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Abstract
In this paper, we introduce a strategy for iden-
tifying textual saliency in large-scale language
models applied to classification tasks. In visual
networks where saliency is more well-studied,
saliency is naturally localized through the con-
volutional layers of the network; however, the
same is not true in modern transformer-stack net-
works used to process natural language. We
adapt gradient-based saliency methods for these
networks, propose a method for evaluating the
degree of semantic coherence of each layer, and
demonstrate consistent improvement over nu-
merous other methods for textual saliency on
multiple benchmark classification datasets. Our
approach requires no additional training or ac-
cess to labelled data, and is comparatively very
computationally efficient.

1. Introduction
Trained on the vast swathes of open-source text available
on the internet, large-scale language models have demon-
strated impressive performance in text generation and clas-
sification. Most recently, models with transformer-stack ar-
chitectures have shown an impressive ability to focus on
task-salient elements of language and utilize that focus to
achieve superhuman performance in certain constrained ar-
eas. However, there is a growing concern that despite this
performance, these models lack transparency and have un-
predictable blind spots in certain areas. This has led to an
increased focus on salience in natural language i.e. identi-
fying which elements of text the model considers important
for making a decision.

Unlike computer vision, where the pixels relevant to a task
are often grouped together, the words that are important
in a movie review, article or resume may not be close to
each other. This lack of locality is reflected in the preferred
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architectures, with convolutional heads to visual networks
encouraging local associations while stacks of fully con-
nected transformer layers allow natural language tokens to
associate more globally. This free association, combined
with the degree of model complexity in transformer archi-
tectures, leads to challenges in interpretability, as not all
feature spaces within the hidden layers of the network map
cleanly to natural language.

Current methods that explain the decision making pro-
cesses of transformer-stack architectures focus on the em-
bedding layer. However, these methods often result in con-
fusing or redundant explanations, as information gets mud-
dled passing through multiple layers of transformers in the
stack. Along with (Rogers et al., 2020), we hypothesize
that a more meaningful, clear, decision-oriented represen-
tation exists in solely the later layers of the network. In this
paper, we propose a method that only captures the signal of
the later layers of the transformer stack and projects it back
onto the token space of natural language. Our method can
be paired with any layer-based saliency metric, explicitly
accounts for multiple layers of self-attention mechanisms
and reflects the implications of the complex pre-training
and task specific fine-tuning on the layers in the architec-
ture. We validate this method both with objective mea-
sures of model importance (Hiding / Revealing Game) and
human measures of external consistency (Token Overlap),
and demonstrate significant improvements over the state of
the art.

Our contributions are:

1. We propose a computationally-efficient method using
a pre-trained language model (LM) head to “decode”
the hidden layers by mapping their features back onto
the token space and present its application to an exam-
ple saliency approach (Grad-CAM (Selvaraju et al.,
2017)) for both binary and multi-class classification
problems. Our method not only requires no additional
training or labels and works for any saliency method
that calculates layer-specific saliency, but prioritizes
task-specific information over language structure.

2. We demonstrate improvement over state of the art
methods for natural language explainability in two ob-
jective measures. In the Hiding / Revealing Game,
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we show that the removal / addition of tokens we be-
lieve are important and damages / improves the per-
formance of a network more than our competitors.
In Token Overlap, we show that our method has dra-
matically fewer tokens that are important for multi-
ple classes; indicating that our important tokens are
truly indicative of the class in question. Notably, we
achieve these improvements despite not directly opti-
mizing for either metric, suggesting a robust result.

2. Related Work
The concept of feature attribution or saliency scores ini-
tially began in computer vision (CV) where the interest lay
in being able to explain the object detection and classifi-
cation decisions of convolutional neural networks (CNNs).
A large swath of literature has arisen in the CV domain
on model explainers that broadly fall into a several over-
lapping categories: gradient-based methods, propagation-
based methods, and occlusion-based methods (Simonyan
et al., 2014; Zeiler & Fergus, 2014; Springenberg et al.,
2014; Bach et al., 2015; Noh et al., 2015; Zhou et al., 2016;
Selvaraju et al., 2017; Sundararajan et al., 2017; Shrikumar
et al., 2017; Lundberg & Lee, 2017; Smilkov et al., 2017;
Fong & Vedaldi, 2017; Zhang et al., 2018; Gu et al., 2018;
Omeiza et al., 2019); although some avoid these categories
(Castro et al., 2009; Ribeiro et al., 2016).

The natural-language processing (NLP) community has
adopted, extended, and introduced new variants of these
methods for both simpler long short-term memory (LSTM)
architectures (Li et al., 2016; Arras et al., 2017; Kádár
et al., 2017) and more complex state-of-the-art transformer-
stack-based architectures (Guan et al., 2019; Wallace et al.,
2019; De Cao et al., 2020; Chefer et al., 2021b; Hase et al.,
2021; Feldhus et al., 2021). Additionally, with the lan-
guage domain and their attention-based architectures came
another category of explainability methods that either visu-
alize or use attention weight values for explanations (Bah-
danau et al., 2014; Martins & Astudillo, 2016; Strobelt
et al., 2018; Liu et al., 2018; Thorne et al., 2019; Kobayashi
et al., 2020; Hao et al., 2021). However, this new category
did not come without its share of controversy, with many
papers questioning or defending their explanatory power
(Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Serrano
& Smith, 2019; Pruthi et al., 2019; Vashishth et al., 2019;
Bastings & Filippova, 2020).

