
Thompson Sampling with Diffusion Generative Prior

Yu-Guan Hsieh* 1 Shiva Prasad Kasiviswanathan 2 Branislav Kveton 3 Patrick Blöbaum 2

Abstract

In this work, we initiate the idea of using denois-
ing diffusion models to learn priors for online
decision making problems. We specifically focus
on bandit meta-learning, aiming to learn a policy
that performs well across bandit tasks of a same
class. To this end, we train a diffusion model that
learns the underlying task distribution and com-
bine Thompson sampling with the learned prior
to deal with new tasks at test time. Our posterior
sampling algorithm carefully balances between
the learned prior and the noisy observations that
come from the learner’s interaction with the en-
vironment. To capture realistic bandit scenarios,
we propose a novel diffusion model training pro-
cedure that trains from incomplete and noisy data,
which could be of independent interest. Finally,
our extensive experiments clearly demonstrate the
potential of the proposed approach.

1. Introduction
Uncertainty quantification is an integral part of online de-
cision making, and forms the basis of various online algo-
rithms that trade off exploration for exploitation (Puterman,
1994; Sutton and Barto, 1998). Among these, Bayesian
methods quantify uncertainty using probability distributions,
with the help of the powerful tools of Bayesian inference.
Nonetheless, their performance is known to be sensitive to
the choice of prior (Murphy, 2022).

For concreteness, let us consider the problem of stochastic
multi-armed bandits (MABs) (Bubeck and Cesa-Bianchi,
2012; Lattimore and Szepesvári, 2020), in which a learner
repeatedly pulls one of the K arms from a given set A =
{1, ...,K} and receives rewards that depend on the learner’s
choices. More precisely, when arm at is pulled at round

*Work done during internship at Amazon. 1Université Grenoble
Alpes 2Amazon 3AWS AI Labs. Correspondence to: Yu-Guan
Hsieh <yu-guan.hsieh@univ-grenoble-alpes.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

t, the learner receives reward rt ∈ R drawn from an arm-
dependent distribution Pat . The goal of the learner is either
to i) accumulate the highest possible reward over time (a.k.a.
regret-minimization, see Lai and Robbins, 1985; Auer et al.,
2002) or to ii) find the arm with the highest expected reward
(a.k.a. best-arm identification, see Even-Dar et al., 2006;
Bubeck et al., 2009; Audibert et al., 2010).

For both purposes, we need to have a reasonable estimate of
the arms’ mean rewards µa = Era∼Pa [ra]. In general, this
would require pulling each arm a certain number of times,
which becomes inefficient when K is large. While the no-
free-lunch principle prevents us from improving upon this
bottleneck in general situations, it is worth noticing that the
bandit instances (referred to as tasks hereinafter) that we
encounter in most practical problems are far from arbitrary.
To name a few examples, in recommender systems, each
task corresponds to a user with certain underlying prefer-
ences that affect how much they like each item; in online
shortest path routing, we operate in real-world networks
with specific characteristics. In this regard, introducing such
inductive bias to the learning algorithm would be benefi-
cial. In Bayesian models, this can be expressed through
the choice of the prior distribution. Moreover, as suggested
by the meta-learning paradigm, the prior itself can also be
learned from data, which often leads to superior perfor-
mance (Rothfuss et al., 2021; Hospedales et al., 2021). This
has led to the idea of meta-learning a prior for bandits (Cella
et al., 2020; Basu et al., 2021; Bastani et al., 2022).

On the other hand, we have recently witnessed the success
of deep generative modeling in producing high-quality syn-
thetic data across various modalities (Saharia et al., 2022;
Wu et al., 2021; Brown et al., 2020). The impressive results
of these methods show that they are a powerful tool for
modeling complex distributions. While different models
have their own strengths and weaknesses, diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) are par-
ticularly appealing for our use case because their iterative
sampling scheme makes them more flexible to be applied
on a downstream task. In this regard, this paper attempts to
answer the following question:

Can diffusion models provide better priors to address the
exploration-exploitation trade-off in bandits?

Our Contributions. In this work, we initiate the idea of

1

Thompson Sampling with Diffusion Generative Prior

Model

Training

Variance

Calibration

Bandit

Deployment

perfect / imperfect observations of

 from different tasksexpected rewards

diffusion model calibrated variances

diffusion prior

Task Distribution

Task
action

feedback

Figure 1. Overview of the meta-learning for bandits with diffusion
prior framework.

using diffusion models to meta-learn a prior for bandit prob-
lems (cf. Figure 1). Our focus is on designing algorithms
that have good empirical performance while being mathe-
matically meaningful. Working towards this direction, we
make the following contributions:

(a) We propose a new Thompson sampling scheme that in-
corporates a prior represented by a diffusion model. The
designed algorithm strikes a delicate balance between
the learned prior and bandit observations, bearing in
mind the importance of having an accurate uncertainty
estimate. In particular, the deployment of the diffusion
model begins with a variance calibration step. Then,
in each round of the interaction, we summarize the in-
teraction history by a masked vector of dimension K,
and perform posterior sampling with a modified iterative
sampling process that makes use of this vector.

(b) Standard diffusion model training uses noise-free sam-
ples. Such data are however nearly impossible to obtain
in most bandit applications. To overcome this limitation,
we propose a novel diffusion model training procedure
for incomplete and noisy data. Our method alternates
between sampling from the posterior distribution and
minimizing a tailored loss function. We believe that it
could be of interest beyond its use in bandit problems.

(c) We experiment with various synthetic and real datasets
to show benefits of our approach against several base-
lines, including Thompson sampling with Gaussian
prior (Thompson, 1933), Thompson sampling with
Gaussian mixture model (GMM) prior (Hong et al.,
2022b), and UCB1 (Auer, 2002). We observe that the
diffusion prior consistently improves performance. The
improvement is especially significant when the underly-
ing problem is complex.

Related Work. Prior to our work, the use of diffusion mod-
els in decision making has been explored by Janner et al.
(2022); Ajay et al. (2023), who used conditional diffusion
models to synthesize trajectories in offline decision making.

Their approaches demonstrated good performance on vari-
ous benchmarks. In contrast, our focus is on online decision
making, where exploration is crucial to succeed. Addition-
ally, we use diffusion models to learn a task prior, rather
than a distribution specific to a single task.

More generally, diffusion models have been used as priors
in various areas, primarily for inverse problem solving. At a
high level, one common approach for diffusion model pos-
terior sampling is to combine each unconditional sampling
step with a step that ensures coherence with the observation.
This approach was taken by Sohl-Dickstein et al. (2015);
Song et al. (2022); Chung et al. (2023) and our posterior
sampling algorithm can also be viewed in this way. In-
terested readers are referred to Appendix B for a detailed
explanation of how our posterior sampling method differs
from existing ones. In the same appendix, we also provide
a brief overview of related multi-armed bandit works that
discussed the influence of prior.

Notation. All the variables are multi-dimensional unless
otherwise specified. For a vector x, xa represents its a-th
coordinate, x2 represents its coordinate-wise square, and
diag(x) represents the diagonal matrix with the elements
of x on the diagonal. A sequence of vectors (xl)l∈{l1,...,l2}
is written as xl1:l2 . We use the symbol ⊙ for element-wise
multiplication between two vectors. To distinguish random
variables from their realization, we represent the former
with capital letters and the latter with the corresponding low-
ercase letters. Conditioning on X = x is then abbreviated
as · |x. A Gaussian distribution centered at µ ∈ Rd with
covariance Σ ∈ Rd×d is written as N (X;µ,Σ), or simply
N (µ,Σ) if the random variable in question is clear from the
context. 0d ∈ Rd and Id ∈ Rd×d are respectively the zero
vector of dimension d and the identity matrix of size d× d.
Finally, [n] denotes the sequence of integers {1, ..., n}

2. Preliminaries and Problem Description
In this section, we briefly review denoising diffusion models
and introduce our meta-learning for bandits framework.

2.1. Denoising Diffusion Probabilistic Model

First introduced by Sohl-Dickstein et al. (2015) and recently
popularized by Ho et al. (2020) and Song and Ermon (2019),
denoising diffusion models (or the closely related score-
based models) have demonstrated state-of-the-art perfor-
mance in various data generation tasks. A large number of
variants of these models have been proposed since then. In
this paper, we primarily follow the notation and formulation
of Ho et al. (2020) with minor modifications.

Intuitively speaking, diffusion models learn to approximate
a distribution Q0 over Rd by training a series of denoisers
with samples drawn from this distribution. Writing q for the

2

Thompson Sampling with Diffusion Generative Prior

probability density function (assume everything is Lebesgue
measurable for simplicity) and X0 for the associated ran-
dom variable, we define the forward diffusion process with
respect to a sequence of scale factors (αℓ) ∈ (0, 1)L by

q(x1:L |x0) =

L−1∏
ℓ=0

q(xℓ+1 |xℓ),

q(Xℓ+1 |xℓ) = N (Xℓ+1;
√
αℓ+1xℓ, (1− αℓ+1)Id).

The first equality suggests that the forward process forms a
Markov chain that starts at x0 ∈ Rd. The second one says
that the transition kernel is Gaussian. Denoting the product
of the scale factors by ᾱℓ =

∏ℓ
i=1 αi, we get q(Xℓ |x0) =

N (Xℓ;
√
ᾱℓx0, (1− ᾱℓ)Id).

A denoising diffusion model is an approximation of the
reverse process

q(x0:L−1 |xL) =

L−1∏
ℓ=0

q(xℓ |xℓ+1).

The conditional distribution q(Xℓ |xℓ+1) is in general not a
Gaussian. However, if we additionally condition on x0, we
get a Gaussian distribution q(Xℓ |xℓ+1, x0), which is easy
to sample from (see Appendix C.1). Of course, since the
goal of the reverse process is to sample x0, it is unknown.
Therefore, we approximate it as the output of a denoiser hθ

parameterized by θ. In particular, the denoised sample in
step ℓ, x̂0 = hθ(xℓ+1, ℓ + 1), is estimated from an earlier
sample xℓ+1 by a function indexed by ℓ + 1.1 Note that
x̂0 depends on ℓ but we omit it in the notation to simplify
it. The distribution of the reverse step pθ(Xℓ |xℓ+1) is then
modeled as

pθ(Xℓ |xℓ+1) = q(Xℓ |xℓ+1, X0 = x̂0)

= N
(
Xℓ;w1x̂0 + w2xℓ+1,

1− ᾱℓ

1− ᾱℓ+1
(1− αℓ+1)Id

)
,

(1)

where

w1 =

√
ᾱℓ(1− αℓ+1)

1− ᾱℓ+1
and w2 =

√
αℓ+1(1− ᾱℓ)

1− ᾱℓ+1
.

The approximation x̂0 is refined through the reverse process
and we end up with the sampled x0 at ℓ = 0. It is common
to choose decreasing (αℓ) ∈ (0, 1)L such that ᾱL ≈ 0. In
this case, q(XL) ≈ N (0d, Id) and thus xL can be initially
sampled from pθ(XL) = N (0d, Id).

