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Abstract

We consider solving equality-constrained nonlin-
ear, nonconvex optimization problems. This class
of problems appears widely in a variety of applica-
tions in machine learning and engineering, rang-
ing from constrained deep neural networks, to
optimal control, to PDE-constrained optimiza-
tion. We develop an adaptive inexact Newton
method for this problem class. In each iteration,
we solve the Lagrangian Newton system inex-
actly via a randomized iterative sketching solver,
and select a suitable stepsize by performing line
search on an exact augmented Lagrangian merit
function. The randomized solvers have advan-
tages over deterministic linear system solvers by
significantly reducing per-iteration flops complex-
ity and storage cost, when equipped with suitable
sketching matrices. Our method adaptively con-
trols the accuracy of the randomized solver and
the penalty parameters of the exact augmented
Lagrangian, to ensure that the inexact Newton
direction is a descent direction of the exact aug-
mented Lagrangian. This allows us to establish
a global almost sure convergence. We also show
that a unit stepsize is admissible locally, so that
our method exhibits a local linear convergence.
Furthermore, we prove that the linear convergence
can be strengthened to superlinear convergence if
we gradually sharpen the adaptive accuracy con-
dition on the randomized solver. We demonstrate
the superior performance of our method on bench-
mark nonlinear problems in CUTEst test set, con-
strained logistic regression with data from LIB-
SVM, and a PDE-constrained problem.
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1. Introduction

We study constrained optimization problems of the form

min f(x) s.t. ¢(x) =0, (1)

TeR™

where f : R™ — R is the objective function, ¢ : R” — R™
is the equality constraint function, and both of them are non-
linear, possibly nonconvex, and twice continuously differen-
tiable. Problem (1) appears widely (as a subproblem) in a
variety of applications, including constrained deep neural
networks (Chen et al., 2018), physical informed neural net-
works (Cuomo et al., 2022), PDE-constrained optimization
(Kouri et al., 2014), optimal control (Lewis et al., 2012), and
constrained model estimations (Scott & Ttima, 2022). There
exist numerous methods for solving Problem (1), such as
projected first- and second-order methods, penalty methods,
augmented Lagrangian methods, and sequential quadratic
programming (SQP) methods (Nocedal & Wright, 2006).
Among these methods, SQP is one of the most effective
methods for both small and large problems. Compared to
projected methods, SQP does not involve a projection step
that is generally expensive for nonlinear equality constraints.
Compared to penalty methods, SQP does not regularize the
objective that destroys the structure of the problem and suf-
fer from ill-conditioning issue (Krishnapriyan et al., 2021).
Compared to augmented Lagrangian methods, SQP is more
robust to the (dual) initialization (Curtis et al., 2014a).

With only equality constraints, SQP is equivalent to an ap-
plication of Newton method to the Karush—Kuhn-Tucker
(KKT) conditions (i.e., first-order optimality conditions). As
the second-order method, SQP is (not surprisingly) very ef-
ficient, taking only a few iterations to find a local solution to
the problem; while, at the same time, it can struggle to solve
the Newton system (of the Lagrangian) efficiently at each
step. Solving Newton systems dominates the computational
cost of Newton methods, and deriving exact Newton direc-
tions is often prohibitive for large-scale problems.

1.1. Main Results

Motivated by the above bottleneck, we propose an adaptive
inexact Newton (SQP) method for Problem (1) that applies
randomized iterative sketching solvers to solve Newton sys-
tems inexactly. Our method is called AdaSketch-Newton.
At each step, AdaSketch-Newton solves the Lagrangian New-
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ton system by leveraging the sketch-and-project framework,
which was originally developed in Gower & Richtarik
(2015) and further investigated for various (unconstrained)
optimization problems (Luo et al., 2016; Doikov &
Richtéarik, 2018; Gower et al., 2019; Mutny et al., 2020;
Derezinski et al., 2020b; Na & Mahoney, 2022; Derezifiski
& Rebrova, 2022). The framework unifies popular ran-
domized iterative linear system solvers, such as the ran-
domized (block) coordinate descent and randomized
(block) Kaczmarz method. Compared to deterministic
solvers, randomized solvers require less per-iteration flops
complexity and storage cost when using suitable sketching
matrices (e.g., a sparse sketching matrix). See Murray
et al. (2023) for recent software development. However,
using inexact randomized solver leads to a much more
involved algorithm design as well as a more challenging
analysis, since the approximation error of the solution
is random and does not monotonically decrease as more
iterations of the solver are performed. As we review in
Section 1.2, existing inexact Newton methods with ran-
domized sketching solvers are designed for unconstrained
problems; we provide the first inexact Newton method with
a randomized solver for constrained problems.

In the proposed AdaSketch-Newton algorithm, we use an
exact augmented Lagrangian merit function, taking the form

Laf@,X) = L@, X) + 75 [e@)|? + T Vol N2, (2)

where L(z,X) = f(x) + AT c(z) is the Lagrangian func-
tion of (1), with A € R™ being the Lagrangian multipliers
and 7 = (n1,72) being the penalty parameters. By “ex-
act,” we mean that, compared with standard augmented
Lagrangian, it has an additional penalty term ||V L||*/2
that biases the optimality error. With this additional term,
one can show that the solution of the unconstrained prob-
lem ming x Ly, is also the solution of (1) and vice versa,
provided that i are suitably specified. By “merit function,”
we mean (2) is (only) used to determine whether or not a
new iterate approaches toward a local solution to Problem
(1). In other words, (2) does not affect the computation of
inexact Newton direction (thus, our method does not suffer
ill-conditioning issue caused by 77); but given a direction,
we select a suitable stepsize by performing line search on
(2). The merit function plays a crucial role in constrained
optimization, since the objective function f alone is not
suitable to justify the direction (the step that decreases f
may severely violate the constraint ¢). AdaSketch-Newton
adaptively controls the accuracy of the randomized sketch-
ing solver and selects suitable penalty parameters 7 to en-
sure that the inexact Newton direction is a descent direction
of (2). Our adaptive design balances the number of global
outer loop iterations and inner loop iterations of the solver,
while at the same time securing a fast local convergence.
By virtue of the adaptivity, all the input parameters of the
algorithm are problem independent.

Under mild assumptions, we show that AdaSketch-Newton
enjoys a global almost sure convergence — starting from any
initial point, the KKT residual converges to zero. We also
show that our adaptive design ensures a unit stepsize to
be admissible locally, and establish a local linear conver-
gence rate. Furthermore, we prove that the linear rate can be
strengthened to a superlinear rate, as long as we gradually
sharpen the adaptive accuracy condition on the randomized
solver, which is simply controlled by an input tuning param-
eter. As we review in Section 1.2, the local rate of inexact
Newton methods is mostly investigated for unconstrained
problems (Gower et al., 2019; 2021; Hanzely et al., 2020;
Derezinski & Rebrova, 2022; Yuan et al., 2022), while is
largely missing in constrained cases (Byrd et al., 2008; 2010;
Curtis et al., 2014b; Gu et al., 2017; Burke et al., 2020).

We implement AdaSketch-Newton and benchmark it against
constrained nonlinear problems in CUTEst test set (Gould
et al., 2014), constrained logistic regression with datasets
from LIBSVM (Chang & Lin, 2011), and a PDE-
constrained problem (Hintermiiller et al., 2002). We show
the superior performance of our method, in terms of both
accuracy and efficiency, by comparing it with a prominent
inexact Newton method that employs a deterministic solver
and ¢; merit function (Byrd et al., 2008) and standard
augmented Lagrangian method (Nocedal & Wright, 2006).
We also show our method is robust to tuning parameters.

1.2. Related Literature

Our method relates to several inexact Newton-type methods
in the literature that we briefly review below. We divide the
review into unconstrained and constrained optimization.

Unconstrained optimization. The majority of inexact
Newton methods are designed for unconstrained prob-
lems. For example, some inexact Newton methods via
randomized iterative sketching have been proposed, includ-
ing Stochastic Dual Newton Ascent (SDNA) (Qu et al.,
2016), Sketched Online Newton (SON) (Luo et al., 2016),
Stochastic Subspace Cubic Newton (SSCN) (Hanzely et al.,
2020), Randomized Block Cubic Newton (RBCN) (Doikov
& Richtarik, 2018), Randomized Subspace Newton (RSN)
(Gower et al., 2019), and Randomized Subspace Regu-
larized Newton (RSRN) (Fuji et al., 2022). These meth-
ods incorporate sketching techniques into classical Newton
methods or cubic regularized Newton methods. Instead of
solving the original large-scale subproblem in each itera-
tion, the methods solve a sketched small-scale subproblem,
and it is proved that the sketched direction decreases the
objective, due to the convexity assumption and/or uncon-
strained nature of the problem. With a good understanding
on the convergence of sketching solvers (Gower et al., 2021;
Derezinski & Rebrova, 2022), the (local) convergence rates
of these methods are also established. Empirical results
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illustrate that randomized Newton methods integrate the
benefits of randomization and the efficiency of second-order
methods. The proposed AdaSketch-Newton is the first gen-
eralization of the aforementioned methods to constrained
nonlinear problems (1). Our method adaptively controls the
accuracy of the sketching solver and the penalty parameters
of the merit function, and takes the constraint violation into
account when showing the descent property of the sketched
inexact Newton direction.