The transfer of explainability techniques from CNN and
LSTM architectures to far larger and more complex archi-
tectures with stacks of multi-headed self-attention mecha-
nisms has proven challenging. Unlike CNNs and LSTMs,
the transformer stack has little cognitive motivation, in-
stead relying on a pre-training regime over a massive cor-
pora to learn language structure. Many works have at-

tempted to derive meaning from the learned structures in
the architecture including (Voita et al., 2019; Michel et al.,
2019) who study the role of multiple heads, other ap-
proaches (mentioned previously) study information flow in
the self-attention mechanism as part of their attention based
explainers, and still others simply probe and visualize the
overall architecture (Tenney et al., 2019; Kovaleva et al.,
2019; Vig, 2019; Jawahar et al., 2019; Rogers et al., 2020;
Likhosherstov et al., 2021). However, despite these works,
explainability methods for transformer-stack architectures
fail to account for a principal component of the architec-
ture, the stacking of transformer blocks. Unlike previous
works, we propose a saliency method that explicitly ac-
counts for its representation after multiple layers of self-
attention mechanisms and reflects the implications of the
complex pre-training and task specific fine-tuning on the
layers in the architecture.

3. Proposed Saliency Method
We propose a method for producing explanations for deci-
sions made by language models with encoder-based trans-
former architectures such as BERT (Devlin et al., 2018)
and RoBERTa (Vaswani et al., 2017). We extend saliency
techniques from the CV domain to the NLP domain in a
way that tracks the provenance of intermediate layers in
the original input space. This allows our method to capture
layer specific information about the contributions of each
token in an input sequence to a language model’s final de-
cision.

In the following subsections, we use Grad-CAM as the
driving example for a layer-wise saliency technique. How-
ever, as will be seen in Algorithm 1, our method is agnostic
to the specific saliency method as long as the method can
calculate layer specific scores. We show that by using a
language model head, we can compute interpretable expla-
nations at any layer and for any saliency metric. The nov-
elty of our overall method is the ability to assign explana-
tory power to the original tokens in the input sequence from
scores calculated using information only downstream from
a specific hidden layer in a transformer stack.

3.1. Calculating Layer Saliency Scores

One way to calculate scores that explain the contributions
of a token is using Gradient-weighted Class Activation
Mapping (Grad-CAM), a gradient-based saliency method
which was first proposed in (Selvaraju et al., 2017) to pro-
duce visual explanations for CV problems. Grad-CAM is
one of several gradient-based methods that has the advan-
tage of being able to perform class-discriminative localiza-
tion for any CNN-based models without requiring architec-
tural changes or re-training.
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We compute the gradient of the predicted score yc (before
softmax) for class c with respect to an output of a trans-
former block hl. These gradients can be viewed as weights
that capture the “importance” (for a specific class c) of each
of the K features for each element of the output sequence.
Specifically for Grad-CAM, this represents a partial lin-
earization of the model downstream from hl. We calculate
the Grad-CAM scores as a weighted combination of the
features in the output and use a ReLU function to assign no
importance to elements with negative scores. Explicitly, let

αc
l =

[
. . . ,

∂yc

∂hk
l

hk
l , . . .

]
∀k = 1, . . . ,K (1)

scl = g(αc
l ) = ReLU(

K∑
k=1

αc,k
l ) (2)

where the hk
l are the column vectors corresponding to the

K features of the output of layer l in the stack of trans-
former blocks, αc

l is a matrix of size n × K whose ele-
ments are the scores for each of the features of the output
hl, and scl is vector of size n whose elements are the scores
aggregated over all features.

Note, the scores scl can be replaced with any method1 that
calculates layer specific scores for each of the features by
replacing (1) with another matrix of layer specific feature
scores and some other feature aggregation function g(·).

If we calculate the scores with respect to 0-th layer outputs
h0 (embeddings of token, segment, and positional informa-
tion), the elements of the score vector correspond directly
to the tokens of the input sequence. However, once an in-
put sequence passes through a transformer block (described
explicitly in (5) in Section 3.2), this relationship no longer
holds. Unlike CNNs where there is a clear provenance be-
tween the pixels and the outputs of the convolution filters,
the multi-headed self-attention mechanism of transformers
are far more complicated. The receptive fields of a CNN
are local patches, whereas the receptive fields of the out-
puts of a transformer block are far more global consisting
of the entire input. This is because each self-attention head
uses the entire input to learn new representations for some
subset of the features making each element of the output
a function of all elements of the input. Many works (Vig,
2019; Tsai et al., 2019; Likhosherstov et al., 2021) have
attempted to attribute meaning to the attention mechanism
with varying levels of success; however, they primarily fo-
cus on a single transformer block. The meaning of an out-
put sequence when the input sequence is passed through
multiple transformer blocks in a stack is even less clear.

Thus, while it is relatively easy to calculate scores scl with
respect to the embeddings (l = 0), which already lie in
the token space, it may not necessarily produce explana-

1See Appendix (A) for examples with other methods.

tions that are most relevant to a models prediction. (Rogers
et al., 2020) surveys 150 papers and derives potential ex-
planations for the roles of the layers of the BERT model.
They conclude that the lower layers have the most infor-
mation about linear word order (i.e. the linear position of
a word in a sentence (Lin et al., 2019)), the middle lay-
ers contain syntactic information, and the final layers are
the most task-specific (Jawahar et al., 2019). Therefore, it
would be worthwhile to also explore the explanatory power
of the saliency scores of the other layers l > 0 where only
information in the network downstream from that layer is
included in the score. By only capturing information down-
stream from a specific layer, we ignore potentially task-
irrelevant information in the earlier layers of the network.

