r/(10u). Thus, we conclude that

PH

[
LU (A(S, gH1))≥ r

10u
,Esmall

∣∣∣ES

]
= PH

[
Esmall

∣∣ ES

]
. (13)

Case 2: wA
0 < 14

√
c3γ2/(1 + 14

√
c3γ2) (Esmall). Let R be the set of all indices of hypotheses with nonzero weights in

wA except the index of h0. Notice that R depends on the vector if weights wA which depends on the random hypothesis set
H, making R random too. Further, by the comments before Case 1, i ∈ R implies that ∃D ∈ ∆X such that gH1(D) = hi.
Thus, we have by Item 2 of Lemma 3.4 that for every j ∈ R the vector (hj(i))i∈Fr,S

corresponds to a random vector of
length r with at least (1/2 + 8αγ/2)r minus signs and the vector is uniformly distributed between all permutations of
{−1, 1}r with at least (1/2 + 8αγ/2)r minus signs (where we used γ′ = 8γ). Further, Item 3 of Lemma 3.4 states that
these vectors (one for each hypothesis j ∈ R) are independent of each other and of (hj(i))j∈R,i∈Fr,S

, which the weights
wi are a function of. Therefore, the vectors (hj(i))i∈Fr,S

for j ∈ R are also independent of the weights. If we now let
w̃A

j := wA
j /(1− wA

0) for j ∈ R and use that for every i ∈ Fr,S we know h0(i) = 1, we get for i ∈ Fr,S that

PH

[
wA

0 h0(i) +

|H1|∑
j=1

wA
j hj(i) < 0, Esmall

∣∣∣∣ ES

]

=PH

[∑
j∈R

w̃A
j hj(i) < −wA

0 /(1− wA
0), Esmall

∣∣∣∣ ES

]

11

AdaBoost is not an Optimal Weak to Strong Learner

Since −x/(1− x) is decreasing for 0 ≤ x ≤ 1 and we have wA
0 < 14

√
c3γ2/(1 + 14

√
c3γ2), which implies −wA

0 /(1−
wA

0) > −14
√

c3γ2 and we get that

≥PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ,Esmall

∣∣∣∣ ES

]
Now using the law of total probability gives us

=

∫
PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ,Esmall

∣∣∣∣ ES , w̃
A = z

]
dPH

[
w̃A = z | ES

]
=

∫
Esmall

PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ

∣∣∣∣ ES , w̃
A = z

]
dPH

[
w̃A = z | ES

]
(14)

We will now work towards lower bounding PH

[∑
j∈R w̃A

j hj(i) ≤ −14
√
c3γ

∣∣∣ ES , w̃
A = z

]
by 1/4 for any z ∈ Esmall.

As noted above, we have for i ∈ Fr,S that (hj(i))j∈R are −1 with probability at least 1/2 + 4αγ, independent of each
other and independent of the weights wA. Thus, using that we chose α = 5 · 28√c3 and by invoking Lemma 3.2 with
α̃ = 4α = 4 · 5 · 28√c3 and α′ = 14

√
c3, we get that

4α̃α′

(2α̃− α′)2
=

4(4 · 5 · 28√c3) · (14
√
c3)(

2 · 4 · 5 · 28√c3 − 14
√
c3
)2 =

42 · 5 · 2
(2 · 4 · 5 · 2− 1)2

≤ 1

4
.

Thus, min
(

1
4 ,

4α̃α′

(2α̃−α′)2

)
in Lemma 3.2 is realized by 1

4 and we get

PH

[∑
j∈R

w̃A
j hj(i) ≤ −14

√
c3γ

∣∣∣∣ ES , w̃
A = z

]
≥ 1

4
. (15)

Notice that the condition γ ≤ 1/(2α̃) = 1/(8α) of Lemma 3.2 is already satisfied since we already imposed the condition
γ ≤ c0/(16α) with c0 ≤ 1 in the main theorem in order to apply Lemma 3.4.

We now consider the error of the points in Fr,S , or more specifically, the part of the total error that is induced by points from
Fr,S . We get the following upper bound by observing that there are r points in Fr,S :

EFr,S
= (1/u)

∑
i∈Fr,S

1
sign

(∑|H1|
j=0 wA

j hj(i)
)
̸=1

= (1/u)
∑

i∈Fr,S

1∑|H1|
j=0 wA

j hj(i)<0

≤ r/u.

By Equation (15) we get that EH

[
EFr,S

| ES , w̃
A = z

]
≥ r/(4u). This allows us to use a reverse Chernoff bound from

which we get that

PH

[
EFr,S

≥ r/(10u)
∣∣ ES , w̃

A = z
]
≥ r/(4u)− r/(10u)

r/u− r/(10u)
=

1/4− 1/10

1− 1/10
= 1/6. (16)

Using that LU ≥ EFr,S
, Equation (16), and following calculations as in Equation (14) we conclude that

PH

[
LU (A(S, gH1)) ≥ r

10u
,Esmall

∣∣∣ ES

]
≥ PH

[
EFr,S

≥ r

10u
,Esmall

∣∣∣ ES

]
=

∫
Esmall

PH

[
EFr,S

≥ r/(10u)
∣∣ ES , w̃

A = z
]

dPH

[
w̃A = z | ES

]
≥ PH [Esmall | ES] /6 (17)

12

AdaBoost is not an Optimal Weak to Strong Learner

Combining the two cases: Now using Equation (13) and Equation (17) we get that

PH

[
LU (A(S, gH1)) ≥ r

10u

∣∣∣ ES

]
≥ 1/6. (18)

Combining this with Equation (12) we conclude that

PH

[
LU (A(S, gH1)) ≥ r

10u
,∀D ∈ DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

6
(1− δ − 2−0.01r1), (19)

that is, for any S ∈ Spart1, the function gH1 is a weak learner on DS and A using gH1 makes at least r/(10u) errors
with probability at least (1 − δ − 2−0.01r1)/6 over the random hypothesis set H. Now, since γ ≤ 1/(16α), c3 ≥ 1, and
α = 5·28√c3 we get that r1 = α ln(m)/(8γ)2 ≥ 4α3 ln (m) ≥ 4(̇5·28)3 ln (m). Using m ≥ 2 we get that 2−0.01r1 ≤ 1/4
and since we chose δ = 1/4 we get that

PH

[
LU (A(S, gH1)) ≥ r

10u
,∀D ∈ DS :

∑
i∈[u]

D(i) gH1(D)(i) ≥ 2γ

]
≥ 1

12
,

which shows Equation (9) and concludes the proof.