There are numerous Newton methods where subproblems
can be solved inexactly by deterministic solvers such as
MINRES and CG (Fong & Saunders, 2012). For example,
different variants of Newton-CG methods have been devel-
oped with line search (Royer & Wright, 2018; Royer et al.,
2019; Bollapragada et al., 2018; Yao et al., 2022), trust re-
gion (Curtis et al., 2021a), and cubic regularization (Curtis
etal., 2018; Yao et al., 2021). Newton-MR has also recently
been reported and analyzed (Liu & Roosta, 2022; Roosta
et al., 2022). Another line of work focuses on constructing
cheap stochastic Hessian approximations by either sketch-
ing or subsampling (Pilanci & Wainwright, 2017; Roosta-
Khorasani & Mahoney, 2018; Derezinski et al., 2020a; La-
cotte et al., 2021; Derezinski et al., 2021; Na et al., 2022b).
We refer to Berahas et al. (2020) for a comparison of these
methods. For some of the methods (e.g., Roosta-Khorasani
& Mahoney (2018)), the resulting Newton systems can also
be solved inexactly via deterministic solvers. However, the
convergence guarantees of those methods hold in high proba-
bility or expectation and (more or less) rely on the convexity
of problems. This differs from our almost sure convergence
guarantee for nonlinear problems.

Constrained optimization. To our knowledge, there are
only a handful of inexact Newton methods for constrained
problems, which all employ deterministic solvers for solving
Newton systems and are often called inexact SQP methods.
Byrd et al. (2008; 2010) proposed two inexact methods for
Problem (1), which adopt nonsmooth merit functions in line
search step. The methods bound the residuals of the solver
by a few fixed tuning parameters, and are then refined and
adapted to incorporate inequality constraints (Curtis et al.,
2014b; Burke et al., 2020). Recently, stochastic SQP meth-
ods have been reported (Berahas et al., 2021a;b; Curtis et al.,
2021b; Na et al., 2023; 2022a; Fang et al., 2022; Na & Ma-
honey, 2022). The stepsize in most of these methods is con-
trolled by prespecified decaying sequences (i.e., the methods
are designed under the stochastic approximation regime),
with the only exceptions being Na et al. (2023) and Na et al.
(2022a), which adopt line search to make the methods more
adaptive. The aforementioned methods established global
convergence, while local rates of the methods are largely
missing. Our method is the first design that incorporates the
sketching technique into SQP, adaptively selects suitable
stepsizes by line search, and exhibits global and local lin-

ear/superlinear convergence as exact SQP/Newton methods
do.

Notation. We use | - || to denote the {2 norm for vectors and
the operator norm for matrices. For any matrix A € RP*9,
row(A) denotes the row space of A and col(A) denotes
the column space of A. We let H(x,\) = V2L(x,\) €
R(+m)x(n+m) pe the Lagrangian Hessian with respect to
z and G(x) = VT¢(x) € R™*™ be the constraint Jacobian.
At the k-th iteration, we let f, = f(x), Hr = H(xk, Ax),
etc., to ease the notation. For any a,b € R, weleta Vb =
max{a,b} and a A b = min{a, b}.

2. AdaSketch-Newton

We now introduce AdaSketch-Newton algorithm. For Prob-
lem (1), under certain constraint qualifications, a necessary
condition for * being a local solution is to have dual multi-
pliers A* such that

(VL)) - (VH) LGN (0

The starting point of our algorithm is to apply the Newton
method to (3). At each iteration k, we consider solving the
following Newton system of the Lagrangian

FkAzk. = —V/Jk, (4)

where

_ Bk Gg _ A:L'k _ Vmﬁk
Fk = (Gk 0 5 Azk = A)\k 5 Vﬁk = i .

Here, I, approximates the Lagrangian Hessian V2 £;, with
By, being a modification of Hj, to ensure (4) is solvable (cf.
Assumption 3.2). We note that solving the Newton system
(4) is equivalent to solving a constrained quadratic program

1
min iAacTBkAa: + VIl Az,
s.t. ¢, + GrAxz = 0.

The objective is a quadratic approximation of f with Hessian
coming from the Lagrangian function, while the constraint
is a linear approximation of c. Instead of solving (4) exactly
and having Az, we apply a randomized iterative sketching
solver on (4) and derive an (random) inexact solution Azk.

2.1. Randomized Iterative Sketching

For every outer iteration k, we run multiple inner iterations
of the sketching solver, indexed by j. The solver will stop
at some j and output Az = Azk_j = (Am;w-, A)\kyj) as
the inexact direction, once the step Azh 4 triggers an adap-
tive step acceptance condition (introduced in Section 2.2).
As we will prove in Lemmas 3.6 and 3.7, the step acceptance
condition is always triggered with a finite j (with probabil-
ity one).
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We now provide details of the sketch-and-project framework.
With different sketching matrices, the framework recovers
different randomized methods including, randomized Kacz-
marz method, randomized coordinate descent, etc. (Gower
& Richtérik, 2015; Strohmer & Vershynin, 2008; Richtarik
& Takég, 2014). Let S € R(™+m)xd P pe a random
sketching matrix following the distribution P (its sketching
dimension d can also be random). For each outer iteration k
and inner iteration j, we generate a copy of S denoted by
Sk.;» and solve the following sketched Newton system

SpTru=—SL,VLy. (5)

Since (5) has multiple solutions including the exact direction
Azy, the j-th iteration of the solver selects the step Azy, ;11
to be the one that is closest to the current step Az, ;, i.e.,

Az j41 = argmin [lu — Az, ;||?, subjectto (5).
An explicit updating rule is given by
Azp 1 = Azyj — TxSk (ST T29%5) S mh 5, (6)

where (-) is the Moore—Penrose pseudoinverse and 7y, j1s
the residual of Azy, ;, defined as
Tk = FkAZk_’j + VL. (7)

‘We initialize the solver with Azk,o = 0, and below we in-
troduce when we should stop the inner iteration (6).

2.2. Adaptive Step Acceptance Condition

Our step acceptance condition consists of two subconditions:

(1) adaptive accuracy condition enforced on the residual 7, ;
(cf. (10)); and (ii) descent direction condition enforced on
the step Azk, j (cf. (11)). Both conditions rely on the penalty
parameters 7y = (11,x, N2, of the augmented Lagrangian
(2), which we also adaptively choose. Once the step accep-
tance condition is triggered, we derive an inexact direction
Az, = Az;ﬁ ; with the chosen penalty parameters 7. With
these chosen quantities, we do line search (in Section 2.3).

In particular, given the penalty parameters 75, we want to
simultaneously enforce two (sub)conditions.

Adaptive accuracy condition. We first compute a thresh-
old
- 0.5 —
6;€rlal .— ( /8)7727k 5 (8)
(L +m1k +m20) Y595
where 3 € (0,0.5) is an input parameter of the algorithm
used in the Armijo condition in line search (cf. (13)), and

20(|| By ||” v 1)
(€ A1)(0F A L)

with o7 ;, being the least singular value of G, and £ > 0
being another input parameter used for constructing By, (cf.

Uy, = T = |Gl VIHk[ V1, (9)

Assumption 3.2). With any 0 < 5, < &% and any prespec-
ified sequence {6} C (0, 1], we require 7, ; to satisfy

1751 < Ok [V Li |l /(% || W) (10)
We explain four aspects of the above condition. First, ||T'% ||
in (10) makes the approximation error ||Azy ; — Az || relat-

ing to |71 ;|| be bounded by a factor of the exact direction
| Az, seen from [ VLy | = [TxAzi]| < [ITe]l - [ Az
Second, the factor 20 in Wy, is a conservative, artificial con-
stant coming from the proof, which may be significantly re-
duced by finer analysis. Third, the condition &, < 5}?*“ is to
ensure that the algorithm selects a unit stepsize locally. In
fact, under standard assumptions, we show in Lemma 3.8
that 5‘,5“‘1 is uniformly lower bounded away from zero, so
that d; does not have to converge to zero; instead, for k
large enough, J stabilizes. Fourth, 6} is introduced to
enhance the flexibility of the accuracy condition. When
0 = 6 € (0,1], Yk, we show the algorithm exhibits lo-
cal linear convergence. When 6}, decays to zero, we actu-
ally gradually sharpen the accuracy condition (10) (as dy,
finally stabilizes); and the algorithm exhibits local superlin-
ear convergence with a rate depending on 6. See Section 4
for the results of different 6.

Descent direction condition. We require Az, ; to be a de-
scent direction of £, at (xx, Ag). Specifically, we require

(VLENTAzy < —mop [VLKI? /2. (D)

In the above condition, the left-hand side is the reduction of
the exact augmented Lagrangian, while the right-hand side
regards the KKT residual. We note that both (10) and (11)
involve the penalty parameters 7, and not every 7 can
make (10) and (11) satisfied simultaneously. For example,
(11) may not hold for some 7;, even with exact direction
Azy. This illustrates the necessity for choosing suitable 7.
We resolve this difficulty using double While loops.

Outer While loop: we check if the step acceptance condition
holds, i.e., (10) and (11) hold simultaneously. Thus, after we
break out the outer While loop, we always have a favorable
direction Az, and suitable penalty parameters 7)y,.

Inner While loop: with n;, and §;, < 5}?“1, we repeat (6) un-
til (10) is triggered. Then, we check if (11) holds. If (11)
holds, we break the outer While loop. Otherwise, we update
the parameters in an adaptive way:

2

Mk < MEV, N2,k < N2,k / Vs

. 12
S < (O /vt A Gy, (12)

compute 57 as (8),
with v > 1 being any factor larger than 1, and go back to reit-
erating (6) from the latest inexact direction with new param-
eters Mg, 0x, which lead to a new condition (10). The moti-
vation of (12) is to decrease 72 1, and the ratio 5k771,k/77,k2’
but increase the product 71 ;72 1, and have 5 < 5}?5‘1 (see
Lemma 3.7). Thus, we use different powers of v for the
update. See Algorithm 1 Lines 6-14 for double While loops.



Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching

Algorithm 1 AdaSketch-Newton Method

1: Input: initial iterate zo; sequence {65} C (0, 1]; scalars
71,05 772’()753 > 0,0 € (O7 1), 5 S (0,0.5), v>1;

2: fork=0,1,2,... do

3:  Compute f, V fx, ck, Gk, Hi, and generate By;

4:  Compute ¥y, Ty, by (9) and 5t by (8);

5. Set g < 0 AOY Az« 0; compute 7 by (7);

6:  while Step Acceptance Condition does not hold do

7

8

9

while [|ry|| > 0565 VL[ /(| Tkl ¥r) do
Generate S ~ P and update Az, by (6);

: Compute 7, by (7);
10: end while

11: if (VLE )T Az >~ [|VLi|? /2 then
12: Update 11 k., 72,1, 6512, 6, as (12);
13: end if

14:  end while

15:  Select o to satisfy (13); update the iterate by (14);
160 Setn1 kg1 < N1,ks 2,k+1 < N2,k and Opp1 < Op;
17: end for

We now discuss the computational complexity of the
double While loops. Once the adaptive accuracy con-
dition (10) is triggered by the inner While loop, only
checking the descent direction condition (11) is left for
the outer While loop. Thus, the double While loops cost
O(# of outer loop iterations x (cost of inner While loop +
(n + m))). Furthermore, the cost of inner While
loop (i.e., performing (6) until (10) is satisfied) is
O(# of inner loop iterations x (n+m)?) with dense sketch-
ing vectors (e.g., Gaussian) and O(# of inner loop
iterationsx (n + m)) with sparse sketching vectors (e.g.,
Kaczmarz). As we will see in Lemmas 3.4, 3.5, and 3.6, the
number of inner loop iterations is random. As for the outer
loop iterations, there is no precise count when the algorithm
is in the phase of adaptively selecting the parameters (7,
0r). However, when k is large enough, there will be only
one outer loop iteration; as shown in Lemmas 3.7 and 3.8,
all parameters (1, 05 ) will be stabilized after large &, hence,
(11) is always satisfied as long as (10) is satisfied.

2.3. Line Search and Iterate Update

We select the stepsize o, by doing line search and enforcing
the Armijo condition on the exact augmented Lagrangian:

ﬁnk (zk + OékAZk) < [:l:]k + Ozkﬂ(VL:]:,k)TAzk, (13)

where z, = (xx, Ax). Then, the iterate is updated as
Zk+1 = 2 + O(kAZk. (14)
The full design of AdaSketch-Newton is in Algorithm 1.

3. Well-posedness and Global Convergence

In this section, we first study the well-posedness of Algo-
rithm 1 by showing that the step acceptance condition in Sec-

tion 2.2 is always triggered with a finite j; thus, the double
While loops in Algorithm 1 Lines 6-14 terminate in finite
time. We then show a global almost sure convergence guar-
antee — starting from any initial point, the KKT residual
IV Ly || converges to zero almost surely. Here, the random-
ness plays a key role in the analysis, because the inexact
direction is calculated by a randomized solver and all the
algorithmic components that are affected by the direction
are also random. For example, the step acceptance condition
and Armijo condition are governed by random sketching
matrices. We begin by stating the assumptions.

Assumption 3.1. The iterates {x), Ay } x>0 are contained
in a convex compact set X x A such that over X, the objec-
tive f and constraint ¢ are twice continuously differentiable
with Hessians being Lipschitz continuous.

Assumption 3.2. There exist absolute constants {g, {5,
such that (i) the Jacobian G}, has full row rank with
GkGf = &al, VEk; (ii) the modified Hessian By satisfies
u'Byu > ¢pl|ul|? for any w € {u : Gru = 0} and
[ Brll < Ts.

Assumption 3.3. There exists a constant 7 € (0, 1] such
that the sketching matrices Sy, ; ~ S, iid, satisfy P(S’Tu #*
0) > 7 for any u € R"*™\{0}.

All three assumptions are mild, standard, and commonly
imposed in the literature. In particular, Assumptions 3.1 and
3.2 are required for the analysis of exact, inexact, stochas-
tic SQP methods (Bertsekas, 1982; Boggs & Tolle, 1995;
Nocedal & Wright, 2006; Byrd et al., 2008; 2010; Na et al.,
2023; 2022a). An alternative statement of Assumption 3.1
is to assume the iterates lie in a convex open set, and the
objective f, the constraint ¢, together with their gradients
and Hessians, are Lipschitz continuous and bounded over
that set (Curtis et al., 2021b). Assumption 3.2 is required
to ensure that the Newton system (4) has a unique solution.
Assumption 3.3 is a condition on the sketching distribu-
tion. It holds for various choices of sketching matrices. For
example, in randomized Kaczmarz method, S = el €
R™*™  the i-th canonical basis, with equal probability. This
choice satisfies Assumption 3.3 with 7 = 1/(n + m). Itis
also immediate to see that Assumption 3.3 holds with 7 = 1
for any continuous sketching distribution (e.g., Gaussian
sketching). We do not impose any conditions on the sketch-
ing dimension d; thus, we can set d = 1 (i.e., pseudoinverse
in (6) becomes reciprocal) for sake of low flops complexity.

We first present Lemmas 3.4 and 3.5, which are the building
blocks for showing the well-posedness of Algorithm 1.
Lemma 3.4. For any outer iteration k and inner iteration j,
let Qr; € R+m)%d be g matrix that has orthonormal
columns spanning the space row(S,ijI‘k); and let {jF}1>0
be a subsequence of the inner iteration j, where j§ = 0 and
]lk I > 1, is recursively defined to satisfy

col(Qk’jhl) U---u COl(Qk’jlkil) = Rntm,
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Let L be any positive integer. Under Assumptions 3.2, 3.3,
and for any k, let us suppose Algorithm I reaches zy. Then,
the event

Ar = Nz {1 < o0} (15)
happens with probability one.

By Lemma 3.4, we know that the inner iteration j has a sub-
sequence jF such that the union of the space row(SkT7 k)
from j = jf toj = jf,; —1,Vl > 0, is the full space R"".
Such a full space expansion property is critical to show that
the random approximation error, although does not mono-
tonically decrease, has a decreasing subsequence.

Lemma 3.5 (A subsequence of error decays linearly). Un-
der Assumptions 3.2, 3.3, let us suppose the event Ay, in (15)
happens. Then, there exists a sequence of scalars {'yk,l}lel
such that vy, ~ vy is an iid realization of a random vari-
able i, € [0,1), and we have for1 <1 <L,

1Az jx — Azi]| < Wl Az jp | — Azil.

Ji—1
Lemma 3.5 suggests that a subsequence of the approxima-
tion error, {HAsz»f — Az }i>0, decays linearly with the
rate being an iid copy of some random variable -y € [0, 1).
We should mention that the statement of Lemma 3.5 is de-
terministic (i.e., {7y, }; are realized) since we suppose the
event Ay, happens in the statement.

Lemma 3.5 directly leads to the result that the adaptive ac-
curacy condition (10) can be satisfied with finite inner itera-
tions, although the iteration number may be random.

Lemma 3.6 (Well-posedness of accuracy condition). Under
Assumptions 3.1, 3.2, 3.3, and for any outer iteration k and
any 6, 0, > 0, let us suppose Algorithm I reaches zy,. Then,
with probability one, there exists a finite number Jj, < 0o
such that the accuracy condition (10) with dy,, 0y, > 0 can be
satisfied by iterating (6) for Jy, times.

From the proof of Lemma 3.6, we know the right-hand side
of the accuracy condition (10) can be replaced by any posi-
tive upper bound, and the condition is still satisfied with (ran-
dom) finite inner iterations. Lemma 3.6 suggests that the in-
ner while loop (cf. Algorithm 1, Lines 7-10) always termi-
nates properly. We next investigate the descent direction
condition (11) to complete the well-posedness study.

Lemma 3.7 (Well-posedness of descent direction condition).
Under Assumptions 3.1, 3.2, 3.3, and for any outer iteration
k, we let Azk,j be the inexact solution to (4) that satisfies
(10). Then, there exists a constant T = Y(£c,&p, Tp) > 0
large enough such that the descent direction condition (11)
is satisfied as long as

muiner > Y and  map VoM k/mek < 1/T. (16)

Lemma 3.7 suggests that the descent direction condition (11)
holds as long as 7; j, is large enough and 73 ,, d5, are small

enough. By our updating rule (12), we increase the quantity
M1 k"2,k and decrease the quantities 73 and 3,11 /72,1 by
a factor of v > 1 whenever (11) is not satisfied. Thus, (16)
(and hence (11)) will be finally satisfied. Combining Lem-
mas 3.6 and 3.7, we have now shown the double While loops
(cf. Algorithm 1, Lines 6-14) terminate properly.

We next study the behavior of adaptive penalty parameters.

Lemma 3.8 (Stability of adaptive parameters). Under As-
sumptions 3.1, 3.2, 3.3, with probability one, there exists an
iteration threshold K such that the parameters (01 1, M2,k

1) are stabilized after K iterations, that is, (n1,k, 2.k, Ok)
= (m,x,M2,K,0K), Vk > K.

The stability of penalty parameters is crucial for global con-
vergence. Due to our adaptive design, the algorithm chooses
suitable parameters automatically. Thus, the augmented La-
grangian merit function for line search may differ from step
by step. Then, we cannot accumulate the decreases across
the steps (since each step may decrease a different func-
tion). Lemma 3.8 suggests that our adaptive design leads to
a stabilized augmented Lagrangian in the end; thus we can
accumulate all the decreases on the tail.

We then show the stepsize oy, has a uniform lower bound.