3.2. Interpreting the Hidden Layers

In order to calculate saliency scores, e.g. (2), that only cap-
ture information downstream from a specific layer, we need
to project these scores into a space where the elements of
the projected vector correspond directly to the original to-
kens of an input sequence. This allows us to have a mean-
ingful version of the scores where we can directly under-
stand the contributions of each token. And because the
elements of a scores vector correspond directly to the ele-
ments of a transformer block’s outputs, the problem of pro-
jecting scores into a token space is equivalent to the prob-
lem of projecting outputs into a token space. Thus this can
be mathematically formulated as finding a mapping f that
minimizes the loss L(·) between the output of a transformer
block and its closest possible token space representation t,

argmin
f

L(t, f(hl)) (3)

where f holds for any layer l in a transformer stack and
t is a n × V right stochastic matrix whose rows lie in the
token space T defined as the surface of a V -dimensional
unit hypersphere. The axes of this hypersphere correspond
to the V tokens in a vocabulary, so any point on this hyper-
sphere’s surface is the weighted contributions of the tokens.

One of the pre-training tasks of models with encoder-based
transformer architectures (e.g. BERT) is the masked lan-
guage model task, which is trained to minimize exactly
this loss when L(·) is a cross-entropy function, t is the
original input sequence, and the layer l = L is the fi-
nal transformer block in the stack. The masked language
model task trains two functions: f base(·) that represents
the transformer-stack and f lm(·) the language model (LM)
head that minimizes L(ti, f lm(hi

L)) where hi
L = f base(ti)

is the i-th element of the output of the full transformer stack
and ti is a one-hot vector representing the token at the i-th
element of the original input sequence.

While we now have a function f lm(·) that solves a specific
version of (3), we still need to understand the function’s
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role in encoder-based transformer architectures. The LM
head takes in a row i of the n ×K final transformer-stack
output and transforms it to lie in the same space as the cor-
responding row of the n×V one-hot matrix of the original
input sequence. It decomposes as

f lm(hi
L) =

V∑
j=1

P̂ ij
L e(j) (4)

where e(j) is a 1 × V basis vector with a one in column j
and a zero elsewhere representing j-th dimension of the to-
ken space T and P̂L is a n×V right stochastic matrix with
each row i containing the (after softmax) prediction prob-
abilities of being the j-th token in the vocabulary. Thus,
because the basis vector e(j)s correspond to tokens where
j is the token’s position in the vocabulary, we can interpret
P̂ ij
L as the amount of influence the j-th token has on i-th

element of hL.

However, the masked language model task is training a
function specifically for the final output of the transformer
stack hL. In order to extrapolate the effects of the f lm(·)
function to the output of any layer l, we must understand
the most complicated part of an encoder-based transformer
architecture, the self-attention mechanism. As previously
studied in (Likhosherstov et al., 2021; Tsai et al., 2019), the
output of the self-attention mechanism can be expressed as

X ′ = AXWV (5)

where A = softmax(
XWQWT

KXT

√
d

) is the normalized self-
attention matrix, WQ,WK ,WV are the query, key, and
value weight matrices, and d is hidden dimension of the
self-attention mechanism. The self-attention matrix A is a
weighted similarity or kernel gram matrix between the ele-
ments of the input X , and the features of the output X ′ are
weighted combinations of the features of the inputs. The
multi-headed mechanism simply combines various self-
attention mechanisms in a weighted fashion. The rest of
the transformer block consists of a feed-forward compo-
nent and some layer additions and normalizations. Thus
we can describe outputs of a transformer block overall as
approximately a weighted combination of its inputs. Simi-
larly, stacking transformer blocks together results in further
weighted combinations of the original input sequence.

This leads to the key idea that because the outputs of any
stack of transformer blocks are a weighted combination of
original K features, they lie in the same continuous fea-
ture space RK . Unlike the original token space T , this
feature space does not have an easily interpretable mean-
ing. We conjecture that because the pre-training tasks are
performed over an enormous corpus (Wikipedia etc.), the
learned function f lm(·) is estimating the map between RK

and T where the feature space is much smaller than the to-
ken vocabulary space K << V . Thus the f lm(·) function

acts as a universal decoder that predicts the likeliest com-
bination of tokens, i.e. basis vectors e(j) of T , that make
up f lm(hl) where P̂l are the prediction probabilities. We
provide a simple example illustrating this process in Figure
1 to provide geometric intuition.

Figure 1. The input sequence “big dog” is tokenized into two to-
kens t1 and t2 that lie on the unit hypersphere T and are then em-
bedded into having K continuous features (h1

0 and h2
0). A series

of l transformer blocks is applied to the embedded input sequence
to produce h1

l and h2
l , which are decoded back onto T with the

f lm(·) function. The outputs (t̂1l and t̂2l ) of the transformer blocks
in T can be interpreted as weighted combinations of the original
tokens t1 and t2.

While the rows of P̂l can be interpreted as the likelihood
that each element of hl is a certain token in the vocabulary,
the columns of P̂l can analogously be interpreted as the
amount of influence each token has on hl. However, be-
cause we are only interested in the contributions of tokens
from the input sequence, we can subset the V columns of
P̂l to only the T columns that correspond to the unique in-
put sequence tokens. Let D̂l be a T × n matrix where the
rows of D̂l are the columns of P̂l that correspond to the
tokens in the input sequence and the columns indices of
D̂l correspond to the elements of hl. Now that we have
a way to account for the contributions of tokens in an in-
put sequence to a hidden layer, we can calculate a layer’s
saliency scores with respect to these tokens as

scl = ReLU(

K∑
k=1

D̂lα
c,k
l ) (6)

where the elements of scl are weighted combinations of the
features scores for layer l from (1) with each element be-
ing a different weight according to the rows of D̂l. This
method can also be viewed as a generalization of (2) where
the feature aggregation function g(·) has been modified to
include additional weights.

