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Abstract

Motivated by concerns about making online de-
cisions that incur undue amount of risk at each
time step, in this paper, we formulate the proba-
bly anytime-safe stochastic combinatorial semi-
bandits problem. In this problem, the agent is
given the option to select a subset of size at most
K from a set of L ground items. Each item is
associated to a certain mean reward as well as a
variance that represents its risk. To mitigate the
risk that the agent incurs, we require that with
probability at least 1 − δ, over the entire hori-
zon of time T , each of the choices that the agent
makes should contain items whose sum of vari-
ances does not exceed a certain variance budget.
We call this probably anytime-safe constraint. Un-
der this constraint, we design and analyze an algo-
rithm PASCOMBUCB that minimizes the regret
over the horizon of time T . By developing ac-
companying information-theoretic lower bounds,
we show that under both the problem-dependent
and problem-independent paradigms, PASCOM-
BUCB is almost asymptotically optimal. Experi-
ments are conducted to corroborate our theoretical
findings. Our problem setup, the proposed PAS-
COMBUCB algorithm, and novel analyses are
applicable to domains such as recommendation
systems and transportation in which an agent is
allowed to choose multiple items at a single time
step and wishes to control the risk over the whole
time horizon.
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1. Introduction
Audrey, a burgeoning social media influencer, makes profits
by posting advertisements (ads) under her account. The
advertiser pays her only if an ad is clicked. Having taken
a class in online optimization, Audrey aims to leverage
the theory of bandit algorithms to design an exploration-
exploitation strategy to ensure that the expected number of
clicks of the ads she has posted is maximized. Since the
platform is space-limited, Audrey can only post no more
than K out of L available ads everyday. Some of these ads,
however, include an innocuous-looking lottery or voucher
that asks the viewer of the social media platform to provide
personal information that may lead to fraud or information
leakage. If a user clicks it and becomes a victim of fraud,
this may damage Audrey’s reputation. Audrey thus has to
be circumspect in which and how many ads she posts.

On the one hand, Audrey wants to post as many ads that
she believes to have high click-through rates as possible;
the expected reward she obtains is then the sum of expected
rewards of the individual ads. On the other hand, she should
balance this with the total risk of the ads that are posted over
a period of time; similarly, the risk of a set of ads posted is
modeled as the sum of the risks of the individual ads. How
should Audrey plan the posts of her ads over a period of
time to learn their individual expected rewards and risks to
ensure that her total expected reward is maximized and, at
the same time, with high probability, the risk incurred at
any point in time in her exploration-exploitation strategy is
bounded by some fixed permissible threshold?

In addition to influencers like Audrey, online platforms that
make profits by advertising such as YouTube and TikTok
also encounter similar problems. We are therefore motivated
to formulate the probably anytime-safe stochastic combina-
torial semi-bandits (PASSCSB) problem which is a regret
minimization problem with an anytime safety constraint.
More precisely, we aim to design and analyze the perfor-
mance of an algorithm that, with high probability, ensures
that the risk (as measured by the variance) at any time step
is below a given threshold and whose regret is minimized.

Literature review. There is a large body of works that take
risk into account while conducting the exploration and/or ex-
ploitation of the unknown reward distributions in the stochas-
tic multi-armed bandits (MABs) literature.
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Under the risk-constrained pure exploration framework,
Hou et al. (2023) and David et al. (2018) attempted to iden-
tify the optimal arm within those low-risk (based on their
variances or α-quantiles) arms with probability at least 1−δ.

Under the risk-aware regret minimization setup, Sani et al.
(2012), Vakili & Zhao (2016) and Zhu & Tan (2020) con-
sider the mean-variance as the measure to be minimized
over a fixed time horizon. Cassel et al. (2018) provided a
general and systematic instruction to analyzing risk-aware
MABs, i.e., the risk was incorporated in the Empirical Dis-
tribution Performance Measure and the U-UCB algorithm
is adopted to perform “proxy regret minimization”. While
these risk-aware algorithms reduce the overall risk during
the exploration and exploitation process, the risk is not
strictly enforced to be below a prescribed threshold; rather
the risk measure is penalized within the objective function,
similarly to a Lagrangian. Another setup similar to the risk-
aware setup is the constrained bandits regret minimization.
Mahdavi et al. (2012) required that the number of times
the constraint can only be violated is at most sublinear in
the horizon T . Kagrecha et al. (2023) proposed a CVaR
constraint and performed exploration on the feasible arm,
followed by exploration among the feasible arm set. Unlike
our formulation, these algorithm are permitted to sample
risky arms during exploration.

A more stringent constraint can be found in the literature on
conservative bandits (Wu et al., 2016), which requires the
cumulative return at any time step to be above a constant
fraction of the return resulting from repeatedly sampling
the base arm. Kazerouni et al. (2017) extended this setup to
conservative contextual linear bandits and this was further
improved by Garcelon et al. (2020). A similar problem is
bandits with knapsacks (Badanidiyuru et al., 2018), which
imposes a budget on the cumulative consumed resources
and the algorithm stops when the budget is depleted.

The most stringent constraint can be found in the safe ban-
dits problem. Khezeli & Bitar (2020) and Moradipari et al.
(2020) presented the SEGE, SCLUCB, and SCLTS algo-
rithms to tackle this problem. This problem demands that
the expected reward of the pulled arm at each time step be
greater than a prescribed threshold with high probability,
i.e., the “stagewise safety constraint”. The authors assumed
the convexity (continuity) of the arm set and performed
exploration around the explored safe arms, starting from a
baseline safe arm. This continuity of the (super) arm set
does not hold under the combinatorial semi-bandits setup.
More comparisons are presented in App. E.

For the (unconstrained) combinatorial semi-bandits (CSB)
setup, Chen et al. (2013) presented a UCB-type algorithm
COMUCB1 to balance the trade-off between exploration
and exploitation. Kveton et al. (2015) improved the analysis
of COMUCB1 and achieved a tight upper bound (within a

specific set of instances). Kveton et al. (2014) introduced
matroid structure to CSB and leveraged the matroid struc-
ture to design and analyze a greedy algorithm OMM. The
risk-aware CSB problem is less studied by the community.
Ayyagari & Dukkipati (2021) utilized CVaR as the risk-
aware measure within the CSB problem, where the risk
constraint was not explicitly specified.

We observe that the existing literature mentioned above are
not directly applicable to Audrey, while our setting (de-
scribed formally below) dovetails neatly with her problem.
Audrey can utilize our algorithm to sequentially and adap-
tively select different sets of ads everyday and almost al-
ways (i.e., with high probability) avoids sets of ads with
unacceptably high risks. Beyond any specific applications,
we believe that this problem is of fundamental theoretical
importance in the broad context of regret minimization in
combinatorial multi-armed bandits.

Main Contributions. Our first contribution lies at the for-
mulation of a novel PASSCSB problem. In the PASSCSB
problem, there are L items with different reward distribu-
tions. At each time step, a random reward is generated from
each item’s distribution. Based on the previous observations,
the learning agent selects a solution at each time step. A
solution consists of at most K items. The expected return
(variance) of a solution is the summation of the reward (vari-
ance) of its constituents. Given T ∈ N, the agent aims to
maximize the cumulative return over T time steps and en-
sure that with probability 1− δ the variance of all selected
solutions are below a given threshold.

The key challenge of regret minimization under the PASS-
CSB lies in handling two distinct tasks—we seek optimality
in the mean and safeness in the variance of each chosen
solution. Our second contribution is the design and analy-
sis of the Probably Anytime-Safe Combinatorial UCB (or
PASCOMBUCB) algorithm.

Thirdly, we also derive a problem-dependent upper bound on
the regret of PASCOMBUCB, which involves a hardness pa-
rameter H(∆(Λ)). We see that H(∆(Λ)) characterizes the
effectiveness of ascertaining the safety of potential solutions
in the regret. To assess the optimality of PASCOMBUCB,
we prove an accompanying problem-dependent lower bound
on the regret of any variance-constrained consistent algo-
rithm. The upper and lower problem-dependent bounds
match in almost all the parameters (except in K). Addi-
tionally, we show that if δT decays exponentially fast in T ,
the problem-dependent regret cannot be logarithmic in T .
We further present a problem-independent upper bound on
the regret of PASCOMBUCB and a lower bound for any
algorithm. Just as the problem-dependent bounds, these
bounds also match in almost all the parameters.

Lastly, experiments are conducted to illustrate the empirical

2



Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits

performance and corroborate our theoretical findings.

In summary, this paper is the first to explore the regret mini-
mization problem in the combinatorial bandits with an any-
time constraint on the variance. When δ → 1 and σ̄2 is large
(so that the optimal safe solution is the one with the highest
mean regardless of safety considerations), our problem re-
duces to the standard combinatorial semi-bandits (Kveton
et al., 2015), and the regret incurred by the safety constraint
vanishes, resulting in the same upper bound as the uncon-
strained case. Furthermore, the framework and analysis of
PASCOMBUCB can be extended to other risk measures
as long as there are appropriate concentration bounds, e.g.,
Bhat & Prashanth (2019) or Chang & Tan (2022) enables
us to use CVaR or certain continuous functions as risk mea-
sures within the generic PASCOMBUCB framework.

2. Problem Setup
For m ∈ N, let [m] := {1, 2, . . . ,m}. An instance of a
variance-constrained stochastic combinatorial semi-bandit
is a tuple Λ = (E,AK , ν, σ̄2). We describe the four ele-
ments of Λ in the following. Firstly, the finite set E = [L]
is known as the ground set in which each i ∈ E is known as
an item. Secondly, the family AK ⊂ {S ∈ 2E : |S| ≤ K}
is a collection of subsets of E with cardinality at most K.
Each element S ∈ AK is known as a solution and AK

satisfies the condition that all subsets of S ∈ AK remain so-
lutions, i.e., AK is downward-closed. Thirdly, the vector of
probability distributions ν = (ν1, ν2, . . . , νL) contains σ2-
sub-Gaussian distributions {νi}i∈E with means {µi}i∈E

and variances {σ2
i }i∈E . The final element of an instance

σ̄2 > 0 denotes the permissible upper bound on the variance.
To avoid trivialities, we assume that σ̄2 > σ2 and K ≥ 2.

The return of item i ∈ E is the random variable Wi with
distribution νi. The (stochastic) return of a solution S ∈
AK is

∑
i∈S Wi where Wi ∼ νi. The expected return and

variance of S ∈ AK are

µS :=
∑
i∈S

µi and σ2
S :=

∑
i∈S

σ2
i

respectively. We further assume that every instance Λ sat-
isfies σ2

S ̸= σ̄2 for all S ∈ AK and each distribution νi is
supported in the interval [0, 1].

Define S := {S ∈ AK : σ2
S < σ̄2} to be the safe set which

contains all the safe solutions. Let the complement of S be
the unsafe set Sc. Denote the optimal safe solution as S⋆ :=
argmax{µS : S ∈ S} with return µ⋆. For simplicity,
we assume that S⋆ is unique. Denote the suboptimal set
B := {S ∈ AK : µS < µ⋆} and the risky set R := {S ∈
AK : µS ≥ µ⋆, S ̸= S⋆}. For a solution S, let the mean
gap ∆S := µ⋆−µS and the variance gap ∆v

S := |σ2
S − σ̄2|.

An instance Λ, time horizon T ∈ N and confidence param-

eter δ ∈ (0, 1) are specified. An agent, who knows E,AK

and σ̄2 but not the vector of probability distributions ν, in-
teracts adaptively with the instance over T time steps as
follows. At time step t ∈ [T ], the agent uses a stochastic
function πt that selects a solution St ∈ AK based on the
observation history Ht−1 := ((Ss, {Wi(s)}i∈Ss

))s∈[t−1].
In other words, St = πt(Ht−1) is a stochastic function
of the history Ht−1. The agent receives the random re-
turn

∑
i∈St

Wi(t), where {W (s) = {Wi(s)}i∈E}s∈[T ] are
i.i.d. according to ν across time. The weights of the se-
lected items {Wi(t) : i ∈ St} are observed by the agent at
each time t ∈ [T ]. The collection of stochastic functions
π = {πt}t∈[T ] is known as the agent’s policy.

The goal of the agent is to minimize the expected cumulative
regret (or simply regret) Reg(T ) over the horizon T , sub-
ject to a certain risk constraint. More precisely, the regret
suffered by a policy π employed by the agent is defined as

Regπ(T ) := Eπ

[
T∑

t=1

(∑
i∈S⋆

Wi(t)−
∑
i∈St

Wi(t)

)]
The policy π should satisfy the condition that all the solu-
tions chosen {Sπ

t }t∈[T ] ⊂ AK are safe with probability at
least 1− δ, i.e.,

Pπ

[
∀ t ∈ [T ], Sπ

t ∈ S
]
≥ 1− δ. (1)

This is referred to as the probably anytime-safe constraint.

In the problem-dependent lower bounds, we will refer to
a certain class of “good” policies that operate as the time
horizon T → ∞ and the probability of being safe in the
sense of (1) tends to 1. This is formalized in the following.

Definition 2.1. Fix an instance ν and a vanishing sequence
{δT }∞T=1 ⊂ (0, 1). A policy π = {πt}∞t=1 is said to be a
{δT }∞T=1-variance-constrained consistent algorithm if

• Regπ(T ) = o(T a) for all a > 0 and

• Pπ

[
∀ t ∈ [T ], Sπ

t ∈ S
]
≥ 1− δT for all T ∈ N.

We often omit the superscripts π in Regπ, Sπ
t (or Aπ

t and
Aπ

t,r in PASCOMBUCB) and the subscripts π in the proba-
bilities and expectations if there is no risk of confusion.

3. Our Algorithm: PASCOMBUCB

Our algorithm Probably Anytime-Safe Combinatorial UCB
(or PASCOMBUCB), presented in Algorithm 1, is designed
to satisfy the probably anytime-safe constraint. In particu-
lar, we apply (and analyze) the GREEDY-SPLIT subroutine
in Line 11; this subroutine has not been involved in an al-
gorithm designed for standard combinatorial semi-bandits
such as COMBUCB1 (Chen et al., 2013).

Statistics. Since each item i ∈ E is σ2-sub-Gaussian, any
solution that contains at most q := ⌊ σ̄

2

σ2 ⌋ items is safe with
probability (w.p.) 1. We call such a solution absolutely
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Algorithm 1 PASCOMBUCB

1: Input: An instance Λ (with unknown ν), the horizon T
and the confidence parameter δ ∈ (0, 1).

2: Set phase counter p = 1 and time step counter t = 1.
3: while ∃ i ∈ E such that Ti(p− 1) < 2 do
4: Pull Ap=argmaxS:|S|≤q |{i∈S : Ti(p− 1)<2}|.
5: p← p+ 1, t← t+ 1.
6: end while
7: Update the sample mean, sample variance and confi-

dence bounds according to (4).
8: Update the empirically safe set Sp and possibly safe set
S̄p according to (5) and (6) respectively.

9: while t < T do
10: Identify a solution Ap=argmaxA∈S̄p−1

Uµ
A(p−1).

11: Invoke GREEDY-SPLIT to split the solution Ap into
np sub-solutions {Ap,1, . . . , Ap,np

} ⊂ Sp−1.
12: Set np ← min{np, T − t}.
13: Choose solution {Ap,1, . . . , Ap,np

}.
14: Update the statistics of all solutions based on (4).
15: Update the empirical sets based on (5) and (6).
16: Set t = t+ np and p = p+ 1,
17: end while

safe. Algorithm 1 (PASCOMBUCB) is conducted in phases,
where each phase consists of multiple time steps and each
item can be pulled at most once during each phase. Thus
we adopt a different notation “A” to denote the solution in
our algorithm. Define Ti(p) :=

∑p
s=1 1{i ∈ Ap} as the

number of times item i is pulled up to and including phase p.
Denote the sample mean and sample variance of item i at
phase p respectively as

µ̂i(p) :=
1

Ti(p)

p∑
s=1

Wi(s) · 1{i ∈ As}, and

σ̂2
i (p) :=

1

Ti(p)

p∑
s=1

(Wi(s)− µ̂i(p))
2 · 1{i ∈ As}.

The bound based on the Law of Iterated Logarithms (LIL) is
used to construct the confidence radii. For a fixed ϵ ∈ (0, 1),

define lil(t, ρ) := (1 +
√
ϵ)
(

1+ϵ
2t ln

( ln((1+ϵ)t)
ρ

))1/2
and

denote the confidence radius for the mean as

α(t) := lil(t, ωµ), (2)

where ωµ is a parameter to be chosen. The confidence radii
for the variance are asymmetric about the empirical variance
and are parameterized by ωv and ω′

v that may not necessarily
be the same. They are defined as

βu(t) := 3 · lil(t, ωv) and βl(t) := 3 · lil(t, ω′
v). (3)

We denote the upper and lower confidence bounds (UCB

and LCB) for the mean of item i as

Uµ
i (p) := µ̂i(p) + α(Ti(p)) and

Lµ
i (p) := µ̂i(p)− α(Ti(p))

respectively. The UCB and LCB for the variance of item i
are defined as

Uv
i (p) := min{σ̂2

i (p) + βu(Ti(p)), σ
2} and

Lv
i (p) := max{σ̂2

i (p)− βl(Ti(p)), 0}

respectively. With the sample mean, sample variance, and
confidence bounds for the items, we define the following
statistics for all solution S ∈ AK :

µ̂S(p) =
∑
i∈S

µ̂i(p), σ̂2
S(p) =

∑
i∈S

σ̂2
i (p),

Uµ
S (p) =

∑
i∈S

Uµ
i (p), Lµ

S(p) =
∑
i∈S

Lµ
i (p), (4)

Uv
S(p) =

∑
i∈S

Uv
i (p), Lv

S(p) =
∑
i∈s

Lv
i (p).

Denote the empirically safe set as

Sp := {S ∈ AK : Uv
S(p) < σ̄2} (5)

and the possibly safe set as

S̄p := {S ∈ AK : Lv
S(p) < σ̄2}. (6)

The solutions in St and S̄t are called empirically safe and
possibly safe solutions respectively.

Dynamics. In the initialization stage (lines 3 to 6),
PASCOMBUCB greedily pulls the absolutely safe solu-
tions. When each item has been pulled at least twice,
this stage is terminated. After initialization, during
phase p, PASCOMBUCB firstly identifies a solution
Ap = argmaxA∈S̄p

Uµ
A(p − 1) via an optimization ora-

cle (Line 10). It then calls a subroutine GREEDY-SPLIT
to greedily partition the solution Ap into empirically safe
sub-solutions (Line 11, see Figure 1 for illustration). Sub-
sequently, these solutions are chosen and the stochastic re-
wards from the corresponding items are observed (Line 13).
Lastly, the empirical estimates, the confidence bounds, and
the empirical sets are updated (Lines 14 and 15).

Illustration. Figures 2 and 3 illustrate the regret accumu-
lated during phase p and over the whole T horizon respec-
tively. As shown in Figure 2, the regret accumulated during
phase p can be decomposed into two parts

np∑
r=1

(µ⋆ − µAp,r ) = ∆Ap + µ⋆(np − 1)

where ∆Ap
is the (phase-wise) instantaneous regret due

to suboptimality and µ⋆(np − 1) is the instantaneous re-
gret due to safeness-checking; the latter term results from
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Algorithm 2 GREEDY-SPLIT

1: Input: A solution Ap and the upper confidence bound
on the variance Uv(p− 1) at phase p− 1.

2: Set np = 1, s = 1 and Ap,1 = ∅.
3: Index the items in Ap by i1, . . . , i|Ap|.
4: while s ≤ |Ap| do
5: if Uv

Ap,np
(p− 1) + Uv

is
(p− 1) ≤ σ̄2 then

6: Set Ap,np
← Ap,np

∪ {is}.
7: else
8: np ← np + 1 and Ap,np

= {is}.
9: end if

10: s← s+ 1.
11: end while
12: return {Ap,1, . . . , Ap,np

}.

Va
ria

nc
e

Solution

Figure 1. A diagram of a split to a solution Ap containing 5 items.

the safeness constraint. At the beginning, since the up-
per confidence bounds of the variances of all solutions are
large, each solution will be split into up to 2Q sub-solutions,
where Q := ⌈Kq ⌉, and hence the regret due to safeness
checking can be large. As the algorithm progresses, we
obtain more observations of items and get more confident
about their variances (Uv

i (p) decreases). Hence, during
some later phase, it suffices to split some solutions into
fewer sub-solutions and the regret due to safeness-checking
reduces. Furthermore, when most items are sampled suffi-
ciently many times, the unsafe solutions are excluded from
the possibly safe set S̄p, and the only contribution to the
regret is via the suboptimality of the solution Ap.

Remark 3.1. The two parameters ωv and ω′
v determine

the confidence radii of variances and do not necessarily
have to be the same. The confidence parameter ω′

v is solely
a parameter of PASCOMBUCB; its choice does not rely
on the confidence parameter δ and only affects Lv

S(p), the
lower confidence bound of the variance, which determines
when we ascertain a solution to be unsafe. The choice of
ωv depends on δ and it influences Uv

S(p), the upper confi-
dence bound of the variance, which guides PASCOMBUCB
to split the solution to satisfy the probably anytime-safe
constraint.

M
ea

n

Instantaneous regret
due to suboptimality

Instantaneous regret
due to safeness-checking

Figure 2. Solution Ap is split into np = 3 sub-solutions, the in-
stantaneous regret at phase p can be divided into the instantaneous
regret due to suboptimality and the instantaneous regret due to
safeness-checking.

Phase

In
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an
ta

ne
ou

s R
eg

re
t

... ...

......

Instantaneous regret due to suboptimality
Instantaneous regret due to safeness-checking

......

Figure 3. An illustration of the instantaneous regret yielded by
PASCOMBUCB. As the variances of the items are more deter-
mined, less regret due to safeness-checking is generated.

4. Problem-dependent Bounds
For simplicity, when a time horizon T and a confidence pa-
rameter δ = δT are given, we set the confidence parameters
ωµ = ω′

v = 1
T 2 and ωv = δT

T 2 .

We introduce various suboptimality gaps that contribute to
the regret due to the suboptimality.

• for i ∈ E \ S⋆, let the minimum safe-suboptimal gap be

∆i,S∩B,min := min
S∋i,S∈S∩B

∆S ;

• for i ∈ E, let the minimum unsafe-suboptimal gap be

∆i,Sc∩B,min := min
S∋i, S∈Sc∩B

∆S ;

and let the tension parameter between the mean gap ∆S

and variance gap ∆v
S be

ci := max
S∋i, S∈Sc∩B

(
∆S

max{∆S ,∆v
S/3}

)2

.