Finally, the denoiser hθ is learned by optimizing a varia-
tional lower bound, which amounts to minimizing the fol-

1To obtain hθ , we typically train a neural network with a U-Net
architecture. In Ho et al. (2020), this network is trained to output
the predicted noise z̄ℓ = (xℓ −

√
ᾱℓhθ(xℓ, ℓ))/

√
1− ᾱℓ.

lowing L2 reconstruction loss,

L∑
ℓ=1

Ex0∼Q0,xℓ∼Xℓ | x0
[∥x0 − hθ(xℓ, ℓ)∥2]. (2)

2.2. Meta-Learning of Bandit Tasks

Our work focuses on meta-learning problems in which the
tasks are bandit instances drawn from an underlying distri-
bution that we denote by T . As in standard meta-learning,
the goal is to learn an inductive bias from the meta training
set that would improve the overall performance of an algo-
rithm on new tasks drawn from the same distribution. In our
work, the inductive bias is encoded by a prior distribution
used by Thompson sampling when the learner interacts with
new bandit instances.

For simplicity, we focus on multi-armed bandits presented
in Section 1, with the additional assumption that the reward
noise is Gaussian with known variance σ2

reward ∈ R.2 The
only unknown information is thus the mean reward vector
µ = (µa)a∈A. In this case, Thompson sampling takes as
input a prior distribution over RK , samples a guess µ̃t of
the mean reward vector from the posterior distribution at
each round t, and pulls arm at ∈ argmaxa∈A µ̃a

t . The
posterior distribution is determined by both the prior and the
interaction history, i.e., the sequence of the action-reward
pairsHt−1 = (as, rs)s∈[t−1].

As for the meta-training phase, we consider two situations
that are distinguished by whether the learner has access to
perfect data or not. In the former case, the meta-training set
is composed of the exact means Dtr = {µB}B of training
tasks B drawn from the distribution T . In the latter case,
the training set is composed of incomplete and noisy ob-
servations of these vectors (see Section 4 for details). We
use the term imperfect data to informally refer to the sce-
nario where the data is incomplete and noisy. The entire
algorithm flow is summarized in Figure 1 and Algorithm 5
(Appendix A). The model training and the variance calibra-
tion blocks together define the diffusion prior, which is then
used by Thompson sampling in the deployment phase, as
we show next in Section 3.

3. Diffusion Models in Thompson Sampling
In this section, we describe how a learned diffusion model
can be incorporated as a prior in Thompson sampling. To
begin, we first revisit the probability distribution defined by

2We make this assumption as we use a diffusion prior. To our
best knowledge, all existing diffusion model posterior sampling
algorithms for Gaussian noise either rely on this assumption or
circumvent it by adding some adjustable hyperparameter. How
to extend these algorithms to cope with unknown noise variance
properly is an interesting open question.

3

Thompson Sampling with Diffusion Generative Prior

the diffusion model by introducing an additional variance
calibration step. After that, we present a diffusion posterior
sampling algorithm for noisy and partially observed sample
vectors that uses this prior. Finally, we present Thompson
sampling with a diffusion prior.

3.1. Variance Calibration

While Ho et al. (2020) fixed the variance of pθ(Xℓ |xℓ+1)
to that of q(Xℓ |xℓ+1, x0) in (1), Bao et al. (2021) recently
showed that this choice was sub-optimal. This is critical
when we use diffusion model as a prior in online decision
making, as it prevents us from quantifying the right level
of uncertainty. To remedy this, we follow Bao et al. (2022)
and calibrate the variances of the reverse process with a
calibration set Dcal = {xi,0}i∈[ncal]. Here xi,0 ∈ RK is
a K-dimensional vector, ncal is the number of calibration
samples, and we use subscript i to denote data point i.

Our calibration step starts by quantifying the uncertainty of
the denoiser output. Concretely, we model the distribution of
X0 |xℓ by a Gaussian distribution centered at the denoised
sample hθ(xℓ, ℓ). As for the covariance of the distribution,
we take it as the diagonal matrix diag(τ2ℓ) with entries

τaℓ =

√√√√ 1

ncal

ncal∑
i=1

∥xa
i,0 − ha

θ(xi,ℓ, ℓ)∥2. (3)

Here ha
θ denotes the a-th entry of the output of hθ. In words,

for each sample xi,0, we first diffuse it through the forward
process to obtain xi,ℓ. Then we compute the coordinate-
wise mean squared error between the predicted x̂0 and the
actual x0. Pseudo-code of the above procedure is provided
in Algorithm 1.

Having introduced the above elements, we next define the
calibrated reverse step as

pθ,τ (Xℓ |xℓ+1) =

∫
q(Xℓ |xℓ+1, x0)p

′
θ,τ (x0 |xℓ+1) dx0

= N
(
Xℓ;w1x̂0 + w2xℓ+1,

1− ᾱℓ

1− ᾱℓ+1
(1− αℓ+1)Id + w2

1 diag(τ
2
ℓ+1)

)
,

(4)

where τ = τ1:L represents the estimated variance parameter
and p′θ,τ (X0 |xℓ+1) = N (hθ(xℓ+1, ℓ + 1),diag(τ2ℓ+1)) is
the aforementioned Gaussian approximation of X0 |xℓ+1.
Compared to (1), the variance of the reverse step gets en-
larged by an additive constant of w2

1 diag(τ
2
ℓ+1) to reflect

the uncertainty in the denoiser output. Note that we opt for
a simple model where the covariance matrices are the same
at all points, whereas Bao et al. (2022) predicted the mean
squared residual at every xℓ using a neural network.

Algorithm 1 Diffusion Model Variance Calibration

1: Input: Diffusion model hθ, calibration set Dcal =
{xi,0}i∈[ncal]

2: Output: Variance parameters τ1:L
3: for ℓ = 1, . . . , L do
4: for all i, sample xi,ℓ from Xℓ |X0 = xi,0

5: for all a, set τaℓ following (3)

3.2. Diffusion Model Sampling with Partial Observation

Next we discuss how to sample from a diffusion model con-
ditioned on an incomplete and noisy observation of x0. This
lays foundation for our Thompson sampling and training
algorithms in Sections 3.3 and 4.

Formally, we represent the imperfect observation y of x0 as
y = m ⊙ (x0 + z), where m ∈ {0, 1}K is a binary mask,
z ∈ RK is a noise vector sampled from N (0d,diag(σ

2)),
and σ ∈ RK is a vector of coordinate-wise standard error
in the estimate y of x0. In this notation, ma = 0 if the a-th
entry of the noisy y is unobserved and ma = 1 otherwise.
Our goal is to sample from the posterior

q(X0 | y) ∝ q(y |X0)q(X0).

This problem is closely related to inpainting in computer
vision and imputation in statistics, and can be regarded as a
special case of the noisy inverse problem. The solution of
these with a diffusion prior are well studied in the literature.
In Appendix B.2, we provide a detailed discussion on how
our algorithm relates to these established methods.

Now we focus on our algorithm and the intuition behind
it. Here we assume that both m and σ are given so that
q(y |x0) is known. Then, similarly to how unconditional
sampling of a diffusion model is designed, we approximate
the exact posterior sampling by conditioning the reverse
Markov process on Y = y and forming an approximation
for each conditional reverse step. This gradually guides our
sample towards the observation, and makes it consistent
with both the prior and observation.

The above procedure is detailed in Algorithm 2 (see also
Figure 5 in Appendix B for an illustration and Appendix C.2
for the complete derivation). Concretely, we perform our
initialization and recursive steps as below.

Sampling from XL | y. For this part, we simply ignore y
and sample from N (0d, Id) as in Section 2.1.

Sampling from Xℓ |xℓ+1, y. By Bayes’ rule, we have

q(Xℓ |xℓ+1, y) ∝ q(Xℓ |xℓ+1)q(y |Xℓ). (5)

We approximate each term on the right hand side by a Gaus-
sian distribution. For the first term, we use directly the

4

Thompson Sampling with Diffusion Generative Prior

Algorithm 2 Posterior Sampling with Diffusion Prior

1: Input: Observation y ∈ RK , standard error σ ∈ RK ,
binary mask m ∈ {0, 1}K , diffusion model hθ with
variance parameters τ1:L

2: Output: Posterior sample x0 (resp. x0:L) approxi-
mately sampled from X0 | y (resp. X0:L | y)

3: Sample initial state xL ∼ N (0d, Id)
4: for ℓ ∈ L− 1, . . . , 0 do
5: Sample unconditional latent x′

ℓ ∼ pθ,τ (Xℓ |xℓ+1)
6: for a ∈ A such that ma = 0 do
7: Set xa

ℓ ← x′a
ℓ

8: for a ∈ A such that ma = 1 do
9: Sample diffused observation ỹaℓ using (8)

10: Set xa
ℓ following (10)

learned prior pθ,τ . In Algorithm 2, this gives rise to the
unconditionally sampled latent variable x′

ℓ.

The second term is approximated by incorporating x0 as

q(y |xℓ) =

∫
q(y |x0)q(x0 |xℓ) dx0.

As mentioned previously, q(y |x0) is known provided that
both m and σ are given. Thus we focus on approximating
q(x0 |xℓ). A natural choice to consider is the output of the
denoiser x̂0 = hθ(xℓ, ℓ). Unfortunately, this would not lead
to a closed-form expression of (5). To address this issue, we
note that by defining the noise predicted from step ℓ as,

z̄ℓ = (xℓ −
√
ᾱℓhθ(xℓ, ℓ))/

√
1− ᾱℓ, (6)

this approximation can be rearranged as

x̂0 = (xℓ −
√
1− ᾱℓz̄ℓ)/

√
ᾱℓ.

The above expression is linear in xℓ if we treat z̄ℓ as a sepa-
rate variable. Under the assumption that the noise predicted
in two consecutive steps is similar, we may approximate z̄ℓ
by z̄ℓ+1, the noise predicted from step ℓ+ 1. This leads to

x̂′
0 = (xℓ −

√
1− ᾱℓz̄ℓ+1)/

√
ᾱℓ.

With all these in mind, we approximate

q(y |xℓ) ≈
√
ρℓ
∏
a∈A
ma=1

N
(
ya; x̂′a

0 , (σa)2 + ρℓ(τ
a
ℓ+1)

2
)
,

(7)

where ρℓ = ᾱℓ+1(1− ᾱℓ)/(ᾱℓ(1− ᾱℓ+1)) arises because
z̄ℓ is replaced by z̄ℓ+1 in q(x0 |xℓ) (see Appendix C.2 for
details). The variance incorporates both the uncertainty σ in
observation and the uncertainty τℓ+1 of predicting the clean
sample x0 from xℓ+1.

Having derived the two Gaussian approximations, we em-
ploy the perturbation sampling of Papandreou and Yuille

(2010) to sample from the posterior of two Gaussians. This,
in addition to the unconditionally sampled latent x′

ℓ, re-
quires sampling a diffused observation for each observed
entry (the expression below comes from scaling (7) to make
it a distribution for Xℓ)

ỹaℓ ∼ N (
√
ᾱℓy

a +
√
1− ᾱℓz̄

a
ℓ+1, (ζ

a
ℓ,y)

2). (8)

The standard deviation of the above Gaussian is

ζaℓ,y =
√

ᾱℓ((σa)2 + ρℓ(τaℓ+1)
2), (9)

and is just a scaled version of the standard deviation in (7).
The mean is obtained using the forward process starting at
ya, but we use the predicted noise instead of a randomly
sampled noise vector. This matches our definition of x̂′

0.