These saliency scores scl capture the importance of each to-
ken in the input sequence to the models decision using only
information in the model that is downstream from a specific
layer l in a transformer stack. Thus we can view the layer
choice l as a control for the amount of model information
used in a saliency score.
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Additionally if we only want to allow contributions from
the most important tokens, we can restrict each ŝil in (6)
to be a weighted combination of only the output scores
where the input token ti is an top ranked contributor. We
show pseudocode for our approach in Algorithm 1 which
takes as inputs a tokenized input sequence t, a layer choice
l, a threshold τ for the number of contributions from top
ranked tokens, a feature aggregation function for a saliency
method g(·), a LM task head from a pre-trained model
f lm(·), and a fine-tuned classification model m(·) where
mbase

l (·) is the output of layer l in the transformer stack
and mclass(·) is the classification task head. For a given
layer l, estimate the features scores α̂l for the most likely
prediction ŷ and the output of the l-th block in the trans-
former stack hl (Lines 1-3). Then estimate the token con-
tributions D̂l as a subset of P̂l, the LM probability predic-
tions for hl onto the input token sequence t (Lines 4-5).
Finally the saliency scores ŝl are a weighted sum of output
scores α̂l where the non-zero weights are the top τ ranked
values in the columns of D̂l (Lines 6-12). These scores are
then aggregated with a feature aggregation function g(·),
for Grad-CAM g(·) = ReLU(

∑K
k=1 ·).

Algorithm 1 Transformer-stack architectures embed a dis-
crete vocabulary into a lower dimensional continuous space
where layers in the stack merely transform it within this
space. Our approach generates a decoder from the low-dim
latent space back to the original token space.

Input: t, l, τ, g(·), fmlm(·),m(·)
1: hl = mbase

l (t)
2: ŷ = maxmclass(mbase(t))
3: α̂l =

∂ŷ
∂hk

l

hk
l or some other feature score for layer l

4: P̂l = f lm(hl)
5: D̂i

l = (P̂ j
l )

⊤ ∀j corresponding to tokens ti

6: for i = 1 to T do
7: for j = 1 to n do
8: if D̂ij

l in top τ ranked values of D̂j
l then

9: ŝjl += g(D̂ij
l α̂j

l )
10: end if
11: end for
12: end for
Output: ŝl

While the weights for the classification model m(·) change
when fine-tuned to a specific dataset, they are still ini-
tialized at the pre-trained values. In practice because the
weights of the model base mbase

l change very little during
fine-tuning, and in some training schemes are restricted not
to change, we can still assume the transformer block out-
puts hl will still lie in RK . Thus because f lm(·) estimates
the map from RK to T , it is still able to decode hl despite
being the outputs of a model with different weights.

4. Experiments
In this section, we detail our experimental results on two
benchmark classification task datasets2: SST-2 (Socher
et al., 2013) a binary classification dataset that is one of the
the General Language Understanding Evaluation (GLUE)
(Wang et al., 2019) tasks and AG News (Zhang et al., 2015)
a subset (4 largest classes) of news articles from more than
2,000 news sources gathered by (Gulli, 2005). We imple-
mented our approach (labelled Decoded Grad-CAM) on
a RoBERTa base from HuggingFace (Wolf et al., 2020)
using Grad-CAM for the saliency scores3 and compared
against numerous other explainability methods that have
been trained and provided by the AllenNLP Interpret (Wal-
lace et al., 2019) and ThermoStat (Feldhus et al., 2021)
Python packages. To the best of our abilities, we have at-
tempted to mimic the training regimes described by their
respective packages for all competing models’ explainabil-
ity methods. However, in order to maintain consistency
across all experiments and improve visibility, we have cho-
sen to always use the standard RoBERTa base model with
a 12 layer transformer stack. For further details on the ex-
perimental setup see Section A.1.

4.1. The Hiding /Revealing Game

In order to evaluate the explainability of a token, we use the
Hiding Game (Fong & Vedaldi, 2017; Castanon & Byrne,
2018) and an inverse variant of it, which we will call the
Revealing Game. For NLP, the Hiding Game iteratively ob-
scures the least important tokens according to some score
attributed with the token, replaces them with a [MASK]
token, and removes them from the self-attention mecha-
nism. The Revealing Game does the opposite and starts
with a completely masked sequence and iteratively reveals
the most important tokens according to their score. For
both games, the prediction accuracy is periodically calcu-
lated at percentages of the total sequence length (ignoring
[PAD] tokens). Similar variants such as positive / neg-
ative perturbations (Chefer et al., 2021a) or using mask-
ing in (Hase et al., 2021) have also been used for evalu-
ating the explainability of methods. In addition to the Al-
lenNLP Interpret and ThermoStat explainers, we also com-
pare against a random baseline that is averaged over 20 ran-
dom perturbations.

In Figure 2, we use the Hiding / Revealing Game to eval-
uate the accuracy of various explainability methods on the
SST-2 sentiment classification dataset. We show the perfor-
mance of the best layers4 of our Decoded Grad-CAM (for
visibility) against AllenNLP Interprets implementation of

2For a full description of the datasets, see Section A.1.
3See Appendix (A.2.1) for additional examples using the

method from (Simonyan et al., 2014) for saliency scores.
4See Section A.2 for all layers
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the Simple, Smooth, and Integrated methods along with a
layer 0 (vanilla) version of Grad-CAM.

(a) Revealing Game

(b) Hiding Game

Figure 2. Our Decoded Grad-CAM method against vanilla Grad-
CAM, AllenNLP Interpret explainers, and a random baseline on
the SST-2 binary sentiment classification dataset.