Lemma 3.9 (Armijo condition). Under Assumptions 3.1,
3.2, 3.3, with probability one, there exists aumin > 0 such
that o, > amin, VE > 0.

With all of the above lemmas, we now establish the global
almost sure convergence of Algorithm 1 in Theorem 3.10.

Theorem 3.10 (Global convergence). Under Assumptions
3.1-3.3, with probability one, |VLy|| — 0as k — oo.

Compared to randomized inexact Newton methods for un-
constrained convex optimization (Qu et al., 2016; Doikov
& Richtarik, 2018; Luo et al., 2016; Gower et al., 2019;
Hanzely et al., 2020), we establish the convergence of KKT
residual that interprets the constraint violation. Compared to
deterministic inexact Newton methods for constrained opti-
mization (Byrd et al., 2008; 2010), our global result holds al-
most surely, instead of deterministically; and our next local
analysis also complements the missing part in their studies.

4. Local Convergence

In this section, we establish the local convergence rate of Al-
gorithm 1. We first show that when we set 8, = 6 € (0, 1],
Algorithm 1 exhibits local linear convergence. We then show
that when we let 6, decay to zero, i.e., when we gradually
sharpen the adaptive accuracy condition (10), Algorithm 1
exhibits local superlinear convergence.

We first present two additional assumptions that are neces-
sary for local analysis.
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Assumption 4.1. We assume f and each coordinate of ¢ are
thrice continuously differentiable over X'.

Assumption 4.2 (Hessian modification vanishes). We as-

sume || H— By|| = O(7) forasequence 7, — 0ask — oc.

Assumption 4.1 strengthens Assumption 3.1 by requiring
one more derivative — the third derivative — of f and ¢
to exist. This condition is standard for local analysis when
using the exact augmented Lagrangian merit function in the
algorithm (Bertsekas, 1982; Zavala & Anitescu, 2014; Na
et al., 2021; Na, 2021), because the Hessian of the aug-
mented Lagrangian V2L, requires the existence of V3 f
and V3c. Fortunately, the third derivatives are never com-
puted in the algorithm. Assumption 4.2 assumes the Hessian
modification gradually vanishes, which is also standard in
the SQP literature (Boggs & Tolle, 1995; Nocedal & Wright,
2006). It is worth mentioning that Assumption 4.2 implies
that H}, satisfies Assumption 3.2-(ii) in the limit, which is
known as the second-order sufficient conditions. There are
multiple ways to generate By, that satisfies Assumptions 3.2
and 4.2. One example is to test the positiveness of Z] Hy, Zy,
where the columns of Z;, € R"*("=™) gpan the null space
of Jacobian Gy. If ZkTH k2 1s positive definite, then we
set By, = Hj; otherwise we set By, = Hy, + (£ + || Hg||) 1.
By this way, we have 7, = 0 for all large enough k.

Theorem 4.3 (Local linear convergence). Let z* be a local
solution to (1) and 0y, = 6 € (0, 1], Vk. Under Assumptions
3.1-3.3, 4.1, 4.2 and suppose z; — z*, for all sufficiently
large k, we have ay, = 1 and (noting that 06 < 1)

lzes1 — 2| < (L+ @)00x |z — =*[, forany e > 0.

Corollary 4.4 (Local superlinear convergence). Let z* be
a local solution to (1) and 0y, be any input sequence such
that 0, — 0 as k — oo. Under Assumptions 3.1-3.3, 4.1,
4.2 and suppose zi — z*, for all sufficiently large k, we
have o, = 1 and that

zk+1 — 21 < OOk +70) |2k — 2*[+0 (2 — 2*7) -

Since 6y, is a factor of accuracy condition on the sketching
solver (cf. (10)), and dy, is stabilized to d i, we know a de-
caying input sequence 0 suggests Algorithm 1 performs
more inner iterations in expense of a faster local rate.

From the global convergence in Theorem 3.10, we know that
Algorithm 1 generates iterates that converge to any station-
ary points. In contrast, as we mentioned earlier, we assume
that the second-order sufficient conditions hold at z* for the
local convergence results. Thus, Theorem 4.3 and Corollary
4.4 indicate that the iterates generated by Algorithm 1 will
exhibit linear/superlinear local rates, provided the stationary
point is a second-order stationary point.

5. Experiments

We benchmark AdaSketch-Newton (Algorithm 1) on nonlin-
ear problems in CUTEst collection set (Gould et al., 2014),

on constrained logistic regression with data from LIBSVM
(Chang & Lin, 2011), and on a PDE-constrained problem
(Hintermiiller et al., 2002). We compare the performance of
Algorithm 1 with that of two inexact SQP methods designed
for constrained problems with deterministic solvers: Algo-
rithm B of Byrd et al. (2008) and its adaptive modification.
The two methods are detailed in Algorithms 2 and 3 in Ap-
pendix C. Compared to Algorithm 2 that uses a fixed bound
throughout all iterations, Algorithm 3 adaptively controls
the accuracy of a deterministic solver and can be seen as a
deterministic version of Algorithm 1. However, both meth-
ods employ an nonsmooth ¢; penalized merit function that
differs from (2). As another baseline for the comparison,
we also consider standard augmented Lagrangian method
with an inexact Newton subproblem solver (see Algorithm
4 in Appendix C). For Algorithm 1, we apply two sketching
distributions: (1) Gaussian vector sketch and (2) Random-
ized Kaczmarz sketch, referred as AdaSketch-Newton-GV
and AdaSketch-Newton-RK, respectively. As suggested in
Byrd et al. (2008) and Nocedal & Wright (2006), we use
GMRES (Saad & Schultz, 1986) as the deterministic solver
for Algorithms 2, 3, and 4. We evaluate each algorithm with
the following three criteria: (1) the KKT residual ||V Ly||;
(2) the number of objective and constraints evaluations; and
(3) the number of gradient and Jacobian evaluations. Fur-
ther, we assess each algorithm with the performance profile
(Dolan & Moré, 2002) for CUTEst and constrained logistic
regression, in which the total number of flops is used as a
performance measure. For all methods, we stop iterating if

VLl <107* OR k> 10%

The parameters of each algorithm are specified as follows.
(We test the sensitivity to parameters for Algorithm 1 in
Section 5.4).

Alg. 1:me0=00=¢=8=0.1,m,0=0r =1, v=1.5.
Alg. 2: we follow the exact same setup as Byrd et al. (2008).
In particular, with their notation,n = 1078, k; =e =7 =
=01, mp=k=1,8=1V “VKO||1/(|‘00||1 + 1).
Alg. 3: we follow the same setup as Algorithm 2 and let
n = 1078, ko = ¢ =01, m9=1,v=1.5.

Alg. 4: k=10"*79=n=01,p0 =1,v, = 1.5, v, = 0.5.

Our code for the implementation is available at https://
github.com/IlgeeHong/AdaSketch-Newton.

5.1. CUTEst

Among all the problems collected in CUTEst test set, we se-
lect the problems that have a non-constant f with n < 1000,
and contain only equality constraints with Jacobian G be-
ing full rank at each step for all three algorithms. This leads
to a total of 47 problems. For each problem, the initial iter-
ate zg = (@0, Ao) is provided by CUTEst package, and we
average results over 10 independent runs for Algorithm 1.
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and Jacobian evaluations for AdaSketch-Newton, Algorithm 2, Algorithm 3, and Algorithm 4 on CUTEst problems.
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Figure 2: The boxplots of the KKT residual, the number of objective and constraints evaluations, and the number of gradient
and Jacobian evaluations for AdaSketch-Newton, Algorithms 2, Algorithm 3, and Algorithm 4 on 7 LIBSVM datasets. The

right figure shows the decay trajectories of the log error log ||z — z*

, where each line corresponds to each LIBSVM

dataset (z* is estimated by the last iterate of the IPOPT solver (Wichter & Biegler, 2006)).

The boxplots over 47 problems of the three criteria for the
five methods are shown in Figure 1. From Figure 1, we ob-
serve that AdaSketch-Newton (both GV and RK) outper-
forms Algorithms 2 and 3 in terms of the KKT residual and
the number of objective and constraints evaluations. This ob-
servation is expected since AdaSketch-Newton employs a
smooth exact augmented Lagrangian as the merit function,
with an adaptive step acceptance condition to ensure a fast
local convergence. Our design leads to steeper decreases on
the merit function and fewer outer iterations. Compared to
Algorithms 2 and 3, AdaSketch-Newton requires gradient
and Jacobian evaluations to evaluate the merit function (cf.
(2)), which are not needed for evaluating the ¢; penalized
merit function used in the other two methods. Despite this
fact, we observe in Figure 1 that AdaSketch-Newton enjoys
a competitive performance on the number of gradient and
Jacobian evaluations with Algorithm 3 and even performs
better than Algorithm 2. In addition, we also note that our
adaptive modification of Algorithm 2 (i.e., Algorithm 3) is
superior to Algorithm 2 in all three criteria, which illustrates
the effectiveness of our adaptive technique. Finally, we see
in Figure 1 that the augmented Lagrangian method (Algo-
rithm 4) underperforms AdaSketch-Newton (both GV and
RK) in terms of all three criteria.

The performance profiles over 47 problems of the total num-

ber of flops for the five methods are presented in the left-
hand side of Figure 3 in Appendix C. From the figure, we
see that the two AdaSketch-Newton methods are the fastest,
followed by Algorithm 3. Algorithm 2 and the augmented
Lagrangian method are much slower than all three adaptive
methods. These results show that AdaSketch-Newton (both
GV and RK) is the most effective among Algorithms 2, 3,
and 4 in terms of the total number of flops.