At this point, for any observed entry a, we have two can-
didates for xa

ℓ : x′a
ℓ that incorporates the prior and ỹaℓ that

incorporates the observation. Writing ζaℓ,x for the standard
deviation of the a-th entry of pθ,τ (· |xℓ+1), we mix them as

xa
ℓ =

(ζaℓ,x)
−2x′a

ℓ + (ζaℓ,y)
−2ỹaℓ

(ζaℓ,x)
−2 + (ζaℓ,y)

−2
. (10)

This takes into account both the prior and observation, and
their weights reflect their respective uncertainties. For an
unobserved entry a, we set xa

ℓ = x′a
ℓ . However, note that

we do leverage information from those observed entries
through the repeated application of the reverse step.

3.3. DiffTS: Thompson Sampling with Diffusion Prior

We finally return to our original goal: Thompson sampling
with a diffusion prior. For that, we need to sample from
the posterior q(X0 |Ht−1) at each round. Compared to
Section 3.2, our observation is now the interaction history
Ht−1 = (as, rs)s∈[t−1] up to time t − 1 and x0 = µ ∈
RK is the mean reward vector of the task. Although this
setting seems different from Section 3.2, we note that the
conditional probability q(Ht−1 |x0) is proportional to a
Gaussian when treated as a function of x0,

q(Ht−1 |x0) ∝
t−1∏
s=1

q(rs |µ, as) =
t−1∏
s=1

N (rs;µ
as , σ2

reward).

This holds since the learner’s actions depend on the mean
reward vector only through their interaction history with
the environment, i.e., q(as | a1, r1, . . . , as−1, rs−1, µ) =
q(as | a1, r1, . . . , as−1, rs−1).

With this in mind, through a series of computations that we
defer to Appendix C.2, we can show that Algorithm 2 almost
directly applies: The mask m indicates whether an arm has
been pulled up to time t− 1 (included), with ma = 1 if and
only if arm a has been pulled. Then, for any pulled arm a,

5

Thompson Sampling with Diffusion Generative Prior

Algorithm 3
DiffTS: Thompson Sampling with Diffusion Prior

1: Input: Diffusion model hθ with variance parameters
τ1:L, assumed noise level σ̂ ∈ R

2: for t = 1, . . . do
3: Sample x̃0 using Algorithm 2 with y ← µ̂t−1, σ ←

σt−1, m defined by ma = 1{Na
t−1 > 0}

4: Pull arm at ∈ argmaxa∈A x̃a
0

5: Update number of pulls Na
t , standard error σa

t , and
empirical mean reward µ̂a

t for a ∈ A

we define Na
t−1 as the number of times that the arm was

pulled, µ̂a
t−1 =

∑t−1
s=1 rs 1{as = a}/Na

t−1 as the empirical
mean of that arm’s reward, and σa

t−1 = σ̂/
√
Na

t−1 as the
corresponding standard error, where σ̂ is an estimate of
σreward. These quantities summarize the interaction history
Ht−1 and reduce the problem to that in Section 3.2. We can
thus apply Algorithm 2 with y = µ̂t−1 and σ = σt−1 to
sample from q(X0 |Ht−1) (we set ya = σa = 0 for arm
a that has not been pulled). The rest of the algorithm is
unchanged, as we outline in Algorithm 3.

4. Training Diff. Models from Imperfect Data
Standard training procedure of diffusion models requires
access to a dataset of clean samples Dtr = {xi,0}i∈[ntr].
Nonetheless, in most bandit applications, it is nearly impos-
sible to obtain such dataset as the exact mean reward vector
µ of a task is never directly observed. Instead, one can col-
lect imperfect observations of these vectors, either through
previous bandit interactions or forced exploration. Taking
this into account, we propose a systematic procedure to train
diffusion models from imperfect data. Importantly, the ap-
plication scope of our methodology goes beyond the bandit
setup and covers any situation with imperfect data. As an
example, we apply our approach to train from imperfect
images (corrupted MNIST and Fashion-MNIST datasets,
Xiao et al., 2017) and obtain promising results (details are
provided in Appendix F.3).

We describe below how to train a diffusion model when only
imperfect data are available and defer the explanation about
how to calibrate the model’s variance from imperfect data
to Appendix C.5.

Setup. To ease exposition, we focus on homogeneous noise
here, and study non-homogeneous noise in Appendix C.4.
When the noise is homogeneous with variance σ2

data ∈ R,
the samples of the imperfect dataset Ďtr = {yi}i∈[ntr] can
be written as yi = mi⊙ (xi,0+ zi) where, as in Section 3.2,
mi ∈ {0, 1}K is a binary mask and zi is a noise vector

Warm-up Posterior

Sampling

Loss

Minimization

minimize
minimize

sample

sample

with current model

EM

Figure 2. Overview of the proposed training procedure to deal with
incomplete and noisy data.

sampled from N (0d, σ
2
dataId).

3 In our bandit problem, such
dataset can be obtained by randomly pulling a subset of
arms once for each arm. We also assume that the associated
masks {mi}i∈[ntr] and the noise level σdata are known. We
can thus rewrite the dataset as Ďtr = {(yi,mi)}i∈[ntr].

Overall Training Procedure. In presence of perfect data,
diffusion model training optimizes the denoising objective
(2). However, neither x0 nor xℓ are available when we only
have an imperfect dataset Ďtr. To tackle these challenges,
we propose an expectation-maximization (EM) procedure,
which we illustrate in Figure 2 and summarize in Algo-
rithm 4. The success of our method hinges on the following
two observations.

1. The posterior sampling step allows us to progressively
improve the quality of the data throughout training.

2. The loss minimization step, via the use of a modified
loss function, enables us to learn the denoiser effec-
tively even when we only have access to degraded data.

Our algorithm thus, after a warm-up phase, alternates be-
tween these two steps that play respectively the roles of
expectation and maximization of a standard EM procedure.

Posterior Sampling. If we had x0, we could sample xℓ via
the forward process and optimize the standard objective (2).
This is not the case. We thus propose to sample x0 jointly
with xℓ given observation y through posterior sampling with
the current model parameter. Regarding diffusion model as
a probability model over the random variables X0:L, this
would then correspond to the posterior sampling step done in
several variants of stochastic EM (Fort and Moulines, 2003).
Concretely, in our experiments, we use Algorithm 2 to con-
struct a dataset of posterior samples D̃tr = {x̃i,0:L}i∈[ñtr]

(note that that the algorithm allows us to sample jointly x̃0:L

given y and that ñtr can be different from ntr).

Loss Minimization. Having obtained the posterior samples,

3As we discuss Appendix C.4, the masking of an entry can also
be viewed as an observation with infinite variance.

6

Thompson Sampling with Diffusion Generative Prior

Algorithm 4 Diffusion Model Training from Imperfect (in-
complete and noisy) Data

1: Input: Training set Ďtr = {(yi,mi)}i∈[ntr], calibration
set Ďcal, noise standard deviation σdata, number of warm-
up, outer, and inner training steps S, J, and S′

2: Output: Diffusion model hθ

3: Warm-up
4: for s = 1, . . . , S do
5: Sample y,m from Ďtr
6: Sample ℓ uniformly from {1, ..., L}
7: Sample yℓ from Xℓ |X0 = y
8: Take gradient step to minimize L(θ; y, yℓ,m, ℓ)

9: Main Training Procedure
10: for j = 1, . . . , J do
11: Posterior Sampling
12: Compute reconstructions errors τ1:L with Algo-

rithm 6 (Appendix C.5) using Ďcal
13: Construct a dataset of posterior samples D̃′

tr =
{x̃i,0:L, yi,mi}i∈[ñtr] with Algorithm 2

14: Loss Minimization
15: for s = 1, . . . , S′ do
16: Sample x̃0:L, y,m from D̃′

tr
17: Sample ℓ uniformly from {1, ..., L}
18: Take gradient step to minimize L(θ; y, x̃ℓ,m, ℓ)

we have the option to either maximize the log-likelihood of
D̃tr or minimize the denoising loss

∑
x̃0:L∈D̃tr

∑L
ℓ=1∥x̃0 −

hθ(x̃ℓ, ℓ)∥2. Both of these approaches rely heavily on the
generated posterior samples, which can bias the model to-
wards generating low-quality samples during early stages
of training. To address this issue, we propose to replace
the sampled x0 with corresponding observation y and use a
modified denoising loss that is suited to imperfect data. For
a small value ε and a regularization parameter λ, the new
loss function for a sample pair (y, x̃ℓ), diffusion step ℓ, and
associated mask m is

L(θ; y, x̃ℓ,m, ℓ) = ∥m⊙ y −m⊙ hθ(x̃ℓ, ℓ)∥2

+ 2λ
√
ᾱℓσ

2
data Eb∼N (0d,Id) b

⊤
(
hθ(x̃ℓ + εb, ℓ)− hθ(x̃ℓ, ℓ)

ε

)
.

(11)
Compared to (2), we have a slightly modified mean squared
error term (first term) that handles incomplete data by
only considering the observed entries as determined by the
element-wise product with the mask. On the top of this, we
include a regularization term (second term) that penalizes
the denoiser from varying too much when the input changes
to account for noisy observation. Our denoising loss finds its
roots in works of Metzler et al. (2018); Zhussip et al. (2019),
which train denoisers in the absence of clean ground-truth
data. In particular, the expectation here is an approximation
of the divergence divx̃ℓ

(hθ(x̃ℓ, ℓ)) that appears in Stein’s

unbiased risk estimate (SURE) (Stein, 1981; Eldar, 2008),
an unbiased estimator of the mean squared error whose
computation only requires the use of noisy samples.4

From a practical viewpoint, the regularization term provides
a trade-off between the bias and the variance of the learned
model. When λ is set to 0, the model learns to generate noisy
samples, which corresponds to a flatter prior that encourages
exploration. When λ gets larger, the model tries to denoise
from the observed noisy samples. This can however deviate
the model from the correct prior and accordingly jeopardize
the online learning procedure.

Warm-Up. In practice, we observe that posterior sampling
with randomly initialized model produces poor training sam-
ples. Therefore, in the warm-up phase only, we sample yℓ
from the forward distribution N (

√
ᾱℓy, (1 − ᾱℓ)Id) as in

standard diffusion model training and minimize loss L eval-
uated at yℓ instead of x̃ℓ.

5. Numerical Experiments
In this section, we illustrate the benefit of using diffusion
prior through numerical experiments on real and synthetic
data. Missing experimental details, ablation studies, and
additional experiments are presented in Appendices D to F.

Problem Construction. To show the wide applicability of
our technique, we consider here three bandit problems in-
spired by recommender systems, online pricing, and online
shortest path routing (Talebi et al., 2017). Detailed descrip-
tion of the task distributions and some visualization that help
understand the problem structures are in Appendices D.1
and G. The first and the third problems listed below rely
on synthetic data, and we obtain the rewards by perturbing
the means with Gaussian noise σ = 0.1 (we will thus only
specify the construction of the means). As for the second
problem, we use the iPinYou dataset (Liao et al., 2014).