B. Proof of Lemmas
In this section, we restate the lemmas from Section 3 and give their proofs. A main part of the proof in Section 3 makes use
of the functions gH1 and tH2 which on the random hypothesis set H have “nice” properties (Lemma 3.4). As gH1 and tH2

played the main role in Section 3 we start off by proving Lemma 3.4. To prove the lemma, we need the following algorithm
which we use to show the existence of a the hypotheses gH1 and tH2 will output.

Algorithm 2: Majority Voter
Input: (H1, . . . ,Hk), S ⊂ X
Output: f adversarial weak learner on S

1 η ← ln ((1 + 2γ) / (1− 2γ)) /2
2 f0(i)← 0 for all i ∈ u

3 D1(i)← 1
S for all i ∈ S

4 for j ∈ {1, . . . , k} do
5 if

∑u−r1
i=1,i∈S Dj(i) > 1/2 + γ then

6 set hj = h0 (notice that if this is the case then
∑

i∈S Dj(i)hj(i) ≥ 2γ)
7 else if there is a hypothesis hj ∈ Hj such that

∑
i∈S Dj(i)hj(i) ≥ 2γ and hj has (1/2 + αγ/2)r minus signs on the

first r elements in S̄ ∩ [u− r1] then
8 choose this hypothesis
9 else

10 return Fail
11 fj ← fj−1 + hj

12 Zj ←
∑

i∈S Dj(i) exp (−ηhj(i))

13 for i ∈ S do
14 Dj+1(i)← Dj(i) exp (−ηhj(i)) /Zj

15 return f = fk/k

In the following proof of Lemma 3.4 we will run the above algorithm on a sequence of random hypothesis sets whose union
will be H. Running the above algorithm will then create a voting classifier with a γ advantage which implies that one of the
hypotheses also has this advantage. Thus, H contains a hypothesis with a γ advantage that gH1 or tH2 can output. In the
case of gH1 we will also make these hypotheses adversarial by using the minus signs in Line 8. For the above argument
to go through, we need that the random hypothesis set H contains at least one hypothesis that has a γ advantage given a
distribution D over the universe X (for all distributions D that the algorithm computes). This is captured in the following
lemma, which we will prove later in this section.

13

AdaBoost is not an Optimal Weak to Strong Learner

Lemma B.1. Let c0, c1 ≤ 1, and c2 ≥ 1 denote some universal constants. Let X be a universe of size u and D ∈ ∆X
a distribution over X . Further let r and r1 be non-negative numbers such that r1 = α2r for α ≥ 1 and r1 ≤ u. Let
0 < δ ≤ 1, γ ≤ c0/(2α), and k = ln (u) γ−2. Let Hi be a random hypothesis set consisting of h0 and independent random
vectors in {−1, 1}u with i.i.d. uniform random entries. Further let the size of Hi be N/k without counting h0, where
N = 2c−2

1 k ln (k/δ) exp(8c2γ
2r1). With the above, we have with probability at least 1− δ/k over Hi that:

1. There exists a hypothesis h ∈ Hi such that ∑
i∈supp(D)

Dih(i) ≥ 2γ

where h = h0 if
∑u−r1

i=1,i∈supp(D) Di > 1/2 + γ else h is random.

Further, if
∑u−r1

i=1,i∈supp(D) Di ≤ 1/2 + γ and r ≤ |supp(D) ∩ [u− r1]|

2. h in Item 1 is such that the first r entries of {h(i)}
i∈supp(D)∩[u−r1]

has at least (1/2 + αγ/2)r minus signs.

Recall that supp(D) in AdaBoost is just the training set S (without the labels which are all 1 in our setting). Intuitively, the
first item states that there is a hypothesis with a sufficient advantage on the training set. In the case that there is not much
weight on the first part (where h0 is positive, i.e. D focuses on the second part) and there are at least r points in the first part
that are not part of the training set, then Item 2 states that we can even find a hypothesis with many minus signs in this first
part (outside of the training data). Since we are trying to learn the all-ones hypothesis, those minus signs will induce a large
error later on.

Further, we need the following lemma in the proof of Lemma 3.4, to say that for any linear combination over hypotheses in
H1 we can not achieve a large advantage on too many points within the last r1 points of X . Thus, it is impossible to achieve
a large advantage where h0 is −1.

Lemma B.2. Let A be uniform random in {−1, 1}r×n and assume that r ≥ 40 lg(n). With probability at least 1− 2−0.01r,
it holds for all w ∈ Rn with ∥w∥1 = 1 that Aw has at least r/10 entries i with (Aw)i < 14

√
lg(n)/r.

We will prove Lemma B.2 later in this section. We now restate Lemma 3.4 and give the proof under the assumption that
Lemma B.1 and Lemma B.2 hold.

Lemma 3.4. Let c0, c1 ≤ 1, and c2 ≥ 1 denote universal constants. For a universe X of size u, integers r, r1 with r1 = α2r
for α ≥ 1, and γ ≤ c0/(2α) there exist two independent random hypothesis sets H1 and H2 such that

• For H := H1 ∪H2 and k = ln (u) γ−2,

|H| ≤ 4c−2
1 k ln (k/δ) exp(8c2γ

2r1) + 1 (4)

• There exists a mapping gH1 : ∆X → H1 such that for r1 ≥ 40 lg(|H1|) and S ∈ Spart1 := {S : |S̄∩[u−r1]| ≥ r}, the
mapping gH1 and the hypothesis set H1 satisfy the following four properties with probability at least 1− δ − 2−0.01r1

(over the outcome of H1):

1. For any distribution D ∈ DS := {D : D(i) > 0 for i ∈ S else D(i) = 0, ∥D∥1 = 1} supported on S,∑
i∈S D(i)gH1(D)(i) ≥ γ/4.

2. Let Fr,S denote the first r points from S̄ ∩ [u− r1] and recall that supp(D) = S. If for D ∈ DS , gH1(D) ̸= h0,
then the hypothesis gH1(D) has (1/2 + αγ/2)r minus signs in Fr,S . Further, the outcome of gH1(D) on Fr,S is
uniformly distributed among all vectors in {−1, 1}r which have at least (1/2 + αγ/2)r minus signs.