5.2. Constrained Logistic Regression

We consider equality-constrained logistic regression prob-
lems of the form

| X
flx) = i Zlog (1 + exp (fyi . dZTa:))

i=1

st. Az =b, ||z|* =1,

where (y;,d;) € {—1,1} x R™ are the i-th data point and
A € R™*"™ and b € R™ are linear constraint coefficients.
We consider 7 binary classification datasets from LIBSVM
for which 12 < n < 10% and 256 < N < 10°. Details of
the datasets are given in Table 1. For linear constraint, we
set m = 10 and randomly generate each entry of A and b
from a standard normal distribution. Combining with unit
norm constraint, we have 11 equality constraints in total.
For all datasets, we set z( to be all-one vector and, again,

min
xER™
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average results over 10 independent runs for Algorithm 1.

The boxplots (with points) over 7 datasets for the five meth-
ods and the decay trajectory of the log error (log ||z — 2*||)
for AdaSketch-Newton-RK are shown in Figure 2. From the
figure, we have similar observations to CUTEst. AdaSketch-
Newton (both GV and RK) outperforms Algorithm 3 in
terms of the KKT residual and the number of objective and
constraints evaluations, and it performs better than Algo-
rithm 3 and the augmented Lagrangian method in terms of
all three criteria. Algorithm 3 is superior to Algorithm 2 in
all three criteria. The trajectory plots of all 7 datasets show
that the log error decays at least linearly, that is consistent
with our theoretical analysis in Section 4.

The performance profiles over 7 datasets of the total number
of flops for the five methods are presented in the right-
hand side of Figure 3 in Appendix C. From the figure, we
see all three adaptive methods (two AdaSketch-Newton, Al-
gorithm 3) are more effective than Algorithm 2 and the
augmented Lagrangian in terms of the total number of flops.

Table 1: Dataset Statistics

DATASET FEATURE DIMENSION (n)  # DATA POINTS (V)
W8A 300 49,749

A9A 123 32,561
SPLICE 60 1,000
SONAR 60 208
PHISHING 68 11,055
MUSHROOMS 112 8,124
IONOSPHERE 34 351

5.3. PDE-constrained Problem

We consider optimal control problem with Dirichlet bound-
ary conditions of the form

o1 2 Ciop2
r;1’151/1 5“93 — UHLz(Q) + §||yHL2(Q)

st. —Ax=yinQ, z =0o0n9d1,

where u € L*(Q) is a reference function and ¢ > 0 is a
regularization parameter. We discretize €2 on an evenly
spaced N x N grid. For reference function v = [u;;] ?gﬁl,
we follow Curtis et al. (2021b) and choose for all (7, j) €
{1,...,N} x {1,..., N} the following:

wyg = sin (44 2 (i = M) 4 cos (34 2 (- ML),

where e, eg > 0. We select N =3 and ( = 1071, and as
suggested in Curtis et al. (2021b), we choose ey = 107!
and eg = v/15. We set zg = (o, %o, \o) to be all-one ma-
trix and average over 10 independent runs for Algorithm 1.

The numerical results for the five methods are summarized
in Table 2 in Appendix C. From Table 2, we reconfirm our
observations from CUTEst and constrained logistic regres-
sion; AdaSketch-Newton (both GV and RK) outperforms
Algorithms 2, 3, and 4 in terms of all three criteria.

5.4. Sensitivity to Parameters

We test the sensitivity of AdaSketch-Newton-GV to four in-
put parameters, (11,0, 72,0, 90, ), on 47 CUTEst problems
used in Section 5.1. Here, (11,0, 72,0) are the initial penalty
parameters of the augmented Lagrangian; dy is the initial
threshold parameter that controls the accuracy of the ran-
domized iterative sketching solver; and [ is a parameter in
the Armijo condition in line search. As set in Section 5.1,
the default values are (11,0, 72,0, %0, 8) = (1,0.1,0.1,0.1).
Here, we choose a larger 7 o and a smaller 73 ¢ to make (2)
close to a standard augmented Lagrangian. We vary the four
parameters in ranges as follows: 11 o € {0.1,1,10}, 920 €
{0.01,0.1,1}, §p € {0.01,0.1,0.9}, 8 € {1077,1073,0.1}.
When we change one parameter, the other three are set as
default. The results are summarized in Figure 4 in Appendix
C. From Figure 4, we note that, for all three criteria, there
are only very marginal differences in the performance of
AdaSketch-Newton for different parameter settings. Thus,
we conclude that, by adaptively choosing suitable penalty
parameters within the algorithm, our method enjoys a robust
performance to the tuning parameters.

6. Conclusion

We proposed an adaptive inexact Newton method, called
AdaSketch-Newton, for solving constrained nonlinear opti-
mization problems. At each step, the method applies a ran-
domized iterative sketching solver to solve the Lagrangian
Newton system inexactly, and employs an exact augmented
Lagrangian merit function for selecting the stepsize via line
search. The method adaptively controls the accuracy of the
sketching solver, and selects suitable penalty parameters of
the augmented Lagrangian. Under mild assumptions, we
established the global almost sure convergence guarantee
with a local linear rate for the method; and we proved that
the linear rate can be accelerated to a superlinear rate if we
gradually sharpen the accuracy condition, which is achiev-
able by simply specifying a decreasing input sequence. We
demonstrated the superior performance and robustness to
parameters of our method via experiments on benchmark
nonlinear problems, constrained logistic regression, and a
PDE-constrained problem. The future directions include: (i)
conducting complexity analysis, (ii) applying quasi-Newton
updates for Hessians, and (iii) utilizing trust-region tech-
niques to select the inexact directions and stepsizes jointly.
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Appendix: Constrained Optimization via Exact Augmented Lagrangian and
Randomized Iterative Sketching

A. Proofs of Section 3
A.1. Proof of Lemma 3.4
Throughout the proof, we fix k£ > 0 and suppose the algorithm reaches z; = (xx, Ax). We note that

A ® X @ % A
Azp g = Dz — TuSu (S0 TRSky) Sk g = Azig — Wi (Bzij — Az, (17)

where Wy, ; = FkSk7j(S,€jFiSk7j)TS£ij. Since W}, ; is an orthogonal projection onto row(Saij), we rewrite (17) as
Az;w-H — Azk = Azk,]‘ - Azk — Qk,]‘Qg’j(Azk,]‘ - Azk). (18)

By Assumption 3.2, I'j, is invertible (see Nocedal & Wright (2006, Lemma 16.1)). Thus, Assumption 3.3 implies that
P(S™Tyz # 0) > 7 for any z € R""™\{0}. Given the relationship between row(S} ;T) and Qy. ;, we further have
P( gﬂ-z #0) = P(S,Z:jI‘kz # 0) > mforany z € R""™\{0}. Since {Qy ; }; are independent and identically distributed,
conditional on {j}* ; < oo}, the probability that dim(Uﬁiécol(Qh jk_ +4)) grows relative to dim (U _qcol (Qy,. jk  +4)) when
dim(uﬁzocol(Qk,jf_ﬁi)) < n+m, is at least 7. As a result, the probability that the event {dim(Ufiécal(Qkyj;«_lﬂ)) >
dim (U _ycol (Qy. j ,+4))} happens n + m times in N iterations with N' > n + m is dominated by a negative binomial
distribution. In particular, for N > n + m,

N -1

P(jf =1 =N+ 4ljf 1 < 00) < (n+m—1

) (1 o ,”)anfm,/Tner.
Taking N — oo, we have for any [ > 1,
P(ji = ooljf_y < 00) =0.
Thus, for any [ € N, P(jF < oo|jF | < o0) = 1. Furthermore, we have
P (N2 {jf < 00}) = P(ji < 00) x P(j5 < ooljf < 00) x -+ x P(ji < ooljf_y <00,...,jf <o)
= P(jf < 00) x P(j < ooljf <00)x -+ x P(jf < ooljf_q <o0)=1.

This completes the proof.

A.2. Proof of Lemma 3.5

Let us denote gy, to be the h-th column of @y, ; for 1 < h < d. We know forany 1 <[ < L,

~ (18) k-1 d T X
Azpjp = B2k = (Hjl:jﬁ,lnhﬂ (1 - qk,j,hqk,j,h)) (Azy g — Azp).
Taking /5 norm on both sides, we obtain
ke
A Jr—1 d T A
||Azk,jf — Az < ||Hjl:jlrilﬂh=1 (I - Qk,j,h%,j,h) [ - HAzk,jf_l — Azl
Let Fy,; denote the set of all matrices F}, ;, whose columns {fx .1, ..., f&,i,n+m } form a maximal linearly independent

subset of {qy, jx 1, @ 1,4} Patel etal. (2021, Theorem 4.1) implies that

k
;=1

J
||Hj:j17671

d T : .
oy (I = @rgnGi jn) | < \/1 — puin det(F, Fri) = k-
Thus, we have ||Az,€)jlk- — Azp|l < iy ||Az,€7j;€71 — Azy|. By Hadamard’s inequality and the fact that F}; ), ; is positive
definite, we know 0 < 7 ; < 1 (note that F}; is a finite set). Since Sy ; ~ S, 7id, we know the distribution of v;; is
independent of [. In particular, we let Qy, ; = {qk’jlkil_rl, cee qk’jlkflyd} and have Qy, 1,..., Qi 1 ~ Dy, tid. This implies
V15 -+ Vk,L ~ Yk, ttd, and completes the proof.
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A.3. Proof of Lemma 3.6

Throughout the proof, we fix £ > 0 and suppose that the algorithm reaches z; = (xx, Ax). From Lemma 3.5, we know
P(~, = 1) = 0; thus, there exists 7, € (0, 1) such that P(y, < 73) > 0. Let us define 7, := P (v, < 7%). By Assumptions
3.1 and 3.2, we know ||T'¢|| < Y and W), < W for some Tp and ¥ > 0. Thus, 640 /(||Tx[* ¥2) > 0. Let N be the

smallest positive integer such that N' > log{6x0 /(||T% > U2)}/log(7x). Then, we have 7Y < 0,6 /(|I0%|I? U2). We now
consider a procedure where for each iteration [, we generate y;,; ~ <y independently. Let Ly, be the iteration such that

gy <7} +--+ K, <m}=N.