1. Popular and Niche Problem. We consider here
the problem of choosing items to recommend to cus-
tomers. Let K = 200. The arms (items) are separated
into 40 groups, each of size 5. Among these, 20 groups
of arms correspond to the popular items and tend to have
high mean rewards. However, these arms are never the
optimal ones. The other 20 groups of arms correspond
to the niche items. Most of them have low mean rewards
but a few of them (those that match the preferences of
the customer) have higher mean rewards than those of
all the other arms. A task corresponds to a customer so
the partitions into groups of popular and niche items are

4When λ = 1, xℓ = x̃ℓ =
√
ᾱℓy, m = 1 (i.e., all the

entries are observed), and the expectation is replaced by the diver-
gence, we recover SURE up to additive constant −Kσ2

data. See
Appendix C.3 for details.

7

Thompson Sampling with Diffusion Generative Prior

fixed across tasks while the remaining elements vary.

2. iPinYou Bidding Problem. We consider here the
problem of setting the bid price in auctions. Let v = 300
be the value of the item. Each arm corresponds to a bid
price b ∈ {0, ..., 299}, and the reward is either v − b
when the learner wins the auction or 0 otherwise. The
reward distribution of a task is then solely determined by
the winning rates which are functions of the learner’s bid
and the distribution of the highest bid from competitors.
For the latter, we use the corresponding empirical distri-
butions of 1352 ad slots from the iPinYou bidding data
set (each ad slot is a single bandit task).

3. 2D Maze Problem. We consider here an online shortest
path routing problem on grid graphs. We formalize it as
a reward maximization combinatorial bandit (Chen et al.,
2013) with semi-bandit feedback. As shown in Figure 3,
the super arms are the simple paths between the source
and the destination (fixed across all the tasks) whereas
the base arms are the edges of the grid graph. At each
round, the learner picks a super arm and observes the
rewards of all the base arms (edges) that are contained
in the super arm (path). Moreover, the edges’ mean
rewards in each task are derived from a 2D maze that we
randomly generate. The mean reward is −1 when there
is a wall on the associated case (marked by the black
color) and −0.01 otherwise.

Training, Baselines, and Evaluation. To train the diffusion
models, for each problem we construct a training set Dtr (of
size 5000 or 1200) and a calibration setDcal (of size 1000 or
100) that contain the expected means of the tasks. We then
conduct experiments for the following two configurations:

1. Learn from perfect data: The priors are learned usingDtr
and Dcal that contain the exact mean rewards. Standard
training procedure is applied here.

2. Learn from imperfect data: The priors are learned us-
ing Ďtr and Ďcal that are obtained from Dtr and Dcal by
perturbing the samples with noise of standard deviation
σdata = 0.1 and then dropping each feature of a sample
with probability 0.5.5 To tackle this challenging setting,
we adopt the approach proposed in Section 4.

In terms of bandit algorithms, we compare our method,
DiffTS, with UCB1 (Auer, 2002), with Thompson sampling
with Gaussian prior using either diagonal or full covariance
matrix (GTS-diag and GTS-full, Thompson, 1933), and with

5Apparently, the performance would degrade when we increase
noise level and dropping rate. The breakdown point beyond which
the algorithm completely fails is problem-dependent and we do
not try to identify it in our experiments.

Figure 3. An example task of the 2D Maze problem. The red path
indicates the optimal (super-)arm.

Thompson sampling with Gaussian mixture prior (Hong
et al., 2022b).6 The priors of the Thompson sampling al-
gorithms are also learned with the same perfect / imperfect
data that we use to train diffusion models. These thus form
strong baselines against which we only improve in terms of
the model used to learn the prior. As for the GMM baseline,
we use full covariance matrices and consider the case of
either 10 or 25 components (GMMTS-10 and GMMTS-25).
We employ the standard EM algorithm to learn the GMM
when perfect data are available but fail to find any existing
algorithm that is able to learn a good GMM on the imperfect
data that we consider. We thus skip the GMM baseline for
the imperfect data setup. However, as we show, even with
imperfect data, DiffTS performs better or comparably to
GMMTS learned on perfect data.

To evaluate the performance of the algorithms, we measure
their average regret on a standalone test set— for a sequence
of arms (at)t∈[T] pulled by an algorithm in a bandit task,
the induced regret is RegT = Tµa⋆ −

∑T
t=1 µ

at , where
a⋆ ∈ argmaxa∈A µa is an optimal arm in this task. The
assumed noise level σ̂ is fixed to the same value across all
the methods.

Results. Our results are presented in Figure 4. For ease of
readability, among the two GMM priors (10 and 25 compo-
nents), we only show the one that achieves smaller regret.
We see clearly that throughout the three problems and the
two setups considered here, the proposed DiffTS algorithm
always has the best performance. The difference is partic-
ularly significant in the Popular and Niche and 2D
Maze problems, in which the regret achieved by DiffTS is
around two times smaller than that achieved by the best per-
forming baseline method. This confirms that using diffusion
prior is more advantageous in problems with complex task

6For the 2D Maze problem we consider their combinatorial
extensions in which the UCB index / sampled mean of a super arm
is simply the sum of the corresponding quantities of the contained
base arms (Chen et al., 2013; Wang and Chen, 2018).

8

Thompson Sampling with Diffusion Generative Prior

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-25

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-25

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

(a) Popular and Niche

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1

GTS-diag
GTS-full

(b) iPinYou Bidding

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

(c) 2D Maze

Figure 4. Regret performances on three different problems with priors fitted/trained on either exact expected rewards (top) or partially
observed noisy rewards (bottom). The results are averaged over tasks of a test set and shaded areas represent standard errors.

distribution.

We also observe that the use of GMM prior in these two
problems leads to worse performance than that of GTS-full,
while it yields to competitive performance to DiffTS in the
iPinYou Bidding problem. This is consistent with the visual-
izations in Appendix G, which show that the fitted GMM is
only capable of generating good samples in the iPinYou
Bidding problem. This, however, also suggests that the
use of a more complex prior is a double-edged sword, and
can lead to poor performance when the data distribution is
not faithfully represented.

In Appendix E, we further present ablation studies to inves-
tigate the impacts of various components of our algorithm.
In summary, we find that both the variance calibration step
and the EM-like procedure for training with imperfect data
are the most crucial to our algorithms, as dropping either of
the two could lead to severe performance degradation. We
also affirm that the use of SURE-based regularization does
lead to smaller regret, but finding the optimal regularization
parameter λ is a challenging problem.

Finally, while the good performance of DiffTS is itself an
evidence of the effectiveness of our sampling and training al-
gorithms, we provide additional experiments in Appendix F
to show how these methods are relevant in other contexts.

6. Concluding Remarks
In this work, we argue that the flexibility of diffusion models
makes them a promising choice for representing complex
priors in real-world online decision making problems. Then
we design a new algorithm for multi-armed bandits that

uses a diffusion prior with Thompson sampling. Our ex-
periments show that this can significantly reduce the regret
when compared to existing bandit algorithms. Additionally,
we propose a training procedure for diffusion models that
can handle imperfect data, addressing a common issue in
the bandit setting. This method is of independent interest.

Our work raises a number of exciting but challenging re-
search questions. One potential extension is to apply our
approach to meta-learning problems in contextual bandits or
reinforcement learning. This would involve modeling a dis-
tribution of functions or even of Markov decision processes
by diffusion models, which remains a largely unexplored
area despite a few attempts that work toward these purposes
(Dutordoir et al., 2022; Nava et al., 2022). Another factor
not addressed in our work is the uncertainty of the learned
model itself, in contrast to the uncertainty modeled by the
model. When the diffusion model is trained on limited data,
its uncertainty is high, and using it as a fixed prior may lead
to poor results. Regarding theoretical guarantees, several
recent works (Chen et al., 2023a; Lee et al., 2023) have
shown that unconditional sampling of diffusion models can
approximate any realistic distribution provided sufficiently
accurate score estimate (the score-based interpretation of
the predicted noise). Further extending the above results
to cope with posterior sampling and deriving regret bounds
would be a fruitful direction to work on.

Finally, the posterior sampling algorithm for the diffusion
model is a key bottleneck in scaling up our method. There
has been significant work on accelerating unconditional sam-
pling of diffusion models (Salimans and Ho, 2021; Dock-
horn et al., 2022; Zheng et al., 2022), but incorporating these
into posterior sampling remains an open question.

9

Thompson Sampling with Diffusion Generative Prior

References
Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum,

Tommi S. Jaakkola, and Pulkit Agrawal. Is conditional
generative modeling all you need for decision making? In
International Conference on Learning Representations,
2023.

Jean-Yves Audibert, Sebastien Bubeck, and Remi Munos.
Best arm identification in multi-armed bandits. In Pro-
ceeding of the 23rd Annual Conference on Learning The-
ory, pages 41–53, 2010.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-
dpm: an analytic estimate of the optimal reverse variance
in diffusion probabilistic models. In International Con-
ference on Learning Representations, 2021.

Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and
Bo Zhang. Estimating the optimal covariance with im-
perfect mean in diffusion probabilistic models. In Inter-
national Conference on Machine Learning, pages 1555–
1584. PMLR, 2022.

Hamsa Bastani, David Simchi-Levi, and Ruihao Zhu. Meta
dynamic pricing: Transfer learning across experiments.
Management Science, 68(3):1865–1881, 2022.

Soumya Basu, Branislav Kveton, Manzil Zaheer, and Csaba
Szepesvári. No regrets for learning the prior in bandits.
Advances in Neural Information Processing Systems, 34:
28029–28041, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret anal-
ysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine Learning,
5(1):1–122, 2012.

Sebastien Bubeck, Remi Munos, and Gilles Stoltz. Pure
exploration in multi-armed bandits problems. In Proceed-
ings of the 20th International Conference on Algorithmic
Learning Theory, pages 23–37, 2009.

Leonardo Cella, Alessandro Lazaric, and Massimiliano Pon-
til. Meta-learning with stochastic linear bandits. In Inter-
national Conference on Machine Learning, pages 1360–
1370. PMLR, 2020.

Olivier Chapelle and Lihong Li. An empirical evaluation of
Thompson sampling. In Advances in Neural Information
Processing Systems 24, pages 2249–2257, 2012.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim,
and Anru Zhang. Sampling is as easy as learning the
score: theory for diffusion models with minimal data
assumptions. In International Conference on Learning
Representations, 2023a.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog
bits: Generating discrete data using diffusion models
with self-conditioning. In International Conference on
Learning Representations, 2023b.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial
multi-armed bandit: General framework and applications.
In International Conference on Machine Learning, pages
151–159. PMLR, 2013.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-
closer-diffuse-faster: Accelerating conditional diffusion
models for inverse problems through stochastic contrac-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12413–
12422, 2022a.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Improv-
ing diffusion models for inverse problems using manifold
constraints. In Advances in Neural Information Process-
ing Systems, 2022b.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mc-
cann, Marc Louis Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems.
In The Eleventh International Conference on Learning
Representations, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE:
Higher-Order Denoising Diffusion Solvers. In Advances
in Neural Information Processing Systems, 2022.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fer-
gus Simpson. Neural diffusion processes. arXiv preprint
arXiv:2206.03992, 2022.

Yonina C Eldar. Generalized SURE for exponential families:
Applications to regularization. IEEE Transactions on
Signal Processing, 57(2):471–481, 2008.

10

Thompson Sampling with Diffusion Generative Prior

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action
elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7:1079–1105, 2006.

Gersende Fort and Eric Moulines. Convergence of the monte
carlo expectation maximization for curved exponential
families. The Annals of Statistics, 31(4):1220–1259,
2003.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and
Dimitris Samaras. Diffusion models as plug-and-play
priors. In Advances in Neural Information Processing
Systems, 2022.