3. The randomness over Fr,S in Item 2 is independent for all hypotheses in {gH1(D) for D ∈ ∆X }. Further, the
outcome of gH1 on Fr,S is independent of gH1 on Fr,S .

4. For any weight vector w ∈ ∆H1\h0
:= {w ∈ R|H1| : 0 ≤ wi, w0 = 0,

∑
i∈|H1| wi = 1} weighing the hypotheses

in H1, we have for at least r1/10 of the i’s in {u− r1 + 1, . . . , u}, that
∑

j∈|H1| wjhj(i) ≤ 14
√

lg (|H1|) /r1.

14

AdaBoost is not an Optimal Weak to Strong Learner

• There exists a mapping tH2 : D → H2 such that with probability at least 1− δ over H2, it holds for all D ∈ ∆X that∑
i∈[u]D(i)tH2(D)(i) ≥ γ/4.

Proof. Let H1 = ∪ki=1Hi and H2 = ∪2ki=k+1Hi for independent outcomes of Hi from Lemma B.1. In the proof, we
consider the three bullets of the lemma separately.

The first bullet, i.e. the bound on the size of H follows immediately from Lemma B.1 and the bound on |Hi| of N/k, and
the fact that we use 2k hypothesis sets Hi in H. We thus end up with at most

2N = 4c−2
0 k ln (k/δ) exp(8c2γ

2r1)

random hypothesis in H adding h0 gives the desired bound on H’s size. Thus, what remains to be shown is the second and
third bullet of Lemma B.1.

Second bullet / Properties of the event ES: We now show the second bullet, which intuitively states that gH1 outputs
hypotheses with a γ/4 advantage on S, many minus signs in Fr,S , and linear combinations of them on the last r1 points can
not all have large margins (the part where h0 is −1).

Let the function gH1 that searches for the first hypothesis in H1, . . . ,Hk which has a γ/4 advantage (i.e. fulfils Item 1 in
Lemma 3.4) for a given distribution D ∈ ∆X and additionally has at least (1/2+αγ/2)r minus signs in the first r points of
supp(D) ∩ [u− r1] = S̄ ∩ [u− r1], matching Algorithm 2. If there is no such hypothesis, gH1 chooses the hypothesis h0.
Let further S ∈ Spart1 and define E1

S to be the event (over the outcomeH of H) that

E1
S :=

{
H : ∀D ∈ DS ∃h ∈ H such that:

∑
i∈S

D(i)h(i) ≥ γ/4 and h(Fr,S) has (1/2 + αγ/2)r minus signs

or h0 ∈ H and
∑
i∈S

D(i)h0(i) ≥ γ/4

}
. (20)

E1
S will be one part of ES (ES will be a union of two events) and used in arguing for Item 1, Item 2, and Item 3. We

now argue that E1
S happens with probability at least 1− δ over H1. For this we run Algorithm 2 on input S ∈ Spart1 and

H1, . . . ,Hk. Using Lemma 3.4, we show that a run of Algorithm 2 finishes on input S and H1, . . . ,Hk with probability
at least 1− δ and that this implies that H1 is in the event E1

S . To see this we show that whenever Algorithm 2 finishes, it
produces an f such that f(i) ≥ γ/4 for any i ∈ S (large margin on S) and that the hypotheses that f is made of (when they
are not h0) have at least (1/2 + αγ/2)r minus signs in the first r points of S̄ ∩ [u− r1]. We then notice that f(i) ≥ γ/4 for
any i ∈ S implies that for any D ∈ DS one of the hypotheses f is made of must have a γ/4 advantage on the all-ones label.
This follows from supp(D) = S for D ∈ DS , D being a probability distribution, f = (1/k)

∑k
j=1 hj , and

γ/4 ≤
∑
i∈S

DS(i)f(i) =

k∑
j=1

1/k
∑
i∈S

DS(i)hj(i). (21)

We therefore conclude that the event that Algorithm 2 finishes is contained in E1
S . Thus if we can show that Algorithm 2 with

input S ∈ Spart1 and H1, . . . ,Hk finish with probability at least 1− δ, then H1 is in E1
S with probability at least 1− δ over

H1. We show that Algorithm 2 finishes with probability 1− δ in the end of this section and has the promised guarantees.

To handle Item 4, we define the event E2 as

E2 :=

H : ∀w ∈ ∆H\h0
at least r1/10 i’s in {u− r1 + 1, . . . , u} satisfies:

∑
j∈|H|

wjhj(i) ≤ 14
√
lg (|H|) /r1

 .

(22)

We show that H1 is in E2 with probability at least 1− 2−0.01r1 over H1. To see this, we form a matrix of all hypotheses
created by H1, . . . ,Hk excluding h0 (the hypotheses as columns). Now using r1 ≥ 40 lg(|H1|) by the assumption in
the bullet of the lemma, Lemma B.2 invoked on the lower r1 × |H1| part of this matrix, gives us that H1 is in E2 with

15

AdaBoost is not an Optimal Weak to Strong Learner

probability at least 1− 2−0.01r1 . Now setting ES = E1
S ∩ E2 and using a union bound we get that that H1 is in ES with

probability at least 1− δ − 2−0.01r1 .

First notice that conditioned on ES , we get by the E2 part of ES that Item 4 of the second bullet follows. From the definition
of gH1 choosing a hypothesis with γ/4 advantage with at least (1/2 + αγ/2)r minus signs in Fr,S or else h0 it follows
from the E1

S part of ES that Item 1 holds and the guarantee about at least (1/2 + αγ/2)r minus signs in Fr,S of Item 2.
Further, the part of Item 2 claiming that the minus signs in Fr,S of gH1 are uniformly distributed between any permutation in
{−1, 1}r with at least (1/2+αγ/2)r minus signs follows from the hypothesis in H1\h0 being random vectors in {−1, 1}u
with i.i.d. uniform entries, i.e. all outcomes of {−1, 1}r with at least (1/2 + αγ/2)r minus signs are equally likely. That
the entries of H1\h0 are i.i.d. and the constrains different from, gH1 having at least (1/2 + αγ/2)r minus signs in Fr,S ,
imposed in E1

S and E2 only depend on points in Fr,S gives the claims of independence in Item 3 for gH1 on Fr,S .