For the Revealing Game, the accuracy of our layers shoots
up very quickly after the first couple of tokens are re-
vealed, implying that those tokens are very important to
the model’s classification decision. For the Hiding Game,
all four of our layers have steeper drops in accuracy, which
implies that the tokens being masked are more important
as they dramatically affect the accuracy. Note that we are
using a RoBERTa-base model, which is smaller than the
RoBERTa-large model used by the AllenNLP Interprets ex-
plainers and is the reason for the small gap in accuracy for
the full input sequence. Despite having a smaller underly-
ing model, our Decoded Grad-CAM at layer 7 outperforms
the explainers on a larger model up until the vast majority

(≈ 70%) of important tokens have been revealed.

We also apply the Hiding / Revealing Game to the AG
News dataset, which is a multi-class topic classification
task, and evaluate against numerous ThermoStat explain-
ers. We show the accuracy of the best layers5 against all
the ThermoStat explainers in Figure 3.

(a) Revealing Game

(b) Hiding Game

Figure 3. Our Decoded Grad-CAM method against vanilla Grad-
CAM, ThermoStat explainers, and a random baseline on the AG
News four topic classification dataset.

Many of the ThermoStat explainers are specifically built
to probe for changes in predictions from changes in to-
kens and are essentially optimized to do well in the Hid-
ing Game. However due to this perturbation construc-
tion, many of these methods (Integrated, LIME, Occlu-
sion, and Shapely) are also extremely computationally ex-

5See Section A.2 for all layers
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pensive requiring many passes forward through the model
and the ThermoStat package was specifically constructed
to improve accessibility (at least for benchmark datasets)
to these explainers (Feldhus et al., 2021). In contrast, our
decoded layer saliency method is applicable to any trained
model without requiring any re-training and only requires
one backward pass, which is far more computationally effi-
cient. Additionally, because our method is not probing for
changes from a correct class to an incorrect one, it does not
require labels. This makes it useful as an explainer even in
scenarios where a user only has access to a trained model
and does not have access to any training or labelled data.

Despite this, our Decoded Grad-CAM layer 6 outperforms
the majority of the ThermoStat explainers including the
computationally heavy LIME method. Similar to the re-
sults for the SST-2 dataset, we see the accuracy of our
best layers shoot up quickly in the Revealing Game with
layer 6 having very competitive results with ThermoStats’
Shapely, Occlusion, and Integrated methods. For the Hid-
ing Game, our layers do not exhibit as dramatic of a drop,
but still do significantly better than most ThermoStat ex-
plainers and our layer 6 is competitive with the all except
the Shapely method until ≈ 40% of tokens are hidden.

We also calculate the Area Under the Curve (AUC) for
the explainers in both figures above in Table 1, where the
best layer explainer of our method is bolded and the best
competing explainer is italicized. From Figure 3’s AUCs,
for the Revealing Game, the difference in performance be-
tween the top four best explainers is extremely minor with
only 0.011 gap between the first and fourth place meth-
ods. For the Hiding Game, the Shapely explainer is clearly
the best; however our layer 6 still has respectable perfor-
mance being only 0.008 worse than the Occlusion method
and 0.078 worse than the Integrated method.

Another noteworthy observation is that our best perform-
ing layers (5-8 for the SST-2 dataset and 6, 8 and 9 for the
AG News dataset) roughly correspond to the “middle lay-
ers” described by (Rogers et al., 2020). Thus our saliency
method is only including information downstream from
these layers, namely those corresponding to the “later lay-
ers”, which are described to be more task-specific. These
conclusion are also supported by experiments in (Jawahar
et al., 2019) where they conclude that the “later layers” of
the model are capture information about semantic tasks.
Semantic tasks (e.g. randomly replacing nouns/verbs or
swapping clausal conjuncts) often operate on parts of text
that are also the most useful for classification; thus we are
in agreeance about the role of these “later layers”.

4.2. Token Overlap

While the previous experiments are a good way to evalu-
ate the affect of tokens on a model’s decision making, they

Table 1. Area Under the Curve for Revealing Game (↑ is better)
and Hiding Game (↓ is better)

Explainer Revealing Hiding

Grad-CAM l0 0.797 0.713
Decoded Grad-CAM l5 0.832 0.64
Decoded Grad-CAM l6 0.854 0.617
Decoded Grad-CAM l7 0.867 0.609
Decoded Grad-CAM l8 0.836 0.66
Simple 0.799 0.756
Smooth 0.795 0.762
Integrated 0.804 0.756
Random 0.748 0.77

(a) SST-2 Dataset (Figure 2)

Explainer Revealing Hiding

Grad-CAM l0 0.853 0.804
Decoded Grad-CAM l6 0.895 0.739
Decoded Grad-CAM l8 0.867 0.782
Decoded Grad-CAM l9 0.879 0.774
Shapely 0.905 0.567
Occlusion 0.894 0.731
Integrated 0.897 0.661
GradientShapely 0.86 0.784
LIME 0.851 0.792
GradxAct 0.851 0.794
DeepLiftShapely 0.823 0.842
Random 0.829 0.841

(b) AG News Dataset (Figure 3)

don’t actually provide any indication of explainability to a
human. In order to judge the human intuitiveness of the
explanations, we should also consider the actual meanings
of the top ranking tokens. Thus, we aggregate the scores
of all tokens for all input sequences in a predicted class
and weight their total score by how rarely they occur in ev-
eryday language i.e. the inverse document frequency of a
random collection of 50,000 Wikipedia articles. The intu-
ition behind this is that tokens that have high importance
scores and occur often in the input sequence of a predicted
class relative to usage in common language are representa-
tive of that class. By aggregating over all input sequences
of a predicted class, we also reduce the rewarding of one-
off tokens that only explain the model’s decisions for that
specific input sequence. We can visualize the most impor-
tant tokens for each predicted class in word clouds shown
in Figures 9 and 11 in Section A.3.