Samarth Gupta, Shreyas Chaudhari, Subhojyoti Mukher-
jee, Gauri Joshi, and Osman Yağan. A unified approach
to translate classical bandit algorithms to the structured
bandit setting. IEEE Journal on Selected Areas in Infor-
mation Theory, 1(3):840–853, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in Neural Infor-
mation Processing Systems, 33:6840–6851, 2020.

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow,
Amr Ahmed, and Craig Boutilier. Latent bandits revisited.
In Advances in Neural Information Processing Systems
33, 2020.

Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Za-
heer, and Mohammad Ghavamzadeh. Deep hierarchy in
bandits. In Proceedings of the 39th International Confer-
ence on Machine Learning, 2022a.

Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad
Ghavamzadeh, and Craig Boutilier. Thompson sampling
with a mixture prior. In International Conference on
Artificial Intelligence and Statistics, pages 7565–7586.
PMLR, 2022b.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and
Amos Storkey. Meta-learning in neural networks: A sur-
vey. IEEE transactions on pattern analysis and machine
intelligence, 44(9):5149–5169, 2021.

Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin.
Improving conditional score-based generation with cali-
brated classification and joint training. In NeurIPS 2022
Workshop on Score-Based Methods, 2022.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price,
Alexandros G Dimakis, and Jon Tamir. Robust com-
pressed sensing mri with deep generative priors. Ad-
vances in Neural Information Processing Systems, 34:
14938–14954, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior syn-
thesis. In International Conference on Machine Learning,
2022.

Zahra Kadkhodaie and Eero Simoncelli. Stochastic solu-
tions for linear inverse problems using the prior implicit
in a denoiser. Advances in Neural Information Processing
Systems, 34:13242–13254, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based genera-
tive models. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neu-
ral Information Processing Systems, 2022.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. SNIPS:
Solving noisy inverse problems stochastically. In Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pages 21757–21769, 2021a.

Bahjat Kawar, Gregory Vaksman, and Michael Elad.
Stochastic image denoising by sampling from the poste-
rior distribution. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1866–1875,
2021b.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. In Ad-
vances in Neural Information Processing Systems, 2022.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model
for audio synthesis. In International Conference on Learn-
ing Representations, 2020.

Branislav Kveton, Mikhail Konobeev, Manzil Zaheer, Chih-
wei Hsu, Martin Mladenov, Craig Boutilier, and Csaba
Szepesvari. Meta-Thompson sampling. In International
Conference on Machine Learning, pages 5884–5893.
PMLR, 2021.

T. L. Lai and Herbert Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathemat-
ics, 6(1):4–22, 1985.

Tor Lattimore and Remi Munos. Bounded regret for finite-
armed structured bandits. In Advances in Neural Infor-
mation Processing Systems 27, pages 550–558, 2014.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Cambridge University Press, 2020.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence
of score-based generative modeling for general data dis-
tributions. In International Conference on Algorithmic
Learning Theory, pages 946–985. PMLR, 2023.

11

Thompson Sampling with Diffusion Generative Prior

Hairen Liao, Lingxiao Peng, Zhenchuan Liu, and Xuehua
Shen. ipinyou global rtb bidding algorithm competition
dataset. In Proceedings of the Eighth International Work-
shop on Data Mining for Online Advertising, pages 1–6,
2014.

Xiuyuan Lu and Benjamin Van Roy. Information-theoretic
confidence bounds for reinforcement learning. In Ad-
vances in Neural Information Processing Systems 32,
2019.

Andreas Lugmayr, Martin Danelljan, Andres Romero,
Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic mod-
els. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11461–
11471, 2022.

Odalric-Ambrym Maillard and Shie Mannor. Latent bandits.
In Proceedings of the 31st International Conference on
Machine Learning, pages 136–144, 2014.

Christopher A Metzler, Ali Mousavi, Reinhard Heckel, and
Richard G Baraniuk. Unsupervised learning with Stein’s
unbiased risk estimator. arXiv preprint arXiv:1805.10531,
2018.

Kevin P Murphy. Probabilistic machine learning: an intro-
duction. MIT press, 2022.

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K
Katzschmann, and Benjamin F Grewe. Meta-
learning via classifier (-free) guidance. arXiv preprint
arXiv:2210.08942, 2022.

George Papandreou and Alan L Yuille. Gaussian sampling
by local perturbations. Advances in Neural Information
Processing Systems, 23, 2010.

Amit Peleg, Naama Pearl, and Ron Meir. Metalearning lin-
ear bandits by prior update. In International Conference
on Artificial Intelligence and Statistics, pages 2885–2926.
PMLR, 2022.

Martin Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
New York, NY, 1994.

Sathish Ramani, Thierry Blu, and Michael Unser. Monte-
Carlo SURE: A black-box optimization of regularization
parameters for general denoising algorithms. IEEE Trans-
actions on image processing, 17(9):1540–1554, 2008.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland
Vollgraf. Autoregressive denoising diffusion models for
multivariate probabilistic time series forecasting. In Inter-
national Conference on Machine Learning, pages 8857–
8868. PMLR, 2021.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep
Bayesian bandits showdown: An empirical comparison of
Bayesian deep networks for Thompson sampling. In Pro-
ceedings of the 6th International Conference on Learning
Representations, 2018.

Jonas Rothfuss, Dominique Heyn, Andreas Krause, et al.
Meta-learning reliable priors in the function space. Ad-
vances in Neural Information Processing Systems, 34:
280–293, 2021.

Daniel Russo and Benjamin Van Roy. Learning to opti-
mize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian
Osband, Zheng Wen, et al. A tutorial on Thompson sam-
pling. Foundations and Trends® in Machine Learning,
11(1):1–96, 2018.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol
Ayan, Tim Salimans, Jonathan Ho, David J. Fleet, and
Mohammad Norouzi. Photorealistic text-to-image dif-
fusion models with deep language understanding. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. In International
Conference on Learning Representations, 2021.

Rajat Sen, Alexander Rakhlin, Lexing Ying, Rahul Kidambi,
Dean Foster, Daniel Hill, and Inderjit Dhillon. Top-k ex-
treme contextual bandits with arm hierarchy. In Proceed-
ings of the 38th International Conference on Machine
Learning, 2021.

Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy,
Daniel J Hsu, Thodoris Lykouris, Miro Dudik, and
Robert E Schapire. Bayesian decision-making under
misspecified priors with applications to meta-learning.
Advances in Neural Information Processing Systems, 34:
26382–26394, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Con-
ference on Machine Learning, pages 2256–2265. PMLR,
2015.

Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. Advances in
Neural Information Processing Systems, 32, 2019.

12

Thompson Sampling with Diffusion Generative Prior

Yang Song, Jascha Sohfl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning Rep-
resentations, 2021.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon.
Solving inverse problems in medical imaging with score-
based generative models. In International Conference on
Learning Representations, 2022.

Charles M Stein. Estimation of the mean of a multivariate
normal distribution. The annals of Statistics, pages 1135–
1151, 1981.

Richard Sutton and Andrew Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

Mohammad Sadegh Talebi, Zhenhua Zou, Richard Combes,
Alexandre Proutiere, and Mikael Johansson. Stochastic
online shortest path routing: The value of feedback. IEEE
Transactions on Automatic Control, 63(4):915–930, 2017.

William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Michal Valko, Remi Munos, Branislav Kveton, and Tomas
Kocak. Spectral bandits for smooth graph functions. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pages 46–54, 2014.

Siwei Wang and Wei Chen. Thompson sampling for com-
binatorial semi-bandits. In International Conference on
Machine Learning, pages 5114–5122. PMLR, 2018.

Zachary Wu, Kadina E Johnston, Frances H Arnold, and
Kevin K Yang. Protein sequence design with deep gen-
erative models. Current opinion in chemical biology, 65:
18–27, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

Chin-Yun Yu, Sung-Lin Yeh, György Fazekas, and Hao
Tang. Conditioning and sampling in variational diffu-
sion models for speech super-resolution. arXiv preprint
arXiv:2210.15793, 2022.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Fast sampling of
diffusion models via operator learning. arXiv preprint
arXiv:2211.13449, 2022.

Magauiya Zhussip, Shakarim Soltanayev, and Se Young
Chun. Extending stein’s unbiased risk estimator to train

deep denoisers with correlated pairs of noisy images.
Advances in neural information processing systems, 32,
2019.

13

Thompson Sampling with Diffusion Generative Prior

Appendix

A. Missing Pseudocode

Algorithm 5 Meta-learning Bandits with Diffusion Models
1: Model Training
2: Input: Training set containing reward observations from different tasks
3: Train a diffusion model hθ to model the distribution of the mean rewards (in case of imperfect data use Algorithm 4)
4: Variance Calibration
5: Input: Diffusion model hθ and calibration set containing reward observations from different tasks
6: Use Algorithm 1 to estimate the mean squared reconstruction errors τ1:L of the model hθ from different diffusion steps

to calibrate the variance of each reverse step (in case of imperfect data use Algorithm 6)
7: Bandit Deployment
8: Input: Diffusion model hθ, variance parameters τ1:L, and assumed noise level σ̂
9: For any new task, run Thompson sampling with diffusion prior (Algorithm 3) with provided parameters

B. Additional Related Work
In this section we complement our related work with a discussion on the use of prior knowledge in multi-armed bandits and
a comparison between our diffusion model posterior sampling algorithm and existing ones.

B.1. Prior Knowledge in Multi-Armed Bandits

Regarding the algorithmic framework, we build upon the well-known Thompson sampling idea introduced by Thompson
(1933) nearly a century ago. It has reemerged as one of the most popular algorithms for bandit problems in the last decade
due to its simplicity and generality (Chapelle and Li, 2012; Russo and Van Roy, 2014; Russo et al., 2018). Nonetheless,
it was not until recently that a series of works (Lu and Van Roy, 2019; Simchowitz et al., 2021) provided a thorough
investigation into the influence of the algorithm’s prior, and confirmed the benefit of learning a meta-prior in bandits via
empirical and theoretical evidences (Cella et al., 2020; Basu et al., 2021; Kveton et al., 2021; Peleg et al., 2022; Bastani
et al., 2022). The main difference between our work and the above is the use of a more complex prior, which also goes
beyond the previously studied mixture prior (Hong et al., 2022b) and multi-layered Gaussian prior (Hong et al., 2022a).

On a slightly different note, a large corpus of work have investigated other ways to encode prior knowledge, including the
use of arm hierarchy (Sen et al., 2021), graphs (Valko et al., 2014), or more commonly a latent parameter shared by the arms
(Lattimore and Munos, 2014; Maillard and Mannor, 2014; Hong et al., 2020; Gupta et al., 2020). The use of neural network
for contextual bandits was specifically studied by Riquelme et al. (2018), where the authors compared a large number of
methods that perform Thompson sampling of network models and found that measuring uncertainty with simple models
(e.g., linear models) on top of learned representations often led to the best results. Instead, we focus on non-contextual
multi-armed bandits and use neural networks to learn a prior rather than using it to parameterize actions.