What is left to show is that Algorithm 2 with input H1, . . . ,Hk and S finishes with probability at least 1− δ and that on
the event that Algorithm 2 finishes it produces an f such that f(i) ≥ γ/4 for any i ∈ S and that the hypotheses that f is
made of (when they are not h0) have at least (1/2 + αγ/2)r minus signs in the first r points of Fr,S = S̄ ∩ [u− r1]. By
Lemma B.1, Algorithm 2 with S and H1, . . . ,Hk as input finishes with probability at least (1− δ/k)k ≥ 1− δ, where we
have used the independence of the hypothesis sets H1, . . . ,Hk. The claim that the f produced when Algorithm 2 finishes
consists of hypotheses (when they are not h0) with at least (1/2 + αγ/2)r minus signs in Fr,S follows from Line 6, Line 8,
and Line 10 of Algorithm 2.

Thus, we still need to show that f(i) ≥ γ/4 for all i ∈ S when Algorithm 2 finishes. In this case, we know that the
hypotheses h1, . . . , hk chosen by Algorithm 2 fulfill Line 6 and Line 8 in Algorithm 2 which ensures that hypothesis chosen
in the i’th round hi for the distribution in the i’th round Di has a 2γ advantage. Let η = 1

2 ln
1+2γ
1−2γ and fk = k ·f =

∑k
i=1 hi.

We now follow a standard AdaBoost argument to show that exp (−ηfk(i)) ≤ exp
(
ln (|S|)− 2kγ2

)
, for any i ∈ S when

Algorithm 2 finishes.

Showing exp (−ηfk(i)) ≤ exp
(
ln (|S|)− 2kγ2

)
, for any i ∈ S implies that f(i) ≥

(
2kγ2 − ln (|S|)

)
/(kη) and since for

γ < 1/4, it holds that

η =
1

2
ln

(
1 +

4γ

1− 2γ

)
≤ 2γ

1− 2γ
≤ 4γ

we get

f(i) ≥ 2kγ2 − ln (|S|)
4kγ

≥ γ

2
− ln(|S|)

4kγ

and using that k = ln(u)γ−2 and S ⊆ [u] it follows that f(i) ≥ γ/4. Thus, if we show exp (−ηfk(i)) ≤
exp

(
ln (|S|)− 2kγ2

)
for all i ∈ S we are done. Let Zl be the normalization factor for the multiplicative weight up-

date step in Algorithm 2. We now argue that exp (−ηfj(i)) = |S|Dj+1(i)
∏

l∈[j] Zl for all j ∈ [k] and i ∈ [u] and that∏
l∈[k] Zl ≤ (1− 2γ2)k. Showing these two relations implies that

exp (−ηfk(i)) ≤ |S|
∏
l∈[k]

Zl ≤ |S|(1− 2γ2)k ≤ exp
(
ln (|S|)− 2kγ2

)
(23)

where the first inequality uses Dk+1 ≤ 1 and the last inequality follows from lg(1 + x) ≤ x for x > −1.

We show that exp (−ηfj(i)) = |S|Dj+1(i)
∏

l∈[j] Zl for all j ∈ [k] and i ∈ [u] by induction. For the induction base j = 1

we have exp (−ηf1(i)) = exp (−ηh1(i)) and |S|D2(i)Z1 = |S|D1(i) exp (−ηh1) = exp (−ηh1), where we have used
that D2(i) = D1(i) exp (−ηh1(i)) /Z1 and D1(i) = 1/|S|. For the induction step we have

exp (−ηfj+1(i)) = exp (−η (fj(i) + hj+1(i))) = |S|Dj+1(i)
∏
l∈[j]

Zl exp (−ηhj+1(i)) = |S|Dj+2(i)
∏

l∈[j+1]

Zl

where the second equality follows from the induction hypothesis for j and the last by Dj+2(i) =
Dj+1(i) exp(ηhj+1(i))/Zj+1 (see Algorithm 2).

16

AdaBoost is not an Optimal Weak to Strong Learner

To show
∏

l∈[k] Zl ≤ (1− 2γ2)k, i.e. the second inequality in Equation (23), we show Zl ≤ (1− 2γ2) for l = 1, . . . , k.

Using that exp(η) =
(

1+2γ
1−2γ

)1/2
we notice that

Zl =
∑
i∈S

Dl(i) exp
(
−ηhl (i)

)
=

∑
i∈S:

hl(i)=1

Dl(i) exp (−η) +
∑
i∈S:

hl(i)=−1

Dl(i) exp (η)

=
∑
i∈S:

hl(i)=1

Dl(i)

√
1− 2γ

1 + 2γ
+

1−
∑
i∈S:

hl(i)=1

Dl(i)

√1 + 2γ

1− 2γ

=

 ∑
i∈S:

hl(i)=1

Dl(i)
1

1 + 2γ
+

1−
∑
i∈S:

hl(i)=1

Dl(i)

 1

1− 2γ

√(1 + 2γ) (1− 2γ). (24)

Using that we noticed that Line 6, Line 8, and Line 10 in Algorithm 2 together with Algorithm 2 finishing implied∑
i∈S Dj(i)hj(i) ≥ 2γ for any j ∈ k we get that∑

i∈S
hl(i)=1

Dl(i) =
∑
i∈S

Dl(i)
1 + hl(i)

2
≥ 1/2 + γ,

and using this together with x
1+2γ + 1−x

1−2γ being decreasing we get ∑
i∈S

hl(i)=1

Dl(i)
1

1 + 2γ
+

1−
∑
i∈S

hl(i)=1

Dl(i)

 1

1− 2γ

 ≤ 1.

Further using that (1− 2x)(1+2x) = 1− 4x2 ≤ (1− 2x2)2 we conclude by Equation (24) that Zl ≤ (1− 2γ2) as claimed.

Third bullet / Properties of tH2: Let tH2 be such that given a D ∈ ∆X it returns the first hypothesis in H2 that has
a γ/4 advantage on D otherwise report fail. Note that tH2 does not include any adversarial behavior, it is a simple and
straightforward γ-weak learner. We now show with probability at least 1− δ over H2 that tH2 succeeds simultaneously
for all D ∈ ∆X . Here, we use a slightly different argument compared to the case for gH1 above and run Algorithm 2
in a slightly modified version. The slight modification is that in Line 8 we have no constraints on the number of minus
signs in the first r positions of S̄ ∩ [u− r1] and that we run the algorithm with the input X and Hk+1, . . . ,H2k (instead of
H1, . . . ,Hk). We then show that this variant of Algorithm 2 succeeds with probability at least 1− δ and that the produced
f satisfies f(i) ≥ γ/4 for all i ∈ [u]. By the same argument as above for Equation (21), it follows that f(i) ≥ γ/4 for
all i ∈ u implies that for any D there exist an h ∈ Hk+1, . . . ,H2k with a γ/4 advantage on D. Thus, the event that this
slightly modified version of Algorithm 2 succeeds on X and Hk+1, . . . ,H2k is contained in the eventH : ∀D ∈ ∆X ∃h ∈ H such that:

∑
i∈[u]

D(i)h(i) ≥ γ/4

 .