We also define following safeness gaps that induce the
conservative sampling strategy to guarantee the probably
anytime-safe constraint. For i ∈ E, and
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• for the risky set R, define the minimum unsafeness gap
∆v

i,R := minS∋i,S∈R ∆v
S .

• for the safe and suboptimal set S ∩ B, let

Ψi,S∩B := max
S∋i, S∈S∩B

min

{
lnT

∆2
S

,
9 ln(T/δT )

(∆v
S)

2

}
which characterizes the order of the number of times
that item i needs to be sampled in order to identify the
suboptimality of all safe and suboptimal solutions A ∋ i
while satisfying the safeness constraint. We further define
a variant of Ψi,S∩B as

Ψ′
i,S∩B := max

S∋i,S∈S∩B
min

{
lnT

∆2
S

,
9 ln(1/δT )

(∆v
S)

2

}
which will be used to characterize the lower bound.

• for the unsafe and suboptimal set Sc ∩ B, let

Φi,Sc∩B := max
S∋i, S∈Sc∩B

min

{
lnT

∆2
S

,
9 lnT

(∆v
S)

2

}
which characterizes the hardness of identifying the un-
safeness of suboptimality of all unsafe and suboptimal
solutions that contain item i.

Define ξ(ω) := 2+ϵ
ϵ

(
ω

ln(1+ϵ)

)1+ϵ
, where ϵ ∈ (0, 1) is fixed.

4.1. Problem-dependent Upper Bound

Theorem 4.1 (Problem-dependent upper bound). Let Λ =
(E,AK , ν, σ̄2) be an instance and let {δT }∞T=1 ∈ o(1) be a
sequence that satisfies ln(1/δT ) = o(T b) for all b > 0 (i.e.,
{δT } is not exponentially decaying). Then, PASCOMBUCB
is a {δT }∞T=1-variance-constrained consistent algorithm.
More precisely, given a time budget T , the probably anytime-
safe constraint is satisfied and the regret of PASCOMBUCB
Reg(T ) is upper bounded by

min {Tµ⋆,Reg1(T ) + Reg2(T )}+Reg3(T ),

where

Reg1(T ) = O

( ∑
i∈E\S⋆

K lnT

∆i,S∩B,min
+
∑
i∈E

ciK lnT

∆i,Sc∩B,min

)
Reg2(T ) = 2µ⋆H (∆(Λ)) , Reg3(T ) = 2µ⋆(L+ 1)

where ∆(Λ) = {∆v
S⋆}∪{∆v

i,R,Ψi,S∩B,Φi,Sc∩B}i∈E and
H (∆(Λ)) := H(1,Λ) is defined in (26) in App. B.4.

Remark 4.2. If the gaps in ∆(Λ) are sufficiently small and
δT = T−λ for a fixed λ > 0,

H (∆(Λ)) = O

(
(λ+ 1)K2 lnT

(∆v
S⋆)2

+K
∑
i∈E

( lnT

(∆v
i,R)2

+ max
S∋i,

S∈S∩B

min

{
lnT

∆2
S

,
(λ+ 1) lnT

(∆v
S)

2

}
+Φi,Sc∩B

))
.

See (26) for more details of this calculation.

The first term Tµ⋆ in the regret bound provides a naı̈ve
upper bound for the expected regret conditional on the vari-
ance constraint holds. The order of the regret (o(T a) for all
a > 0) implies the regret will be asymptotically bounded
by the second term when the time budget T is sufficiently
large. The second term is comprised of two parts—the re-
gret due to suboptimality Reg1(T ) and the regret due to
safeness-checking Reg2(T ). The intuition for the regret due
to suboptimality Reg1(T ) is that

• Each item in any safe and suboptimal solution will be
sampled O( K lnT

∆2
i,S∩B,min

) times to ascertain the suboptimal-
ity of all safe and suboptimal solutions to which this item
belongs to.

• Each item in an unsafe and suboptimal solution S will
be sampled O

(
K lnT

max{∆S ,∆v
S/3}2

)
times to ascertain either

the suboptimality or the unsafeness of S. As this should
be done for all the unsafe and suboptimal solutions, we
need to take the maximum of the above time complexity.
More precisely, when ci = 1, suboptimality identification
of the unsafe and suboptimal solutions to which item
i belongs dominates the regret; and when ci < 1, the
ascertaining of the unsafeness dominates the regret.

The intuition for the regret due to safeness checking
Reg2(T ) is that H (∆(Λ)) provides an upper bound for
the number of time steps needed for guaranteeing the safe-
ness of all solutions. PASCOMBUCB achieves this in a
judicious manner since it does not check the safeness of all
the solutions at the start, followed by exploration and ex-
ploitation of the possibly high-return safe solutions. Instead,
it takes advantage of the fact that when a (safe or unsafe)
suboptimal solution is ascertained to be suboptimal, its safe-
ness can be disregarded, as reflected in the terms Ψi,S∩B
and Ψi,Sc∩B. In addition, it will not sample an unsafe solu-
tion if it is identified as unsafe w.p. at least 1− 2ξ(ω′

v). The
last term Reg3(T ) corresponds to the regret due to failure
of the “good” event and at the initialization stage. A proof
sketch is presented in Section 6.

4.2. Problem-dependent Lower Bound

Theorem 4.3 (Problem-dependent lower bound). Let
{δT }∞T=1 ∈ o(1) be a sequence that satisfies ln(1/δT ) =
o(T b) for all b > 0. There exists an instance Λ such that for
any {δT }T∈N-variance-constrained consistent algorithm π,
the regret is lower bounded by

Ω

(∑
i∈E

lnT

∆i,S∩B,min

)
+

µ⋆

K
· Ω
(
K ln(1/δT )

(∆v
S⋆)2

+
∑
i∈E

(
Ψ′

i,S∩B +
lnT

(∆v
i,R)2

+Φi,Sc∩B

))
.

The proof is presented at App. B.5. With Theorem 4.3, the
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problem-dependent upper bound is tight for polynomially
decaying {δT }T∈N.

Corollary 4.4 (Tightness of problem-dependent bounds).
Let δT = T−λ with a fixed λ > 0, the regret

Reg(T ) ∈ Ω

(∑
i∈E

lnT

∆i,S∩B,min
+

µ⋆

K2
H (∆(Λ))

)
∩O

(∑
i∈E

K lnT

∆i,S∩B,min
+ µ⋆H (∆(Λ))

)
where H (∆(Λ)) is defined in Remark 4.2. The upper bound
above is achieved by PASCOMBUCB.
Under different rates of decay of {δT }T∈N (see App. D
for the cases where ln(1/δT ) = ω(lnT ) and o(lnT )), the
upper bound of the regret due to suboptimality Reg1(T ) (the
first term in the total regret) and the upper bound of the regret
due to safeness-checking Reg2(T ) (the latter term) match
their corresponding lower bounds up to factors of K and
K2 respectively; this gap is acceptable as K (e.g., number
of ads displayed) is usually small relative to L (total number
of ads). More discussions are postponed to App. E. One
may naturally wonder whether we can tolerate a much more
stringent probably anytime-safe constraint. The following
theorem (with b = 1) indicates no algorithm is {δT }T∈N-
variance-constrained consistent if δT decays exponentially
fast in T . Detailed proofs are postponed to App. C.

Theorem 4.5 (Impossibility result). Let {δT }∞T=1 ∈ o(1)
be a sequence that satisfies that there exists b ∈ (0, 1] such
that ln(1/δT ) = Ω(T b). For any instance Λ, the regret of
any algorithm is lower bounded by Ω(T b).

5. Problem-independent Bounds
We can derive a problem-independent upper bound on the re-
gret of PASCOMBUCB from the problem-dependent one in
Theorem 4.1 with some delicate calculations (see App. B.5).

Theorem 5.1 (Problem-independent upper bound). Let
{δT }∞T=1 ∈ o(1) be a sequence that satisfies ln(1/δT ) =
o(T b) for all b > 0. If T > L, for any instance Λ with
variance gaps lower bounded by ∆v ≤ minS∈AK

∆v
S , the

regret of PASCOMBUCB is upper bounded by

O

(√
KLT lnT +

LK2

(∆v)2
ln
( 1

δT

))
.

Theorem 5.2 (Problem-independent lower bound). Let the
minimum variance gap be ∆v := minS∈AK

∆v
S . When

K3 ≥ L2, we have

Reg(T ) = Ω

(√
KLT +min

{ L

(∆v)2
ln
( 1

δT

)
, T
})

.

Remark 5.3. The assumption that the variance gaps of all
solutions are lower bounded by ∆v is needed to achieve a

non-vacuous problem-independent bound. Given any algo-
rithm and time budget T , the variance gap of S⋆ can be
arbitrarily small if ∆v is not bounded away from zero, so
the min in Theorem 5.2 will be dominated by the linear term
T , and hence, no algorithm can attain sublinear regret.

Corollary 5.4 (Tightness of problem-independent bounds).
Let K3 ≤ L2, and {δT }∞T=1 ∈ o(1) satisfies ln(1/δT ) =
o(T b) for all b > 0. We have

Reg(T ) ∈ Ω

(√
KLT +

L

(∆v)2
ln
( 1

δT

))
∩O

(√
KLT lnT +

LK2

(∆v)2
ln
( 1

δT

))
.

The upper bound is achieved by PASCOMBUCB.
We observe that the gap between the upper and lower bounds
is manifested on

√
lnT and K2. The presence of

√
lnT

is not unexpected as it is also involved in the gap between
the bounds on the regret for the (unconstrained) combina-
torial bandits (Kveton et al., 2015). Besides, the term K2

is induced by the design of PASCOMBUCB. Additional
discussions are provided in App. E.

6. Proof Sketch of the Problem-Dependent
Upper Bound (Theorem 4.1)

Assume that PASCOMBUCB has processed T ′ phases with
T time steps, we have P[T ′ ≤ T ] = 1 since each phase
is composed by multiple time steps. Denote the expected
regret of PASCOMBUCB with p phases as E[R(p)]. The
expected regret of PASCOMBUCB after T time steps is

E[R(T ′)] := E
[ T ′∑

p=1

np∑
r=1

(µ⋆ − µAp,r )

]
.

In the proof of Theorem 4.1, we first show a regret decompo-
sition lemma (Lemma 6.1) that separates the total regret into
the regret due to suboptimality E[R1(T

′)], the regret due
to safeness-checking E[R2(T

′)] and the regret due to the
failure of the “good” event and the initialization. Then we
upper bound R1(T

′) and R2(T
′) separately. To elucidate

the dependence of the regret on the confidence parameters
ωµ, ωv and ω′

v, we retain these notations henceforth. De-
tailed proofs are presented in App. B.

For p ∈ [T ], i ∈ E, define the “good” events that the sample
mean and the sample variance are near their ground truths:
Eµi,Ti(p)

:= {µ̂i(p)− α(Ti(p)) ≤ µi ≤ µ̂i(p) + α(Ti(p))}
and Evi,Ti(p)

(ρ) := {σ̂2
i (p)−3·lil(Ti(p), ρ) ≤ σ2

i ≤ σ̂2
i (p)+

3 · lil(Ti(p), ρ)} and

Ei,Ti(p) := E
µ
i,Ti(p)

∩ Evi,Ti(p)
(ωv) ∩ Evi,Ti(p)

(ω′
v)

E :=
⋂
i∈E

⋂
p∈[T ′]

Ei,Ti(p−1).
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Upper bound

Figure 4. We assume the algorithm will sample those solutions
with large Uv

A(p), i.e., those phases in which more sub-solutions
are sampled are moved forward (the dark red ones). Based on this,
an upper bound can be derived (the thick black lines).

For r ∈ [Q − 1], define Up(r) := {Uv
Ap

(p − 1) > rσ̄2}.
When event Up(r) occurs at phase p, it indicates at least
r + 1 sub-solutions are needed in order to sample the items
in Ap and guarantee the safeness constraint.

Lemma 6.1. Assume that PASCOMBUCB has processed
T ′ phases with T time steps, the expected regret of PAS-
COMBUCB can be decomposed into three parts as follows

E[R(T ′)] ≤ E[R1(T
′)|E ] + E[R2(T

′)|E ] + R3(T )

where R1(T
′) :=

T ′∑
p=1

1{Ap ∈ B}∆Ap

R2(T
′) := µ⋆

T ′∑
p=1

[
2

Q−1∑
r=1

1{Up(r)}
]

R3(T ) := 2µ⋆L
(
1 + T

(
ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′

v

))
In Lemma 6.1, the first term R1(T

′) is the (high-probability)
regret due to suboptimality, in the sense that only the mean
gaps of the suboptimal solutions contribute to R1(T ). The
second term R2(T

′) is called the (high-probability) regret
due to safeness-checking, since it depends on the variance
gaps and goes to 0 if σ̄2 is sufficiently large. The last term
R3(T ) contains the regret from the initialization stage and
the regret results from the failure of the “good” event E .

The regret due to suboptimality can be bounded in terms of
the minimum safe/unsafe-suboptimal gaps as follows.

Lemma 6.2. Conditioned on event E , the regret due to
suboptimality R1(T

′) can be bounded by

O

( ∑
i∈E\S⋆

K

∆i,S∩B,min
ln

1

ωµ
+
∑
i∈E

ciK

∆i,Sc∩B,min
ln

1

ω′
v

)
.

The regret due to safeness-checking involves more critical
parameters of the instance and we encode them in T ′

r′ and
H(r′,Λ) for r′ ∈ [Q] (see Figure 5); these terms are defined
formally in (25) and (26) respectively.

Phase
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st

an
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ne
ou

s R
eg

re
t

......

......

Upper bound

Figure 5. An illustration of the upper bound of R2(T
′) for phase

T ′
Q−2 ≤ T ′ < T ′

Q−3. When r′ = 1, 2µ⋆H(1,Λ) is the area
below the thick line, i.e., the upper bound for R2(T

′) for any T ′.

Lemma 6.3. On the event E , if T ′ ∈ [T ′
r′ , T

′
r′−1) then

R2(T
′) ≤ 2µ⋆[T ′(r′ − 1) +H(r′,Λ)] ≤ 2µ⋆H(1,Λ)

To upper bound R2(T
′), we assume the algorithm samples

solutions with large Uv
A(p) in S̄p, which will then be split

into several sub-solutions (see Figure 4). Furthermore, for
r′ = Q − 1, Q − 2, . . . , 1, we derive an upper bound for
the number of phases in which event Up(r′)∩ (Up(r′+1))c

occurs (at most 2r′ + 1 sub-solutions are being pulled in
these phases). To be more specific (see Figure 5), for
r′ = Q− 1, we compute the maximum number of phases
T ′
Q−1 in which at most 2Q− 1 sub-solutions are sampled.

Then for r′ = Q− 2, we compute the maximum number of
phases T ′

Q−2−T ′
Q−1 in which at most 2Q−3 sub-solutions

are sampled. We do this until the time budget runs out. As
T ′ increases, r′ decreases and H(r′,Λ) increases. When
r′ = 1, i.e. T ′ ≥ T ′

1, H(1,Λ) is an upper bound for the
total number of sub-solutions being pulled (up to a con-
stant) for the safeness-checking or the price of satisfying the
probably anytime-safe constraint. The upper bound for the
regret due to safeness-checking is the instance-dependent
constant 2µ⋆H(1,Λ) when T ′ ≥ T ′

1. More discussions are
postponed to Step 3 in the proof in App. B.4.

7. Experiments
In this section, we ran 3 sets of experiments to illustrate the
empirical performance of PASCOMBUCB and to corrob-
orate its theoretical guarantees. As COMBUCB1 (Kve-
ton et al., 2015; Khezeli & Bitar, 2020; Amani et al.,
2019) has tight regret guarantees, we adopt it as the bench-
mark in the unconstrained case. Codes are accessible at
https://github.com/Y-Hou/PASSCSB.git.

Experimental Design: We design two instances where the
rewards are Beta distributed with means and variances as
in Table 1. There are L = 10 base arms and the admissible
solution set AK contains all subsets of [L] with cardinal-
ity no greater than K = 3 (so |AK | = 175). Since the
arm distributions are supported on [0, 1], the sub-Gaussian
parameter σ2 = 0.25. The confidence parameter δ = 0.05.

8

https://github.com/Y-Hou/PASSCSB.git


Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits

0 2 4 6 8 10

10
5

0

0.5

1

1.5

2

2.5

3

3.5

C
u
m

u
la

ti
v
e 

re
g
re

t

10
5

(a) Experiment 1

0 1 2 3 4 5

10
6

0

1

2

3

4

5

6

7

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

10
6

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

99.90%

99.95%

99.96%

99.98%

99.98%

99.98%

99.98%

99.99%

99.99%

99.99%

(b) Experiment 2

0 20 40 60 80 100
0

2

4

6

8

10

12

A
d

d
it

io
n
al

 r
eg

re
t

10
5

R
2
=0.99636

Additional Regret

Linear fit

(c) Experiment 3

Figure 6. Results of the Experiments: (a) Experiment 1: Cumulative regret v.s. Time horizon; (b) Experiment 2: Cumulative reward v.s.
Time horizon with the percentages of violations besides the data points; (c) Experiment 3: Additional regret v.s. 1/(∆v

S)
2.

Item index 1 2 3 4 5 to 10
Means 0.5 0.45 0.4 0.35 0.3

Variances (Set 1) 0.24 0.24 0.04 0.01 0.01
Variances (Set 2) 0.01 0.01 0.01 0.01 0.01

Table 1. Two sets of items with equal means for each item.

In Experiment 1, we quantify the additional regret due
to the safeness checking and evaluate the performance of
PASCOMBUCB with Set 1 under the unconstrained case.
We run (1) PASCOMBUCB with σ̄ = 0.6 which needs to
check the safeness of the solutions; (2) PASCOMBUCB
with σ̄ = 0.751 which can be regarded as a variant of
PASCOMBUCB without the safeness constraint, since our
algorithm is aware of the safeness of all solutions; (3) COM-
BUCB1 which is a baseline algorithm.
In Experiment 2, we illustrate the effectiveness of PAS-
COMBUCB in satisfying the safety constraint. Furthermore,
we show that if an algorithm ignores the safety constraint, it
will violate the safety constraint Ω(T ) times if there exists
a risky solution. We run PASCOMBUCB and COMBUCB1
with Set 1 under the constrained case where σ̄ = 0.4, the
optimal safe solution is {1, 3, 4}, and the optimal solution
under the unconstrained case {1, 2, 3} is unsafe (risky).
In Experiment 3, we empirically verify the dependence of
the additional regret on the hardness parameter H(∆(Λ))
in (26) using Set 2. We fix the time horizon T = 2 × 106

and vary the threshold on the variance from 0.14 to 0.72
(i.e., σ̄2 = 0.14 × 1.2k for k = 0, 1, . . . , 9). As any so-
lution that is comprised of 3 items has variance 0.03, we
have ∆v

S = σ̄2 − 0.03. We compare the additional regret
with respect to 1/(∆v

S)
2, which is proportional to H(∆(Λ))

under this setup according to (26).

Experimental Results: For Experiment 1, we present the
results in Figure 6(a). We first observe when σ̄2 = 0.751,
the regret incurred by PASCOMBUCB is similar to that
by COMBUCB1 for all T considered, which suggests that
PASCOMBUCB is comparable to COMBUCB1 under the

unconstrained case, and hence in the following experiments
we refer the difference between the regret of PASCOM-
BUCB and the regret of COMBUCB1 as the “additional
regret”. Secondly, when σ̄2 = 0.6, the regret of PAS-
COMBUCB increases rapidly at the beginning and plateaus
when T > 4 × 105. This corroborates the design of PAS-
COMBUCB : (i) at the beginning, PASCOMBUCB pulls
solutions conservatively to meet the anytime-safe constraint
w.h.p.; (ii) after a number of time steps (T > 4× 105), the
safeness of the optimal (safe) solution can be ascertained, it
then exploits the optimal solution aggressively and eventu-
ally matches the performance of COMBUCB1.
For Experiment 2, we plot the percentage of times each
algorithm violates the safeness constraint σ2

At
< σ̄2 as well

as the cumulative rewards in Figure 6(b). The reward of
PASCOMBUCB increases slowly at the start and then more
rapidly when T > 1.5× 106, when the safeness of the op-
timal safe solution has been ascertained. However, while
the reward of COMBUCB1 increases linearly (as it pulls
the risky solution {1, 2, 3} Ω(T ) times), it violates the safe-
ness constraint σ2

St
< σ̄2 at almost all times. This implies

that the safety constraint is almost always violated by COM-
BUCB1 (Ω(T ) times) whereas PASCOMBUCB can meet
the probably anytime-safe requirement.
For Experiment 3, the results are in Figure 6(c). As sug-
gested by Theorem 4.1, the regret due to safeness checking
is proportional to H(∆(Λ)). Figure 6(c) indicates that em-
pirically, the additional regret scales linearly in 1/(∆v

S)
2,

which corroborates our theoretical results.

Additional discussions on the tightness results, the problem
formulation and comparisons with other literature, as well
as future research directions, are presented in App. E.

Acknowledgements
The authors are supported by Singapore Ministry of Edu-
cation (MOE) grants (Grant Numbers: A-0009042-01-00,
A-8000189-01-00, A-8000980-00-00, A-8000423-00-00)
and funding from CIFAR through Amii and NSERC.

9



Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits

References
Amani, S., Alizadeh, M., and Thrampoulidis, C. Linear

stochastic bandits under safety constraints. In Proceed-
ings of the 33rd International Conference on Neural Infor-
mation Processing Systems, volume 32, pp. 9256–9266,
2019.

Ayyagari, S. and Dukkipati, A. Risk-aware algorithms for
combinatorial semi-bandits, 2021.

Badanidiyuru, A., Kleinberg, R., and Slivkins, A. Bandits
with knapsacks. Journal of the ACM, 65(3), 2018.

Bhat, S. P. and Prashanth, L. A. Concentration of risk mea-
sures: a wasserstein distance approach. In Proceedings
of the 33rd International Conference on Neural Informa-
tion Processing Systems, volume 32, pp. 11762–11771.
Curran Associates, Inc., 2019.

Cassel, A., Mannor, S., and Zeevi, A. A general approach to
multi-armed bandits under risk criteria. In Proceedings
of the 31st Conference On Learning Theory, volume 75
of Proceedings of Machine Learning Research, pp. 1295–
1306. PMLR, 2018.

Chang, J. Q. L. and Tan, V. Y. F. A unifying theory of
Thompson sampling for continuous risk-averse bandits.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), 2022.

Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi-
armed bandit: General framework and applications. In
Proceedings of the 30th International Conference on Ma-
chine Learning, volume 28, pp. 151–159. PMLR, 2013.
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Appendices
The contents of the appendices are organized as follows:

• In App. A, we list 3 useful lemmas concerning the LIL concentration bound.
• In App. B, we present detailed proofs of the upper bounds.