B.2. Comparison of Diffusion Posterior Sampling Algorithms

While none of previous diffusion posterior sampling algorithms was designed specifically for the multi-armed bandit setup
that we consider, it turns out that our Algorithm 2 shares the same general routine with many existing methods. In fact, a
large family of algorithms proposed in the literature for posterior sampling with diffusion models (or equivalently, with
trained denoisers or with learned score functions) goes through an iterative process that alternates between unconditional
sampling and measurement consistency steps. The main difference thus lies in how the measurement consistency step is

14

Thompson Sampling with Diffusion Generative Prior

...

...

...

Unconditional

generation

Conditional

generation Result

Predicted noise

Diffused observation Observation

Unknown latent

Figure 5. Illustration of the proposed posterior sampling with diffusion prior algorithm (Algorithm 2).

implemented. This can be roughly separated into the following three groups within the context of Algorithm 2.7 We recall
that unconditional sampled is represented by x′

ℓ and is drawn from pθ(Xℓ |xℓ+1) [or pθ,τ (Xℓ |xℓ+1) in our case].

1. Direct mix with the observation y. The simplest solution is to mix directly the unconditional latent variable x′
ℓ with the

observed features of y. That is, for a certain πℓ ∈ [0, 1], we take

xℓ = (1−m)⊙ x′
ℓ +m⊙ (πℓx

′
ℓ + (1− πℓ)y). (12)

This is essentially the approach taken by Sohl-Dickstein et al. (2015); Jalal et al. (2021); Kawar et al. (2021b); Kadkhodaie
and Simoncelli (2021).8 However, the mismatch between the noise levels of y and x′

ℓ could be detrimental.

2. Mix with a noisier version of the observation. Alternatively, the most popular approach in the literature is probably to
first pass the observation through the forward process by sampling yℓ from N (Yℓ;

√
ᾱℓyℓ, (1− ᾱℓ)Id) and then perform

a weighted average between the unconditional latent variable x′
ℓ and the diffused observation yℓ.

xℓ = (1−m)⊙ x′
ℓ +m⊙ (πℓx

′
ℓ + (1− πℓ)yℓ). (13)

This idea was introduced in (Song et al., 2021; 2022) and subsequently used by Chung et al. (2022a); Lugmayr et al.
(2022) where the authors improved different aspects of the algorithm without modifying the implementation of the
measurement consistency step.

3. Gradient step with respect to denoiser input. The most involved but also the most general solution is to take a gradient
step to ensure that the denoised output from the latent variable is close to our observation after applying the measurement
operator. In other words, for a certain stepsize ηℓ, we set

xℓ = x′
ℓ − ηℓ∇x′

ℓ
∥m⊙ (y − hθ(x

′
ℓ, ℓ))∥2. (14)

This was the method used by Chung et al. (2023) and it was also jointly used with other measurement consistency strategy
in (Chung et al., 2022b; Yu et al., 2022).

Provided the above overview, it is clear that our method (Algorithm 2/Figure 5) is similar but different from all the
algorithms previously introduced in the literature. In fact, while we also use a diffused observation, it is sampled from
N (Ỹℓ;

√
ᾱℓy0 +

√
1− ᾱℓz̄

a
ℓ+1, ζ

a
ℓ,y). The use of predicted noise z̄aℓ+1 for the forward process improves the coherence of the

output as we will demonstrate on a simple example in Appendix F.2. On the other hand, the third approach mentioned above

7In the literature this is often referred to as the problem of inpainting with noisy observation.
8Concretely, instead of the mixing step it could be a gradient step that minimizes ∥m⊙ (y − xℓ+1)∥2. This becomes equivalent to

(12) if we replace xℓ+1 by x′
ℓ and the stepsize is smaller than 1/2. Our presentation is intended to facilitate the comparison between

different methods while keeping the essential ideas. We thus also make similar minor modifications in (13) and (14).

15

Thompson Sampling with Diffusion Generative Prior

could potentially lead to even better results, but the need of computing the gradient with respect the denoiser makes it much
less efficient. Our method can then be regarded as an approximation of (14) by using

hθ(x
′
ℓ, ℓ) ≈

x′
ℓ −
√
1− ᾱℓ+1z̄ℓ+1√

ᾱℓ
,

which eliminates the need for computing the gradient of the denoiser.

In additional to the aforementioned methods, other alternatives to perform posterior sampling with diffusion models include
the use of a dedicated guidance network that learns directly q(y |xℓ) (Dhariwal and Nichol, 2021; Song et al., 2021; Huang
et al., 2022), annealed Langevin dynamics (Song and Ermon, 2019), Gaussian approximation of posterior (Graikos et al.,
2022), and finally, a closed-form expression for the conditional score function and the conditional reverse step can be derived
if we assume that the observed noise is carved from the noise of the diffusion process (Kawar et al., 2021a; 2022).

C. Algorithm Design: Derivation, Special Case, and Extensions
In this appendix we complement the presentation of our algorithms by providing underlying mathematical derivations and
extension of the training and variance calibration algorithms.

C.1. Reverse Step in Vanilla Diffusion Model

Ho et al. (2020) proposed to set the reverse step of diffusion model to be q(Xℓ |xℓ+1, X0 = x̂0) as explained in (1). This is
effectively a Gaussian distribution because

q(Xℓ |xℓ+1, X0 = x̂0) ∝ q(xℓ+1 |Xℓ, X0 = x̂0)q(Xℓ |X0 = x̂0) = q(xℓ+1 |Xℓ)q(Xℓ |X0 = x̂0).

By the definition of the forward process, we have q(xℓ+1 |Xℓ) = N (xℓ+1;
√
αℓ+1Xℓ, (1 − αℓ+1)Id) and q(Xℓ |X0 =

x̂0) = N (Xℓ;
√
ᾱℓx̂0, (1− ᾱℓ)Id). The second equality of (1) then follows immediately.

C.2. Reverse Step in Posterior Sampling from Diffusion Prior

We next provide the derivation of the reverse step of our posterior sampling algorithm (variant of Algorithm 2 as described
in Section 3.3) that samples from XL |xℓ+1, y. For this, we write

q(xℓ |xℓ+1, y) =
q(xℓ |xℓ+1)q(y |xℓ, xℓ+1)

q(y |xℓ+1)
=

q(xℓ |xℓ+1)
∫
q(y |x0)q(x0 |xℓ, xℓ+1) dx0

q(y |xℓ+1)
. (15)

The term q(xℓ |xℓ+1) can be simply approximated with pθ,τ (xℓ |xℓ+1). As for the integral, one natural solution is to use
q(x0 |xℓ, xℓ+1) = q(x0 |xℓ) ≈ p′θ,τ (x0 |xℓ). Then, for example, if q(y |x0) = N (y;x0, σ

2Id), we can deduce∫
q(y |x0)p

′
θ(x0 |xℓ) dx0 = N (y;hθ(xℓ, ℓ), σ

2Id + diag(τ2ℓ)).

Nonetheless, as the denoiser hθ can be arbitrarily complex, this does not lead to a close form expression to sample xℓ.
Therefore, to avoid the use of involved sampling strategy in the recurrent step, we approximate q(x0 |xℓ, xℓ+1) in a different
way. We first recall that by definition of the diffusion model we may write

Xℓ =
√
ᾱℓX0 +

√
1− ᾱℓZ̄ℓ and Xℓ+1 =

√
αℓ+1Xℓ +

√
1− αℓZℓ+1,

where both Z̄ℓ and Zℓ+1 are random variable with distribution N (0d, Id). This leads to

Xℓ+1 =
√
ᾱℓ+1X0 +

√
1− ᾱℓ+1Z̄ℓ+1

where

Z̄ℓ+1 =

√
αℓ+1(1− ᾱℓ)

1− ᾱℓ+1
Z̄ℓ +

√
1− αℓ+1

1− ᾱℓ+1
Zℓ+1.

16

Thompson Sampling with Diffusion Generative Prior

Therefore, we may take Z̄ℓ+1 as a reasonable approximation of Z̄ℓ, while sampling Z̄ℓ+1 is basically the same as sampling
from p′θ(X0 |xℓ+1). To summarize, we write

q(x0 |xℓ, xℓ+1) = q

(
Z̄ℓ =

xℓ −
√
ᾱℓx0√

1− ᾱℓ

∣∣∣xℓ, xℓ+1

)
≈ q

(
Z̄ℓ+1 =

xℓ −
√
ᾱℓx0√

1− ᾱℓ

∣∣∣xℓ, xℓ+1

)
= q

(
X0 =

1
√
ᾱℓ+1

(
xℓ+1 −

(
xℓ −

√
ᾱℓx0

)√1− ᾱℓ+1

1− ᾱℓ

) ∣∣∣xℓ, xℓ+1

)
≈ p′θ,τ

(
X0 =

1
√
ᾱℓ+1

(
xℓ+1 −

(
xℓ −

√
ᾱℓx0

)√1− ᾱℓ+1

1− ᾱℓ

) ∣∣∣xℓ+1

)
= N

(√
ᾱℓ(1− ᾱℓ+1)

ᾱℓ+1(1− ᾱℓ)
x0 +

xℓ+1√
ᾱℓ+1

−

√
1− ᾱℓ+1

ᾱℓ+1(1− ᾱℓ)
xℓ ;

hθ(xℓ+1, ℓ+ 1),diag(τ2ℓ+1)

)

=
√
ρℓN

(
x0 ;

1√
ᾱℓ

(xℓ −
√
1− ᾱℓz̄ℓ+1), ρℓ diag(τ

2
ℓ+1)

)
,

where ρℓ = ᾱℓ+1(1− ᾱℓ)/(ᾱℓ(1− ᾱℓ+1)) and z̄ℓ+1 represents the noise predicted by the denoiser from xℓ+1, that is,

z̄ℓ+1 =
xℓ+1 −

√
ᾱℓ+1hθ(xℓ+1, ℓ+ 1)√
1− ᾱℓ+1

.

In this way, we have approximated q(x0 |xℓ, xℓ+1) by a Gaussian with diagonal covariance and with mean that depends
only linearly on xℓ.

We next place ourselves in the multi-armed bandit setup. Suppose we are in round t+ 1, the observation is now y = Ht

the interaction history up to round t (included) and x0 = µ is the mean reward vector. The relation between y = Ht and
x0 = µ is as described in Section 3.3. Precisely,

q(Ht |x0) ∝
t∏

s=1

q(rs |µ, as) =
t∏

s=1

N (rs;µ
as , σ2

reward)

There exists thus C(Ht) and C̃(Ht) such that∫
q(Ht |x0)q(x0 |xℓ, xℓ+1) dx0︸ ︷︷ ︸

A

=

∫
C(Ht)

t∏
s=1

N (rs;µ
as , σ2)q(x0 |xℓ, xℓ+1) dx0

=

∫
C̃(Ht)

∏
a∈A
Na

t >0

N (µ̂a
t ;µ

a, (σa
t)

2)q(x0 |xℓ, xℓ+1) dx0.