Hence, with probability at least 1− δ for any D ∈ ∆X , tH2 finds a hypothesis in H2 with γ/4 advantage (choosing the first
it finds) and outputs this as the weak learner for the distribution D.

The claim that Algorithm 2 with X and Hk+1, . . . ,H2k succeeds with probability at least 1− δ over H2 follows as in the
gH1 -case from Lemma B.1 and Hk+1, . . . ,H2k being independent.

We now notice that when we argued that the non-modified version of Algorithm 2 finishing would produce an f such that
f(i) ≥ γ/4 for i ∈ S, we never used the constraint on the minus signs, and only that |S| ≤ u. Thus, reusing the above

17

AdaBoost is not an Optimal Weak to Strong Learner

arguments but now for the modified version of Algorithm 2 finishing, with S = X , again yields that the produced f satisfies
f(i) ≥ γ/4 for i ∈ X , which concludes the proof of Lemma 3.4.

Having established the proof of Lemma 3.4 using Lemma B.2 and Lemma B.1 we now move on to the proof of those. We
start by restating and giving the proof of Lemma B.2.

Lemma B.2. Let A be uniform random in {−1, 1}r×n and assume that r ≥ 40 lg(n). With probability at least 1− 2−0.01r,
it holds for all w ∈ Rn with ∥w∥1 = 1 that Aw has at least r/10 entries i with (Aw)i < 14

√
lg(n)/r.

Proof. The following proof proceeds by bounding the probability of the complementary event of the above, i.e. we will
show that the probability of there existing a w ∈ Rn, ∥w∥ = 1 such that Aw has strictly less than r/10 entries such that
(Aw)i < 14

√
lg(n)/r happens with probability at most 2−0.01r. For this, we first discretize the set of all unit vectors, call

this discretized setW . We then show that if there exists a unit vector with the above property, then there exists a vector
w̃ ∈ W such that Aw̃ has at least (13/20)r strictly positive entries. Now using that A has i.i.d. uniform {−1, 1}-random
variables as entries, (Aw̃)i is strictly positive with a probability at most 1/2, i.e. in expectation we see at most (1/2)r
strictly positive entries. The result then follows by applying Hoeffding’s inequality and union bounding overW .

Consider the set W containing all w whose coordinates wi are of the form ji40 lg(n)/r for integers ji ∈
{−r/(40 lg n), . . . , r/(40 lg n)} and ∥w∥1 = 1. We now want to bound |W|. For this, consider throwing r/(40 lg(n)) balls
with a sign and absolute value 40 lg(n)/r into n buckets. There are (2n)r/(40 lgn) ≤ 2r/20 outcomes of this experiment. We
now map each w ∈ W to an outcome of the above experiment. For this, notice that

∑n
i=1 ji = r/(40 lg(n)) since w ∈ W

has unit length. Now for a w ∈ W consider any outcome of the experiment where for i = 1, . . . , n: ji balls fell into the i’th
bucket, and all the balls signs coincide with sign(wi). In this case, the value of the i’th bucket is the same value as wi. Thus,
we conclude that |W| ≤ 2r/20.

Now consider an outcome A of the random matrix A and assume there exists w ∈ Rn with ∥w∥1 = 1 such that Aw has
strictly less than r/10 entries i with (Aw)i < 14

√
lg(n)/r. We now show that this implies that there exists a vector w̃ ∈ W

such that Aw̃ has at least (13/20)r strictly positive entries. For t = 1, . . . , r/(40 lg n) sample independently an index
j(t) from w such that the i’th index is sampled with probability |wi|/∥w∥1. Let w̃ be the vector whose i’th coordinate is
ji sign(wi)40 lg(n)/r. Here ji denotes the number of times index i was sampled.

Consider any coordinate (Aw̃)i. Using i.i.d. random variables Xt taking the value ai,j(t) sign(wj(t))40 lg(n)/r, we
can write (Aw̃)i as

∑r/(40 lgn)
t=1 Xt. Note that E[Xt] =

∑n
i=1 ai,jwi40 lg(n)/r = (Aw)i40 lg(n)/r. Thus, we see

that E[(Aw̃)i] = (r/(40 lg n))E[X1] = (Aw)i. Notice that since Xt takes values in {−40 lg(n)/r, 40 lg(n)/r}, its
variance is at most (40 lg(n)/r)2. Further, by the independence of the Xt’s, we have that (Aw̃)i has variance at
most (r/(40 lg n))(40 lg(n)/r)2 = 40 lg(n)/r. Thus, Chebyshev’s inequality implies that Pr[|(Aw̃)i − (Aw)i| >
2
√
40 lg(n)/r] ≤ 1/4. Now noticing that w̃ ∈ W and using the linearity of expectation, we conclude that there must

be some vector w̃ ∈ W for which there are less than r/4 entries i such that |(Aw̃)i − (Aw)i| > 2
√

40 lg(n)/r. This,
combined with the assumption of (Aw)i < 14

√
lg(n)/r for strictly less than r/10 entries, implies that Aw̃ has at least

r − r/10− r/4 = (13/20)r entries i such that (Aw)i ≥ 14
√
lg(n)/r and |(Aw̃)i − (Aw)i| > 2

√
40 lg(n)/r. Thus, we

conclude that at least (13/20)r entries i satisfy (Aw̃i) ≥ 14
√
lg(n)/r − 2

√
40 lg(n)/r > 0, i.e. if there exists w ∈ Rn

with ∥w∥1 = 1 such that Aw has strictly less than r/10 entries i then there also exists w̃ ∈ W such that Aw̃ has at least
(13/20)r entries that are strictly positive.