• App. B.1: preliminary results for the proof of the upper bound;
• App. B.2: the proof of the decomposition lemma Lemma 6.1;
• App. B.3: the proof of Lemma 6.2 (the regret due to suboptimality);
• App. B.4: the proof of Lemma 6.3 (the regret due to safeness-checking);
• App. B.5: the proofs of Theorem 4.1 (problem-dependent upper bound) and Theorem 5.1 (problem-independent upper

bound).
• In App. C, we present detailed proofs of the lower bounds.

• App. C.1: preliminary results for the proof of the lower bound and the proof of the impossibility result Theorem 4.5.
• App. C.2: the proof of Theorem 4.3 (problem-dependent lower bound);
• App. C.3: the proof of Theorem 5.2 (problem-independent lower bound);

• In App. D, we present a corollary characterizing the tightness of the upper bound in Theorem 4.1.
• In App. E, we provide additional discussions on the tightness results, the problem formulation and comparisons with other

literature, as well as future research directions.

A. Auxiliary results
Lemma A.1 (Lemma 3 in (Jamieson et al., 2014)). Let {Xi}∞i=1 be a sequence of i.i.d. centered sub-Gaussian random
variables with scale parameter σ. Fix any ϵ ∈ (0, 1) and δ ∈ (0, ln(1 + ϵ)/e). Then one has

P
[
∀ t∈N :

t∑
s=1

Xs≤(1+
√
ϵ)

√
2σ2 (1+ϵ) t ln

(
ln ((1+ϵ)t)

δ

)]
≥ 1− ξ(δ),

where ξ(δ) := 2+ϵ
ϵ

(
δ

ln(1+ϵ)

)1+ϵ
.

Lemma A.2. For t ≥ 1, ϵ ∈ (0, 1), ω ∈ (0, 1] and u > 0, let γ := (1+ϵ)(1+
√
ϵ)2

2 , c := (u·s)2
γ = 2(u·s)2

(1+ϵ)(1+
√
ϵ)2

and

m := γ
u2·s2

(
2 ln 1

ω + ln ln+
1
s2 + ln 2γ(1+ϵ)

u2

)
. If t > m, it holds that

s > lil(t, ω) = (1 +
√
ϵ)

√
1 + ϵ

2t
ln

(
ln ((1+ϵ)t)

ω

)
.

Proof of Lemma A.2. Note that fact that

u · s ≤ (1 +
√
ϵ)

√
1 + ϵ

2t
ln

(
ln ((1+ϵ)t)

ω

)
⇐⇒ c =

2(u · s)2

(1 + ϵ)(1 +
√
ϵ)2
≤ 1

t
ln

(
ln ((1+ϵ)t)

ω

)
According to the computations in Jamieson et al. (2014) equation (1), i.e.,

1

t
ln

(
ln((1 + ϵ)t)

ω

)
≥ c′ ⇒ t ≤ 1

c′
ln

(
2 ln((1 + ϵ)/(c′ω))

ω

)
for t ≥ 1, ϵ ∈ (0, 1), c′ > 0, ω ∈ (0, 1]. We take c′ = c, thus

t ≤ 1

c
ln

(
2 ln((1 + ϵ)/(cω))

ω

)
=

1

c

(
ln

2

ω
+ ln

(
ln

γ(1 + ϵ)

u2 · ω
+ ln

1

s2

))
(a)

≤ 1

c

(
ln

2

ω
+ ln

γ(1 + ϵ)

u2 · ω
+ ln ln+

1

s2

)
=

γ

u2 · s2

(
2 ln

1

ω
+ ln ln+

1

s2
+ ln

2γ(1 + ϵ)

u2

)
= m

12
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where we adopt ln(x+ y) ≤ x+ ln ln+ y,∀x, y ∈ R+ in (a). Therefore, if t > m, we must have

u · s > (1 +
√
ϵ)

√
1 + ϵ

2t
ln

(
ln ((1+ϵ)t)

ω

)
.

Lemma A.3. With the choice of the confidence radii in (2) and (3), for all i ∈ E, we have

P [∀ p∈N : |µ̂i(p)− µi| ≤ α(Ti(p))] ≥ 1− 2ξ(ωµ) (7)

P
[
∀ p∈N : |σ̂2

i (p)− σ2
i | ≤ βu(Ti(p))

]
≥ 1− 4ξ(ωv) (8)

P
[
∀ p∈N : |σ̂2

i (p)− σ2
i | ≤ βl(Ti(p))

]
≥ 1− 4ξ(ω′

v) (9)

Proof. Note the fact that any distribution supported on [0, 1] is 1/4-sub-Gaussian. By a direct application of Lemma A.1 to
the sample mean µ̂i(p) and the sample second moment M̂2,i(p) :=

1
Ti(p)

∑p
s=1 Wi(s)

2
1{i ∈ As} of arm i ∈ [L], (7) can

be derived and

P [∀ p∈N : |µi − µ̂i(p)| ≤ lil(Ti(p), ω
′
v)] ≥ 1− 2ξ(ω′

v), and

P
[
∀ p∈N : |M̂2,i(p)− (µ2

i + σ2
i )| ≤ lil(Ti(p), ω

′
v)
]
≥ 1− 2ξ(ω′

v)

Since the rewards are in [0, 1], |µ2
i − µ̂2

i (p)| = |µi + µ̂i(p)| · |µi − µ̂i(p)| ≤ 2 · lil(Ti(p), ω
′
v). Using this and the triangle

inequality, we obtain for every p ≥ 1,

|σ̂2
i (p)− σ2

i | = |µ2
i − µ̂2

i (p)|+ |(µ2
i + σ2

i )− M̂2,i(p)|
≤ 2 · lil(Ti(p), ωv) + lil(Ti(p), ωv) = βu(Ti(p)).

Therefore, (8) is proved. (9) can be similarly obtained.

B. Proof of the Upper Bound
B.1. Proof scheme of the problem-dependent upper bound

In this subsection, we provide technical lemmas that can upper bound the components in R1(T
′) and R2(T

′).

Note that at phase p, the identified solution Ap belongs to one of the 4 disjoint sets: (1) Ap = S⋆; (2) S ∩ B; (3)R and (4)
Sc ∩ B, i.e.

1 = 1 {Ap = S⋆}+ 1 {Ap ∈ S ∩ B}+ 1 {Ap ∈ R}+ 1 {Ap ∈ Sc ∩ B}

and 1 {Ap ∈ B} = 1 {Ap ∈ S ∩ B}+ 1 {Ap ∈ Sc ∩ B}. Define two events (the F events) that connect the instance and
the confidence radii

Fµ
p :=

{
∆Ap

≤ 2
∑

i∈Ap\S⋆

α(Ti(p− 1))

}

Fp(x, ρ) :=

{
x ≤ 2

∑
i∈Ap

lil(Ti(p− 1), ρ)

}

where x is a constant and ω is a confidence parameter. When Ap ∈ B, it indicates solution Ap has not been sampled
sufficiently many times and its suboptimality has not been ascertained. When Ap ∈ Sc, it implies the unsafeness of Ap has
not been recognized. We formalize this in the following lemma.

Lemma B.1. Conditional on the event E , given any p ∈ [T ], we have

• S⋆ ∈ S̄p−1;

13
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• If Ap ∈ S ∩ B,

1 {Ap ∈ S ∩ B} ≤ 1
{
Fµ

p

}
;

• If Ap ∈ R,

1 {Ap ∈ R} ≤ 1

{
Fp

(
∆v

Ap

3
, ω′

v

)}
;

• If Ap ∈ Sc ∩ B,

1 {Ap ∈ Sc ∩ B} ≤ 1

{
Fµ

p ,Fp

(
∆v

Ap

3
, ω′

v

)}
.

Proof of Lemma B.1. By the design of PASCOMBUCB , Ap ∈ S̄p−1.

(1) We firstly prove that S ∈ S̄p−1,∀S ∈ S. On the event E , we have

Lv
S(p− 1) =

∑
i∈A

max{σ̂2
i (p− 1)− βl(Ti(p− 1)), 0}

≤
∑
i∈A

max{σ2
i , 0}

= σ2
S < σ̄2

Thus, S ∈ S̄p−1, and in particular, S⋆ ∈ S̄p−1.

(2) If Ap ∈ B, according to the sampling strategy in Line 10 of PASCOMBUCB and S⋆ ∈ S̄p−1, we have Uµ
S⋆(p− 1) ≤

Uµ
Ap

(p− 1) which indicates
∑

i∈S⋆\Ap
Uµ
i (p− 1) ≤

∑
i∈Ap\S⋆ U

µ
i (p− 1). Thus,∑

i∈S⋆\Ap

µi ≤
∑

i∈S⋆\Ap

Uµ
i (p− 1)

≤
∑

i∈Ap\S⋆

Uµ
i (p− 1)

≤
∑

i∈Ap\S⋆

µi + 2αi(Ti(p− 1))

=⇒ ∆Ap
≤ 2

∑
i∈Ap\S⋆

α(Ti(p− 1)) (10)

(3) If Ap ∈ Sc, according to the sampling strategy, we have Ap ∈ S̄p−1 which indicates Lv
Ap

(p− 1) =
∑

i∈Ap
Lv
i (p− 1) <

σ̄2. Thus,

σ̄2 > σ̂2
Ap

(p− 1)−
∑
i∈Ap

βl(Ti(p− 1))

≥ σ2
Ap
− 2

∑
i∈Ap

βl(Ti(p− 1))

=⇒ ∆v
Ap
≤ 2

∑
i∈Ap\S⋆

βl(Ti(p− 1)) (11)

Note that if Ap ∈ S ∩ B, according to (10),

1 {Ap ∈ S ∩ B} ≤ 1
{
Fµ

p

}
.

If Ap ∈ R ⊂ Sc, by (11)

1 {Ap ∈ R} ≤ 1

{
Fp

(
∆v

Ap

3
, ω′

v

)}
.

14
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If Ap ∈ Sc ∩ B, by (11) and (10)

1 {Ap ∈ Sc ∩ B} ≤ 1

{
Fµ

p ,Fp

(
∆v

Ap

3
, ω′

v

)}

At phase p, we define two sequences of mutually-exclusive events {Gµj,p}j∈N and {Gj,p(x, ω}j∈N (the G events) which can
further bound the number of times Fµ

p and Fv
p (x, ω) occur respectively. These events are indexed by two strictly-decreasing

sequences of constants:

a1 > a2 > . . . > ak > . . .

1 > b1 > b2 > . . . > bk > . . .

where limj→∞ aj = limj→∞ bj = 0. For simplicity, we set aj = 4
9j−2 , bj = 1

4j ,∀j ∈ N and denote the constant
C =

∑
j∈N

aj

bj
= 259.2. For x ∈ R+ and ω ∈ (0, ln(1 + ϵ)/e), define

mj(x, ω) :=
aj · γK2

x2

(
2 ln

1

ω
+ ln ln+

1

x2
+D

)
and mj(x, ω) := ∞ otherwise, where (1) γ = (1+ϵ)(1+

√
ϵ)2

2 and ϵ is the constant in the confidence bounds (3), (2)
ln ln+(x) = ln lnx if x ≥ e and it equals to 0 otherwise, (3) D = ln

(
324K2(1 + ϵ)2(1 +

√
ϵ)2
)
. Denote

Gµ
j,p :=

{
i ∈ Ap \ S⋆ : Ti(p− 1) ≤ mj(∆Ap , ωµ)

}
and

Gj,p(x, ω) := {i ∈ Ap : Ti(p− 1) ≤ mj(x, ω)}

as the sets of items that were not chosen sufficiently often. For j ∈ N, the events at phase p are sequentially defined as

Gµj,p :=
{

at least bjK items in Ap \ S⋆ were chosen

at most mj(∆Ap
, ωµ) times

}⋂ ⋃
k∈[j−1]

Gµk,p

c

=
{ ∣∣Gµ

j,p

∣∣ ≥ bjK
}⋂ ⋃

k∈[j−1]

Gµk,p

c

and

Gj,p(x, ω) :=
{

at least bjK items in Ap were chosen

at most mj(x, ω) times
}⋂ ⋃

k∈[j−1]

Gk,p(x, ω)

c

=
{
|Gj,p(x, ω)| ≥ bjK

}⋂ ⋃
k∈[j−1]

Gk,p(x, ω)

c

Lemma B.2. With our choice of {aj}j∈N and {bj}j∈N,

• if Fµ
p occurs, Gµj,p occurs for some j, i.e.

1
{
Fµ

p

}
≤ 1

⋃
j∈N
Gµj,p

 .

15
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• if Fp(x, ω) occurs, Gj,p(x, ω) occurs for some j, i.e.

1 {Fp(x, ω)} ≤ 1

⋃
j∈N
Gj,p(x, ω)

 . (12)

Proof of Lemma B.2. We prove (12) in the following and the other statement can be proved by the same procedures.

To ease the notations, we omit the parameters x, ω and p in Fp(x, ω),Gj,p(x, ω) and mj(x, ω), since they are fixed when
given Fp(x, ω). The event Gj can be rewritten as

Gj =
{
|Gj | ≥ bjK

}⋂ ⋂
k∈[j−1]

Gck


=
{
|Gj | ≥ bjK

}⋂ ⋂
k∈[j−1]

{
|Gk| < bkK

}
The statement is proved by contradiction. We assume that when F (Fp(x, ω)) occurs, none of event Gj occurs. Hence,

⋃
j∈N
Gj

c

=
⋂
j∈N
Gcj

=
⋂
j∈N

{ |Gj | < bjK
}⋃ ⋃

k∈[j−1]

{
|Gk| ≥ bkK

}
=
⋂
j∈N

{
|Gj | < bjK

}

Let Ḡj := Ap \Gj and define G0 = Ap. According to the definition of Gj , we have Gj ⊂ Gj−1 and Ḡj−1 ⊂ Ḡj ,∀j ∈ N.
Because limj→∞ mj = 0, there exists j0 such that Ḡj = Ap,∀j ≥ j0. Therefore, we can write Ap by the “telescoping”
sum, i.e., Ap = ∪j∈N

(
Ḡj \ Ḡj−1

)
. Fp(x, ω) indicates

x ≤ 2
∑
i∈Ap

lil(Ti(p− 1), ω) (13)

= 2
∑
j∈N

∑
i∈Ḡj\Ḡj−1

lil(Ti(p− 1), ω)

Note that for i ∈ Ḡj \ Ḡj−1 = Gj−1 \ Gj , we have Ti(p − 1) ∈ (mj ,mj−1]. By Lemma A.2 with parameters

t = Ti(p− 1), s = x, u =
√

1
ajK2 and note a1 > aj , we have

√
1

ajK2
· x > lil(Ti(p− 1), ω).

Note our choice of aj and bj satisfy

2
∑
j∈N

bj−1 − bj√
aj

≤ 1

16
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Thus, (13) can be further bounded by

x ≤ 2
∑
j∈N

∑
i∈Ḡj\Ḡj−1

lil(Ti(p− 1), ω)

< 2
∑
j∈N
|Ḡj \ Ḡj−1|

√
1

ajK2
· x

≤ 2
∑
j∈N

(bj−1 − bj)K√
ajK

x

≤ x

which constitutes a contradiction. Thus when F occurs, there must exists j ∈ N such that Gj occurs.

When none of the Gµj,p (resp. Gj,p(x, ω)) occurs, Fµ
p (resp. Fp(x, ω)) must not occur, which indicates all of the items in Ap

have been sampled sufficiently many times such that the suboptimality (resp. unsafeness) of Ap is identified, thus Ap will
not been sampled in future phases.

As there will be multiple F events happening, we provide the following useful lemma that merges all F events.
Lemma B.3. Given two confidence parameters ω1 ≥ ω2 ∈ (0, ln(1 + ϵ)/e)

• If Fµ
p occurs, then Fp(∆Ap

, ωµ) occurs.

• If both events Fp(x, ω1) and Fp(y, ω2) occur, then event Fp

(
max{x,

√
ln 1

ω1

ln 1
ω2

y}, ω1

)
occurs.

Proof of Lemma B.3. If Fµ
p occurs, we have

∆Ap ≤ 2
∑

i∈Ap\S⋆

α(Ti(p− 1)) ≤ 2
∑
i∈Ap

α(Ti(p− 1)) = 2
∑
i∈Ap

lil(Ti(p− 1), ωµ)

Thus, Fp(∆Ap
, ωµ) occurs.

For the second statement, notice the fact that

lil(Ti(p− 1), ω1)

lil(Ti(p− 1), ω2)
=

(1 +
√
ϵ)
(

1+ϵ
2Ti(p−1) ln

( ln((1+ϵ)Ti(p−1))
ω1

))1/2
(1 +

√
ϵ)
(

1+ϵ
2t ln

( ln((1+ϵ)Ti(p−1))
ω2

))1/2
=

√√√√ ln 1
ω1

+ ln ln((1 + ϵ)Ti(p− 1))

ln 1
ω2

+ ln ln((1 + ϵ)Ti(p− 1))

(a)

≥

√√√√ ln 1
ω1

ln 1
ω2

=: ρ

where (a) utilizes the trick that a+c
b+c ≥

a
b ,∀a, b, c ∈ R+ and a ≤ b. When event Fp(y, ω2) occurs,

y ≤ 2
∑
i∈Ap

lil(Ti(p− 1), ω2) ≤ 2
∑
i∈Ap

1

ω
lil(Ti(p− 1), ω1)

=⇒ ρ · y ≤ 2
∑
i∈Ap

lil(Ti(p− 1), ω1)

=⇒ Fp(ρy, ω1)

Thus if both events Fp(x, ω1) and Fp(y, ω2) occur, we must have that event Fp (max{x, ρy}, ω1)) =

Fp

(
max{x,

√
ln 1

ω1

ln 1
ω2

y}, ω1)

)
occurs.
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B.2. Upper bound decomposition

Lemma 6.1. Assume that PASCOMBUCB has processed T ′ phases with T time steps, the expected regret of PASCOM-
BUCB can be decomposed into three parts as follows

E[R(T ′)] ≤ E[R1(T
′)|E ] + E[R2(T

′)|E ] + R3(T )

where R1(T
′) :=

T ′∑
p=1

1{Ap ∈ B}∆Ap

R2(T
′) := µ⋆

T ′∑
p=1

[
2

Q−1∑
r=1

1{Up(r)}
]

R3(T ) := 2µ⋆L
(
1 + T

(
ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′

v

))
Proof of Lemma 6.1. The expected regret can be decomposed as:

E [R(T ′)] = E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r )


= E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r )1 {E}

+ E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r )1 {Ec}


= E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r )

∣∣∣∣E
P[E ] + E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r )

∣∣∣∣Ec
P[Ec]

In the initialization stage, it will take at most 2L time steps, since each pulled solution Ap contains at least one item i with
Ti(p) < 2. Thus the regret is at most 2L · µ⋆.

The expected regret when the good events fail can be upper bounded by

E

 T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r
)

∣∣∣∣Ec
P [Ec] ≤ E

 T ′∑
p=1

np∑
r=1

µ⋆

∣∣∣∣Ec
P[Ec]

≤ E

[
T∑

t=1

µ⋆

∣∣∣∣Ec
]
L · 2(ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′

v))

≤ 2µ⋆TL · (ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′
v))

where P[Ec] can be bounded using Lemma A.3.

Conditional on the good event E , the high-probability regret can be upper bounded by

R̂(T ′) :=

T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r
) (14)

=

T ′∑
p=1

[
∆Ap

+ µ⋆(np − 1)
]

(a)

≤
T ′∑
p=1

[
∆Ap

+ µ⋆

Q−1∑
r=0

(
2 · 1{Uv

Ap
(p− 1) > rσ̄2} − 2

)]

=

T ′∑
p=1

[
∆Ap

+ µ⋆

Q−1∑
r=1

2 · 1{Uv
Ap

(p− 1) > rσ̄2}

]
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where (a) makes use of Lemma B.4 and the fact if Uv
Ap

(p− 1) ∈ ((m− 1)σ̄2,mσ̄2], then m =
∑Q−1

r=0 1{Uv
Ap

(p− 1) >

rσ̄2} =
∑Q−1

r=0 1{Up(r)}. Note the fact that only the suboptimal solutions yields positive mean gap and that the negative
mean gap of the risky solutions can be upper bounded by 0, thus the above equation can be further divided into two parts

T ′∑
p=1

[
∆Ap

+ µ⋆

Q−1∑
r=1

2 · 1{Uv
Ap

(p− 1) > rσ̄2}

]

≤
T ′∑
p=1

1{Ap ∈ B}∆Ap +

T ′∑
p=1

µ⋆

Q−1∑
r=1

2 · 1{Uv
Ap

(p− 1) > rσ̄2}

=: R1(T
′) + R2(T

′)

In conclusion, by summarizing the regret from the initialization stage, the regret due to failure of the good event and the
high-probability regret, the expected regret can be bounded by

E[R(T ′)] ≤ E[R1(T
′)|E ]P[E ] + E[R2(T

′)|E ]P[E ] + 2µ⋆ · TL (ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′
v)) + 2µ⋆L

≤ E[R1(T
′)|E ] + E[R2(T

′)|E ] + 2µ⋆ · TL (ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′
v)) + 2µ⋆L

= E[R1(T
′)|E ] + E[R2(T

′)|E ] + R3(T )

B.3. Regret due to suboptimality

Lemma 6.2. Conditioned on event E , the regret due to suboptimality R1(T
′) can be bounded by

O

( ∑
i∈E\S⋆

K

∆i,S∩B,min
ln

1

ωµ
+
∑
i∈E

ciK

∆i,Sc∩B,min
ln

1

ω′
v

)
.

Proof of Lemma 6.2. Notice the fact that the suboptimal solution Ap can be safe, i.e. Ap ∈ S ∩ B, or unsafe, i.e.,
Ap ∈ Sc ∩ B, we upper bound the regret under these the two scenarios separately.

Case 1: Ap ∈ S ∩ B

By the definition of the event Gµj,p, we have

|Gµ
j,p| =

∣∣{i ∈ Ap \ S⋆ : Ti(p− 1) ≤ mj(∆Ap , ωµ)
}∣∣ ≤ bjK

which indicates

1
{
Ap ∈ S ∩ B,Gµj,p

}
≤ 1

bjK

∑
i∈Ap\S⋆

1
{
Ap ∈ S ∩ B, Ti(p− 1) ≤ mj(∆Ap

, ωµ)
}
.