Using x0 = µ, the aforementioned approximation of q(x0 |xℓ, xℓ+1), and ignoring the multiplicative constant that does not
depend on xℓ, we get

A ∝
∫ ∏

a∈A
Na

t >0

N (µ̂a
t ;x

a
0 , (σ

a
t)

2)q(x0 |xℓ, xℓ+1) dx0

≈ √ρℓ
∫ ∏

a∈A
Na

t >0

N (µ̂a
t ;x

a
0 , (σ

a
t)

2)
∏
a∈A
N
(
xa
0 ;

1√
ᾱℓ

(xa
ℓ −
√
1− ᾱℓz̄

a
ℓ+1), ρℓ(τ

a
ℓ+1)

2

)
dx0

17

Thompson Sampling with Diffusion Generative Prior

=
√
ρℓ
∏
a∈A
Na

t >0

∫
N (µ̂a

t ;x
a
0 , (σ

a
t)

2)N
(
xa
0 ;

1√
ᾱℓ

(xa
ℓ −
√
1− ᾱℓz̄

a
ℓ+1), ρℓ(τ

a
ℓ+1)

2

)
dxa

0

=
√
ρℓ
∏
a∈A
Na

t >0

N
(
µ̂a
t ;

1√
ᾱℓ

(xa
ℓ −
√
1− ᾱℓz̄

a
ℓ+1), (σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2

)

∝
∏
a∈A
Na

t >0

N
(
xa
ℓ ;
√
ᾱℓµ̂

a
t +
√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2).
)

Plugging the above into (15), we obtain q̃(xℓ |xℓ+1,Ht) =
∏

a∈A q̃(xa
ℓ |xℓ+1,Ht) where q̃(xa

ℓ |xℓ+1,Ht) =
pθ,τ (x

a
ℓ |xℓ+1) if a is never pulled and otherwise it is the distribution satisfying

q̃(xa
ℓ |xℓ+1,Ht) ∝ pθ,τ (x

a
ℓ |xℓ+1)N

(
xa
ℓ ;
√
ᾱℓµ̂

a
t +
√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2)
)
. (16)

To conclude, we resort to the following lemma (see Papandreou and Yuille, 2010 for more general results).

Lemma 1. Let µ1, µ2, σ1, σ2 ∈ R. The following two sampling algorithms are equivalent.

1. Sample x directly from the distribution whose density is proportional the product N (µ1, σ
2
1)N (µ2, σ

2
2).

2. Sample x1 from N (µ1, σ
2
1), x2 from N (µ2, σ

2
2), and compute x = σ−2

1 x1 + σ−2
2 x2/(σ

−2
1 + σ−2

2).

Proof. It is well known that the product of two Gaussian PDFs is itself proportional to a Gaussian PDF. Concretely, we have

N (µ1, σ
2
1)N (µ2, σ

2
2) ∝ N

(
σ−2
1 µ1 + σ−2

2 µ2

σ−2
1 + σ−2

2

,
1

σ−2
1 + σ−2

2

)
. (17)

On the other hand, the linear combination of two independent Gaussian variables is also a Gaussian variable. For X1, X2

that follow N (µ1, σ
2
1),N (µ2, σ

2
2) and X = σ−2

1 X1 + σ−2
2 X2/(σ

−2
1 + σ−2

2), we can compute

E[X] =
σ−2
1 E[X1] + σ−2

2 E[X2]

σ−2
1 + σ−2

2

=
σ−2
1 µ1 + σ−2

2 µ2

σ−2
1 + σ−2

2

,

Var[X] =
σ−4
1 Var[X1] + σ−4

2 Var[X2]

(σ−2
1 + σ−2

2)2
=

σ−2
1 + σ−2

2

(σ−2
1 + σ−2

2)2
=

1

σ−2
1 + σ−2

2

.

Therefore, X follows the distribution of (17) and computing the linear combination of x1 and x2 as suggested is equivalent
to sampling directly from the resulting distribution.

We obtain the algorithm presented in Section 3.3 by applying Lemma 1 to (16) with

N (µ1, σ
2
1)← pθ,τ (x

a
ℓ |xℓ+1)

N (µ2, σ
2
2)← N

(
xa
ℓ ;
√
ᾱℓµ̂

a
t +
√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2)
)
.

C.3. On SURE-based Regularization

In this part we show how the loss function (11) is related to Stein’s unbiased risk estimate (SURE). We first note that
by definition of the diffusion process, we have xℓ =

√
ᾱℓx0 +

√
1− ᾱℓz̄ℓ where z̄ℓ is a random variable following the

distribution N (0d, Id). Moreover,
√
ᾱℓhθ(xℓ, ℓ) is an estimator of

√
ᾱℓx0 from xℓ. The corresponding SURE thus writes

SURE(
√
ᾱℓhθ(·, ℓ)) = ∥

√
ᾱℓhθ(xℓ, ℓ)− xℓ∥2 −K(1− ᾱℓ) + 2(1− ᾱℓ) divxℓ

(
√
ᾱℓhθ(xℓ, ℓ)).

If it holds xℓ =
√
ᾱℓy while y follows the distribution N (x0, σ

2Id), we get immediately 1− ᾱℓ = ᾱℓσ
2. The above can

thus be rewritten as

SURE(
√
ᾱℓhθ(·, ℓ)) = ∥

√
ᾱℓhθ(xℓ, ℓ)−

√
ᾱℓy∥2 −Kᾱℓσ

2 + 2ᾱ
3
2

ℓ σ
2 divxℓ

(hθ(xℓ, ℓ)).

18

Thompson Sampling with Diffusion Generative Prior

Dividing the above by ᾱℓ we get an unbiased estimate of E[∥hθ(xℓ, ℓ)− x0∥2], i.e.,

E[∥hθ(xℓ, ℓ)− x0∥2] = E[∥hθ(xℓ, ℓ)− y∥2 −Kσ2 + 2
√
ᾱℓσ

2 divxℓ
(hθ(xℓ, ℓ))].

On the right hand side inside expectation we recover Eq. (11) with m = 1 and λ = 1 by replacing xℓ by x̃ℓ and the
divergence by its Monte-Carlo approximation (Ramani et al., 2008).

C.4. Training from Bandit Observations or Observations with Non-Homogeneous Noise

We discuss here how to extend Algorithm 4 to cope with bandit observations and observations with non-homogeneous
noise. As suggested in Section 3.3, when the observations come from bandit interactions and each arm can be pulled
more than once, we can first summarize the interaction history by the empirical mean and the vector of adjusted standard
deviation. Therefore, it actually remains to address the case of non-homogeneous noise where the noise vector zi is sampled
from N (0d,diag(σi

2)) for some vector σi ∈ RK . As the design of our posterior sampling algorithm already takes this
into account, the posterior sampling steps of the algorithm remains unchanged. The only difference would thus lie in the
definition of loss (11). Intuitively, we would like to give more weights to samples that are less uncertain. This can be
achieved by weighting the loss by the inverse of the variances, that is, we set

L′(θ; y, x̃ℓ,m, σ, ℓ) =
K∑

a=1

ma|ya − ha
θ(x̃ℓ, ℓ)|

(σa)2
+ 2λ

√
ᾱℓ Eb∼N (0d,Id) b

⊤
(
hθ(x̃ℓ + εb, ℓ)− hθ(x̃ℓ, ℓ)

ε

)
. (18)

To make sure the above loss is always well defined, we may further replace (σa)2 by (σa)2 + δ for some small δ > 0. It is
worth noticing that one way to interpret the absence of observation ma = 0 is to set the corresponding variance to infinite,
i.e., σa = +∞. In this case we see there is even no need of m anymore as the coordinates with σa = +∞ would already be
given 0 weight. Finally, to understand why we choose to weight with the inverse of the variance, we consider a scalar x, and
a set of noisy observations y1, . . . , yn respectively drawn from N (x, σ2

1), . . . ,N (x, σ2
n). Then, the maximum likelihood

estimate of x is
∑n

i=1 σ
2
i yi/(

∑n
i=1 σ

2
i).

C.5. Variance Calibration with Imperfect Data

As mentioned in Section 3.1, a reliable variance estimate of the reverse process is essential for building a good diffusion
prior. This holds true not only for the online learning process at test phase, but also for the posterior sampling step of our
training procedure. The algorithm introduced in Section 3.1 calibrates the variance through perfect data. In this part, we
extend it to operate with imperfect data.

Let Ďcal be a set of imperfect data constructed in the same way as Ďtr. We write Ďa

cal = {(y,m) ∈ Ďcal : m
a = 1} as the

subset of Ďcal for which a noisy observation of the feature at position a is available. Our algorithm (outlined in Algorithm 6)
is inspired by the following two observations. First, if the entries are missing completely at random, observed ya of Ďa

cal and
sampled xa

0 + za with x0 ∼ Q0 and z ∼ N (0d, σ
2
dataId) have the same distribution. Moreover, for any triple (x0, y, xℓ) with

y = x0 + z, xℓ =
√
ᾱℓx0 +

√
1− ᾱℓz̄ℓ and x0, z, and z̄ℓ sampled independently from Q0, N (0d, σ

2
dataId), and N (0d, Id),

it holds that
E[∥ya − ha

θ(xℓ, ℓ)∥2] = E[∥xa
0 − ha

θ(xℓ, ℓ)∥2] + σ2
data.

We can thus estimate E[∥xa
0 − ha

θ(xℓ, ℓ)∥2] if we manage to pair each ya ∈ Ďa

cal with a such xℓ.

We again resort to Algorithm 2 for the construction of xℓ (referred to as x̃ℓ in Algorithm 6 and hereinafter). Unlike the
training procedure, here we first construct x̃0 and sample x̃ℓ from Xℓ | x̃0 to decrease the mutual information between x̃ℓ

and y. Nonetheless, the use of our posterior sampling algorithm itself requires a prior with calibrated variance. To resolve
the chicken-and-egg dilemma, we add a warm-up step where we precompute the reconstruction errors with Algorithm 1 by
treating Ďcal as the perfect dataset. In our experiments, we observe this step yields estimates of the right order of magnitude
but not good enough to be used with Thompson sampling, while the second step brings the relative error to as small as 5%
compare to the estimate obtained with perfect validation data using Algorithm 1.

D. Missing Experimental Details
In this section, we provide missing experimental details mainly concerning the construction of the problem instances and the
learning of priors. All the simulations are run on an Amazon p3.2xlarge instance equipped with 8 NVIDIA Tesla V100
GPUs.

19

Thompson Sampling with Diffusion Generative Prior

Algorithm 6 Diffusion Model Variance Calibration from Imperfect (incomplete and noisy) Data

1: Input: Diffusion model hθ, calibration set Ďcal = {yi,mi}i∈[ncal], noise standard deviation σdata
2: Output: Variance parameters τ1:L
3: Data Set Preprocessing
4: Precompute reconstructions errors τ1:L with Algorithm 1 and Dcal ← Ďcal (masks ignored)
5: Construct D̃cal = {x̃i,0, yi,mi}i with Algorithm 2
6: Variance Calibration
7: for ℓ = 1 . . . L do
8: Construct D̃cal,ℓ = {x̃i,ℓ, yi,mi}i by sampling x̃i,ℓ from Xℓ | x̃i,0

9: for a = 1 . . .K do
10: Let D̃a

cal,ℓ = {x̃ℓ, y : (x̃ℓ, y,m) ∈ D̃cal,ℓ,m
a = 1}

11: Set τaℓ ←
√

1
ncal

∑
x̃ℓ,y∈D̃a

cal,ℓ
∥xa

0 − ha
θ(xℓ, ℓ)∥2 − σ2

data

D.1. Construction of Bandit Instances

We provide below more details on how the bandit instances are constructed in our problems. Besides the three problems
described in Section 5, we consider an additional Labeled Arms problem that will be used for our ablation study. Some
illustrations of the constructed instances and the vectors generated by learned priors are provided in Appendix G. As in
Popular and Niche and 2D Maze problems, in the Labeled Arms problem we simply add Gaussian noise of
standard deviation 0.1 to the mean when sampling the reward. For these three problems we thus only explain how the means
are constructed.