Thus, what remains is to argue thatW with small probability over A contains a vector w with at least (13/20)r entries
i such that (Aw)i > 0. For this, consider any fixed w ∈ W . The probability that (Aw)i > 0 is at most 1/2 for all i.
Now Hoeffding’s inequality implies that the probability that there are (13/20)r entries i with (Aw)i > 0 is no more than
exp(−2((3/10)r)2/(4r)) = exp(−(9/200)r). A union bound over all ofW (recall |W| ≤ 2r/20) shows that the probability
that there exists a vector w ∈ W which has at least (13/20)r strictly positive entries is at most e−(9/200)r2r/20 < 2−0.01r

over A. Thus, we conclude that the probability of existence of a w ∈ Rn with ∥w∥1 = 1 such that Aw has strictly less than
r/10 entries i with (Aw)i < 14

√
lg(n)/r is at most 2−0.01r which concludes the proof.

To show Lemma B.1 we need the following corollary which follows from a use of the Montgomery-Smith inequality
(Montgomery-Smith, 1990). The corollary says that a linear combination of i.i.d. uniform {−1, 1}-variables where the
coefficient’s absolute values sums to at least 1/2 − β/2 with some probability are greater than β. This will be used in
Lemma B.1 to say that Hi for a given D ∈ ∆X contains a hypothesis h with an advantage of 2γ.

18

AdaBoost is not an Optimal Weak to Strong Learner

Corollary B.3. There exist universal constants c̃1, c̃2 ≤ 1, and c̃3 ≥ 1 such that for β ≤ c̃1/6, x ∈ Rn, xi ≥ 0 ∀i ∈ [n],
and

∑n
i=1 xi ≥ (1− β)/2, we have for a random h ∈ {−1, 1}n with i.i.d. uniform entries that

P

[
n∑

i=1

h(i)xi ≥ β

]
≥ c̃2 exp

(
−c̃3

16β2n

c̃21

)

We will show Corollary B.3 after the proof of Lemma B.1. We now restate and give the proof of Lemma B.1

Lemma B.1. Let c0, c1 ≤ 1, and c2 ≥ 1 denote some universal constants. Let X be a universe of size u and D ∈ ∆X
a distribution over X . Further let r and r1 be non-negative numbers such that r1 = α2r for α ≥ 1 and r1 ≤ u. Let
0 < δ ≤ 1, γ ≤ c0/(2α), and k = ln (u) γ−2. Let Hi be a random hypothesis set consisting of h0 and independent random
vectors in {−1, 1}u with i.i.d. uniform random entries. Further let the size of Hi be N/k without counting h0, where
N = 2c−2

1 k ln (k/δ) exp(8c2γ
2r1). With the above, we have with probability at least 1− δ/k over Hi that:

1. There exists a hypothesis h ∈ Hi such that ∑
i∈supp(D)

Dih(i) ≥ 2γ

where h = h0 if
∑u−r1

i=1,i∈supp(D) Di > 1/2 + γ else h is random.

Further, if
∑u−r1

i=1,i∈supp(D) Di ≤ 1/2 + γ and r ≤ |supp(D) ∩ [u− r1]|

2. h in Item 1 is such that the first r entries of {h(i)}
i∈supp(D)∩[u−r1]

has at least (1/2 + αγ/2)r minus signs.

Proof. If the distribution D has more than 1/2 + γ mass on the points 1, . . . , u− r1, i.e.
∑u−r1

i=1,i∈supp(D) Di > 1/2 + γ,
we have

∑u
i=u−r1+1,i∈supp(D) Di < 1/2− γ. Thus, we notice that h0 satisfies

∑
i∈supp(D)

Dih0(i) =

u−r1∑
i=1

i∈supp(D)

Di −
u∑

i=u−r1+1
i∈supp(D)

Di ≥ 2γ,

i.e. h0 fulfills Item 1.

Now assume that
∑u−r1

i=1,i∈supp(D) Di ≤ 1/2 + γ. Then we have 1/2− γ mass on the points {u− r1 + 1, u} ∩ supp(D),
i.e.

∑u
i=u−r1+1,i∈supp(D) Di ≥ 1/2 − γ. Since we know that the entries of any h in Hi for h ̸= h0 are i.i.d. uniform

{−1, 1}-variables, we get that
∑u−r1

i=1,i∈supp(D) h(i)Di ≥ 0 with probability 1/2. Thus, we give a lower bound on the
probability of

∑u
i=u−r1+1,i∈supp(D) h(i)Di ≥ 2γ. Using that

∑u
i=u−r1+1,i∈supp(D) Di ≥ 1/2− γ (by the assumption in

this paragraph), Corollary B.3 implies that for 2γ ≤ c0

P

 u∑
i=u−r1+1,i∈supp(D)

Dih(i) ≥ 2γ

 ≥ c1 exp(−4c2γ2r1)

so we conclude by the independence of the entries in h(i) that

P

 ∑
i∈supp(D)

Dih(i) ≥ 2γ

 ≥ P

 u−r1∑
i=1

i∈supp(D)

Dih(i) ≥ 0,

u∑
i=u−r1+1
i∈supp(D)

Dih(i) ≥ 2γ

 ≥ c1 exp(−4c2γ2r1)/2, (25)

where c0, c1, and c2 are universal constants (some of them are the product of universal constants in Corollary B.3). Thus,
Item 1 holds for every h in Hi\h0 with at least the above probability. Now if r ≤ |supp(D) ∩ [u− r1]| let Fr be the first r

19

AdaBoost is not an Optimal Weak to Strong Learner

indices of supp(D) ∩ {1, . . . , u− r1}. Note that Fr has the same role as Fr,S in other parts of the paper, but in this lemma
we make no assumptions about the support of D. Then by Corollary B.3, we get that for αγ ≤ c0

P

[∑
i∈Fr

h(i)/r ≤ −αγ

]
= P

[∑
i∈Fr

h(i)/r ≥ αγ

]
≥ c1 exp(−c2(αγ)2r) ≥ c1 exp(−4c2γ2r1), (26)

where the equality is due to the h(i) being i.d.d. uniform {−1, 1}-variables and the last inequality follows from r ≤ r1. If
we have

∑
i∈Fr

h(i)/r ≤ −αγ then {h(i)}i∈Fr
must contain at least (1/2 + αγ/2)r minus ones. Thus, we conclude by

Equation (25) and Equation (26), and the independence of the entries of h that

P

 ∑
i∈supp(D)

h(i)Di ≥ 2γ, |{i ∈ Fr | h(i) = −1}| ≥ (1/2 + αγ/2)r

 ≥ c21 exp(−8c2γ2r1)/2.