Given an item i ∈ E \ S⋆, assume it is included vi solutions in S ∩ B, we index them according to the decreasing order of
their mean gaps, i.e. {Ai,k}k∈[vi] with ∆Ai,1 ≥ . . . ≥ ∆Ai,vi . Therefore,

T∑
p=1

1 {Ap ∈ S ∩ B}∆Ap
· 1 {E}

(a)

≤
T∑

p=1

1
{
Ap ∈ S ∩ B,Fµ

p

}
∆Ap

(b)

≤
T∑

p=1

∑
j∈N

1
{
Ap ∈ S ∩ B,Gµj,p

}
∆Ap

≤
T∑

p=1

∑
j∈N

1

bjK

∑
i∈Ap\S⋆

1
{
Ap ∈ S ∩ B, Ti(p− 1) ≤ mj(∆Ap , ωµ)

}
∆Ap
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≤
T∑

p=1

∑
j∈N

1

bjK

∑
i∈E\S⋆

∑
k∈[vi]

1
{
Ai,k = Ap, i ∈ Ap, Ti(p− 1) ≤ mj(∆Ai,k , ωµ)

}
∆Ai,k

≤
∑

i∈E\S⋆

∑
j∈N

T∑
p=1

∑
k∈[vi]

∆Ai,k

bjK
1

{
Ai,k = Ap, i ∈ Ai,k, Ti(p− 1) ≤ aj · γK2

∆2
Ai,k

(
2 ln

1

ωµ
+ ln ln+

1

∆2
Ai,k

+D

)}
(c)

≤
∑

i∈E\S⋆

∑
j∈N

T∑
p=1

∑
k∈[vi]

∆Ai,k

bjK
1

{
Ai,k = Ap, i ∈ Ai,k, Ti(p− 1) ≤ aj · γK2

∆2
Ai,k

(
2 ln

1

ωµ
+ ln ln+

1

∆2
Ai,vi

+D

)}
(d)

≤
∑

i∈E\S⋆

∑
j∈N

aj · γK2

bjK

(
2 ln

1

ωµ
+ ln ln+

1

∆2
Ai,vi

+D

)(
1

∆Ai,vi

+

vi−1∑
k=2

∆Ai,k+1

(
1

∆2
Ai,k+1

− 1

∆2
Ai,k

))

≤
∑

i∈E\S⋆

2CγK

∆Ai,vi

(
2 ln

1

ωµ
+ ln ln+

1

∆2
Ai,vi

+D

)

where (a) and b make use of Lemma B.1 and Lemma B.2, (c) is obtained by relaxing ln ln+
1

∆
Ai,k

to ln ln+
1

∆
Ai,vi

, (d) is
obtained by solving the optimization problem.

Case 2: Ap ∈ Sc ∩ B

For the case where ωµ ≤ ω′
v, denote ω̄ :=

√
ln 1

ω′
v

ln 1
ωµ

. Given an item i ∈ E, assume it is included vi solutions in

Sc ∩ B, we index them according to the decreasing order of their gaps ∆̄A := max
{
ω̄∆A,

∆v
A

3

}
, i.e. {Ai,k}k∈[vi] with

∆̄Ai,1 ≥ . . . ≥ ∆̄Ai,vi . Denote ci := maxk∈[vi]

(
∆

Ai,k

∆̄
Ai,k

)2
, ki = argmaxk∈[vi] ∆Ai,k and di = mink∈[vi] ∆Ai,k , i.e., the

minimum mean gap.

We have

T∑
p=1

1 {Ap ∈ Sc ∩ B}∆Ap · 1 {E}

(a)

≤
T∑

p=1

1

{
Ap ∈ Sc ∩ B,Fµ

p ,Fp

(
∆v

Ap

3
, ω′

v

)}
∆Ap

(b)

≤
T∑

p=1

1

{
Ap ∈ Sc ∩ B,Fp

(
max

{
ω̄∆Ap ,

∆v
Ap

3

}
, ω′

v

)}
∆Ap

(c)

≤
T∑

p=1

∑
j∈N

1

{
Ap ∈ Sc ∩ B,Gj,p

(
max

{
ω̄∆µ,

∆v
Ap

3

}
, ω′

v

)}
∆Ap

≤
T∑

p=1

∑
j∈N

1

bjK

∑
i∈Ap

1
{
Ap ∈ Sc ∩ B, Ti(p− 1) ≤ mj

(
∆̄Ap

, ω′
v

)}
∆Ap

=

T∑
p=1

∑
j∈N

1

bjK

∑
i∈E\S⋆

∑
k∈[vi]

1
{
Ai,k = Ap, i ∈ Ap, Ti(p− 1) ≤ mj

(
∆̄Ap , ω

′
v

)}
∆Ai,k

≤
∑
i∈E

∑
j∈N

T∑
p=1

∑
k∈[vi]

∆Ai,k

bjK
1

{
Ai,k = Ap, i ∈ Ai,k, Ti(p− 1) ≤ aj · γK2

∆̄2
Ai,k

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,k

+D

)}
(d)

≤
∑
i∈E

∑
j∈N

T∑
p=1

∑
k∈[vi]

∆Ai,k

bjK
1

{
Ai,k = Ap, i ∈ Ai,k, Ti(p− 1) ≤ aj · γK2

∆̄2
Ai,k

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)}
(15)
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(e)

≤
∑
i∈E

∑
j∈N

aj · γK2

bjK

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)(
ci
di

+ ci ·
(

1

di
− 1

∆Ai,ki

))

≤
∑
i∈E

2ci · CγK

di

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)

where (a) comes from Lemma B.1, (b) results from Lemma B.3, (c) is due to Lemma B.2, (d) is obtained by relaxing
ln ln+

1
∆̄2

Ai,k

to ln ln+
1

∆̄2

Ai,vi

and (e) is achieved by solving the optimization problem in (15):

T∑
p=1

∑
k∈[vi]

∆Ai,k

bjK
1

{
Ai,k = Ap, i ∈ Ai,k, Ti(p− 1) ≤ aj · γK2

∆̄2
Ai,k

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)}

≤ aj · γK2

bjK

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)
·

(
ci
di

+

∫ ∆
Ai,ki

di

ci
x2

dx

)

=
aj · γK2

bjK

(
2 ln

1

ω′
v

+ ln ln+
1

∆̄2
Ai,vi

+D

)(
ci
di

+ ci ·
(

1

di
− 1

∆Ai,ki

))

In conclusion, for i ∈ E \ S⋆, denote

∆i,S∩B,min := min
S∋i,S∈S∩B

∆S

For i ∈ E, denote

∆i,Sc∩B,min := min
S∋i,S∈Sc∩B

∆S

∆̄′
i,Sc∩B := min

S∋i,S∈Sc∩B
max{ω̄∆S ,∆

v
S/3}

ci := max
S∋i,S∈Sc∩B

(
∆S

max{ω̄∆S ,∆v
S/3}

)2

The regret due to suboptimality can be upper bounded by

R1(T ) ≤
∑

i∈E\S⋆

2CγK

∆i,S∩B,min

(
2 ln

1

ωµ
+ ln ln+

1

∆2
i,S∩B,min

+D

)

+
∑
i∈E

2ci · CγK

∆i,Sc∩B,min

(
2 ln

1

ω′
v

+ ln ln+
1

(∆̄′
i,Sc∩B)

2
+D

)

B.4. Regret due to safeness-checking

We firstly introduce two more technical lemmas in order to upper bound the regret. We characterize the number of
sub-solutions np in Algorithm 2 by the following lemma.

Lemma B.4. At any phase p, we have P[np ≤ Q] = 1. Furthermore, if Uv
Ap

(p− 1) ∈ ((m− 1)σ̄2,mσ̄2] for some m ∈ N,
then m ≤ np ≤ 2m− 1.

Proof of Lemma B.4. Recall that an absolutely safe solution S is safe w.p. 1 and S ∈ Sp−1, thus |Ap,r| ≥ q,∀r ∈ [np − 1].
If np > Q, i.e. np ≥ Q+ 1, then

K ≥ |Ap| =
np∑
r=1

|Ap,r| >
Q∑

r=1

|Ap,r| ≥ Q · q ≥ K
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which constitutes a contradiction. Therefore, we have P[np ≤ Q] = 1.

If Uv
Ap

(p − 1) ∈ ((m − 1)σ̄2,mσ̄2] for some m ∈ N+, we sequentially define {j1, j2, . . .} ⊂ [|Ap|] as follows: denote
j0 := 0 and let j1 be the integer such that

j1−1∑
s=1

Uv
is(p− 1) ≤ σ̄2 and

j1∑
s=1

Uv
is(p− 1) > σ̄2.

Then let j2 > j1 be the integer such that

j2−1∑
s=j1+1

Uv
is(p− 1) ≤ σ̄2 and

j2∑
s=j1+1

Uv
is(p− 1) > σ̄2.

...

The last integer jk = |Ap| satisfies

0 <

jk∑
s=jk−1+1

Uv
is(p− 1) ≤ σ̄2.

If k ≥ m+ 1, we must have

Uv
At
(p− 1) =

k∑
l=1

jl∑
s=jl−1+1

Uv
is(p− 1)

≥
m∑
l=1

jl∑
s=jl−1+1

Uv
is(p− 1) > mσ̄2

which contradicts with Uv
Ap

(p− 1) ∈ ((m− 1)σ̄2,mσ̄2]. Hence, k ≤ m. Then we construct the sub-solutions by

Ap,l = {ijl−1+1, . . . , ijl−1}, ∀l ∈ [k − 1]

and Ap,k = {ijk−1+1, . . . , ijk}.

There are k − 1 items {ijl : l ∈ [k − 1]} left which will compose at most k − 1 additional sub-solutions. In conclusion, we
need at most 2m − 1 sub-solutions, i.e., np ≤ 2m − 1. Obviously, we need at least m sub-solutions since σ̄2 > σ2. So
m ≤ np ≤ 2m− 1.

Remark B.5. Indexing the items in Line 3 of GREEDY-SPLIT can be done arbitrarily, i.e., it does not require any specific
order of the items. As such, GREEDY-SPLIT is an efficient greedy algorithm. We note that finding the optimal order that
leads to the minimum number of sub-solutions np is a combinatorial problem which is generally hard to solve.

Due to the fact that the upper confidence of any solution S satisfies Uv
S(p) ≤ Qσ̄2, thus np can at most be 2Q− 1.

Lemma 6.1 implies the key to upper bound the regret due to safeness-checking is to upper bound
∑Q−1

r=1 1{Up(r)} over the
horizon T . From the definition of Up(r) := {Uv

Ap
(p− 1) > rσ̄2}, for r1, r2 ∈ [Q− 1] with r1 > r2, event Up(r1) indicates

event Up(r2). Thus in order to upper bound
∑Q−1

r=1 1{Up(r)}, it suffices to upper bound 1{Up(r)} for r ∈ [Q− 1]. To be
more specific, given l ∈ [Q− 1], in order to compute the maximum number of times

∑Q−1
r=1 1{Up(r)} ≥ l, we only need to

compute the maximum number of times event Up(l) occurs.

In the following lemma, we show a necessary condition (in terms of event Fp(x, ω)) for event Up(r).
Lemma B.6. On the event E ,

• for Ap ∈ S:

1 {Up(r)} ≤ 1

{
Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
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• for Ap ∈ Sc

1 {Up(r)} ≤ 1

{
Fp

(
(r − 1)σ̄2 −∆v

Ap

3
, ωv

)}

Proof of Lemma B.6. The proof is straightforward

Uv
Ap

(p− 1) > rσ̄2

(a)⇒ σ̂2
Ap

(p− 1) +
∑
i∈Ap

βu(Ti(p− 1)) > rσ̄2

(b)⇒ σ2
Ap

+ 2
∑
i∈Ap

βu(Ti(p− 1)) > rσ̄2

⇒ 2
∑
i∈Ap

3 · lil(Ti(p− 1), ωv) > (r − 1)σ̄2 + (σ̄2 − σ2
Ap

)

where (a) is due to the definition of the confidence bounds for a solution (4), and (b) utilizes the event
⋂

i∈Ap
Ei,Ti(p−1).

For Ap ∈ S, the above event is equivalent to Fp

(
(r−1)σ̄2+∆v

Ap

3 , ωv

)
; and for Ap ∈ Sc, it is equivalent to

Fp

(
(r−1)σ̄2−∆v

Ap

3 , ωv

)
.

The above lemma and Lemma B.1 upper bound the components in R2(T
′) by the F events.

We are now ready to bound the regret due to safeness checking.

Lemma 6.3. On the event E , if T ′ ∈ [T ′
r′ , T

′
r′−1) then

R2(T
′) ≤ 2µ⋆[T ′(r′ − 1) +H(r′,Λ)] ≤ 2µ⋆H(1,Λ)

Proof of Lemma 6.3. From Lemma 6.1, the high-probability regret due to safeness-checking is

R2(T
′) = µ⋆

T ′∑
p=1

[
2

Q−1∑
r=1

1 {Up(r)}

]

= 2µ⋆

Q−1∑
r=1

T ′∑
p=1

1 {Up(r)}

In the following, given r ∈ [Q − 1], we are going to upper bound
∑T ′

p=1 1{Up(r)} conditional on event E . When
Uv
Ap

(p − 1) > rσ̄2 holds, there are at most 2r + 1 solutions being chosen at phase p, i.e. np ≤ 2r + 1, according to
Lemma B.4. Therefore, we are also deriving an upper bound for number of phases in which there are at most 2r + 1
sub-solutions being sampled.

The proof scheme is planned as follows: in Step 1, we decompose the event Up(r) into 4 events according to where Ap lies,
i.e. (1) Ap = S⋆; (2) S ∩ B; (3)R and (4) Sc ∩ B. We will upper bound the regret under each of these cases.

In Step 2, we apply Lemma B.1 to upper bound the number of times a solution A can be selected via the events Fµ
p and

Fp(x, ω). Because there will be multiple Fµ
p and Fp(x, ω) events in the indicator function, Lemma B.3 will be adopted to

merge them into one event. After that, Lemma B.2 is utilized to bridge the number of times a solution is identified to the
number of times of an item is sampled. At the end of this step, we conclude the number of times 1{Up(r)} occurs under the
four cases.

In Step 3, we upper bound
∑Q−1

r=1

∑T ′

p=1 1 {Up(r)} based on the results from Step 2.
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Step 1: We decompose
∑T ′

p=1 1{Up(r)} conditional on event E into four parts:

T ′∑
p=1

1{Up(r)}

≤
T ′∑
p=1

1

{
Uv
Ap

(p− 1) > rσ̄2
}

=

T ′∑
p=1

(
1 {Ap = S⋆}+ 1 {Ap ∈ S ∩ B}+ 1 {Ap ∈ R}+ 1 {Ap ∈ Sc ∩ B}

)
· 1
{
Uv
Ap

(p− 1) > rσ̄2
}

=

T ′∑
p=1

1 {Ap = S⋆}1
{
Uv
Ap

(p− 1) > rσ̄2
}
+

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}

+

T ′∑
p=1

1 {Ap ∈ R}1
{
Uv
Ap

(p− 1) > rσ̄2
}
+

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}
)
1

{
Uv
Ap

(p− 1) > rσ̄2
}

Step 2: For each of the scenarios, we firstly upper bound the regret by the “F events” and they can be further bounded in
terms of “G events”.

Case 1: Ap = S⋆

T ′∑
p=1

1 {Ap = S⋆}1
{
Uv
Ap

(p− 1) > rσ̄2
}

(a)

≤
T ′∑
p=1

1 {Ap = S⋆}1

{
Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

∑
j∈N

1 {Ap = S⋆}1

{
Gj,p

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(c)

≤
T ′∑
p=1

∑
j∈N

1 {Ap = S⋆} 1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}

=
∑
i∈S⋆

∑
j∈N

T ′∑
p=1

1

bjK
1

{
Ti(p− 1) ≤ mj

(
(r − 1)σ̄2 +∆v

S⋆

3
, ωv

)}

≤
∑
i∈S⋆

∑
j∈N

1

bjK
mj

(
(r − 1)σ̄2 +∆v

S⋆

3
, ωv

)

=
∑
i∈S⋆

∑
j∈N

aj · γK2

bjK

9

((r − 1)σ̄2 +∆v
S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

((r − 1)σ̄2 +∆v
S⋆)2

+D

)

≤
∑
i∈S⋆

C · 9 · γK
((r − 1)σ̄2 +∆v

S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

∆v
S⋆

2 +D

)

where (a) utilizes Lemma B.6, (b) makes use of Lemma B.2 and (c) follows the definition of Gj,p. For simplicity, we denote

gS⋆(r,∆v
S⋆) = C · 9 · γK

((r − 1)σ̄2 +∆v
S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

∆v
S⋆

2 +D

)
.
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Thus

T ′∑
p=1

1 {Ap = S⋆}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈S⋆

gS⋆(r,∆v
S⋆)

Case 2: Ap ∈ S ∩ B

Under this case, there will be a comparison between ωµ and ωv thus we denote ω̃ =

√
ln 1

ωµ

ln 1
ωv

. For i ∈ E, denote

∆̄i,S∩B := minS∋i,S∈S∩B max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ωv)

}
which is achieved by solution Si,S∩B, and assume ∆̄i,S∩B ∈

( riσ̄
2

3
√

ln(1/ωv)
, (ri+1)σ̄2

3
√

ln(1/ωv)
] for some ri ∈ N.

Scenario 1: ωµ ≥ ωv

We firstly deal with the case where ωµ ≥ ωv, i.e., ω̃ ≤ 1. We have

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}

(a)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fµ

p ,Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fp

(
∆Ap , ωµ

)
,Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(c)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fp

(
max

{
∆Ap , ω̃

(r − 1)σ̄2 +∆v
Ap

3

}
, ωµ

)}
(d)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ S ∩ B}1

{
Gj,p

(
max

{
∆Ap , ω̃

(r − 1)σ̄2 +∆v
Ap

3

}
, ωµ

)}
(e)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ S ∩ B}
1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
max

{
∆Ap , ω̃

(r − 1)σ̄2 +∆v
Ap

3

}
, ωµ

)}

=
∑
i∈E

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap

, ω̃
(r − 1)σ̄2 +∆v

Ap

3

}
, ωµ

)}
(16)

where (a) utilizes Lemma B.6, (b) and (c) make use of Lemma B.3, (d) is due to Lemma B.2 and (e) follows the definition
of Gj,p.

Given i ∈ E,

(1) if r ≥ ri + 2, for any S ∈ S ∩ B that contains item i,

max

{
∆S , ω̃

(r − 1)σ̄2 +∆v
S

3

}
≥ ω̃

(r − 1)σ̄2

3
≥ ω̃

(ri + 1)σ̄2

3
≥

√
ln

1

ωµ
· ∆̄i,S∩B.

Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap , ω̃

(r − 1)σ̄2 +∆v
Ap

3

}
, ωµ

)}
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
ω̃
(r − 1)σ̄2

3
, ωµ

)}
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=
∑
j∈N

1

bjK
mj

(
ω̃
(r − 1)σ̄2

3
, ωµ

)

=
∑
j∈N

aj · γK2

bjK

9

((r − 1)σ̄2)2

(
2 ln

1

ωv
+

1

ω̃2
ln ln+

9

(ω̃(r − 1)σ̄2)2
+

1

ω̃2
D

)

≤ C · 9 · γK
((r − 1)σ̄2)2

(
2 ln

1

ωv
+

1

ω̃2
ln ln+

1

ln(1/ωµ)∆̄2
i,S∩B

+
1

ω̃2
D

)

= C · γK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωµ)
ln ln+

1

ln(1/ωµ)∆̄2
i,S∩B

+
1

ln(1/ωµ)
D

)

(2) if r ≤ ri + 1, for any S ∈ S ∩ B that contains item i

max

{
∆S , ω̃

(r − 1)σ̄2 +∆v
S

3

}
≥ max

{
∆S , ω̃

∆v
S

3

}
≥

√
ln

1

ωµ
· ∆̄i,S∩B.

Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap , ω̃

(r − 1)σ̄2 +∆v
Ap

3

}
, ωµ

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(√
ln

1

ωµ
· ∆̄i,S∩B, ωµ

)}
(a)

≤
∑
j∈N

1

bjK
mj

(√
ln

1

ωµ
· ∆̄i,S∩B, ωµ

)

=
∑
j∈N

aj · γK2

bjK

1

(
√

ln 1
ωµ
· ∆̄i,S∩B)2

2 ln
1

ωµ
+ ln ln+

1

(
√

ln 1
ωµ
· ∆̄i,S∩B)2

+D


≤ C · γK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµ)
ln ln+

1

ln(1/ωµ)∆̄2
i,S∩B

+
1

ln(1/ωµ)
D

)

where (a) is achieved by sampling Ai,S∩B. Therefore, if we denote gS∩B,1(r, ∆̄i,S∩B) :=



CγK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωµ)
ln ln+

1

ln(1/ωµ)∆̄2
i,S∩B

+
1

ln(1/ωµ)
D

)
, r ≥

⌊
3
√
ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 2

CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµ)
ln ln+

1

ln(1/ωµ)∆̄2
i,S∩B

+
1

ln(1/ωµ)
D

)
, r ≤

⌊
3
√

ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 1

then (16) can be upper bounded by ∑
i∈E

gS∩B,1(r, ∆̄i,S∩B)

Scenario 2: ωµ ≤ ωv
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For the case where ωµ ≤ ωv, i.e., ω̃ ≥ 1. We have

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}

(a)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fµ

p ,Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fp

(
∆Ap

, ωµ

)
,Fp

(
(r − 1)σ̄2 +∆v

Ap

3
, ωv

)}
(c)

≤
T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
Fp

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}
(d)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ S ∩ B}1

{
Gj,p

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}
(e)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ S ∩ B}
1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}

=
∑
i∈E

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}
(17)

Given i ∈ E,

(1) if r ≥ ri + 2, for any S ∈ S ∩ B that contains item i,

max

{
∆S

ω̃
,
(r − 1)σ̄2 +∆v

S

3

}
≥ (r − 1)σ̄2

3
≥ (ri + 1)σ̄2

3
≥
√
ln

1

ωv
· ∆̄i,S∩B.

Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
(r − 1)σ̄2

3
, ωv

)}

=
∑
j∈N

1

bjK
mj

(
(r − 1)σ̄2

3
, ωv

)

=
∑
j∈N

aj · γK2

bjK

9

((r − 1)σ̄2)2

(
2 ln

1

ωv
+ ln ln+

9

((r − 1)σ̄2)2
+D

)

≤ C · 9 · γK
((r − 1)σ̄2)2

(
2 ln

1

ωv
+ ln ln+

1

ln(1/ωv)∆̄2
i,S∩B

+D

)

= C · γK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωv)
ln ln+

1

ln(1/ωv)∆̄2
i,S∩B

+
1

ln(1/ωv)
D

)

(2) if r ≤ ri + 1, for any S ∈ S ∩ B that contains item i,

max

{
∆S

ω̃
,
(r − 1)σ̄2 +∆v

S

3

}
≥ max

{
∆S

ω̃
,
∆v

S

3

}
≥
√

ln
1

ωv
· ∆̄i,S∩B.
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Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆Ap

ω̃
,
(r − 1)σ̄2 +∆v

Ap

3

}
, ωv

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(√
ln

1

ωv
· ∆̄i,S∩B, ωv

)}

=
∑
j∈N

1

bjK
mj

(√
ln

1

ωv
· ∆̄i,S∩B, ωv

)

=
∑
j∈N

aj · γK2

bjK

1

(
√
ln 1

ωv
· ∆̄i,S∩B)2

2 ln
1

ωv
+ ln ln+

1

(
√
ln 1

ωv
· ∆̄i,S∩B)2

+D


≤ C · γK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωv)
ln ln+

1

ln(1/ωv)∆̄2
i,S∩B

+
1

ln(1/ωv)
D

)

Therefore, if we denote gS∩B,2(r, ∆̄i,S∩B) :=

CγK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωv)
ln ln+

1

ln(1/ωv)∆̄2
i,S∩B

+
1

ln(1/ωv)
D

)
, r ≥

⌊
3
√

ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 2

CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωv)
ln ln+

1

ln(1/ωv)∆̄2
i,S∩B

+
1

ln(1/ωv)
D

)
, r ≤

⌊
3
√

ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 1

then (17) can be upper bounded by ∑
i∈E

gS∩B,2(r, ∆̄i,S∩B).

In conclusion, for i ∈ E, we denote ∆̄i,S∩B := minS∋i,S∈S∩B max

{
∆S√

ln(1/ωµ)
,

∆v
A

3
√

ln(1/ωv)

}
, ωµv := max{ωµ, ωv} and

gS∩B(r, ∆̄i,S∩B) :=

CγK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
, r ≥

⌊
3
√
ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 2

CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
, r ≤

⌊
3
√
ln(1/ωv) · ∆̄i,S∩B

σ̄2

⌋
+ 1

then

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gS∩B(r, ∆̄i,S∩B)

Case 3: Ap ∈ R

Under this case, there will be a comparison between ωv and ω′
v thus we denote ω̄ =

√
ln 1

ω′
v

ln 1
ωv

and ωsum :=
√
ln 1

ω′
v
+
√

ln 1
ωv

.

For i ∈ E, denote ∆v
i,R := minS∋i,S∈R ∆v

S and assume ∆v
i,R ∈ (ri

ω̄
ω̄+1 σ̄

2, (ri + 1) ω̄
ω̄+1 σ̄

2].

Scenario 1: ωv ≤ ω′
v For the case ωv ≤ ω′

v, we have ω̄ ≤ 1.
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T ′∑
p=1

1 {Ap ∈ R}1
{
Uv
Ap

(p− 1) > rσ̄2
}

(a)

≤
T ′∑
p=1

1 {Ap ∈ R}1

{
Fp

(
∆v

Ap

3
, ω′

v

)
,Fp

(
(r − 1)σ̄2 −∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

1 {Ap ∈ R}1

{
Fp

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}
(c)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ R}1

{
Gj,p

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}
(d)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ R}
1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}

=
∑
i∈E

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}
(18)

where (a) utilizes Lemma B.6, (b) makes use of Lemma B.3, (c) is due to Lemma B.2 and (d) follows the definition of Gj,p.

Given i ∈ E,

(1) if r ≥ ri + 2, for any S ∈ R that contains item i,

max

{
∆v

S

3
, ω̄ · (r − 1)σ̄2 −∆v

S

3

}
≥ max

{
∆v

S

3
,

ω̄

1 + ω̄
· (r − 1)σ̄2

3

}
≥ ω̄

1 + ω̄
· (r − 1)σ̄2

3
≥

∆v
i,R

3

where the first inequality uses the fact that for x, y ∈ R+ and z ∈ [0, 1], , max{x, y} ≥ max{x, xz + y(1− z)}. We take

x =
∆v

Ap

3 , y = ω̄ ·
(r−1)σ̄2−∆v

Ap

3 and z = ω̄
1+ω̄ . Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
ω̄

1 + ω̄
· (r − 1)σ̄2

3
, ω′

v

)}

=
∑
j∈N

1

bjK
mj

(
ω̄

1 + ω̄
· (r − 1)σ̄2

3
, ω′

v

)

=
∑
j∈N

aj · γK2

bjK

1

( ω̄
1+ω̄ ·

(r−1)σ̄2

3 )2

(
2 ln

1

ω′
v

+ ln ln+
1

( ω̄
1+ω̄ ·

(r−1)σ̄2

3 )2
+D

)

≤ CγK

( ω̄
1+ω̄ ·

(r−1)σ̄2

3 )2

(
2 ln

1

ω′
v

+ ln ln+
1

( ω̄
1+ω̄ ·

(r−1)σ̄2

3 )2
+D

)

≤ CγK

( (r−1)σ̄2

3ωsum
)2

2 +
1

ln(1/ω′
v)

ln ln+
1

ln(1/ω′
v)(

∆v
i,R

3
√

ln(1/ω′
v)
)2

+D




(2) if r ≤ ri + 1, for any S ∈ R that contains item i,

max

{
∆v

S

3
, ω̄ · (r − 1)σ̄2 −∆v

S

3

}
≥ max

{
∆v

S

3
,

ω̄

1 + ω̄
· (r − 1)σ̄2

3

}
≥

∆v
i,R

3
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Thus,

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆v

Ap

3
, ω̄ ·

(r − 1)σ̄2 −∆v
Ap

3

}
, ω′

v

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
∆v

i,R

3
, ω′

v

)}

=
∑
j∈N

1

bjK
mj

(
∆v

i,R

3
, ω′

v

)

=
∑
j∈N

aj · γK2

bjK

1

(
∆v

i,R
3 )2

(
2 ln

1

ω′
v

+ ln ln+
1

(
∆v

i,R
3 )2

+D

)

≤ CγK

(
∆v

i,R
3 )2

(
2 ln

1

ω′
v

+ ln ln+
1

(
∆v

i,R
3 )2

+D

)

=
CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ω′
v)

ln ln+
1

ln(1/ω′
v)(

∆v
i,R

3
√

ln(1/ω′
v)
)2

+D




Therefore, if we denote

gR,1(r,∆
v
i,R) :=



CγK

( (r−1)σ̄2

3ωsum
)2

2 +
1

ln(1/ω′
v)

ln ln+
1

ln(1/ω′
v)(

∆v
i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≥

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 2

CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ω′
v)

ln ln+
1

ln(1/ω′
v)(

∆v
i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≤

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 1

then (18) can be upper bounded by ∑
i∈E

gR,1(r,∆
v
i,R).

Scenario 2: ωv ≥ ω′
v For the case ωv ≥ ω′

v, we have ω̄ ≥ 1.

T ′∑
p=1

1 {Ap ∈ R}1
{
Uv
Ap

(p− 1) > rσ̄2
}

(a)

≤
T ′∑
p=1

1 {Ap ∈ R}1

{
Fp

(
∆v

Ap

3
, ω′

v

)
,Fp

(
(r − 1)σ̄2 −∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

1 {Ap ∈ R}1

{
Fp

(
max

{
1

ω̄

∆v
Ap

3
,
(r − 1)σ̄2 −∆v

Ap

3

}
, ωv

)}
(c)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ R}1

{
Gj,p

(
max

{
1

ω̄

∆v
Ap

3
,
(r − 1)σ̄2 −∆v

Ap

3

}
, ωv

)}
(d)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ R}
1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
max

{
1

ω̄

∆v
Ap

3
,
(r − 1)σ̄2 −∆v

Ap

3

}
, ωv

)}
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=
∑
i∈E

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ R}1

{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
1

ω̄

∆v
Ap

3
,
(r − 1)σ̄2 −∆v

Ap

3

}
, ωv

)}
(19)

where (a) utilizes Lemma B.6, (b) makes use of Lemma B.3, (c) is due to Lemma B.2 and (d) follows the definition of Gj,p.

Given i ∈ E,

(1) if r ≥ ri + 2, for any S ∈ R that contains item i,

max

{
1

ω̄

∆v
S

3
,
(r − 1)σ̄2 −∆v

S

3

}
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{
1
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S

3
,

ω̄

1 + ω̄
· (r − 1)σ̄2

3
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≥ 1

1 + ω̄
· (r − 1)σ̄2

3
≥ 1

ω̄

∆v
i,R

3

where the first inequality uses the fact that for x, y ∈ R+ and z ∈ [0, 1], , max{x, y} ≥ max{x, xz + y(1− z)}. We take

x = 1
ω̄

∆v
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3 , y =
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3 and z = ω̄
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1
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1 {Ap ∈ R}1

{
i ∈ Ap, Ti(p− 1) ≤ mj
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1
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3

}
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≤
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1
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{
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(
1

1 + ω̄
· (r − 1)σ̄2

3
, ωv
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=
∑
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1
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1
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=
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(2) if r ≤ ri + 1, for any S ∈ R that contains item i,
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{
1
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∆v
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3
,
(r − 1)σ̄2 −∆v

S

3

}
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3
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· (r − 1)σ̄2

3
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≥ 1
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3

Thus,

∑
j∈N

1

bjK
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p=1
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i ∈ Ap, Ti(p− 1) ≤ mj
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)}
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j∈N

1

bjK
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)
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=
CγK

(
∆v

i,R

3
√

ln(1/ω′
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2 +
1
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ln ln+
1
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3
√
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Therefore, if we denote

gR,2(r,∆
v
i,R) :=



CγK

( (r−1)σ̄2

3ωsum
)2

2 +
1

ln(1/ωv)

ln ln+
1

ln(1/ωv)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≥

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 2

CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωv)

ln ln+
1

ln(1/ωv)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≤

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 1

then (19) can be upper bounded by ∑
i∈E

gR,2(r,∆
v
i,R).

In conclusion, for i ∈ E, we denote ∆v
i,R := minS∋i,S∈R ∆v

S , ωvv′ := max{ωv, ω
′
v}, ωsum :=

√
ln 1

ω′
v
+
√
ln 1

ωv
and

gR(r,∆v
i,R) :=



CγK

( (r−1)σ̄2

3ωsum
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≥

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 2

CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≤

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 1

then

T ′∑
p=1

1 {Ap ∈ R}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gR(r,∆v
i,R)

Case 4: Ap ∈ Sc ∩ B

Under this case, there will be a comparison among ωµ, ωv and ω′
v thus we denote ωmax = max{ωµ, ωv, ω

′
v} and ω1 =√

ln 1
ωmax

ln 1
ωµ

, ω2 =

√
ln 1

ωmax

ln 1
ωv

, ω3 =

√
ln 1

ωmax

ln 1
ω′
v

. For S ∈ Sc ∩ B, we denote ∆̄S := max
{
ω1∆S , ω3

∆v
S

3

}
.

For i ∈ E, denote

∆̄i,Sc∩B := min
S∋i,S∈Sc∩B

max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√
ln(1/ω′

v)

}
=

√
1

ln(1/ωmax)
min

S∋i,S∈Sc∩B
∆̄S .

and assume ∆̄i,Sc∩B ∈ (ri
σ̄2/3√

ln(1/ωv)+
√

ln(1/ω′
v)
, (ri + 1) σ̄2/3√

ln(1/ωv)+
√

ln(1/ω′
v)
]
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T ′∑
p=1

1 {Ap ∈ Sc ∩ B}
)
1

{
Uv
Ap

(p− 1) > rσ̄2
}
· 1 {E}

(a)

≤
T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1

{
Fµ

p ,Fp

(
∆v

Ap

3
, ω′

v

)
,Fp

(
(r − 1)σ̄2 −∆v

Ap

3
, ωv

)}
(b)

≤
T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1

{
Fp

(
∆Ap

, ωµ

)
,Fp

(
∆v

Ap

3
, ω′

v

)
,Fp

(
(r − 1)σ̄2 −∆v

Ap

3
, ωv

)}
(c)

≤
T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1

{
Fp

(
max

{
ω1∆Ap

, ω3

∆v
Ap

3
, ω2

(r − 1)σ̄2 −∆v
Ap

3

}
, ωmax

)}
(d)

≤
T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
Fp

(
max

{
max

{
ω1∆Ap

, ω3

∆v
Ap

3

}
, ω2

(r − 1)σ̄2

3
− ω2

ω3
max

{
ω1∆Ap

, ω3

∆v
Ap

3

}}
, ωmax

)}
(e)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ Sc ∩ B}1
{
Gj,p

(
max

{
∆̄Ap , ω2

(r − 1)σ̄2

3
− ω2

ω3
∆̄Ap

}
, ωmax

)}
(f)

≤
T ′∑
p=1

∑
j∈N

1 {Ap ∈ Sc ∩ B}
1

bjK

∑
i∈Ap

1

{
Ti(p− 1) ≤ mj

(
max

{
∆̄Ap , ω2

(r − 1)σ̄2

3
− ω2

ω3
∆̄Ap

}
, ωmax

)}

=
∑
i∈E

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆̄Ap

, ω2
(r − 1)σ̄2

3
− ω2

ω3
∆̄Ap

}
, ωmax

)}

Given i ∈ E

(1) if r ≥ ri + 2, for any S ∈ Sc ∩ B that contains item i,

max

{
∆̄S , ω2

(r − 1)σ̄2

3
− ω2

ω3
∆̄S

}
≥ max

{
∆̄S ,

ω2ω3

ω2 + ω3

(r − 1)σ̄2

3

}
≥ ω2ω3

ω2 + ω3

(r − 1)σ̄2

3
≥
√
ln(1/ωmax)∆̄i,Sc∩R

where the first inequality uses the fact that for x, y ∈ R+ and z ∈ [0, 1], , max{x, y} ≥ max{x, xz + y(1− z)}. We take
x = ∆̄Ap

, y = ω2
(r−1)σ̄2

3 − ω2

ω3
∆̄Ap

and z = ω2

ω2+ω3
.

Similar to the computations for the case Ap ∈ R, we have

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆̄Ap , ω2

(r − 1)σ̄2

3
− ω2

ω3
∆̄Ap

}
, ωmax

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
ω2ω3

ω2 + ω3

(r − 1)σ̄2

3
, ωmax

)}

≤ CγK

( ω2ω3

ω2+ω3

(r−1)σ̄2

3 )2

(
2 ln

1

ωmax
+ ln ln+

1

( ω2ω3

ω2+ω3

(r−1)σ̄2

3 )2
+D

)

≤ CγK

( ω2ω3

ω2+ω3

(r−1)σ̄2

3 )2

(
2 ln

1

ωmax
+ ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩R)2
+D

)
=

CγK

( (r−1)σ̄2/3√
ln(1/ωv)+

√
ln(1/ω′

v)
)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩R)2
+D

))
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(2) if r ≤ ri + 1, for any S ∈ Sc ∩ B that contains item i,

max

{
∆̄S , ω2

(r − 1)σ̄2

3
− ω2

ω3
∆̄S

}
≥ max

{
∆̄S ,

ω2ω3

ω2 + ω3

(r − 1)σ̄2

3

}
≥ ∆̄S ≥

√
ln(1/ωmax)∆̄i,Sc∩R

Similar to the computations for the case Ap ∈ R, we have

∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(
max

{
∆̄Ap

, ω2
(r − 1)σ̄2

3
− ω2

ω3
∆̄Ap

}
, ωmax

)}

≤
∑
j∈N

1

bjK

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
i ∈ Ap, Ti(p− 1) ≤ mj

(√
ln(1/ωmax)∆̄i,Sc∩R, ωmax

)}

≤ CγK

(
√

ln(1/ωmax)∆̄i,Sc∩B)2

(
2 ln

1

ωmax
+ ln ln+

1

(
√
ln(1/ωmax)∆̄i,Sc∩B)2

+D

)

=
CγK

(∆̄i,Sc∩B)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩R)2
+D

))

In conclusion, for i ∈ E, we denote

∆̄i,Sc∩B := min
S∋i,S∈Sc∩B

max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ω′
v)

}
.

and ωmax := max{ωµ, ωv, ω
′
v} and ωsum :=

√
ln 1

ω′
v
+
√
ln 1

ωv
and gSc∩B(r, ∆̄i,Sc∩B) :=


CγK

( (r−1)σ̄2

3ωsum
)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩R)2
+D

))
, r ≥

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
+ 2

CγK

(∆̄i,Sc∩R)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩R)2
+D

))
, r ≤

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
+ 1

then

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gSc∩B(r, ∆̄i,Sc∩B)

Conclusion of Step 2:

For S⋆: denote

gS⋆(r,∆v
S⋆) :=

9 · CγK

((r − 1)σ̄2 +∆v
S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

∆v
S⋆

2 +D

)
(20)

we have

T ′∑
p=1

1 {Ap = S⋆}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈S⋆

gS⋆(r,∆v
S⋆)
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For S ∩ B: for i ∈ E, denote ∆̄i,S∩B := minS∋i,S∈S∩B max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ωv)

}
, ωµv := max{ωµ, ωv} and

gS∩B(r, ∆̄i,S∩B) (21)

:=



CγK

( (r−1)σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
, r ≥

 ∆̄i,S∩B
σ̄2

3
√

ln(1/ωv)

+ 2

CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
, r ≤

 ∆̄i,S∩B
σ̄2

3
√

ln(1/ωv)

+ 1

then

T ′∑
p=1

1 {Ap ∈ S ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gS∩B(r, ∆̄i,S∩B)

ForR: for i ∈ E, denote ∆v
i,R := minS∋i,S∈R ∆v

S , ωvv′ := max{ωv, ω
′
v}, ωsum :=

√
ln 1

ω′
v
+
√
ln 1

ωv
and

gR(r,∆v
i,R) (22)

:=



CγK

( (r−1)σ̄2

3ωsum
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≥

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 2

CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , r ≤

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
+ 1

then

T ′∑
p=1

1 {Ap ∈ R}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gR(r,∆v
i,R)

For Sc ∩ B: for i ∈ E, denote

∆̄i,Sc∩B := min
S∋i,S∈Sc∩B

max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ω′
v)

}
.

and ωmax := max{ωµ, ωv, ω
′
v} and ωsum :=

√
ln 1

ω′
v
+
√
ln 1

ωv
and

gSc∩B(r, ∆̄i,Sc∩B) (23)

:=


CγK

( (r−1)σ̄2

3ωsum
)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
, r ≥

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
+ 2

CγK

(∆̄i,Sc∩B)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
, r ≤

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
+ 1

then

T ′∑
p=1

1 {Ap ∈ Sc ∩ B}1
{
Uv
Ap

(p− 1) > rσ̄2
}
≤
∑
i∈E

gSc∩B(r, ∆̄i,Sc∩B)
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Step 3:

According to the results in Step 2, given r ∈ [Q− 1], the event Up(r) can happen at most

T ′∑
p=1

1 {Up(r)} (24)

≤ min

{
T ′,

∑
i∈S⋆

gS⋆(r,∆v
S⋆) +

∑
i∈E

gS∩B(r, ∆̄i,S∩B) +
∑
i∈E

gR(r,∆v
i,R) +

∑
i∈E

gSc∩B(r, ∆̄i,Sc∩B)

}

phases, where the g functions are defined in (20), (21), (22) and (23). By Lemma B.4, (1) event Up(r) indicates r + 1 ≤ np,
thus (24) also indicates at most in this number of phases there are at least r + 1 being pulled at each phase. (2) event
Up(r)∩ Up(r+ 1)c indicates r+ 1 ≤ np ≤ 2r+ 1, i.e., there are at least r+ 1 and at most 2r+ 1 solutions being pulled at
each phase. For r ∈ [Q], we denote

T ′
r :=

∑
i∈S⋆

gS⋆(r,∆v
S⋆) +

∑
i∈E

gS∩B(r, ∆̄i,S∩B) +
∑
i∈E

gR(r,∆v
i,R) +

∑
i∈E

gSc∩B(r, ∆̄i,Sc∩B), r ∈ [Q− 1] (25)

and T ′
Q := 0, T ′

0 = ∞. Note that the g functions are increasing as r decreases, so if there exists an r′ ∈ [Q], such that
T ′ ∈ [T ′

r′ , T
′
r′−1) (or T ′ ≤ T ′

r′−1) , then

Q−1∑
r=1

T ′∑
p=1

1 {Up(r)}

=

r′−1∑
r=1

T ′∑
p=1

1 {Up(r)}+
Q−1∑
r=r′

T ′∑
p=1

1 {Up(r)}

≤ T ′ · (r′ − 1) +

Q−1∑
r=r′

∑
i∈S⋆

gS⋆(r,∆v
S⋆) +

∑
i∈E

gS∩B(r, ∆̄i,S∩B) +
∑
i∈E

gR(r,∆v
i,R) +

∑
i∈E

gSc∩B(r, ∆̄i,Sc∩B)

= T ′ · (r′ − 1) +

Q−1∑
r=r′

T ′
r

≤ T ′ · (r′ − 1) +
∑
i∈S⋆

hS⋆(r′,∆v
S⋆) +

∑
i∈E

hS∩B(r
′, ∆̄i,S∩B) +

∑
i∈E

hR(r′,∆v
i,R) +

∑
i∈E

hSc∩B(r
′, ∆̄i,Sc∩B)

= T ′ · (r′ − 1) +H(r′,Λ)

where

H(r′,Λ) :=
∑
i∈S⋆

hS⋆(r′,∆v
S⋆) +

∑
i∈E

hS∩B(r
′, ∆̄i,S∩B) +

∑
i∈E

hR(r′,∆v
i,R) +

∑
i∈E

hSc∩B(r
′, ∆̄i,Sc∩B) (26)

and the h functions are defined at the end of the proof. This indicates, when T ′ ≤ T ′
r′−1, the upper bound of the high-

probability regret due to safeness-checking R2(T
′) (hence the the total regret) is lower bounded by a linear function with

slope r′ − 1 . In particular, the upper bound of R2(T
′) is lower bounded by a linear function when T ′ ≤ T ′

1 and it remains a
constant when T ′ > T ′

1. We can compute an upper bound for the number of solutions being pulled during these T ′ phases
when T ′ ∈ [T ′

r′ , T
′
r′−1):

T ′
Q−1 · (2Q− 1) + (T ′

Q−2 − T ′
Q−1) · (2Q− 3) + · · ·+ (T ′

r′ − T ′
r′+1) · (2r′ + 1) + (T ′ − T ′

r′)(2r
′ − 1)

= T ′ + 2
(
T ′
Q−1 · (Q− 1) + (T ′

Q−2 − T ′
Q−1) · (Q− 2) + · · ·+ (T ′

r′ − T ′
r′+1) · r′ + (T ′ − T ′

r′)(r
′ − 1)

)
= (2r′ − 1)T ′ + 2

Q−1∑
r=r′

T ′
r

≤ (2r′ − 1)T ′ + 2H(r′,Λ)
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Thus, the number of pulled solutions is at most 2H(1,Λ).1

In conclusion, the regret due to safeness-checking can be upper bounded by

R2(T
′) = 2µ⋆

Q−1∑
r=1

T ′∑
p=1

1 {Up(r)}

≤ 2µ⋆T ′ · (r′ − 1)

+ 2µ⋆

(∑
i∈S⋆

hS⋆(r′,∆v
S⋆) +

∑
i∈E

hS∩B(r
′, ∆̄i,S∩B) +

∑
i∈E

hR(r′,∆v
i,R) +

∑
i∈E

hSc∩B(r
′, ∆̄i,Sc∩B)

)
= 2µ⋆T ′ · (r′ − 1) + 2µ⋆ ·H(r′,Λ)

where T ′ ∈ [T ′
r′ , T

′
r′−1) with T ′

r′ defined in (25), for i ∈ E, ∆̄i,S∩B := minS∋i,S∈S∩B max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ωv)

}
,

∆v
i,R := minS∋i,S∈R ∆v

S and ∆̄i,Sc∩B := minS∋i,S∈Sc∩B max

{
∆S√

ln(1/ωµ)
,

∆v
S

3
√

ln(1/ω′
v)

}
.