Additionally, for classification tasks, tokens should disam-
biguate classes. So tokens that are important to a predicted
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class should be indicative, i.e. unique to a class, especially
if the classes are complements of each other. For example,
tokens that are strong indicators that a movie review is posi-
tive should not also be strong indicators that a movie review
is negative. Therefore, we can also evaluate the represen-
tativeness of tokens deemed important to a predicted class
by considering how often they appear in multiple classes.
Explicitly, we count the number of top k ranked tokens that
appear in every pair of classes and divide by the total count
in order to get the percentage of token overlap.

(a) SST-2 dataset

(b) AG News dataset

Figure 4. Percentage of tokens that appear in multiple classes for
the top k most important tokens.

We show this percentage as a function of the top k ranked
tokens in Figure 4 for the best Decoded Grad-CAM layer
according the Hiding / Revealing Game against the Al-
lenNLP Interpret explainers on the SST-2 dataset and
against the best ThermoStat explainers on the AG News

dataset. Additionally we show, in tables in Section A.4, the
actual tokens in the top 50 that appear in multiple classes of
the SST-2 and AG News datasets respectively, along with
the raw counts of token overlap in Figure 12.

For both datasets, our best Decoded Grad-CAM layer sig-
nificantly outperforms the competing methods with very
few important tokens belonging to multiple classes. Un-
like the other explainability methods, our approach only
incorporates information in the network that is downstream
from a specific layer. Thus its does not include language
structure information such as the word order or syntactic
information from earlier layers that would add noise to the
explainer. We can interpret from the plots that because the
competing methods have many more tokens that are salient
for multiple classes, these tokens may be structurally im-
portant, but not class discriminate. The removal of these
structurally important tokens may also be causing an out of
distribution effect in the Hiding Game (Hase et al., 2021)
and biasing their good performance. We also provide some
example snippets of input sequences highlighted by the
methods in the above figures in tables in Section A.5. These
examples provide an additional way for a human to directly
visualize and interpret the explainability of the methods for
a particular input sequence.

5. Discussion
In this paper, we have presented an approach for measuring
the importance of tokens to a classification task based on
the information encoded in the hidden layers of the trans-
former stack. Consistent with previous research into the
meanings of these intermediate layers in large-scale lan-
guage models, we explicitly confirm, through multiple ex-
periments, that the later layers generate better task-specific
human explainability. Our approach works with any score-
generation method that generates layer-specific importance
scores and requires no re-training. Most importantly, it
shows that information in the later layers of the transformer
stack are more important for model classification perfor-
mance (The Hiding Game) as well as for human consis-
tency (Token Overlap). In the future, we look to extend
this work to tasks beyond classification. We also plan to
further explore and leverage the geometric relationship be-
tween the feature embedding and token spaces first estab-
lished in this paper.
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Castro, J., Gómez, D., and Tejada, J. Polynomial calcula-
tion of the shapley value based on sampling. Computers
& Operations Research, 36(5):1726–1730, 2009.

Chefer, H., Gur, S., and Wolf, L. Generic attention-model
explainability for interpreting bi-modal and encoder-
decoder transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 397–
406, 2021a.

Chefer, H., Gur, S., and Wolf, L. Transformer interpretabil-
ity beyond attention visualization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 782–791, 2021b.

De Cao, N., Schlichtkrull, M., Aziz, W., and Titov, I. How
do decisions emerge across layers in neural models? in-
terpretation with differentiable masking. arXiv preprint
arXiv:2004.14992, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Feldhus, N., Schwarzenberg, R., and Möller, S. Thermo-
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A. Appendix
A.1. Experimental Setup

Datasets:

1. SST-2 (Socher et al., 2013): This is a two class version of the Stanford sentiment analysis corpus where each sample
is a full sentence from a movies review labeled as either Negative (class 0) or Positive (class 1) sentiment. It is split to
have 67,349 training samples, 872 validation samples, and 1821 test samples; however the test labels are not publicly
available and the validation set is commonly used for experiments in numerous paper including this one.

2. AG News (Zhang et al., 2015): This is a four class version of a corpus collected by (Gulli, 2005) from over 2000 news
sources. Each sample is a full sentence from a news article labeled as belonging to the World (class 0), Sports (class
1), Business (class 2), or Sci/Tech (class 3) topics. It is split to have 120,000 training samples and 7,600 test samples.

Models:
AllenNLP Interpret on a RoBERTa large model (Wallace et al., 2019)

1. Simple (Simonyan et al., 2014): gradient of the loss with respect to each token normalized by the ℓ1 norm

2. Smooth (Smilkov et al., 2017): average the gradient over noisy input sequences (add white noise to embeddings)

3. Integrated (Sundararajan et al., 2017): integrating the gradient with 10 samples along the path from an embedding of
all zeros to the original input sequence

ThermoStat on a RoBERTa base model (Feldhus et al., 2021)

1. GRADxACT: simple element-wise product of gradient and activation

2. Integrated (Sundararajan et al., 2017): same as above, except 25 samples along the path

3. LIME (Ribeiro et al., 2016): sample 25 points around input sequence and use predictions at sample points to train a
simpler interpretable model

4. Occlusion (Zeiler & Fergus, 2014): perturbation based approach, replace sliding window (3 tokens) with baseline and
compute difference in prediction

5. Shapley (Castro et al., 2009): add a random permutation of tokens from the input sequence to a baseline, look at
difference in prediction after each addition, perform 25 times and average over them

6. DeepLiftShap (Lundberg & Lee, 2017): approximates Shapely values, computes DeepLift attributions for each input-
baseline pair, average over baselines

7. GradientShap (Lundberg & Lee, 2017): approximates Shapely values, computes the expectations of gradients by
randomly sampling 5 times from the distribution of baselines

Decoded Grad-CAM layers implemented on RoBERTa base from HuggingFace (Wolf et al., 2020)

Metrics:

1. The Hiding / Revealing game: Order tokens in descending amounts of importance for each method, hiding each token
one by one. Methods with a better grasp of importance will reduce the prediction accuracy of the network faster by
hiding tokens that really matter. The Revealing Game is the converse, which slowly reveals important tokens. This
method was used in (Fong & Vedaldi, 2017; Castanon & Byrne, 2018).