By the definition of N = 2c−2
1 k ln (k/δ) exp(8c2γ

2r1) we get that we have that

c21 exp(−8c2γ2r1)/2 =
k ln(k/δ)

N
.

Now define f(h) = 1{∑i∈supp(D) h(i)Di≥2γ,|{i∈Fr|h(i)=−1}|≥(1/2+αγ/2)r}. Using f , independence of the h’s in Hi, and that
the size of Hi is N/k we get that

Pr [∃h ∈ Hi s.t. f(h) = 1] = 1− Pr [∀h ∈ Hi we have f(h) = 0]

= 1− Pr [f(h) = 0]
N/k

= 1− (1− Pr [f(h) = 1])
N/k

≥ 1−
(
1− k ln(k/δ)

N

)N/k

≥ 1− exp(− ln (k/δ))

= 1− δ/k

where the last inequality follows from (1 + x/n)n = exp (n ln(1 + x/n)) ≤ exp (x) for n ≥ 1 and x ≥ −1, since ln(1 +
x) ≤ x for x ≥ −1. This shows Item 1 in the case

∑u−r1
i=1,i∈supp(D) Di ≤ 1/2 + γ and Item 2 if r ≤ |supp(D) ∩ [u− r1]|

which finishes the proof of Lemma B.1.

We now prove and restate Corollary B.3.

Corollary B.3. There exist universal constants c̃1, c̃2 ≤ 1, and c̃3 ≥ 1 such that for β ≤ c̃1/6, x ∈ Rn, xi ≥ 0 ∀i ∈ [n],
and

∑n
i=1 xi ≥ (1− β)/2, we have for a random h ∈ {−1, 1}n with i.i.d. uniform entries that

P

[
n∑

i=1

h(i)xi ≥ β

]
≥ c̃2 exp

(
−c̃3

16β2n

c̃21

)

Proof. In the following we will assume that the xi’s are ordered by their absolute value, which we can assume without loss
of generality since the h(i)’s are i.d.d. uniform {−1, 1}-variables. By (Montgomery-Smith, 1990) there exist universal
constants c̃1, c̃2, and c̃3 such that

f(x, t) :=

min(⌈t2⌉,n)∑
i=1

xi + t

√√√√ n∑
i=⌈t2⌉+1

x2
i , (27)

and

P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp(−c̃3t2). (28)

20

AdaBoost is not an Optimal Weak to Strong Learner

Notice that we may assume that c̃1 < 1. If c̃1 was greater than 1, we could lower it to 1 and the claim in Equation (28)
would still hold. Similarly, we also assume c̃2 ≤ 1 and c̃3 ≥ 1.

Now consider t = 4β
√
n

c̃1
which implies that t2 ≤ n/2 since β ≤ c̃1/6. Thus the first sum of Equation (27) goes up to ⌈t2⌉.

Formally, if c̃1f(x, t) ≥ c̃1
∑⌈t2⌉

i=1 xi ≥ β we get by Equation (27) and Equation (28) that

P

[
n∑
i

h(i)xi ≥ β

]
≥ P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp(−c̃3t2) = c̃2 exp

(
−c̃3

16β2n

c̃21

)
.

For the other case, assume that c̃1
∑⌈t2⌉

i=1 xi ≤ β, which combined with
∑n

i=1 xi ≥ 1/2− β/2 implies that

c̃1

n∑
i=⌈t2⌉+1

xi = c̃1

 n∑
i=1

xi −
⌈t2⌉∑
i=1

xi

 ≥ c̃1(1− β − 2β/c̃1)/2.

By Cauchy-Schwarz (in the second inequality below) and ⌈t2⌉ ≤ n we get that

c̃1(1− β − 2β/c̃1)/2 ≤ c̃1

n∑
i=⌈t2⌉+1

1 · xi ≤ c̃1

√√√√ |n− ⌈t2⌉ | n∑
i=⌈t2⌉+1

x2
i ≤ c̃1

√√√√n

n∑
i=⌈t2⌉+1

x2
i .

⇒ (1− β − 2β/c̃1)/2 ≤

√√√√n

n∑
i=⌈t2⌉+1

x2
i . (29)

We notice that β ≤ c̃1/6 implies (1− β − 2β/c̃1) ≥ 1/2. From Equation (27) we get with Equation (29), t = 4β
√
n

c̃1
, and

(1− β − 2β/c̃1) ≥ 1/2 that

c̃1f(x, t) ≥ c̃1t

√√√√ n∑
i=⌈t2⌉+1

x2
i = 4β

√√√√n

n∑
i=⌈t2⌉+1

x2
i ≥ 4β

(1− β − 2β/c̃1)

2
≥ β

Now using this and Equation (28) we get that

P

[
n∑
i

h(i)xi ≥ β

]
≥ P

[
n∑

i=1

h(i)xi ≥ c̃1f(x, t)

]
≥ c̃2 exp

(
−c̃3t2

)
= c̃2 exp

(
−c̃3

16β2n

c̃21

)
as in the other case which finishes the proof.

We now have shown Lemma 3.4 and the two lemmas Lemma B.2 and Lemma B.1 that are used in the lemma. This leaves us
to prove Lemma 3.2 and Lemma 3.3 which both appear in the proof of the main theorem. We start by restating Lemma 3.2.

Lemma 3.2. Let w ∈ Rd such that ∥w∥1 = 1 and let α̃ ≥ 1. Let further h be a random vector in {−1, 1}d with i.i.d.
entries such that P [h(i) = 1] = 1/2− α̃β and P [h(i) = −1] = 1/2 + α̃β where β < 1/(2α̃). We then have for α′ < α̃
that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ min

(
1

4
,
1

2
− 4α̃α′

(2α̃− α′)2

)
.

Proof. First, if there is j ∈ {1, . . . , d} such that wj ≥ α′β (i.e. there is a hypothesis hj with a large weight in the output of
Algorithm 2) we get that

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ P

 d∑
i=1
i ̸=j

wih(i) ≤ 0, wjrj ≤ −α′β

 ≥ 1/4

21

AdaBoost is not an Optimal Weak to Strong Learner

which follows from the h(i)’s being biased towards minus so if we changed them to i.i.d. uniform {−1, 1}-variables the
above probability would be lower and equal to 1/4.