We note the probability that the event {~;; < fk} happens N times in N iterations with N > N is dominated by a negative
binomial distribution. In particular, for N > N,

P(Lp,=N) < <% - 1) (1 — 7)) N NalV

Taking N — 0o, we have P(Ly = co) = 0. Thus, Ly is finite with probability one. We now apply Lemma 3.5. We have
1825 = Azl < (T 00) 1B 200 — Azell = (72900 ) 1424 - (19)

By Assumption 3.2 and the fact that ||(G,GE) 71| < 1/0% , with g ;, being the least singular value of Gy, we apply Na
et al. (2021, Lemma 5.1) and have

- 1,2 [ Bl 1 (A T(1Bel*v1)  ©
! §+(1+ + —— | | Bx]| + < < Uy 20)

)

Thus, we get

) ~ “) - ~ 19) (4),(20)
Irigy 112 ITkBz, gy + VLl < ITell 13205y — Azl < (T 30) ITell 1826 < (2900 ) 1Tkl @ VL]
Furthermore, we have
{Hven <7} +- + Hoyen, <7k = N} = {T72% 300 < 00/ (IT 1 93)} = {llrigs 1 < Ok0x [IVLEI/(ITk] 25) }-
Finally, we let J;, = j fk and complete the proof.
A 4. Proof of Lemma 3.7

Throughout the proof, we fix k£ > 0 and suppose that the algorithm reaches z; = (xy, A;). We first observe that

@
7550 < Ox6k VLl /TRl Wi) 2 Wi||Th(Azyy — Azg)|| < 06k VL] / [Tk

Az — Azill < 0465 [V Lk / ITl)

L || Az — Azil| < 065 |Tell | Azell/ | Tl
— HAzk,j — Azk” S 9k5k||Azk|| (21)
— HAZk,j — Azk” < 5k||Azk|| (22)

By Assumption 3.1, we know there exist constants Yz, T > 0 such that || Hy|| < Y and [|Gr|| < Tg. Welet T > 0be
aconstant such that Y5 V Yo V T < Y. We now divide (Vﬁfn )TAzh ;j into two terms as follows:

T X T T ~
k \T X o Vwﬁ,l;"]k Awk‘,j _ Vw[,f]k A:L‘k Vwﬁ,]fn A.’I}k,j—Aﬁck
(VL) Azm_(vAﬁfm Aney) T \wagk ) \an) TA\vact ) \axn, —an) @
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For the first term, we have
Ve [:k T Axy, () (I+T]2 ;.ch)V L + N1, kGTCk Axy,
V,\Lk ANy - Ck +n2,kaV Ly AN
_ <A-’Bk>T <I+772,ka 771,ng> (Vm£k>
Ay N2,kGr I Ck
@ [Azy T+ mxHe miGE\ (B GEY\ (Axy
a A)\k UQ,ka I Gk 0 A)\k
(Aﬂ%)T ((I+ N2k Hi)Be + mxGEGr (I + 772,ka)67$> (Aﬁck>

AN, Gr(I + n2,1By) n2,kGLGE ANy
= —A:l:kT ((I + 7’]2)ka) 7712,k G{Gk> Axy, — %AwkTGkaAwk

— 2k AN GRGT AN, — AN Gy (21 + 124 (By + Hy)) Ay
= —Aka ((I + 772,ka) : 7712’k GgGk> Az nlék

— AN Gr (2 + m2 k(B + Hy)) Ay,

* [l GEAN

Using (4), we have G Ax = —c¢j and GgA)\k = — (BpAxyg + Vg L)). Combining these equations with the above display,
we have

VoLl \T (A,
VAEIf,k AN
= —Az;” ((I + 2,k Hi) B + MGTGIC) Axy, — 77172%: lewll? = ANT Gy (21 + mo 1 (B, + Hy)) Ay,

— ok | BeAzy, + Vi Lk |)?
= —Ax,T ((1 + o.w Hy) By + MGTGk) Axy — ”1—2’“ lewll? = AXT Gy (21 + no (B + Hy)) Ay,

For the last two terms in the above display, we have

k
= ? | Bbay + Vol

2,k

= 1ok | BeAzy|

4 2
(:) —N2.k ||BkA£BkH2 + 2’)’]2’]€A£B;<;TB}C (BkAQBk + G{AA]C) — 77227’16 HBkAwk =+ GgA}\kH

2
= 772,kAwkTBI%Aka + nz,kAwkTBk 12,k xrl|” — n;k H
2
< mbar” Bi ATy +muda " BlGT AN — B [lGT AN
Combining the above two displays, we get
VoLl \T (Awy,
V;ﬁ’“ ANy
< -Amd ((I + 12,6 Hi) B + = kGTGk) Az, — 771 B llerl? — AMT Gy (21 + mo g (Bi + Hy)) Ay,

772 k ||V Ek” + 72, kA.’Bk BkAﬁk + 72, kA)\k GkBkA:Bk — 772 k ||GTA>\]¢H2
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Assuming 7; ; > 72,1 at the moment and using Cauchy-Schwarz inequality, we get

(Vz£§k>T (Awk> < R 9Ly 2 - AaeT (T +nea(Hy — Bi)) B+ EEGLGy)
vaLk ) \ax, : 9 Uk
— AN G (21 + 2k Hy) Ay,
- —"2—2”“ IVLyll? — oAz (Hy — Bi)ByAay, —

2,k
2

I

’7127’“ Az T GL G Ay,

— B GT AN — 2807 GAzy — ok AN G Hi Ay

I /\

”2 MUV L + nog | (Hk — Br)Azy|| || BeAwy|| — Azy, ByAzy, — %mfcgckmk

- 77271@ IGE AN + 2 | AN |GrA@x]| + 124 [|GT AN | A4 |

IN

— B NTLP + 20T Bl - A (B + BEGEGL) A, — BE||GT AN
+ 2 AN | GrAzy || + n2p T || GEAN| [ Az || -

Applying Young’s inequalities for the last two terms, we obtain

2| ANl G| < G A

Az,

i Y ||GE AN Az < £ 7’“ |GT AN || +n2kr2 Az

Combining the above two displays and using Assumption 3.2, we get

VoLt \" (Awmy
V)\ﬁ’“ AN

2 .
< —BE VL + 8mx T AP — B G AN+ MK | Ax 2+ |G Ay
4 8 M.k€c
~ AT (Bk + I kGTGk) Az,
8
< UL - A AP 4 a0 Al - AT (B (T - ) 6T6n) Am b

In order to bound the last two terms of the above inequality, we decompose Az as Axy, = Avy, + Auy where Avg, =

GT Avy, for some Avy, and Awy, satisfies Gy Awuy, = 0. Then, we have ||Az||? = [|Avg|]? + [[Aug||? and ||Avg||? =
_ _ 2 _

IGE Ave ]2 < Y| Avg[2. Thus, |GrAai]* = [GrAvy|® = [|GhG Avy " > €& [ Avil* > (62/72) [|Avk|*.

Assuming 7y, > 16/(n2,x¢¢) at the moment and using Assumption 3.2 and Cauchy-Schwarz inequality, we get

8
31,k 02 [| Az [|* — Az " (Bk + (mk - ) GZGk) Axy,

2 mxéa
8
= 37]2’;@'1\2 ||Aa:k|\2 — AugBkAuk — 2Au£BkA’Uk — A’U,{BkA’U]C — (77127k — n f ) ||GkA:l:k||2
2,kSG
2 2 2 2 M.k 8
< B Y2 Al € g+ 20 A | A+ A (T - )
n2.68G
8
< (30T - €a) Al + 2T | dus] [0 + (65 + 1) o - (45 - L fi) A7

Applying Young’s inequality for the second term, we obtain
272 272
20 A 3] < 52 A 4+ 2 awel? < 52 faail? + 2 [awg.
2 92 2 &B
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Combining the above two displays, we get

312, T° HACBkHz —Axzy,” <Bk: + (nl’k — ) GTGk> Axy,
2 muée

3z mrks 8
(mﬂ?— I8 + 2 Al + (6 + 1) | Avi ] - S~ oy ) 1Akl
772,k

5
272 8
= (a2 = ) 18wt + (P b en+ T+ S50 TG P

Combining the above inequality with (24), we get
VoLE \T (Amy
\Y A/.Z’f,k AXg

In order to make the second term on the right-hand side negative, we let

772k

(3772’612 ) ||A:‘! ||
8 2

272
— T
+ ( & +&p + + e T2

gB
< , 25
2k = 1oy 25

Without loss of generality, we assume Y/2 > 1 > (g V £¢). Otherwise, we replace T by TV 2, £5 by £g A 1, and £ by
&c A 1. Then, we obtain

272 8 272 3T 8 37?2 8q 25 1 8 1 2 2.5
2 gy o 20 ¢ 3L, S 2L, e o 12 25
B n2,k Y {B N2,k Y § Mk Y2 T dmak mex L T dnek Mok T M2k
Using the above inequality and (25), we have
Ve Ek r Az, 772 k 25 m }E2 2 M2.kéa 2
< — - 22 | Az - 2224 ) A — ET AN |7 26
(S ) (3% V17 = 5 fawul + (22 - TAE ) e - A AN, o
In order to make the right-hand side negative, we let
572
> . 27)
M,k 7727k§é (