The h functions:

(For convenience, we restate the notations: ωµv := max{ωµ, ωv}, ωvv′ := max{ωv, ω
′
v}, ωmax := max{ωµ, ωv, ω

′
v} and

ωsum :=
√

ln 1
ω′

v
+
√
ln 1

ωv
.)

For S⋆: for each i ∈ S⋆

hS⋆(r′,∆v
S⋆) :=

Q−1∑
r=r′

gS⋆(r,∆v
S⋆) (27)

=

Q−1∑
r=r′

9 · CγK

((r − 1)σ̄2 +∆v
S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

∆v
S⋆

2 +D

)

≤


18 · CγK

(r′ − 1)σ̄4

(
2 ln

1

ωv
+ ln ln+

1

(∆v
S⋆)2

+D

)
, r′ ≥ 2

18 · CγK

(∆v
S⋆)2

(
2 ln

1

ωv
+ ln ln+

1

(∆v
S⋆)2

+D

)
, r′ = 1

For S ∩ B: for each i ∈ E, there is a changing point

⌊
∆̄i,S∩B

σ̄2

3
√

ln(1/ωv)

⌋
+ 2 in gS∩B(r, ∆̄i,S∩B), thus

hS∩B(r
′, ∆̄i,S∩B) :=

Q−1∑
r=r′

gS∩B(r, ∆̄i,S∩B) (28)

1Note that the upper bound for the regret is 2µ⋆T ′ · (r′ − 1) + 2µ⋆ ·H(r′,Λ) and the upper bound for the number of solutions is
(2r′ − 1)T ′ + 2H(r′,Λ), which indicates we can roughly use min{Tµ⋆, 2µ⋆H(r′,Λ)} to bound the regret due to safeness-checking
with T time steps.
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≤



0, r′ = Q

(Q− r′)
CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
,

 ∆̄i,S∩B
σ̄2

3
√

ln(1/ωv)

 ≥ Q− 3

2 · CγK

(r′ − 1)( σ̄2

3
√

ln(1/ωv)
)2

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
,

 ∆̄i,S∩B
σ̄2

3
√

ln(1/ωv)

+ 2 ≤ r′ < Q− 1

3 · CγK

∆̄2
i,S∩B

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
,

 ∆̄i,S∩B
σ̄2

3
√

ln(1/ωv)

 = 0, r′ = 1

CγK

 4
σ̄2

3
√

ln(1/ωv)
· ∆̄i,S∩B

− r′ − 1

∆̄2
i,S∩B

(2 + 1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)∆̄2
i,S∩B

+D

))
, otherwise

ForR: for each i ∈ E, there is a changing point
⌊

ωsum·∆v
i,R√

ln(1/ω′
v)σ̄

2

⌋
+ 2, thus

hR(r′,∆v
i,R) :=

Q−1∑
r=r′

gR(r,∆v
i,R) ≤ (29)



0, r′ = Q

(Q− r′)
CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 ,

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
≥ Q− 3

2CγK

(r′ − 1)( σ̄2

3ωsum
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 ,

ωsum ·∆v
i,R√

ln 1
ω′

v
σ̄2

+ 2 ≤ r′ < Q− 1

3CγK

(
∆v

i,R

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 ,

⌊
ωsum ·∆v

i,R√
ln(1/ω′

v)σ̄
2

⌋
= 0, r′ = 1

CγK

 3

σ̄2

3ωsum
· ∆v

i,R

3
√

ln(1/ω′
v)

− r′ − 1

(
∆v

i,R

3
√

ln(1/ω′
v)
)2


2 +

1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , else

For Sc ∩ B: for each i ∈ E, there is a changing point
⌊
ωsum·∆̄i,Sc∩B

σ̄2/3

⌋
+ 2, thus

hSc∩B(r
′, ∆̄i,Sc∩B) :=

Q−1∑
r=r′

gSc∩B(r, ∆̄i,Sc∩B) (30)
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≤



0, r′ = Q

(Q− r′)
CγK

(∆̄i,Sc∩B)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
,

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
≥ Q− 3

2CγK

(r′ − 1)( σ̄2

3ωsum
)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
,

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
+ 2 ≤ r′ < Q− 1

3CγK

(∆̄i,Sc∩B)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
,

⌊
ωsum · ∆̄i,Sc∩B

σ̄2/3

⌋
= 0, r′ = 1

CγK

(
3

σ̄2

3ωsum
∆̄i,Sc∩B

− r′ − 1

(∆̄i,Sc∩B)2

)(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄i,Sc∩B)2
+D

))
, otherwise

B.5. Proofs of Theorem 4.1 and Theorem 5.1

Theorem 4.1 (Problem-dependent upper bound). Let Λ = (E,AK , ν, σ̄2) be an instance and let {δT }∞T=1 ∈ o(1) be a
sequence that satisfies ln(1/δT ) = o(T b) for all b > 0 (i.e., {δT } is not exponentially decaying). Then, PASCOMBUCB is
a {δT }∞T=1-variance-constrained consistent algorithm. More precisely, given a time budget T , the probably anytime-safe
constraint is satisfied and the regret of PASCOMBUCB Reg(T ) is upper bounded by

min {Tµ⋆,Reg1(T ) + Reg2(T )}+Reg3(T ),

where

Reg1(T ) = O

( ∑
i∈E\S⋆

K lnT

∆i,S∩B,min
+
∑
i∈E

ciK lnT

∆i,Sc∩B,min

)
Reg2(T ) = 2µ⋆H (∆(Λ)) , Reg3(T ) = 2µ⋆(L+ 1)

where ∆(Λ) = {∆v
S⋆} ∪ {∆v

i,R,Ψi,S∩B,Φi,Sc∩B}i∈E and H (∆(Λ)) := H(1,Λ) is defined in (26) in App. B.4.

Proof of Theorem 4.1. According to Lemma 6.1, Lemma 6.2 and Lemma 6.3, and take ωµ = ω′
v = 1

T 2 and ωv = δT
T 2 , the

expected regret of T ′ phases E[R(T ′)] can be upper bounded as

E[R(T ′)] ≤ E[R1(T
′)|E ] + E[R2(T

′)|E ] + R3(T ) (31)

≤ O

 ∑
i∈E\S⋆

K

∆i,S∩B,min
ln

1

ωµ
+
∑
i∈E

ciK

∆i,Sc∩B,min
ln

1

ω′
v

+ 2µ⋆ [T ′ · (r′ − 1) +H(r′,Λ)]

+ 2µ⋆L+ 2µ⋆TL (ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′
v))

≤ O

 ∑
i∈E\S⋆

K

∆i,S∩B,min
lnT +

∑
i∈E

ciK

∆i,Sc∩B,min
lnT

+ 2µ⋆H(1,Λ)

+ 2µ⋆L+ 2µ⋆TL
(
3ξ(1/T 2) + 2ξ(δT /T

2)
)

= Reg1(T ) + Reg2(T ) + Reg3(T )

On the other hand, the high-probability regret (14) can be naı̈ve bounded as

R̂(T ′) =

T ′∑
p=1

np∑
r=1

(µ⋆ − µAp,r
)

≤
T ′∑
p=1

np∑
r=1

µ⋆

= Tµ⋆.
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Therefore, we have

E[R(T ′)] ≤ E[R̂(T ′)|E ] + Reg3(T ) (32)
≤ Tµ⋆ +Reg3(T )

(31) and (32) give the final upper bound with T time steps.

Theorem 5.1 (Problem-independent upper bound). Let {δT }∞T=1 ∈ o(1) be a sequence that satisfies ln(1/δT ) = o(T b)
for all b > 0. If T > L, for any instance Λ with variance gaps lower bounded by ∆v ≤ minS∈AK

∆v
S , the regret of

PASCOMBUCB is upper bounded by

O

(√
KLT lnT +

LK2

(∆v)2
ln
( 1

δT

))
.

Proof of Theorem 5.1. We firstly deal with the regret due to suboptimality R1(T
′). Let ∆µ be a constant that is to be chosen.

R1(T
′) =

T ′∑
p=1

1{Ap ∈ B}∆Ap

=

T ′∑
p=1

1{∆Ap
≥ ∆µ}1{Ap ∈ B}∆Ap

+

T ′∑
p=1

1{∆Ap
< ∆µ}1{Ap ∈ B}∆Ap

≤
T ′∑
p=1

1{∆Ap
≥ ∆µ}1{Ap ∈ B}∆Ap

+ T ·∆µ

where the second term makes use of the fact that T ′ ≤ T w.p. 1.

The first term can be upper bounded by adopting the proof of Lemma 6.3 with the constraint that ∆Ap
≥ ∆µ. Thus, for

i ∈ E \ S⋆, ∆i,S∩B,min ≥ ∆µ. For i ∈ E,

∆i,Sc∩B,min ≥ ∆µ

∆̄′
i,Sc∩B ≥ max{ω̄∆µ,∆v/3} = max{∆µ,∆v/3} =: ∆µv

ci ≤
1

ω̄2
= 1

where ω̄ :=

√
ln 1

ω′
v

ln 1
ωµ

= 1. The regret due to suboptimality can be upper bounded by

T ′∑
p=1

1{∆Ap
≥ ∆µ}1{Ap ∈ B}∆Ap

≤
∑

i∈E\S⋆

2CγK

∆i,S∩B,min

(
2 ln

1

ωµ
+ ln ln+

1

∆2
i,S∩B,min

+D

)

+
∑
i∈E

2ci · CγK

∆i,Sc∩B,min

(
2 ln

1

ω′
v

+ ln ln+
1

(∆̄′
i,Sc∩B)

2
+D

)

≤
∑

i∈E\S⋆

2CγK

∆µ

(
2 ln

1

ωµ
+ ln ln+

1

(∆µ)2
+D

)

+
∑
i∈E

2CγK

∆µ

(
2 ln

1

ω′
v

+ ln ln+
1

(∆µv)2
+D

)
≤L · 8CγK

∆µ

(
2 lnT + ln ln+

1

(∆µ)2
+D

)
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By taking ∆µ =
√

KL ln(TL)
T , the regret due to suboptimality is bounded by

R1(T
′) ≤

T ′∑
p=1

1{∆Ap
≥ ∆µ}1{Ap ∈ B}∆Ap

+ T ·∆µ

≤ 16Cγ
√
KLT ln(TL) + 8Cγ

√
KLT

lnT
ln ln+

T

KL lnT
+ 8Cγ

√
KLT

lnT
D +

√
KLT ln(TL)

= O(
√
KLT ln(TL))

= O(
√
KLT lnT ).

where we utilize T ≥ L.

We then cope with the regret due to safeness-checking R2(T
′). According to Lemma 6.3, we only need to upper bound

H(1,Λ), i.e., the h functions defined in (27), (28), (29) and (30).

For hS⋆(1,∆v
S⋆):

hS⋆(1,∆v
S⋆) ≤ hS⋆(1,∆v)

=
18 · CγK

(∆v)2

(
2 ln

1

ωv
+ ln ln+

1

(∆v)2
+D

)
= O

(
K

(∆v)2
ln

1

ωv

)
= O

(
K

(∆v)2
ln

T

δ

)

For hS∩B(1, ∆̄i,S∩B), define ∆µv := max

{
∆µ√

ln(1/ωµ)
, ∆v

3
√

ln(1/ωv)

}
= max

{√
KL
T , ∆v

3
√

ln(TL/δ)

}
. We have ∆̄i,S∩B ≥

∆µv. The threshold

⌊
∆µv

σ̄2

3
√

ln(1/ωv)

⌋
=

max

{
3

√
KL ln(TL/δ)

T ,∆v

}
σ̄2

 .

hS∩B(1, ∆̄i,S∩B) ≤ hS∩B(1,∆
µv) (33)

=



(Q− 1)
CγK

(∆µv)2

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)(∆µv)2
+D

))
,

 ∆µv

σ̄2

3
√

ln(1/ωv)

 ≥ Q− 3

CγK
4

σ̄2

3
√

ln(1/ωv)
·∆µv

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)(∆µv)2
+D

))
, 0 <

 ∆µv

σ̄2

3
√

ln(1/ωv)

 < Q− 3

3 · CγK

(∆µv)2

(
2 +

1

ln(1/ωµv)

(
ln ln+

1

ln(1/ωµv)(∆µv)2
+D

))
,

 ∆µv

σ̄2

3
√

ln(1/ωv)

 = 0

=



O

(
(Q− 1)

K

(∆µv)2

)
,

 ∆µv

σ̄2

3
√

ln(1/ωv)

 ≥ Q− 3

O

 K
σ̄2

3
√

ln(1/ωv)
·∆µv

 , 0 <

 ∆µv

σ̄2

3
√

ln(1/ωv)

 < Q− 3

O

(
K

(∆µv)2

)
,

 ∆µv

σ̄2

3
√

ln(1/ωv)

 = 0
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In particular, in the asymptotic case where T →∞ and ln 1
δ = ln 1

δT
= o(T b),∀b > 0 (this includes the scenario where δ is

fixed with respect to T ), we have

hS∩B(1,∆
µv) = O

(
K

(∆µv)2

)
= O

(
K

(∆v)2
ln

T

δ

)

For hR(1,∆v
i,R), we have ∆v

i,R ≥ ∆v. Furthermore, ωsum =
√
ln(TL) +

√
ln(TL/δ) and the changing point⌊

ωsum·∆v√
ln(1/ω′

v)σ̄
2

⌋
=

⌊
(
√

ln(TL)+
√

ln(TL/δ))·∆v

√
ln(TL)σ̄2

⌋
.

Thus

hR(1,∆v
i,R) ≤ hR(r′,∆v) (34)

=



(Q− 1)
CγK

( ∆v

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)( ∆v

3
√

ln(1/ω′
v)
)2

+D

 ,

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
≥ Q− 3

CγK
3

σ̄2

3ωsum
· ∆v

i,R

3
√

ln(1/ω′
v)

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)(
∆v

i,R

3
√

ln(1/ω′
v)
)2

+D


 , 0 <

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
≤ Q− 3

3CγK

( ∆v

3
√

ln(1/ω′
v)
)2

2 +
1

ln(1/ωvv′)

ln ln+
1

ln(1/ωvv′)( ∆v

3
√

ln(1/ω′
v)
)2

+D

 ,

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
= 0

=



O

(Q− 1)
K

( ∆v

3
√

ln(1/ω′
v)
)2

 ,

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
≥ Q− 3

O

 K

σ̄2

3ωsum
· ∆v

i,R

3
√

ln(1/ω′
v)

 , 0 <

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
≤ Q− 3

= O

 K

( ∆v

3
√

ln(1/ω′
v)
)2

 ,

⌊
ωsum ·∆v√
ln(1/ω′

v)σ̄
2

⌋
= 0

In particular, in the asymptotic case where T →∞ and ln 1
δ = ln 1

δT
= o(T b),∀b > 0, we have

hR(1,∆v) = O

(
QK

(∆v)2
ln

1

ω′
v

)
= O

(
QK

(∆v)2
lnT

)

For Sc ∩ B: define ∆̄µv := max

{
∆µ√

ln(1/ωµ)
, ∆v

3
√

ln(1/ω′
v)

}
= max

{√
KL
T , ∆v

3
√

ln(TL)

}
. We have ∆̄i,Sc∩B ≥ ∆̄µv and

the changing point
⌊
ωsum·∆̄µv

σ̄2/3

⌋
=

⌊
(
√

ln(TL)+
√

ln(TL/δ))·∆µv

σ̄2/3

⌋
thus

hSc∩B(1, ∆̄i,Sc∩B) ≤ hSc∩B(1, ∆̄
µv) (35)

=



(Q− 1)
CγK

(∆̄µv)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄µv)2
+D

))
,

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
≥ Q− 3

CγK

(
3

σ̄2

3ωsum
∆̄µv

)(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄µv)2
+D

))
, 0 <

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
< Q− 3

3CγK

(∆̄µv)2

(
2 +

1

ln(1/ωmax)

(
ln ln+

1

ln(1/ωmax)(∆̄µv)2
+D

))
,

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
= 0, r′ = 1
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=



O

(
(Q− 1)

K

(∆̄µv)2

)
,

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
≥ Q− 3

O

(
K

σ̄2

3ωsum
· ∆̄µv

)
, 0 <

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
< Q− 3

O

(
K

(∆̄µv)2

)
,

⌊
ωsum · ∆̄µv

σ̄2/3

⌋
= 0, r′ = 1

In particular, in the asymptotic case where T →∞ and ln 1
δ = ln 1

δT
= o(T b),∀b > 0, we have

hSc∩B(1, ∆̄
µv) = O

(
QK

(∆v)2
lnT

)
Lastly,

R3(T ) = 2µ⋆L+ 2µ⋆TL (ξ(ωµ) + 2ξ(ωv) + 2ξ(ω′
v))

≤ 2KL+Kδ + 2KTL · 4 · 2 + ϵ

ϵ

( 1
T 2

ln(1 + ϵ)

)1+ϵ

≤ 2KL+Kδ + 4K · 2 + ϵ

ϵ

( 1

ln(1 + ϵ)

)1+ϵ

= O(1)

where we utilize T > L and the O notation refers to the fact that the preceding term is bounded as a function of T .

Note that µ⋆ ≤ K, so Tµ⋆ +Kδ ≤ TK +Kδ.

In conclusion, according to Theorem 4.1, for any T > L, the problem-independent upper bound is the minimum of
TK +Kδ and

O(
√
KLT lnT ) +K

(∑
i∈S⋆

hS⋆(1,∆v) +
∑
i∈E

hS∩B(1,∆
µv) +

∑
i∈E

hR(1,∆v) +
∑
i∈E

hSc∩B(1, ∆̄
µv)

)
≤ O(

√
KLT lnT ) +K

(
KhS⋆(1,∆v) + LhS∩B(1,∆

µv) + LhR(1,∆v) + LhSc∩B(1, ∆̄
µv)
)

= O(
√
KLT lnT ) +O

(
K3

(∆v)2
ln

T

δ

)
+KL

(
hS∩B(1,∆

µv) + hR(1,∆v) + hSc∩B(1, ∆̄
µv)
)

where the h functions are defined in (33), (34) and (35). In the asymptotic case where T → ∞ and ln 1
δ = ln 1

δT
=

o(T b),∀b > 0 (this includes the scenario where δ is fixed with respect to T ), the asymptotic problem-independent upper
bound is

O(
√
KLT lnT ) +K

(∑
i∈E

O

(
K

(∆v)2
ln

T

δ

)
+O

∑
i∈E

(
QK

(∆v)2
lnT

))

= O(
√
KLT lnT ) +O

(
LK2

(∆v)2
ln

1

δ

)
where we utilize

√
T lnT ≥ QK2

(∆v)2 lnT when T is sufficiently large.

C. Proofs of the Lower Bounds
C.1. Preliminaries and the Impossibility Result

Let KL(ν, ν′) denote the KL divergence between distributions ν and ν′, and

d(x, y) := x ln

(
x

y

)
+ (1− x) ln

(
1− x

1− y

)
denote the Kullback–Leibler (KL) divergence between the Bernoulli distributions Bern(x) and Bern(y).
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Lemma C.1 (Pinsker’s and reverse Pinsker’s Inequality). Consider two probability mass functions PX , PY defined on the
same discrete probability space A ⊂ [0, 1]. The following inequalities hold:

|EX∼PX
[X]− EY∼PY

[Y ]| ≤ δ(PX , PY ) ≤
√

1

2
KL(PX , PY ) ≤

1
√
αY
· δ(PX , PY ), .

where δ(PX , PY ) := supA⊆A
{∑

a∈A PX(a)−
∑

a∈A PY (a)
}

= 1
2

∑
a∈A |PX(a) − PY (a)| is the total variational

distance, and αY := mina∈A:PY (a)>0 Q(a).

Lemma C.2 (Lemma 1 in Kaufmann et al. (2016)). Assume the distributions under instance Λ1 = (E,AK , ν(1), σ̄2) and
instance Λ2 = (E,AK , ν(2), σ̄2) are mutually absolutely continuous. Given time budget T ,

L∑
i=1

EΛ1 [Ni(T )] ·KL(ν
(1)
i , ν

(2)
i ) ≥ sup

E∈HΛ1
T

d
(
PΛ1(E), PΛ2(E)

)
.

where Ni(t) denotes the number of time steps item i is selected up to and including time step t andHΛ1

T is all the possible
events generated by instance Λ1 and algorithm π with T time steps.

Lemma C.3. Let solution S containing |S| = m(q < m ≤ K) items be a safe solution under instance Λ1 =
(E,AK , ν(1), σ̄2). Each item in S is i.i.d. with reward distribution ν1 , mean µ1 and variance σ2

1 < σ̄2. De-
fine event E(t,1) = {S is identified as safe after time step t}, E(t,2) = {S is chosen at least once after time step t}, and
E(t) = E(t,1) ∩ E(t,2). Assume there exists τ ≤ T such that PΛ1 [E(τ)] ≥ 1− δ and PΛ1 [E(τ−1,1)] < 1− δ. If τ exists, we
have ∑

i∈S

EΛ1 [Ni(τ)] ≥ sup
ν2∈E(ν1)

d(δ, 1− δ)

KL(ν1, ν2)
.

Furthermore,

EΛ1
[M(τ)] ≥ sup

ν2∈E(ν1)

1

|S| − 1
· d(δ, 1− δ)

KL(ν1, ν2)
:= T (ν(1)),

where M(t) is the number of times that a solution S′ ⊂ S is sampled up to and include time step t and E(ν1) = {ν2 :
the variance associated to ν2 is larger than σ̄2/|S|}.