2. Percentage of Token Overlaps: For every pair of classes we count the number of tokens in the top k most-important
for both classes and divide total count by

(
C
2

)
∗ k where C is number of classes. This yields a measure of how unique

the tokens we believe are important for identify a class are.
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A.2. Additional Hiding / Revealing Game Results
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Figure 5. All Decoded Grad-CAM layers on the SST-2 dataset.
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Figure 6. All Decoded Grad-CAM layers on the AG News dataset.

A.2.1. OTHER SALIENCY SCORE RESULTS

In order to show generalizability of our method described in Algorithm 1 to more than Grad-CAM, we also show results
replacing Grad-CAM with the “Simple” method from AllenNLP Interpret. Below we show the performance of layers 5, 6,
and 7 using our decoding method versus the original “Simple” method. Note: there is a slight difference in performance
due to the AllenNLP Interpret using a RoBERTa-large model and our method using a RoBERTa-base model.

Similar to the Grad-CAM results, only including gradients above certain middle layers for the “Simple” method can have
better performance than including all gradients by backpropagating to the embedding layer.
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(a) Revealing Game (b) Hiding Game

Figure 7. SST-2 binary sentiment classification dataset.

(a) Revealing Game (b) Hiding Game

Figure 8. AG News four topic classification dataset.

Additional results for Table 1.

Table 2. Area Under the Curve for Revealing Game (↑ is better) and Hiding Game (↓ is better)

Explainer Revealing Hiding

Simple 0.799 0.756
Decoded Simple l5 0.816 0.687
Decoded Simple l6 0.828 0.694
Decoded Simple l7 0.835 0.689

(a) SST-2 Dataset (Figure 7)

Explainer Revealing Hiding

Simple l0 0.883 0.765
Decoded Simple l5 0.866 0.762
Decoded Simple l6 0.891 0.716
Decoded Simple l7 0.847 0.774

(b) AG News Dataset (Figure 8)

15



Decoding Layer Saliency in Language Transformers

A.3. Word Clouds

The size of the tokens in the word clouds are reflective of the weighted tokens scores.

Predicted Negative Predicted Positive
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Figure 9. Word Clouds with Top 50 Tokens for SST-2 dataset.

While the left column (Predicted Negative) of Figure 9 is composed of generally negative terms, there are some more
puzzling tokens that are deemed important according to the AllenNLP Interpret explainers such as ‘ ‘ and pokemon. The
right column (Predicted Positive) also seems to have some tokens with negative connotations such as {menace, dement} in
the Simple, {terribly, dement, hack. dreadful} in the Smooth, and {dumb, stupid, tedious} in the Integrated explainer.
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Predicted Negative Predicted Positive
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Figure 10. Word Clouds with Top 50 Tokens for SST-2 dataset.
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A.4. Overlapping Tokens

Table 3. Tokens in Top 50 appearing in both World and Sports classes of AG News dataset
Explainer Overlapping Tokens

Shapely NEW, apologised, FIELD, Defeat, CHAR, ONDON, YORK, UNITED, Thursday, shook,
ASHINGTON, Wednesday, Tuesday, ENS, tonight, roared, Reuters, AP, ANGEL, yesterday

Occlusion NEW, ELS, Calif, AFP, \\, YORK, ONDON, ASHINGTON, Tuesday, ENS, IJ, UPDATE,
Charges, awaits, IGH, ,, Monday, roared, Reuters, VER, AP, ANGEL, yesterday, BE

Integrated NEW, apologised, FIELD, Calif, chilly, \\, ONDON, YORK, Talks, UNITED, Thursday,
ASHINGTON, Wednesday, ENS, PARK, Update, embattled, quot, roared, Reuters, AP,
ANG, ., ANGEL, yesterday

Decoded Grad-CAM l6 (none)

Table 4. Tokens in Top 50 appearing in both World and Business classes of AG News dataset
Explainer Overlapping Tokens

Shapely NEW, ONDON, YORK, Charges, expected, Thursday, rattled, ASHINGTON, Reuters,
Wednesday, premiums, Tuesday, plunged, surged, ANGEL, yesterday

Occlusion EVA, NEW, ELS, Calif, optimism, \\, ONDON, YORK, ASHINGTON, Tuesday, UP-
DATE, Charges, Update, Shares, hammered, Monday, surged, embattled, Reuters, MOV,
premiums, Profit, regulators, ANGEL, yesterday

Integrated NEW, negotiators, YORK, ONDON, pledges, Thursday, ASHINGTON, Wednesday, Tues-
day, plunged, tighten, Update, IPO, soared, surged, Says, expected, yesterday, premiums,
ANGEL, Charges

Decoded Grad-CAM l6 ONDON, Funds, ASHINGTON, Reuters, capitalists, ANGEL

Table 5. Tokens in Top 50 appearing in both Sports and Business classes of AG News dataset
Explainer Overlapping Tokens

Shapely NEW, NEY, STON, ONDON, YORK, Thursday, ASHINGTON, Wednesday, Tuesday, IN-
GTON, eased, OND, woes, HOU, Reuters, ANGEL, MARK, yesterday, rallied

Occlusion NEW, OCK, BUR, ELS, STON, Calif, \\, ONDON, YORK, roaring, Thursday, ASHING-
TON, Wednesday, TON, Tuesday, INGTON, STER, eased, UPDATE, ANC, Charges, –,
Monday, HOU, bruised, Reuters, NEWS, BUS, ANGEL, yesterday