Notice that (25) and (27) imply 71 1, > 12,1 and 1 > 16/ (02, 1€¢), hence, justify our presumptions. From (26), we get

Vi LE Axy | GD 772 k mkéa 2 &B 2
n VC’ ) é é T
(VAQ%i) <A>\k> == I H 8 1A 4 I d

2 Mok 2 M2.kéa 2 M2.kéa 2
S—THVQ@H i ANl —THAkaH

< TR gLy - TS Az 28)

Now we develop the second term in (23). By Cauchy-Schwarz inequality, we get

v:zzﬁ,lf]k r émkd - Amk 2 A.’Bk,] Amk ’ I+ 7’}27ka ’I’)Lng Vmﬁk
vkﬁfm AN j — AXg Ak — AN N2,kGr I Cr

A
N T
@ (Aka,j - Awk) <(I+772,k:Hk)Bk +miGEGL I+ nz,ka)Gf) (A-’Bk>

AN — ANy Gr(I 4 12,1 Br) m2,kGLGE ANy
< <Af\’;j - iii) (ﬁii) (14 m2x )T + (71 + 72,6) T2 +2(1 + 72 1))
|G SN G o s amar ey
G E) erres .
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27
Using T/2 > 1> (£ V&) and (25), we getn1 . > (5Y2)/(no,kE2) > 20/na,1 > 40-247. Then, we have 19/6 < n; T
and further obtain

197
3T + %3 +m Y% < . + e Y% < 2k Y2

A:Ekﬂ- — Aa:k AiL’k
(S allE)] @
Finally, we obtain
() ()= (i) (50)+ (i) (B m3v)
VALy, ANy VALY, AN VALy, ANy, — AN
Aa:k A:I?k,j — A:Bk A:I:k
ANy, AXp; — ANy, AN,

Az, 2 2 Axy, 2
(AA]C> + 25k771,kT A)\k

< - 7L - (A 21 ) o,

Using the above inequality, we get

Vv ﬁk r AiL’k i — A:l:k
TN — R < 2
<V)\£’:7k) (AA]CJ' — AN,/ T 2771,kT

(28) f
@) 1o M2,k8G
< - IVERP - e

2
21 X2
3 + 201k

@2 k xEa
SRy | NS

In order to make the right-hand side negative, we let

5, < M2,kéG
- 16771,kT2.

Thus, the descent direction condition is satisfied as long as 721 < &5/12Y2, 0y ko r > 5T2/§é, and 5,m /M2 <
&c/(1672). Finally, we let Y «+ 12Y2 /&5 vV 572 /€2, V 16T2 /¢, and complete the proof.

A.5. Proof of Lemma 3.8

We denote the event that the algorithm reaches zj, as Zj.. Then the event N2, Z;, implies that the algorithm generates the
iterates infinitely. From Lemmas 3.6 and 3.7, and noting that the Armijo condition (13) can be satisfied for small enough cv
as long as Azy, is a descent direction (as implied by Lemma 3.7), we have P(Z1|2x) = 1, Vk > 0. Thus,

P(NoZr) >1- Y P(Zf) =1~ Z/P(Z,§+1|Zk)P(Zk)dzk —1. (30)
k=0 k=0

We now start from finding the lower bound of 5}§ialn1,k /M2, Since the updating rule of the parameters (12) increases 77 j, by
a factor of v2 and decreases 72, by a factor of v, we know that 11 o < 71, and 72,9 > 12, for all £ > 0. By Assumptions
3.1 and 3.2, we know there exist constants Y,,, ¥ > 0 such that T, < T, and ¥, < ¥, Vk > 0. Thus, for k > 0, we have

(1+m1k + n2,0) YRTR < %(Ti‘l’z + 12,0 0 0%) + TP 0% = %(Tﬁ‘lﬂ + 1,0 Y50 + 120 L7 0?).
, 1,

Using the above inequality, we have

Sk ® (0.5 = B)mk < (0.5 = B)mo
M2,k (L4 m1g +02,) Y207 = Y202 411 g L2W2 + 190 (L2202

By Lemma 3.7 and (31), we have

€1y

1 oemp 1 (0.5 — B)no
>7T < — —— < = A : .
MeM2e = Ly, M2k S T Mok = T T%\Iﬂ +772,0T%‘I’2 +ﬂ1,0T%‘I’2

Notice that the lower bound of 71 72 x and the upper bounds of 12 ., 6571,k /72,1, do not depend on k. Since the updating
rule of the parameters (12) implies that 11 72, increases by a factor of v, 72 ;, decreases by a factor of v, and dxm1 1 /2.1
decreases by at least a factor of v, there exists an iteration threshold K such that (11 1, M2 %, 0x) = (1,K, M2,k , Ok ) for all
k. Using (30), we complete the proof.
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A.6. Proof of Lemma 3.9

By Assumption 3.1, we know that V.£,, is Lipschitz continuous. Let us denote the Lipschitz constant of V.£,,, by T,, . We
have for any k£ > 0,

1
Lo (2o + axDzy) = L5+ an(VLE )T Azy + oy, / {VLL (2 +tapAz,) — VLE VT Azdt
0

1
< L5 4 ap(VEE )T Az + T, 02| Az / Lt
0

= LE 4+ an(VLE )T Azy, + 1y, 0f | Az /2.
By Assumption 3.2, we know there exists a constant ¥ > 0 such that ¥;, < W for all £ > 0. Using (22), we have
[Azk|| < Skl|Azg]| + [|Azg]| = (55 + 1) [|Azg]| < 2| Az (32)
By Lemma 3.8, we know that 12 > 1o  forall k > 0. Welet Y, := T, V---V Y, . Then, we have
ETIk (Zk + ozkAzk) < [:]:’k + ak(Vﬁ,’;k)TAzk + OéiTnHAzkHQ/Z

(32) -

<LE 4 an(VLE T Az + 2077, || Az |2

&0)
<LE 4 ap(VLE )T Az + 20320, 02 |V L,
(11) _ _
< Lh 4 ap(VLy ) Az — (070,92 /ny ) (VLY )T Az
<Ly ap(l =40 YU /n k) (VLY )T Azy.

Now, we let
4oy, Y, U2 1-—
_ o‘kn Zﬂﬁakg( 5)7]2271(
K 4Tn‘lf
Since the upper bound of ay, does not depend on k, there exists oy, > 0 such that for any &, apnin < ag, when we do, for
example, backtracking. Using (30), we complete the proof.

1

A.7. Proof of Theorem 3.10
By Lemmas 3.7, 3.8, and 3.9, we have for any £ > K,

_an
[fzf - E’f,K < Oékﬂ(Vﬁf,K)TAzk < o karBl|VLE?/2 < =12, 5 Qmin VLI /2.

Summing over k > K, we have

o0
2 2 K .
Z VL™ < P— <‘Cnx - ;{nxu;l\ﬁ(:c,)\) < 0.
k=K ’
Therefore, |V L] — 0 as k — oco. Using (30), we have P (||VLx|| — 0 as k — oo) = 1. This completes the proof.
B. Proofs of Section 4

B.1. Proof of Theorem 4.3
We first show that for all sufficiently large &, a unit stepsize is admissible. It suffices to show that for all sufficiently large k,
‘an (Zk + Azk) < ,Cicn + 6(V,C’:,k)TAZk

Letu € R, M : R! — RPX7 and w : R! — RY. Let us denote the columns of M (u) as m;(u) € RP fori =1,...,q and
the entries of w(u) as w;(u) fori = 1,. .., q. We can write V,, (M (u)w(u)) € R*P as

Vu(Muw)w(u)) = Zwi(u)vumi(u) + Vaw(u) M(uw)T = (w(u), VoM (w)) + Vyw(u)M(u)T.

i=1
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With the above definition and using (2), we can compute

V2Ll =Va (Vali +muHyVals +miGler) = He +no (Valy, Vo Hy) + HE) +m1 i ((cr, VGi) + GLGr)

TNk

VAE,,k% = Va (Ck + Uz,kaVmﬁk) = T]kaGng,
Vel =Va (Vali + n2 e HyVaLly + mxGLc) = Gr + o (Vo Lli, VAHR) + GrHy) .

By Assumption 4.1, we know V2L, is continuous over X. We define

ST mkHE +mrGEGr G+ G
G + n2,:GrHy N2k GrGE

Using [|VL| = [|(VaLr, cx)|| = o(1), we have V2£f7k = Hj, + o(1). We now apply Taylor’s theorem and obtain

_ ~ T - 2
<k o4 Va Lk g Azy, Azy, 2k AfEk Az,
=T TAVALy ) AN, ANy, " AAy,
ko (Ve Ly g Ay, Ay TH Ay, Am ?
m T\ Vi Ek AN, AN, ) TF\AN, AN,
m 5\ v, L’f Ax.) T2 \Ax. ) TR\AN,
2
7 1(4«’6/«) <(I+772,ka:)Bk + n1,,GL Gy, (I+T]2,ka)Gf> <Awk> <A-’Bk)
2\AX; Gr(I 4 2,1k Br) m2,:GLGY ANy AN,
:Ek +1 Vwﬁl;]k T éwk +1 éil}k T,H émk—Amk
T2 \VaLk ) \Ax) T2\ AN TR AN, - AN,
~ T 2
1Az 2 (I 4+ m2xHg)Br +mxGiGr (I 4 m2xHy)GE Az, Az,

2\ A\ ¥ Gr(I +n2,xBk) N2k G*GY ANy AN
_pk L (Ve cr T Awm 41 Ay, TH Axy — Ay,
=Lt V,\E Axi) T 2\AX.) TF\AX, = AN,