Thus, we may assume that ∥w∥∞ ≤ α′β, i.e. the largest entry in w is less than α′β. We now introduce the random variables
ηi and h̃(i) where h̃(i) are i.i.d. uniform {−1, 1}-variables and the ηi’s have the distribution P

[
ηi = 1|h̃(i) = −1

]
= 1,

P
[
ηi = −1|h̃(i) = 1

]
= 2α̃β and P

[
ηi = 1|h̃(i) = 1

]
= 1− 2α̃β. We immediately get

P
[
ηih̃(i) = −1

]
= 1/2 + 1/2(2α̃β) = 1/2 + α̃β and

P
[
ηih̃(i) = 1

]
= 1/2(1− (2α̃β)) = 1/2− α̃β

thus ηih̃(i) has the same distribution as h(i). Using this decomposition of the h(i)’s we get that

P

[
d∑

i=1

wih(i) ≤ −α′β

]

= P

[
d∑

i=1

wiηih̃(i) ≤ −α′β

]

= P

[
d∑

i=1

wih̃(i) +

d∑
i=1

wi(ηi − 1)h̃(i) ≤ −α′β

]

≥ P

[
d∑

i=1

wih̃(i) ≤ 0,

d∑
i=1

wi(ηi − 1)h̃(i) ≤ −α′β

]

≥ 1− 1

2
− P

[
d∑

i=1

wi(ηi − 1)h̃(i) > −α′β

]
(30)

where the last inequality follows from P [A ∩B] ≥ 1− P [A]− P [B] and the 1/2-term by a weighted sum of i.i.d. uniform
{−1, 1}-variables being symmetric around 0. We now notice that (ηi − 1)h̃(i) has the same distribution as a random
variable −2xi where xi follows P [xi = 0] = 1− α̃β and P [xi = 1] = α̃β. We also see that E [

∑n
i=1−2wixi] = −2α̃β

and by independence of the xi’s

Var

(
n∑

i=1

−2wixi

)
= 4

d∑
i=1

w2
i

(
E
[
x2
i

]
− E [xi]

2
)
≤ 4

d∑
i=1

(α′β wi)
(
α̃β − (α̃β)

2
)
= 4α̃α′β2 (1− α̃β)

where the inequality follows from ∥w∥∞ ≤ α′β and the last equality uses
∑d

i=1 wi = 1. Using that the h̃(i)’s follow the
same distribution as−2xi we get from Chebyshev’s inequality, the above calculation of the expected value of

∑n
i=1−2wixi,

and the upper bounds on its variance that

P

[
d∑

i=1

wi(ηi − 1)h̃(i) > −α′β

]
= P

[
d∑

i=1

wi(−2xi) > −α′β

]
= P

[
d∑

i=1

2wi(−xi + α̃β) > (2α̃− α′)β

]

≤ 4α̃α′β2(1− α̃β)

(2α̃− α′)2β2
≤ 4α̃α′

(2α̃− α′)
2

where the last inequality uses that β < 1/(2α̃).

Thus, we conclude by the above and Equation (30) that in the case that ∥w∥∞ ≤ α′β we have

P

[
d∑

i=1

wih(i) ≤ −α′β

]
≥ 1

2
− 4α̃α′

(2α̃− α′)2
.

Together with the case that ∥w∥∞ ≥ α′β the claim follows.

22

AdaBoost is not an Optimal Weak to Strong Learner

We now restate and prove Lemma 3.3

Lemma 3.3. Let ζm/ ln (m/r) be the number of coupons where m ≥ 4r, r ≥ 1, and ζ ≥ 8. Let X denote the number of
samples with replacement from the coupons before seeing ζm/ ln (m/r)− 2r distinct coupons, then P [X ≤ m] ≤ 1

2

Proof. First, notice that seeing a new item in the next sample after having seen i distinct items happens with probability

pi =
ζm/ ln (m/r)− i

ζm/ ln (m/r)
.

Now if we use Xi to denote the number of samples between having seen i distinct items and i+ 1 distinct items, we can
write X as

∑ζm/ ln(m/r)−2r−1
i=0 Xi, i.e. as sum of independent geometric random variables with success probability pi. By

Theorem 3.1 in (Janson, 2018) for 0 < λ ≤ 1 it holds that

P [X ≤ λE [X]] ≤ exp

(
− min

i=0,...,ζm/ ln(m/r)−2r−1
(pi)E [X] (λ− 1− ln (λ))

)
. (31)

We now notice that

min
i=0,...,ζm/ ln(m/r)−2r−1

(pi) =
2r + 1

ζm/ ln (m/r)
≥ 2r

ζm/ ln (m/r)

and that

E [X] =

ζm/ ln(m/r)−2r−1∑
i=0

ζm/ ln (m/r)

ζm/ ln (m/r)− i

= ζm/ ln (m/r)

ζm/ ln(m/r)∑
i=2r+1

1

i

≥ ζm/ ln (m/r)

∫ ζm/ ln(m/r)

2r+1

1

x
dx

= ζm/ ln (m/r) ln

(
ζm/ ln (m/r)

2r + 1

)
≥ ζ(m/ ln (m/r)) ln

(
ζm/ ln (m/r)

4r

)
(32)

where the first inequality follows from 1/x being monotonically decreasing. Using that x/ lg(x) ≥
√
x for x ≥ 1 and ζ ≥ 8

we get that E [X] ≥ ζ (m/ ln (m/r)) ln
(
ζ
√
m/r/4

)
≥ ζm/2.

We can now combine all those ingredients. By choosing λ = 2/ζ and using ζ ≥ 8 we get that λ− 1− ln(λ) ≥ 1/2. First
notice that, this choice of λ with E [X] ≥ ζm/2 implies P[X ≤ m] ≤ P[X ≤ λE[X]]. Together with the bound on the
minimum of the pi and the lower bound on E[X] from Equation (32) we get from Equation (31) that

P [X ≤ m] ≤ P [X ≤ λE [X]] ≤ exp

(
−2rE [X] (λ− 1− ln (λ))

ζm/ ln (m/r)

)
≤ exp

(
−r ln

(
ζm/ ln (m/r)

4r

))
From m ≥ 4r we get that (m/r)/ ln(m/r) ≥ 1. Together with ζ ≥ 8 we get that ln ((ζm/ ln (m/r))/ (4r)) ≥ 1 and since
r ≥ 1 we conclude that P [X ≤ m] ≤ 1/2 as claimed which concludes the proof.

23