Proof. With σ2
2 > σ̄2/|S|, we construct an alternative instance Λ2 = (E,AK , ν2, σ̄

2), under which each item in S is with
reward distribution ν2 , mean µ2 and variance σ2

2 , while the distributions of other items remain unchanged.

Define event E(t,1) = {S is identified as safe after time step t}, E(t,2) = {S is chosen at least once after time step t}, and
E(t) = E(t,1) ∩ E(t,2). Assume there exists τ ≤ T such that PΛ1 [E(τ)] ≥ 1 − δ and PΛ1 [E(τ−1,1)] < 1 − δ. Since S is
unsafe under instance Λ2 and all the solutions chosen {St}Tt=1 ⊂ AK are safe with probability at least 1 − δ, we have
PΛ2

[E(t)] < δ for all t ≤ T .

We now apply Lemma C.2 to obtain that∑
i∈S

EΛ1
[Ni(τ)] ·KL(ν1, ν2) ≥ d(P1(Ec(τ)),P2(Ec(τ))) ≥ d(δ, 1− δ) ⇒

∑
i∈S

EΛ1
[Ni(τ)] ≥

d(δ, 1− δ)

KL(ν1, ν2)
.

Since PΛ1 [E(τ−1,1)] < 1− δ, we can select at most m− 1 items at one time step among the first τ time steps. Therefore,

EΛ1 [M(τ)] ≥ 1

m− 1

∑
i∈P

EΛ1 [Ni(τ)] ≥
1

m− 1
· d(δ, 1− δ)

KL(ν1, ν2)
.
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Theorem 4.5 (Impossibility result). Let {δT }∞T=1 ∈ o(1) be a sequence that satisfies that there exists b ∈ (0, 1] such that
ln(1/δT ) = Ω(T b). For any instance Λ, the regret of any algorithm is lower bounded by Ω(T b).

Proof. The proof is similar to the proof of Lemma C.3. We consider an alternative instance Λ2 = (E,AK , ν(2), σ̄2) with
the distributions of the items in the optimal safe solution S⋆ changed such that (assume the variances of all the items in S⋆

are changed (increased)) ∑
i∈S⋆

(σ
(2)
i )2 ≥ σ̄2

i.e., under instance Λ2, this solution S⋆ is unsafe (thus not optimal safe). The other items remain unchanged.

By a similar argument as the proof of Lemma C.3, we have∑
i∈S⋆

EΛ1
[Ni(τ)] ·KL(ν

(1)
i , ν

(2)
i ) ≥ d(δ, 1− δ)

⇒
∑
i∈S⋆

EΛ1
[Ni(τ)] ≥

d(δ, 1− δ)

mini∈S⋆ KL(ν
(1)
i , ν

(2)
i )

So the safeness checking of S⋆ will take Ω(ln 1
2.4δT

) = Ω(T b)

Recall the probably anytime-safe constraint (1):

P
[
∀ t ∈ [T ], St ∈ S

]
≥ 1− δT .

This indicates at time step t, for any solution S, if PH(0)
t
[S ∈ S] < 1−δT , S will not be selected at this time step. Otherwise,

(1) is violated. Therefore, before the safeness of the optimal safe solution S is ascertained, it is not going to be sampled and
the instantaneous regret will be lower bounded by minS∈S∩B ∆S .

In conclusion, the regret is at least ln 1
2.4δT

·minS∈S∩B ∆S = Ω(T b).

We derive both the problem-dependent and problem independent lower bounds on the K-path semi-bandit problem. The
items in the ground set are divided into L0 paths: P1, . . . , PL0

, each of which contains K unique items. Path Pj contains
items (j − 1)K + 1, . . . , jK. Without loss of generality, we assume that L/K is an integer. A set S is a solution if and
only if S ⊂ Pj for some j. In other words, the solution set AK = {S : S ⊂ Pj , ∃j = 1, . . . , L0}. We let Ni(t) denote the
number of time steps item i is selected up to and including time step t, Mj(t) denote the number of time steps a safe subset
in path j is selected up to and including time step t, and Sj(t) denote the time steps when a safe subset in path j is selected,
i.e.,

Ni(t) =

t∑
s=1

1{i ∈ Ss}, Mj(t) =

t∑
s=1

1{Ss ⊂ Pj , Ss is safe }, Sj(t) = {1 ≤ s ≤ t : Ss ⊂ Pj , Ss is safe }.

We let Reg[j](t) denote the regret accumulated in Sj(t). Since all the chosen solutions are safe with probability at least
1− δ, we have Reg(T ) ≥ (1− δ) ·

∑L0

j=1 Reg[j](T ). In the following, we lower bound the regret accumulated in time steps
where safe solutions are chosen.

We will construct several instances to prove each of the lower bounds (which will be specified in the proof) such that
under instance k (Λk = (E,AK , ν(k), σ̄2)), the stochastic reward of items in path j (1 ≤ j ≤ L0) are i.i.d., i.e. ,
ν
(k)
i = ν

(k)
Pj

,∀i ∈ Pj , which will be specified in each case. Under instance k, we define several other notations as follows:

• Let Wi(t)
(k) be the random reward of arm i at time step t.

• Let S(k)
t be the pulled solution at time step t, and H(j)

t = {(S(j)
s , {Wi(s)

(k)}
s∈S

(k)
s

)}ts=1 be the sequence of selected
solutions and observed rewards up to and including time step t.

For simplicity, we abbreviate EH(k)
T

, PH(k)
T

, as Ek, Pk respectively.
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C.2. Problem-dependent Lower bound

In order to provide a better understanding of the analysis, we first derive a lower bound with Gaussian distributions
(unbounded) in Theorem C.4. With the same technique, we derive a lower bound with bounded Bernoulli distributions in
Theorem 4.3, which corroborates with our problem setup.

Theorem C.4 (Problem-dependent lower bound for sub-Gaussian instances). Let {δT }∞T=1 ∈ o(1) be a sequence that
satisfies ln(1/δT ) = o(T b) for all b > 0. There exists an instance Λ, for any {δT }T∈N-variance-constrained consistent
algorithm π, the regret is lower bounded by

Ω

(∑
i∈E

lnT

∆i,S∩B,min

)
+

µ⋆

K
· Ω
(
K · ln(1/δT )

(∆S⋆)2
+
∑
i∈E

(
Ψ′

i,S∩B +
lnT

(∆v
i,R)2

+Φi,Sc∩B

))
.

Proof. Given a vanishing sequence {δT }T∈N, we consider a fixed {δT }T∈N-variance-constrained consistent algorithm π on
the K-path semi-bandit problem. For simplicity, the distributions of the items are assumed to be Gaussian in the proof, but
the techniques can be applied to the Bernoulli case and we provide the instance design and the corresponding bound at the
end of the proof.

Under instance Λ0 (the base instance), σ2 = 2σ̄2

K (so the absolutely safe solutions contain at most K/2 items) and the
distributions of the items are

ν
(0)
i = N(µ

(0)
j , (σ2

i )
(0)) =



ν
(0)
P1

= N(∆,
σ̄2 − ϵv

K
), i ∈ P1

ν
(0)
Pj

= N(∆− ϵµ

K
,
σ̄2 − ϵv

K
), i ∈ Pj , 2 ≤ j ≤ L1 + 1

ν
(0)
Pj

= N(∆ +
ϵµ

K
,
σ̄2 + ϵv

K
), i ∈ Pj , L1 + 2 ≤ j ≤ L2 + 1

ν
(0)
Pj

= N(∆− ϵµ

K
,
σ̄2 + ϵv

K
), i ∈ Pj , L2 + 2 ≤ j ≤ L0

where ϵµ < ∆
K and ϵv are small positive constants (e.g. ϵµ = ∆

2K , ϵv ≤ σ̄2

K2 ), and L1 = L2 − L1 = L0 − L2 − 1 = L0−1
3

(assume it is an integer). In this case,

• path 1 is an optimal safe path,
• path 2 to path L1 + 1 are the safe and suboptimal paths,
• path L1 + 2 to path L2 + 1 are the risky paths
• path L2 + 2 to path L3 + 1 = L0 are the unsafe and suboptimal paths.

In the following, we will compute the minimum regret yielded from each of the paths.

Case 1: the optimal safe path P1

In order to achieve o(T a),∀a > 0 regret, any algorithm has to identify the safeness of the optimal safe solution P1 and
sample P1 Ω(T ) times, otherwise, the regret is linear. According to Lemma C.3, the expected number of time steps needed
for the safeness identification of P1 is lower bounded by

E0[M1(τ)] ≥ sup
ν
(1)
P1

∈E(ν
(0)
P1

)

1

K − 1
· d(δT , 1− δT )

KL(ν
(0)
P1

, ν
(1)
P1

)
:= T (ν

(0)
P1

)

where E(ν
(0)
P1

) = {ν(1)P1
: the variance associated to ν

(1)
P1

is larger than σ̄2/K}. In particular, we let instance Λ1 =

(E,AK , ν(1), σ̄2) with

ν
(1)
i =

ν
(1)
P1

= N

(
∆,

σ̄2 + ϵv1
K

)
, i ∈ P1

ν
(0)
i , i /∈ P1
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where ϵv1 is an arbitrarily small constant. Thus, we can take supremum over ϵv1 > 0 and have

T (ν
(0)
P1

) ≥ 1

K − 1
·

ln 1
2.4δT

KL(N(∆, σ̄2−ϵv

K ), N(∆, σ̄2

K ))
≥ 1

K − 1
· 4K

2(σ̄2/K)2

(ϵv)2
ln

1

2.4δT
=

K(σ2)2

(ϵv)2
ln

1

2.4δT

When a solution S ⊂ P1 is chosen before this time step, the instantaneous regret is lower bounded by ∆. The accumulative
regret from P1 is lower bounded by

Reg[1](T ) ≥ ∆ · T (ν(0)P1
) = Ω(

K∆

(∆v
P1
)2

ln
1

δT
)

Case 2: the safe and suboptimal paths

For any safe and suboptimal path Pj(2 ≤ j ≤ L1 + 1), we define instance Λj = (E,AK , ν(j), σ̄2) with

ν
(j)
i =

ν
(j)
Pj

= N(∆ +
ϵµj
K

,
σ̄2 − ϵv

K
), i ∈ Pj

ν
(0)
i , i /∈ Pj

where ϵµj < ∆ is an arbitrarily small constant. So Pj is the optimal safe solution under instance j.

Fix any item i ∈ Pj , consider the event Ej = {Ni(T ) ≥ T
2 }, under instance 1, Ej indicates the optimal safe solution P1

is sampled less than T
2 times; under instance j, Ecj indicates the optimal safe solution Pj is sampled less than T

2 times.
Therefore,

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2
ϵµP0[Ej ] +

T

2
ϵµj Pj [Ecj ]

≥ T

2
min{ϵµ, ϵµj }

(
P0[Ej ] + Pj [Ecj ]

)
According to Lemma C.1 and Lemma C.2, we have

P0[Ej ] + Pj [Ecj ] ≥
1

2
exp{−KL(P1,Pj)}

KL(P1,Pj) =

L∑
i=1

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)
=
∑
i∈Pj

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)

Thus

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2
min{ϵµ, ϵµj } ·

1

2
exp{−KL(P1,Pj)}

⇐⇒
ln
(
RegΛ0

(T ) + RegΛj
(T )
)

lnT
≥ 1 +

min{ϵµ, ϵµj }/4
lnT

− KL(P1,Pj)

lnT
(∗)
=⇒ KL(P1,Pj)

lnT
≥ 1

⇐⇒
∑

i∈Pj
E0[Ni(T )]

lnT
≥ 1

KL
(
ν
(0)
Pj

, ν
(j)
Pj

) =
2 σ̄2−ϵv

K

(
ϵµ+ϵµj

K )2

(∗∗)
=⇒

∑
i∈Pj

E0[Ni(T )]

lnT
≥

2 σ̄2−ϵv

K

( ϵ
µ

K )2
=: T (ν

(0)
Pj

)

where in (∗) we let T → ∞ and note that both RegΛ0
(T ) and RegΛj

(T ) are of order o(T a),∀a > 0; in (∗∗) we take
supremum over ϵµj > 0.
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We also have to take the safeness constraint into consideration. According to Lemma C.3, in order to check the safeness of
Pj , the items in Pj have to be sampled

∑
i∈Pj

EΛ0
[Ni(τ)] ≥ sup

ν′
Pj

∈E(ν
(0)
Pj

)

d(δT , 1− δT )

KL(ν
(0)
Pj

, ν′Pj
)
.

⇐⇒
∑

i∈Pj
EΛ0

[Ni(τ)]

lnT
≥ sup

ν′
Pj

∈E(ν
(0)
Pj

)

1

KL(ν
(0)
Pj

, ν′Pj
)
· d(δT , 1− δT )

lnT
≥ 4K2(σ̄2/K)2

(ϵv)2
ln 1

2.4δT

lnT
:= Tsafe(ν

(0)
Pj

).

If T (ν(0)Pj
) ≤ Tsafe(ν

(0)
Pj

), it indicates the suboptimality of Pj is identified before the safeness. Furthermore, whenever a
solution S ⊂ Pj is sampled, S can have most K − 1 items. So the regret is lower bounded by

Reg[j](T )

lnT
≥

T (ν
(0)
Pj

)

K − 1
· (ϵµ +∆− ϵµ

K
) ≥

2K2 σ̄2−ϵv

K

(ϵµ)2
· ( ∆

K − 1
+

ϵµ

K
)

=⇒ Reg[j](T )

lnT
≥

2K σ̄2−ϵv

K

(ϵµ)2
· (∆ + ϵµ) ≥ Kσ2/2

(ϵµ)2
· (∆ + ϵµ)

=⇒ Reg[j](T ) = Ω

(
K

∆2
Pj

(∆Pj
+∆) lnT

)
(36)

If T (ν(0)Pj
) ≥ Tsafe(ν

(0)
Pj

), it indicates the suboptimality of Pj is identified after the safeness. Thus, whenever a solution
S ⊂ Pj is sampled, S can have most K− 1 items before the safeness checking is finished. So the regret is lower bounded by

Reg[j](T )

lnT
≥

Tsafe(ν
(0)
Pj

)

K − 1
· (ϵµ +∆− ϵµ

K
) +

T (ν
(0)
Pj

)− Tsafe(ν
(0)
Pj

)

K
· ϵµ

≥
T (ν

(0)
Pj

)

K
· ϵµ + (∆− ϵµ

K
) ·

Tsafe(ν
(0)
Pj

)

K − 1

≥
2K σ̄2−ϵv

K

(ϵµ)2
· ϵµ + (∆− ϵµ

K
) · 1

K − 1
· 4K

2(σ̄2/K)2

(ϵv)2
ln 1

2.4δT

lnT

≥ Kσ2/2

ϵµ
+ (∆− ϵµ

K
) · 1

K − 1
· K

2(σ2)2

(ϵv)2
ln 1

2.4δT

lnT

=⇒ Reg[j](T ) = Ω

(
K

∆Pj

lnT + (∆−
∆Pj

K
)

K

(∆v
Pj
)2

ln
1

δT

)
(37)

Based on (36) and (37), the regret is

Reg[j](T ) = Ω

(
K

∆Pj

lnT +∆ ·min

{
K

∆2
Pj

lnT,
K

(∆v
Pj
)2

ln
1

δT

})

Case 3: the risky paths

For any risky path Pj (L1 + 2 ≤ j ≤ L2 + 1, we define instance Λj = (E,AK , ν(j), σ̄2) with

ν
(j)
i =

ν
(j)
Pj

= N(∆ +
ϵµ

K
,
σ̄2 − ϵvj

K
), i ∈ Pj

ν
(0)
i , i /∈ Pj

where ϵvj is an arbitrarily small constant. So Pj is the optimal safe solution under instance j.
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Fix any item i ∈ Pj , consider the event Ej = {Ni(T ) ≥ T
2 }, under instance 1, Ej indicates the optimal safe solution P1

is sampled less than T
2 times; under instance j, Ecj indicates the optimal safe solution Pj is sampled less than T

2 times.
Therefore,

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2

(
∆− K − 1

K
ϵµ
)
P0[Ej ] +

T

2
ϵµPj [Ecj ]

≥ T

2
ϵµ ·

(
P0[Ej ] + Pj [Ecj ]

)
According to Lemma C.1 and Lemma C.2, we have

P0[Ej ] + Pj [Ecj ] ≥
1

2
exp{−KL(P1,Pj)}

KL(P1,Pj) =

L∑
i=1

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)
=
∑
i∈Pj

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)
Thus

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2
ϵµ · 1

2
exp{−KL(P1,Pj)}

⇐⇒
ln
(
RegΛ0

(T ) + RegΛj
(T )
)

lnT
≥ 1 +

min{ϵµ, ϵµj }/4
lnT

− KL(P1,Pj)

lnT
(∗)
=⇒ KL(P1,Pj)

lnT
≥ 1

⇐⇒
∑

i∈Pj
E0[Ni(T )]

lnT
≥ 1

KL
(
ν
(0)
Pj

, ν
(j)
Pj

) =
K2(σ2)2

(ϵv)2
=: T (ν

(0)
Pj

)

where in (∗) we let T →∞ and note that both RegΛ0
(T ) and RegΛj

(T ) are of order o(T a),∀a > 0.

Note that Pj is a risky path and if any solution S ⊂ Pj is sampled, |S| ≤ K − 1. Thus, E[Mj(T )] ≥
T (ν

(0)
Pj

)

K−1 lnT . The
regret is lower bounded by

Reg[j](T ) = Ω

((
∆− K − 1

K
ϵµ
)

1

K − 1

K2(σ2)2

(ϵv)2
lnT

)
= Ω

(
K∆

(∆v
Pj
)2

lnT

)

Case 4: the unsafe and suboptimal paths

For any unsafe and suboptimal path Pj(L2 + 2 ≤ j ≤ L0), we define instance Λj = (E,AK , ν(j), σ̄2) with

ν
(j)
i =

ν
(j)
Pj

= N(∆ +
ϵµj
K

,
σ̄2 − ϵvj

K
), i ∈ Pj

ν
(0)
i , i /∈ Pj

where ϵµj < ∆, ϵvj < σ̄2

K are arbitrarily small constants. So Pj is the optimal safe solution under instance j.

Fix any item i ∈ Pj , consider the event Ej = {Ni(T ) ≥ T
2 }, under instance 1, Ej indicates the optimal safe solution P1

is sampled less than T
2 times; under instance j, Ecj indicates the optimal safe solution Pj is sampled less than T

2 times.
Therefore,

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2
ϵµP0[Ej ] +

T

2
ϵµj Pj [Ecj ]

≥ T

2
min{ϵµ, ϵµj }

(
P0[Ej ] + Pj [Ecj ]

)
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According to Lemma C.1 and Lemma C.2, we have

P0[Ej ] + Pj [Ecj ] ≥
1

2
exp{−KL(P1,Pj)}

KL(P1,Pj) =

L∑
i=1

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)
=
∑
i∈Pj

E0[Ni(T )] ·KL
(
ν
(0)
i , ν

(j)
i

)

Thus

RegΛ0
(T ) + RegΛj

(T ) ≥ T

2
min{ϵµ, ϵµj } ·

1

2
exp{−KL(P1,Pj)}

⇐⇒
ln
(
RegΛ0

(T ) + RegΛj
(T )
)

lnT
≥ 1 +

min{ϵµ, ϵµj }/4
lnT

− KL(P1,Pj)

lnT
(∗)
=⇒ KL(P1,Pj)

lnT
≥ 1

⇐⇒
∑

i∈Pj
E0[Ni(T )]

lnT
≥ 1

KL
(
ν
(0)
Pj

, ν
(j)
Pj

) = 4K2

( ϵvj + ϵv

(σ̄2 − ϵvj )/K

)2

+
2(ϵµj + ϵµ)2

(σ̄2 − ϵvj )/K

−1

(∗∗)
=⇒

∑
i∈Pj

E0[Ni(T )]

lnT
≥ 4K2

((
ϵv

σ2/2

)2

+
2(ϵµ)2

σ2/2

)−1

=: T (ν
(0)
Pj

)

where in (∗) we let T →∞ and note that both RegΛ0
(T ) and RegΛj

(T ) are of order o(T a),∀a > 0; in (∗∗) we take the
supremum over ϵµj > 0, ϵvj > 0.

Note that Pj is an unsafe path and if any solution S ⊂ Pj is sampled, |S| ≤ K − 1. Thus, E[Mj(T )] ≥
T (ν

(0)
Pj

)

K−1 lnT . The
regret is lower bounded by

Reg[j](T ) ≥
(
∆+

K − 1

K
ϵµ
)

4K2

K − 1

((
ϵv

σ2/2

)2

+
2(ϵµ)2

σ2/2

)−1

lnT

= Ω

(
K∆+Kϵµ

max{ϵµ, ϵv}2
lnT

)
= Ω

(
min

{
K∆

∆2
Pj

lnT,
K∆

(∆v
Pj
)2

lnT

})

In conclusion, the regret yielded from these paths is lower bounded by

Reg(T )

1− δT
≥ Reg[1](T ) +

L1+1∑
j=2

Reg[j](T ) +

L2+1∑
j=L1+2

Reg[j](T ) +

L0∑
j=L2+2

Reg[j](T )

≥ Ω

(
K∆

(ϵv)2
ln

1

δT

)
+

L1+1∑
j=2

Ω

(
K

ϵµ
lnT +∆ ·min

{
K

(ϵµ)2
lnT,

K

(ϵv)2
ln

1

δT

})

+

L2+1∑
j=L1+2

Ω

(
K∆

(ϵv)2
lnT

)
+

L0∑
j=L2+2

Ω

(
min

{
K∆

(ϵµ)2
lnT,

K∆

(ϵv)2
lnT

})
.

Note

• L1 = L2 − L1 = L0 − L2 − 1 = L0−1
3 , L0 = L

K and µ⋆ = K∆.
• for S⋆, ϵv = ∆v

S⋆ .
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• for S ∈ S ∩ B and i ∈ S, we check that if S ⊂ Pj , 2 ≤ j ≤ L1 + 1 , ∆i,S∩B,min = ϵµ and

Ψ′
i,S∩B ≥ min

{
lnT

∆2
S

,
9 ln(1/δT )

(∆v
S)

2

}
.

where the equality holds when S = Pj , 2 ≤ j ≤ L1 + 1.
• for S ∈ R and i ∈ S, ϵv = ∆v

i,R.
• S ∈ Sc ∩ B and i ∈ S, we can easily check S = Pj for some L2 + 2 ≤ j ≤ L0, thus ∆i,Sc∩B,min = ϵµ and

Φi,Sc∩B = min

{
lnT

∆2
S

,
9 lnT

(∆v
S)

2

}
.