1 éwk (I+772,ka)(Hk—Bk) 0 A:Bk To @:l?k 2

2\ A\ N2,,5Gr(Hy — By) 0/ \AX; ANy :

By Assumption 4.2, we have ||(Hj, — Bi)Axi| < ||(Hr — Bi)|| |Azk|| = o (|| Azy]). Thus, we have for any k > 0,
an(wk—i—ﬁmk,)\k—i—ﬁ)\k)
1 (Vo Lk r Az Ax Az — Az
<k o1 (Valy, Az, k Az, k
L v N e R e L] [ evibre]
A A
3| (50 -+ et — 3yl + sl 1~ B sy + (H(Af’;)
G2 Vark \T (A A A A
k Ty Ty Ty T
“oheg(wer) (55 + w2 (53] (850)] - (H(mk) )
A:Bk A:ck 2
ANy
A Az |]?
(%) +0(H(Af’£) ) e

‘an (mk + A:I:k, Ak + AAk)

+

_|_

)
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(05 — 5)772,16
(I +mk + n2n)TiW2’

Using the fact that 8, < 6l = we have for any k > 0,

4.05772 k
\112

0) (n VL5 T/A
L5 -mmelved 2 - 055 (35r) (35):

Awk
ANy

V ﬁk r A:Ek
<p k ~ .
VAE AAk
Thus, there exists an iteration threshold K such that for any & > K, we have

V ﬁk 4 A:L’k 2 A:L’k Aa:k V L‘k T Ail:k
(V,\Ek ) (A)\;) + 46T (1 + 11k +12,) ‘(A)\k +o <p VAEk Ar. )

Plugging the above inequality back into (33), we know for any k > K,
X X Vol \" (A X X
Lo (T + Az, Ao + AXN,) < L)+ 8 <VA£,’€ ) <A)\:> & Lo, (21 + Azp) < LY+ B(VL; )T Az

8.1
4.056: T3 (1 + 11,k + n2) [Aze]* < (0.5 - B) Jaz? < (05 B)Tm HF NPV Ll

Thus, for any k > 0, we have

VoLE T (A
<v>\£k ) (Aii) + 4.0505 Y2 (1 + n1k + 12.1)

This completes the first part of the proof. Next, we show for all sufficiently large k&,
lze + Az — 2*|| < (14 )00k |z — z*||, forany ¢ > 0.
We start from dividing 2z + Azk — z* into two terms as follows:

xr + Azxy — m*) _ (:ck + Az — m*) 4 (Amk — Aa:k> . 34)

A = (A/H—A)\k—)\* A+ AX = A T AN — AN

For the first term, we apply Assumption 3.2 (I';, is invertible) and have for any k& > 0,
zp+ Az —a*\ _ (By GF -1 By GF\ [z — x* n Axy,
A +AXN =X\ Gy 0 Gy 0 A — A* ANy
@ ( Bg -1 GI\ [z —2*\  (Bx Gf 71V£
~ \Gk Ap — A* Gy, O F
_ Bk. GT T — x*
(e ) (( )(Ak»)—m)
B G —x*
Q (GZ ) (( k) (f\’; - f\) — (VL) — w*)) : (35)

By Assumption 3.1, we know V2£ is continuous over X'. We apply Taylor’s theorem and obtain

1
VL, —VL, = / \V&rs (g +t(x* — @), Ap + E(A = Ag)) <§k A*) dt
0

[V H (g A (@t — k), Ak EA = M) GT (@ + t(xF —xp))\ [ — 2
/O( U Gt —m)) o ><,\Z—,\*>dt

[ (8 ) D)

Plugging the above equation back into (35), we have

xp + Az, —x*\ (B GZ -t ! B}g—Hk(t) Gg—Gk(t)T xr, —x* dt
X FAXN, =X T \Gr O 0 G — Gi(t) 0 A — A* ’
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By Assumption 3.1, we know H and G are Lipschitz continuous over X'. Thus, we apply Assumption 4.2 and have

x, + Az — x* < B, G} -t LB, — Hiy(t) GE —Gpe(O)T\ (), —x* it
A+ AN — A - G, O /0 G — Gk(t) 0 A — AF
< By, Gg B / By, — Hi(t) G — Gg(t gt
- Gy 0 0 Gy — Gk(t) 0 >\ — A*
<0 (m <f\k )\*) H> +0 (H ) (36)

Taking /5> norm on both sides of (34), we have

i + éwk —x* < éwk — Axy, s + Az — x* Awk i, + Az — x*
A F AN =X || T [ \AXN — AN A+ AN — A A+ AN — AF
T — x* x; + Az — x* x; + Az — x*
<o (52 *)H+H(Ak+mk»)H)+H(Ak+mm>H

(36) xy Ty —x*
G )= (Gl

21)
< 06,

Ok

This completes the proof.

B.2. Proof of Corollary 4.4

By the proof of Theorem 4.3, we know that o, = 1 for all £ > K regardless of the value of ;. Taking {5 norm on both
sides of (34), we have for any k > 0,

x + émk —x* < éxk — Az, n x + Az, — x*
A+ AN =X T II\AXN, — AN, A+ AN — A
21 Axy, x, + Az, — x*
o ()] | GrraR R
T — Ty + Az — x* xy + Az — x*
<o (R30G5 D+ G s
9 T — T E— T — X 2
2o |23 o (G5 o (G
x x* T x* 2
kE— E—
Gl (IG=n):

= O(Gkék + Tk)

This completes the proof.

C. Additional Algorithms, Tables, and Figures

Algorithm 2 and Algorithm 3 use the ¢; penalized merit function of the form ¢, (x) = f(x) + 7||c(x)||1. Termination
Test 1, Termination Test 2, Model Reduction Condition, and w‘kfi“l are referred to in Byrd et al. (2008). Furthermore, we set
o=71(1—¢€),=r2=|VLo|1/(]|cols +1) V1 asin Byrd et al. (2008). Algorithm 4 uses the augmented Lagrangian
function of the form £,,(z, A) = L(z, X) + (1/2)]|c(z)|*.

Figure 3, Table 2, and Figure 4 present additional results.
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Algorithm 2 Byrd et al. (2008) with the ¢; penalized merit function

1: Input: initial iterate zo; scalars g, mo, 3,k > 0, k1,¢,7,1m € (0,1);

2: fork=0,1,2,... do

3:  Compute f%, V fx, ck, Gk, Hi, and generate By;

Set Azk < 0 and compute 7, by (7);

while Termination Test I AND Termination Test 2 does not hold do
Update Az and 7y, by GMRES;

end while

if Termination Test 2 is satisfied and Model Reduction Condition does not hold then
Set 7, < Tr‘kr,ial +107%;

10:  endif

11:  Select a to satisfy the Armijo condition and update the iterate by (14);

12:  Set mpy1 ¢ Tk

13: end for

R A A

Algorithm 3 A modified Byrd et al. (2008) scheme with adaptive design

1: Input: initial iterate zo; scalars {g, mp, ko > 0, v > 1,1 € (0,1);
2: for k=0,1,2,... do
3:  Compute fi, V f, ¢k, G, Hg, and generate By;
4:  Set Azk < 0 and compute rj, by (7)
5:  while Termination Test 1 does not hold do
6: while |||, > ki ||VLg]|; do
7 Update Az, and 7}, by GMRES;
8 end while
9: if Model Reduction Condition does not hold then
10: Set 7y, < mpv and Ky < ki /%
11: end if
12:  end while
13:  Select a to satisfy the Armijo condition and update the iterate by (14);
14: Set 1 ¢ T and Kgq1 — Ki;
15: end for

Algorithm 4 Augmented Lagrangian method (Nocedal & Wright, 2006, Algorithm 17.3)

1: Input: initial iterate 29 = (xo, Ao); scalars pg, 70, £ > 0, v, > 1, v, € (0,1), 7 € (0,1);
2: for k=0,1,2,... do
30 Setxj, < xy;

4:  while [|V;L,, (x}, Ax)|| > 71 do

5: Compute the gradient and modified Hessian of the augmented Lagrangian at (x3, Ag);

6: Find a search direction Ax;, via an inexact Newton subproblem solver with GMRES and a forcing term x;
7: Select vy, to satisfy the Armijo condition and set x; < xj + apAxy ;

8: Update k;

9:  end while

10:  Setxpi1 < xf and A1 — A + prcr;
11:  Set pigy1 < vy and Tp4q Ve Ty
12: end for
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P%rformance Profile on LIBSVM Datasets

Pe1rformance Profile on CUTESst Problems
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Figure 3: The performance profiles of the total number of flops for AdaSketch-Newton, Algorithms 2, Algorithm 3, and
Augmented Lagrangian on CUTEst problems (Left) and on 7 LIBSVM datasets (right); the ratio of the problems solved on
the y axis, while the proportion of the total number of flops (called the performance ratio and denoted as 7) on the x axis.
See Dolan & Moré (2002) for more details.

Table 2: Numerical Results for PDE-constrained Problem

METHOD KKT RESIDUAL  OBJ. AND CONS. EVAL  GRAD. AND JACOB. EVAL
ADASKETCH-NEWTON-GV 1.79€E-5 18 10
ADASKETCH-NEWTON-RK 4.22E-6 14 8
ALGORITHM 3-GMRES 9.10E-5 42 12
ALGORITHM 2-GMRES 9.95E-5 130 34
AUGMENTED LAGRANGIAN 9.99€-5 278 73
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Figure 4: The boxplots of the KKT residual, the number of objective and constraints evaluations, and the number of gradient

and Jacobian evaluations for AdaSketch-Newton-GV with different settings of the tuning parameters (1 0, 72,0, 00, 3) on

CUTEst problems.
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