Integrated ANC, NEW, OCK, YORK, ONDON, HOU, Thursday, Update, ASHINGTON, Wednesday,
INGTON, STER, TOR, ANGEL, MARK, yesterday, rallied

Decoded Grad-CAM l6 \\, yesterday
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Table 6. Tokens in Top 50 appearing in both World and Sci/Tech classes of AG News dataset
Explainer Overlapping Tokens

Shapely NEW, ONDON, YORK, Charges, expected, Thursday, rattled, ASHINGTON, Reuters,
Wednesday, premiums, Tuesday, plunged, surged, ANGEL, yesterday

Occlusion expected, Update, ASHINGTON, ,”, Reuters, terror, Reuters, AFP, Calls, \\

Integrated unveil, AFP, Reuters, ,”, Reuters, AFP, .”, ANGEL, \\

Decoded Grad-CAM l6 ASHINGTON

Table 7. Tokens in Top 50 appearing in both Sports and Sci/Tech classes of AG News dataset
Explainer Overlapping Tokens

Shapely showdown, Reuters, HAS

Occlusion ATT, Boost, –, ASHINGTON, ,”, Reuters, HAEL, WITH, STON, AFP, STER, sighed, Fac-
tor, \\

Integrated showdown, Reuters, HAEL, Adds, .”, pesky, ANGEL, \\

Decoded Grad-CAM l6 (none)

Table 8. Tokens in Top 50 appearing in both Business and Sci/Tech classes of AG News dataset
Explainer Overlapping Tokens

Shapely Quote, Boost, Reuters, trust

Occlusion NEY, Update, –, quot, Quote, Consumers, ASHINGTON, HERE, Reuters, STON, STER,
BlackBerry, Customers, EMBER, Pact, \\, Update

Integrated daq, Quote, Craigslist, checks, ?, uters, ANGEL, profits, Update

Decoded Grad-CAM l6 ASHINGTON

Table 9. Tokens in Top 50 appearing in both classes of SST-2 dataset
Explainer Overlapping Tokens

Simple slick, ‘ ‘, pokemon
Smooth pokemon, creepy, shameless, dreadful, painfully, ‘ ‘
Integrated dumb, creepy, stupid, tedious, ‘ ‘
Decoded Grad-CAM l7 (none)

20



Decoding Layer Saliency in Language Transformers

(a) SST-2 dataset (b) AG News dataset

Figure 12. Number of tokens that appear in multiple classes for the top k most important tokens.
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A.5. Examples of Highlighted Explanations

The underlined text above each snippet is the predicted class for that method with corresponding prediction probability and
the intensity of the highlighted color reflects the relative importance of each token normalized for each input sequence. All
snippets shown are of correctly predicted examples. We have provided highlights of all input sentences in the validation /
test sets for both datasets in an attached supplementary file.

Simple

Smooth

Integrated

Decoded
Grad-CAM l7

Figure 12. STT-2 Example 1: For the left column example, Decoded Grad-CAM l7 and to an extent AllenNLP Interpret’s Simple
highlight the negative sentiment words ”bleak” and ”desperate”, but all three of AllenNLP Interpret’s methods also focus on ”and”. For
the right column example, all four methods focus on ”awful” and ”unrem”(ittingly), but the AllenNLP Interpret’s methods are more
noisy with highlights on unrelated terms such as ”it”, ”dog” and ”constitutes”.

Simple

Smooth

Integrated

Decoded
Grad-CAM l7

Figure 12. STT-2 Example 2: For the left column example, Decoded Grad-CAM l7 focuses strongly on the positive phrases ”is an
amusing joy” and ”surprising”. The other methods also highlight these terms, but less clearly with unrelated words such as ”moment”
and potentially negative words such as ”violent”. For the right column example, all methods focus on the positive words ”romantic”,
”satisfying”, ”original”, and ”emotional”; however the AllenNLP Interpret’s methods are more noisy and highlight many other words
too.
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Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

Figure 12. AG News Example 1: Decoded Grad-CAM l6 and Shapely focus on highlighting ”Apple” (a tech company) along with
technology terms like ”Download” and ”Computer”. Occlusion focuses on terms related to the Netherlands such as ”AMSTERDAM”
and ”Dutch”, which do not have an obvious connection to technology. Integrated lightly highlights a large number of words, but some
are technology related ones.

Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

Figure 12. AG News Example 2: Decoded Grad-CAM l6 highlights the words ”chief” and ”kidnapped” along with terms related to the
Middle East region (”Iraq” and ”Baghdad”). Occlusion lightly highlights the phrases ”kidnapped in Iraq” and ”kidnapped in Bagh-
dad”, which also are meaningful. Shapely and Integrated have less clear explanations with focus on the words ”in”, ”Care”, and the
punctuation.

23



Decoding Layer Saliency in Language Transformers

Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

Figure 12. AG News Example 3: Decoded Grad-CAM l6 heavily highlights the word ”Hockey”. The other methods also have some
focus on hockey terms such as the phrase ”National Hockey League labor”, but are noisy and also highlight many unrelated terms such
as ”The talks” and ”after each”.

Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

Figure 12. AG News Example 4: Decoded Grad-CAM l6 heavily highlights the word ”pensions” with some additional focus on ”union”;
however, it also does highlight some less clear terms such as ”carrier”, ”drop”, and ”Airlines”. Shapely and Integrated also highlight key
business terms such as ”traditional pensions”, ”contract”, and ”union leaders”; although Shapely also puts a lot of emphasis on ”United”
and Integrated on ”Airlines pilots”. Occlusion lightly highlights everything and does not have an clear explanations.
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