Therefore,

Reg(T ) ≥ Ω

(
L lnT

∆i,S∩B,min

)
+

µ⋆

K
· Ω

(
K · ln(1/δT )

(∆S⋆)2
+
∑
i∈E

Ψ′
i,S∩B +

∑
i∈E

lnT

(∆v
i,R)2

+
∑
i∈E

Φi,Sc∩B

)
.

Theorem 4.3 (Problem-dependent lower bound). Let {δT }∞T=1 ∈ o(1) be a sequence that satisfies ln(1/δT ) = o(T b) for
all b > 0. There exists an instance Λ such that for any {δT }T∈N-variance-constrained consistent algorithm π, the regret is
lower bounded by

Ω

(∑
i∈E

lnT

∆i,S∩B,min

)
+

µ⋆

K
· Ω
(
K ln(1/δT )

(∆v
S⋆)2

+
∑
i∈E

(
Ψ′

i,S∩B +
lnT

(∆v
i,R)2

+Φi,Sc∩B

))
.

Proof. We divide the whole ground set into several paths. Meanwhile, we define four sets E1, . . . , E4 such that Ei∩Ej = ∅
for any i ̸= j. P1 = E1, Pj ⊂ Ej for j = 2, 3, 4. For any j > 4, there exists k ̸= 1 such that Pj ⊂ Ek. For any path Pj , if
Pj ⊂ E4, |Pj | = K2; otherwise, |Pj | = K1. Pj consists of arms

j−1∑
i=1

|Pi|+ 1, . . . ,

j−1∑
i=1

|Pi|+K1 · 1{Pj ̸⊂ E4}+K2 · 1{Pj ⊂ E4}.

The feasible solution set AK consists of all subsets of each path.

We let Bern(a) denote the Bernoulli distribution with parameter a(a ∈ (0, 1)). Note that the variance of Bern(a) is a(1−a).
We construct an instance with νi = Bern(µi). With ε1, ε2 > 0, we set

µi = ∆ ∀i ∈ E1,

µi = ∆− ε1 ∀i ∈ E2,

µi = ∆+ ε2 ∀i ∈ E3,

µi = ∆− ε3 ∀i ∈ E4.

We let 2 ≤ K1 < K2 ≤ K, ∆ < 1/2 and

K1∆(1−∆) < σ̄2 (paths in E1 and E2 are safe),

K1(∆ + ε2)(1−∆− ε2) > σ̄2 (paths in E3 are unsafe),
K2(∆− ε3)(1−∆+ ε3) > σ̄ (paths in E4 are unsafe),
K2(∆− ε3) < K1∆ (paths in E4 are suboptimal),

(K1 − 1) · (∆ + ε2) < K1 ·∆ ⇔ (K1 − 1) · ε2 < ∆ ⇔ ε2 <
∆

K1 − 1
(paths in E3 are suboptimal or unsafe).

The conditions above indicate that
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• P1 is the unique optimal safe set;
• if Pj ⊂ E2, Pj and its subsets are safe but suboptimal;
• if Pj ⊂ E3, Pj is risky, and its proper subsets are suboptimal;
• if Pj ⊂ E4, Pj and its subsets are suboptimal, and Pj is unsafe.

Let

p1 :=
1−

√
1− σ̄2/K1

2
and p2 :=

1−
√
1− σ̄2/K2

2
,

The relations between µi’s are as in the following figure:

With a similar proof to that of Theorem C.4, we have, the accumulative regret from the optimal P1 is lower bounded by

Reg[1](T ) ≥ Ω(
K1∆

(∆v
P1
)2

ln
1

δT
);

the accumulative regret from a safe and suboptimal path in E2 is lower bounded by

Reg[j](T ) ≥ Ω

(
K1

∆Pj

lnT +∆ ·min

{
K1

∆2
Pj

lnT,
K1

(∆v
Pj
)2

ln
1

δT

})
;

the accumulative regret from a risky path in E3 is lower bounded by

Reg[j](T ) ≥ Ω

(
K1∆

(∆v
Pj
)2

lnT

)
;

the accumulative regret from a unsafe and suboptimal path in E4 is lower bounded by

Reg[j](T ) ≥ Ω

(
min

{
K2∆

∆2
Pj

lnT,
K2∆

(∆v
Pj
)2

lnT

})
.

We let

ϵµ = min
j
{∆Pj

}, ϵv = min
j
{∆v

Pj
};

and set K1, K2, ε1, ε2, ε3 such that

K1 >
3

4
·K2, K2 = K, min

j
{∆Pj

} < 2ϵµ, min
j
{∆v

Pj
} < 2ϵv.
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In conclusion, the regret yielded from these paths is lower bounded by

Reg(T )

1− δT
≥ Reg[1](T ) +

∑
Pj∈E2

Reg[j](T ) +
∑

Pj∈E3

Reg[j](T ) +
∑

Pj∈E4

Reg[j](T )

≥ Ω

(
K∆

(ϵv)2
ln

1

δT

)
+ |E2| · Ω

(
K

ϵµ
lnT +∆ ·min

{
K

(ϵµ)2
lnT,

K

(ϵv)2
ln

1

δT

})
+ |E3| · Ω

(
K∆

(ϵv)2
lnT

)
+ |E4| · Ω

(
min

{
K∆

(ϵµ)2
lnT,

K∆

(ϵv)2
lnT

})
.

Note that

• µ⋆ = K1∆.
• for S⋆, ϵv = ∆v

S⋆ .
• for S ∈ S ∩ B and i ∈ S, we check that if S ⊂ Pj , j ∈ E2 , ∆i,S∩B,min = ϵµ and

Ψ′
i,S∩B ≥ min

{
lnT

∆2
S

,
9 ln(1/δT )

(∆v
S)

2

}
.

where the equality holds when S = Pj , Pj ∈ E2.
• for S ∈ R and i ∈ S, ϵv = ∆v

i,R.
• S ∈ Sc ∩ B and i ∈ S, we can easily check S = Pj for some Pj ∈ E4, thus ∆i,Sc∩B,min = ϵµ and

Φi,Sc∩B = min

{
lnT

∆2
S

,
9 lnT

(∆v
S)

2

}
.

Therefore,

Reg(T ) ≥ Ω

(
L lnT

∆i,S∩B,min

)
+

µ⋆

K
· Ω

(
K · ln(1/δT )

(∆S⋆)2
+
∑
i∈E

Ψ′
i,S∩B +

∑
i∈E

lnT

(∆v
i,R)2

+
∑
i∈E

Φi,Sc∩B

)
.

C.3. Problem-independent Lower bound

Theorem 5.2 (Problem-independent lower bound). Let the minimum variance gap be ∆v := minS∈AK
∆v

S . When K3 ≥ L2,
we have

Reg(T ) = Ω

(√
KLT +min

{ L

(∆v)2
ln
( 1

δT

)
, T
})

.

Proof. Since the rewards of items are bounded in [0, 1], the variance of each arm is at most 1/4. Therefore, when σ̄2 ∈
[K/4,∞), any solution inAK is safe and there exists a generic lower bound (Kveton et al., 2015). When σ̄2 ∈ (0,K/4), let

ā :=
1 +

√
1− σ̄2/K

2
and a :=

1−
√
1− σ̄2/K

2
.

We consider the instances containing items with Bernoulli reward distributions. We let Bern(a) denote the Bernoulli
distribution with mean a. An item i ∈ [L] with reward distribution Bern(µi) is with variance µi(1− µi), which is smaller
than σ̄2/K if and only if µi ∈ (0, a) ∪ (ā, 1).

We will construct 3 instances such that under instance k (0 ≤ k ≤ 2), the stochastic reward of an item in path j (1 ≤ j ≤ L0)
is drawn from distribution ν

(k)
j = Bern(µ

(k)
j ), where µ

(k)
j will be specified in each case.

Under instance 0, with µ0 < a, we let µ(0)
j = µ0 for all j, i.e., the reward distribution of each item is Bern(µ0). Since

µPj = Kµ0 and σ2
Pj

= Kµ0(1 − µ0) < σ̄2 for all j, each path is an identical safe and optimal solution. Since all paths
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are equivalent under instance 0, we have E0[Mj(t)] = T/L0 for all j ∈ 1, . . . , L0, where E0 denote the expectation under
instance 0.

We next construct instance 1 such that

µ
(1)
1 = µ1, µ

(1)
j = µ0 j ̸= 1,

where µ0 < µ1 < a.2 Hence, P1 is the unique optimal safe solution under instance 1 while all other solutions are safe but
suboptimal.

With an analysis similar to that of Lemma 6.4 in Zhong et al. (2021), we can show that

Lemma C.5. Let the reward distribution of item i be ν
(j)
i under instance j(j = 1, 2), then

KL
(
H(1)

T ,H(2)
T

)
=

L∑
i=1

E0[Ni(T )] ·KL
(
ν
(1)
i , ν

(2)
i

)
.

Hence, we have

KL
(
H(0)

T ,H(1)
T

)
=
∑
i∈P1

E0[Ni(T )] ·
(
ν
(0)
i , ν

(1)
i

) (a)

≤ K · E0[M1(t)] · d(µ0, µ1) = K · T
L0
· d(µ0, µ1),

where (a) follows from the fact that at most K items are selected at one time step and the definition of instances.

Next, we apply Pinsker’s Inequality to bound E1[M1(T )]. Lemma C.1 indicates that

|E0[M1(T )]− E1[M1(T )]| ≤
√

1

2
KL
(
H(0)

T ,H(1)
T

)
,

⇒
∣∣∣∣E1[M1(T )]−

T

L0

∣∣∣∣ ≤√KT

2L0
· d(µ0, µ1).

Moreover, since the paths Pj for j ̸= 1 are identical under instance 1, we have

E1[Mj(T )] =
1

L0 − 1

(
T − E1[M1(T )]

)
≥ 1

L0 − 1

(
T − T

L0
−
√

KT

2L0
· d(µ0, µ1)

)
:= M.

To learn the regret incurred by P2 under instance 1, we need to take the effects of the safety constraint into consideration.
Lemma C.3 indicates that

• if M < T (ν0), at each of the first M time steps in S2(T ), at most K − 1 items are pulled and regret of at least
[K(µ1 − µ2) + µ2] ·M is incurred, i.e.,

Reg[2] ≥ [K(µ1 − µ2) + µ2] ·M.

• if M ≥ T (ν0), at each of the first T (ν0) time steps in S2(T ), at most K − 1 items are pulled and regret of at least
[K(µ1 − µ2) + µ2] · T (ν0) is incurred; besides, at the subsequent time steps in S2(T ), regret of at least K(µ1 − µ2) ·
[M − T (ν0)] is incurred, i.e.,

Reg[2] ≥ [K(µ1 − µ2) + µ2] · T (ν0) +K(µ1 − µ2) · [M − T (ν0)] = K(µ1 − µ2) ·M + µ2 · T (ν0).

In short, we have

Reg[2] ≥ K(µ1 − µ2) ·M + µ2 ·min{T (ν0),M}.

We can lower bound Reg(j) for all j = 3, . . . , L0 with the same method.

2In this proof, µ1 are µ2 are redefined to minimize clutter; the previous definitions of them not used.
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Besides, since

E1[M1(T )] ≥ T −
√

KT

2L0
· d(µ0, µ1)

and at most K − 1 items are selected at each of the first T (ν1) time steps in S1(T ), we have

Reg[1] ≥ µ1 ·min

{
T (ν1), T −

√
KT

2L0
· d(µ0, µ1)

}
.

Therefore, under instance 1, we have

Reg(T )

1− δ
≥

L0∑
j=1

Reg[j]

≥ µ1 ·min

{
T (ν1), T −

√
KT

2L0
· d(µ0, µ1)

}
+ (L0 − 1) · [K(µ1 − µ2) ·M + µ2 ·min{T (ν0),M}]

= µ1 ·min

{
sup

ν′
1∈E(ν1)

1

K − 1
· d(δ, 1− δ)

KL(ν1, ν′1)
, T −

√
KT

2L0
· d(µ0, µ1)

}
+ (L0 − 1) ·

[
K(µ1 − µ2) ·M + µ2 ·min

{
sup

ν′
0∈E(ν0)

1

K − 1
· d(δ, 1− δ)

KL(ν0, ν′0)
, M

}]
where

E(ν0) = {ν(0′) : the variance related to ν(0′) is larger than σ̄2/K},
E(ν1) = {ν(1′) : the variance related to ν(1′) is larger than σ̄2/K},

M =
1

L0 − 1

(
T − T

L0
−
√

KT

2L0
· d(µ0, µ1)

)
.

By Pinsker’s inequality (see Lemma C.1), for µi ≥ 1/2,

d(µi, ā) ≤
(µi − ā)2 · (1− µi − ā)2

a(1− µi − ā)2
=

[µi(1− µi)− σ̄2/K]2

a(1− µi − ā)2
≤ [µi(1− µi)− σ̄2/K]2

a(ā− 1/2)2
=

[µi(1− µi)− σ̄2/K]2

a(1/2− a)2
;

for µi < 1/2,

d(µi, a) ≤
(µi − a)2 · (1− µi − a)2

a(1− µi − a)2
=

[µi(1− µi)− σ̄2/K]2

a(1− µi − a)2
≤ [µi(1− µi)− σ̄2/K]2

a(1/2− a)2
.

Since ν0 = Bern(µ0), ν1 = Bern(µ1), and 0 < µ0 < µ1 < a < 1/2, we have

sup
ν′
0∈E(ν0)

1

K − 1
· d(δ, 1− δ)

KL(ν0, ν′0)
=

d(δ, 1− δ)

K − 1
· (1/2− a)2

[µ0(0− µ0)− σ̄2/K]2
,

sup
ν′
1∈E(ν1)

1

K − 1
· d(δ, 1− δ)

KL(ν1, ν′1)
=

d(δ, 1− δ)

K − 1
· (1/2− a)2

[µ1(1− µ1)− σ̄2/K]2
.

We define the minimum variance gap ∆v := minS∈A ∆v
S . When K3 ≤ L2 and LK/T ≤ a2, we can let µ1 − µ2 =√

L/KT . Then we have

Reg(T ) = Ω

(
min

{
1

K − 1
· d(δ, 1− δ)

(∆v/K)2
, T

}
+
√
KLT + L0 ·min

{
1

K − 1
· d(δ, 1− δ)

(∆v/K)2
,
TK

L

})
= Ω

(
min

{
K · d(δ, 1− δ)

(∆v/)2
, T

}
+
√
KLT + L ·min

{
d(δ, 1− δ)

(∆v)2
,
T

L

})
= Ω

(√
KLT +min

{
L · d(δ, 1− δ)

(∆v)2
, T

})
.

Moreover, we complete the proof with d(δ, 1− δ) ≥ − ln(2.4δ) and δT = δ.
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D. Tightness of the Upper bound
Corollary D.1 (Tightness of problem-dependent bounds). Let {δT }∞T=1 ∈ o(1) be a sequence that satisfies ln(1/δT ) =
o(T b) for all b > 0,

• if ln(1/δT ) ∈ o(lnT ), in particular, if δT = δ0 > 0 for all T , the regret Reg(T ) is

Ω

(∑
i∈E

lnT

∆i,S∩B,min
+

µ⋆ lnT/K

(∆v
i,R)2

+
µ⋆

K
Φi,Sc∩B

)

∩O

(∑
i∈E

K lnT

∆i,S∩B,min
+

µ⋆K lnT

(∆v
i,R)2

+ µ⋆KΦi,Sc∩B

)
• if ln(1/δT ) = λ lnT , i.e., δT = T−λ with a fixed λ > 0, the regret Reg(T ) is

Ω

(∑
i∈E

lnT

∆i,S∩B,min
+

λµ⋆ lnT

(∆v
S⋆)2

+
µ⋆

K

∑
i∈E

(
Ψ′

i,S∩B +
lnT

(∆v
i,R)2

+Φi,Sc∩B

))

∩O

(∑
i∈E

K lnT

∆i,S∩B,min
+

λµ⋆K2 lnT

(∆v
S⋆)2

+Kµ⋆
∑
i∈E

(
Ψi,S∩B +

lnT

(∆v
i,R)2

+Φi,Sc∩B

))
where ln(1/δT ) in the Ψ and Ψ′ functions should be replaced by λ lnT .

• if ln(1/δT ) ∈ ω(lnT ), the regret Reg(T ) is

Reg(T ) ∈ Ω

(
µ⋆ ln(1/δT )

(∆v
S⋆)2

)
∩O

(
µ⋆K2 ln(1/δT )

(∆v
S⋆)2

)
The upper bounds above are achieved by PASCOMBUCB.

E. Additional Discussions and Future Research
E.1. Discussions on the Tightness Results

In terms of the problem-dependent bounds in Corollary 4.4, we consider general instances where the rewards from the items
are independent and the gap in Reg1(T ) can be closed when that the rewards from the items are correlated, as in the lower
bound for the unconstrained combinatorial bandits in Kveton et al. (2015). This assumption also allows us to remove a
factor of K from the gap of Reg2(T ).

In terms of the problem-independent bounds in Corollary 5.4, the regret due to suboptimality is almost tight as in the
unconstrained case (Kveton et al., 2015). The regret due to safeness checking is tight up to a factor of K2. During each
phase, PASCOMBUCB selects and samples solutions which are disjoint subsets of Ap, and hence one item is sampled at
most once during one phase. However, it is empirically feasible to sample some items more than once during one phase,
which will help reduce the regret but requires more delicate analysis.

For future directions, it is of interest to close the gap (the factor K) in the regret due to safeness checking with improved
analyses or additional assumptions on the instance.

E.2. Discussions on the Problem Formulation

Anytime safety is important in safety-critical applications where at each point in time the risk cannot exceed a certain threshold.
For example, in a self-driving car that is scheduled to move from start point x0 to end point xn via (x1, x2, . . . , xn−1) (the
choice of these waypoints is a combinatorial problem), it is necessary that the car stay in its designated lane at all points in
time, and not just “on average”, otherwise a catastrophic accident might result at some point in time with non-negligible
probability. In this example, we might want to choose a route that is safe at all times w.h.p. (in the sense that the car stays in
its designated lane) at the cost of a longer travel time.

This work studies the anytime-safe constraint at the super-arm3 level and provides a first step to understanding risk in
combinatorial semi-bandits. The sum

∑
i∈A σ2

i of a set of items (base arms) in A is adopted as the risk measure, which is a

3In this discussion, the terms “super arm” and “base arm” refer to “solution” and ”item” respectively.
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certain function of σ2
i , i ∈ A. It is also of interest to study the anytime safety at the base arm level, where the risk function

is maxi∈A σ2
i . From a technical point of view, if the safeness of any single base arm has not been ascertained (as we need

to learn the safeness/risk of the base arms), then pulling any base arm can be risky, in the sense that with non-vanishing
probability, the anytime-safe constraint (or even the less stringent stagewise safety constraint (Khezeli & Bitar, 2020)) is
violated when we do the exploration (by pulling any base arm) at the beginning. Thus, this seems infeasible from a technical
standpoint. Nevertheless, we believe additional proper assumptions can be made to formulate a practical and feasible model
that leads to future researches.

E.3. Comparisons

Comparison with Wu et al. (2016); Kazerouni et al. (2017): While the conservative (linear) constraint

P

⋂
t≥1

{
t∑

k=1

⟨Xk, θ
∗⟩ ≥ (1− α)tb0

} ≥ 1− δ

requires the constraint should be satisfied w.p. 1− δ over the whole horizon, which is similar to our probably anytime-safe
constraint, the constraint is in terms of the cumulative expected reward (up to time step t). The cumulative nature of the
conservative constraint maintains a “budget reservoir” that makes this constraint less stringent than the stagewise safety
constraint (Khezeli & Bitar, 2020), in the sense that one algorithm may satisfy the conservative constraint but violate the
stagewise safety constraint. Both the stagewise safety constraint and the probably anytime-safe constraint consider the
reward/risk that is incurred at each single time step.

Comparison with Khezeli & Bitar (2020); Moradipari et al. (2020): To the best of our knowledge, the stagewise safety
(or the stagewise conservative) constraint (Khezeli & Bitar, 2020; Moradipari et al., 2020) is the most related risk-aware
constraint to our anytime-safe constraint.
(1) The stagewise conservative constraint is a constraint on the mean reward (hence, only one statistics is involved in
the problem), which originates from the conservative constraint (Wu et al., 2016). In our setup, we post the anytime-safe
constraint on the risk while minimizing the regret, which requires us to consider two statistics and the interaction between
them.
(2) The stagewise safety constraint has only been utilized under the linear bandit setup in the literature, where the arm set
is assumed to be a convex and compact set in Rn (Moradipari et al., 2020), and thus, the arms constitute an uncountable
continuous set. If an arm A is known to be safe, then it is safe to pull any arm “near” A. However, in the combinatorial
bandit setup, such a continuity property of the arm set does not hold since it is “discrete”. Specifically, given that super arm
A is safe (but not absolutely safe), even the safeness of a nearby arm Ã, which is obtained by replacing one single base arm
in A with another base arm, cannot be guaranteed by the safeness of A.
(3) In terms of the safety level, consider the stagewise safety constraint with a constant confidence parameter δ (independent
of T ); intuitively, the safety constraint can be violated approximately δT times, which is linear in T . In addition, consider
an algorithm which does safeness checking first, followed by exploration-and-exploitation on the safe super arms, it takes
Θ( 1

(∆v
A)2 ln

1
δ ) pulls to identify the unsafeness of an unsafe super arm A. Note that the time required is independent of T ,

so the regret due to safeness checking is o(T a) for all a > 0. From this perspective, the stagewise safety constraint is not
stringent enough and can be easily satisfied by such a naive algorithm. A more direct intuition (yet not completely rigorous)
is, if the algorithm ignores the stagewise safety constraint, it only takes o(T a) for all a > 0 to rule out the unsafe super
arms, which indicates it satisfies the stagewise safety constraint (since the unsafe super arms are pulled o(T a) < δT times).
From another point of view, given a confidence parameter δ, if the stagewise safety constraint is satisfied w.p. 1− δt at time
step t with

∑T
t=1 δt = δ, then the probably anytime-safe constraint is met w.p. 1− δ.

(4) Besides the constant confidence parameter δ, we have investigated the whole spectrum of δ in terms of the time horizon
T . The tightness result (Corollary D.1) indicates our algorithm is capable of dealing with an even stricter constraint (in the
sense that δ decreases with respect to T ) and we provide a sharp threshold on the achievability of o(T a) (for all a > 0)
regret (see Theorem 4.5).
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