1. Popular and Niche (K = 200 arms). The arms are split into 40 groups of equal size. 20 of these groups
represent the ‘popular’ items while the other 20 represent the ‘niche’ items. For each bandit task, we first construct a
vector µ̄ whose coordinates’ values default to 0. However, we randomly choose 1 to 3 groups of niche items and set the
value of each of these items to 1 with probability 0.7 (independently across the selected items). Similarly, we randomly
choose 15 to 17 groups of popular items and set their values to 0.8. Then, to construct the mean reward vector µ, we
perturb the values of µ̄ by independent Gaussian noises with standard deviation of 0.1. After that, we clip the values of
the popular items to make them smaller than 0.95 and clip the entire vector to the range [0, 1].

2. iPinYou bidding (K = 300 arms). The set of tasks is constructed with the help of the iPinYou data set (Liao
et al., 2014). This data set contains logs of ad biddings, impressions, clicks, and final conversions, and is separated
into three different seasons. We only use the second season that contains the ads from 5 advertisers (as we are not
able to find the data for the first and the third season). To form the tasks, we further group the bids according to the
associated ad slots. By keeping only those ad slots with at least 1000 bids, we obtain a data set of 1352 ad slots. Then,
the empirical distribution of the paying price (i.e., the highest bid from competitors) of each ad slot is used to computed
the success rate of every potential bid b ∈ {0, . . . , 299} set by the learner. The reward is either 300 − b when the
learner wins the auction or 0 otherwise. Finally, we divide everything by the largest reward that the learner can ever get
in all the tasks to scale the rewards to range [0, 1].

3. 2D Maze (K = 180 base arms). For this problem, we first use the code of the github repository
MattChanTK/gym-maze9 to generate random 2D mazes of size 19 × 19. Then, each bandit task can be de-
rived from a generated 2D maze by associating the maze to a weighted 10 × 10 grid graph. As demonstrated by
Figure 3, each case corresponds to either a node or an edge of the grid graph. Then, the weight (mean reward) of an
edge (base arms) is either −1 or −0.01 depending on either there is a wall (in black color) or not (in white color) on
the corresponding case. An optimal arm in this problem would be a path that goes from the source to the destination
without bumping into any walls in the corresponding maze.

4. Labeled Arms (K = 500 arms). This problem is again inspired by applications in recommender systems. We
are provided here a set of 50 labels L = {1, ..., 50}. Each arm is associated to a subset La of these labels with size

9https://github.com/MattChanTK/gym-maze

20

Thompson Sampling with Diffusion Generative Prior

card(La) = 7. To sample a new bandit task B, we randomly draw a set LB ⊆ L again with size 7. Then for each arm
a, we set µ̄a = 1− 1/4card(L

a ∩LB) so that the more the two sets intersect the higher the value. Finally, to obtain the
mean rewards µ, we perturb the coordinates of µ̄ by independent Gaussian noises of standard deviation 0.1 and scale
the resulting vector to the range [0, 1].

Training, Calibration, and Test Sets. Training, calibration, and test set are constructed for each of the considered problem.
Their size are fixed at 5000, 1000, 100 for the Popular and Niche, 2D Maze, and Labeled Arms Problems, and
at 1200, 100, and 52 for the iPinYou Bidding problem.

D.2. Diffusion Models– Model Design

In all our experiments (including the ones described in Appendices E and F), we set the diffusion steps of the diffusion
models to L = 100 and adopt a linear variance schedule that varies from 1− α1 = 10−4 to 1− αL = 0.1. The remaining
details are customized to each problem, taking into account the specificity of the underlying data distribution.

1. Labeled Arms and Popular and Niche. These two problems have the following two important features: (i) The
expected means of the bandit instances do not exhibit any spatial correlations (see Figures 16a and 17a). (ii) The values
of the expected means are nearly binary.

The first point prevents us from using the standard U-Net architecture. Instead, we consider an architecture adapted from
Kong et al. (2020); Rasul et al. (2021), with 5 residual blocks and each block containing 6 residual channels.10 Then, to
account for the lack of spatial correlations, we add a fully connected layer at the beginning to map the input to a vector of
size 128× 6, before reshaping these vectors into 6 channels and feeding them to the convolutional layers. In a similar
fashion, we also replace the last layer of the architecture by a fully connected layer that maps a vector of size 128× 6
to a vector of size K. We find that these minimal modification already enable the model to perform well on these two
problems.

As for the latter point, we follow Chen et al. (2023b) and train the denoisers to predict the clean sample x0 as it is
reported in the said paper that this leads to better performance when the data are binary.

2. iPinYou Bidding. As shown in Figure 20, the pattern of this problem looks similar to that of natural images. We
therefore adopt the standard U-Net architecture, with an adaption to the 1-dimensional case as described by (Janner et al.,
2022). The model has three feature map resolutions (from 300 to 75) and the number of channels for each resolution is
respectively 16, 32, and 64. No attention layer is used. The denoiser is trained to predict noise as in Ho et al. (2020);
Song and Ermon (2019).

3. 2D Maze As explained in Appendix D.1 and illustrated in Figure 3, the weighted grid graphs are themselves derived
by the 2D mazes. We can accordingly establish a function that maps each 10× 10 weighted grid graph to an image of
size 19× 19 and vice-versa— it suffices to match the value of each associated (edge, pixel) pair. For technical reason,
we further pad the 19 × 19 images to size 20 × 20 by adding one line of −1 at the right and one row of −1 at the
bottom (see Figure 21). We then train diffusion models to learn the distribution of the resulting images. For this, we
use a 2-dimensional U-Net directly adapted from the ones used by Ho et al. (2020). The model has three feature map
resolutions (from 20× 20 to 5× 5) and the number of channels for each resolution is respectively 32, 64, and 128. A
self-attention block is used at every resolution. We again train the denoiser to predict the clean sample x0 as we have
binary expected rewards here (−0.01 or −1).

D.3. Diffusion Models– Training

Through out our experiments, we use Adam optimizer with learning rate 5× 10−4 and exponential decay rates β1 = 0.9
and β2 = 0.99. The batch size and the epsilon constant in SURE-based regularization are respectively fixed at 128 and
ϵ = 10−5. When the perfect data sets Dtr and Dcal are provided, we simply train the diffusion models for 15000 steps on the
training set Dtr and apply Algorithm 1 on the calibration set Dcal to calibrate the variances. The training procedure is more
complex when only imperfect data are available. We provide the details below.

10These numbers are rather arbitrary and do not seem to affect much our results.

21

Thompson Sampling with Diffusion Generative Prior

Figure 6. The three paths (super-arms) for UCB1 initialization in the 2D Maze experiment.

Posterior Sampling. As explained in Section 4 and Algorithm 4, to train from imperfect data we sample the entire chain
of diffused samples x̃0:L from the posterior. However, while Algorithm 2 performs sampling with predicted noise z̄ℓ+1 and
as we will show in Appendix F.2, this indeed leads to improved performance in a certain aspect, we observe that when
used for training, it prevents the model from making further progress. We believe this is because in so doing we are only
reinforcing the current model with their own predictions. Therefore, to make the method effective, in our experiments
we slightly modify the posterior sampling algorithm that is used during training. While we still construct samples x0:L

following Algorithm 2, the samples x̃0:L used for the loss minimization phase are obtained by replacing z̄ℓ+1 (line 9) by
z̃ℓ+1 sampled from N (0d, Id) in the very last sampling step. That is, from xℓ+1 we sample both xℓ for further iterations of
the algorithm and x̃ℓ to be used for loss minimization.

Training Procedure Specification. When training and validation data are incomplete and noisy, we follow the training
procedure described in Algorithm 4 with default values S = 15000 warm-up steps, J = 3 repeats, and S′ = 3000 steps
within each repeat (thus 24000 steps in total). Moreover, during the warm-up phase we impute the missing value with
constant 0.5 when constructing the diffused samples x̃ℓ. As for the regularization parameter λ, we fix it at 0.1 for the
Popular and Niche, 2D Maze, and Labeled Arms problems.

Nevertheless, training from imperfect data turns out to be difficult for the iPinYou Bidding problem. We conjecture this
is both because the training set is small and because we train the denoiser to predict noise here. Two modifications are
then brought to the above procedure to address the additional difficulty. First, as SURE-based regularization can prevent
the model from learning any pattern from data when information is scarce, we drop it for the warm-up phase and the
first two repeats (i.e., the first 21000 steps). We then get a model that has learned the noisy distribution. We then add
back SURE-based regularization with λ = 0.25 in the third repeat. After the 24000 steps, the model is good enough at
reconstructing the corrupted data set, but the unconditionally generated samples suffer from severe mode collapse. Provided
that the reconstructed samples are already of good quality, we fix the latter issue simply by applying standard training on the
reconstructed samples for another 3000 steps (thus 27000 training steps in total).

D.4. Other Details

In this part we provide further details about the evaluation phase and the baselines.

Assumed Noise Level. All the bandit algorithms considered in our work take as input a hyperparameter σ̂ that should
roughly be in the order of the scale of the noise. For the results presented in Section 5, we set σ̂ = 0.1 for the Popular
and Niche and 2D Maze problems and σ̂ = 0.2 for the iPinYou Bidding problem. The former is exactly the
ground truth standard deviation of the underlying noise distribution. For the iPinYou Bidding problem the noise is
however not Gaussian, and σ̂ = 0.2 is approximately the third quartile of the empirical distribution of the expected rewards’
standard deviations (computed across tasks and arms). In Appendix F.1, we present additional results for algorithms run
with different assumed noise levels σ̂.

UCB1. The most standard implementation of the UCB1 algorithm sets the upper confidence bound to

Ua
t = µ̂a

t + σ̂

√
2 log t

Na
t

. (19)

22

Thompson Sampling with Diffusion Generative Prior

Instead, in our experiments we use Ua
t = µ̂a

t + σ̂/
√
Na

t . Eq. (19) is more conservative than our implementation, and we
thus do not expect it to yield smaller regret within the time horizon of our experiments.

UCB1 Initialization. In contrary to Thompson sampling-based methods, UCB1 typically requires an initialization phase.
For vanilla multi-armed bandits (Popular and Niche, iPinYou Bidding, and Labeled Arms) this simply
consists in pulling each arm once. For combinatorial bandits we need to pull a set of super arms that covers all the base
arms. In the 2D Maze experiment we choose the three paths shown in Figure 6.

Gaussian Prior with Imperfect Data. To fit a Gaussian on incomplete and noisy data, we proceed as follows: First,
we compute the mean of arm a from those samples that have observation for a. Next, in a similar fashion, the covariance
between any two arms are only computed with samples that have observations for both arms. Let the resulting matrix be
Σ̂. Since the covariance matrix of the sum of two independently distributed random vectors (in our case X0 and noise) is
the sum of the covariance matrices of the two random vectors, we further compute Σ̂′ = Σ̂− σ2

dataId as an estimate of the
covariance matrix of X0. Finally, as Σ̂′ is not necessarily positive semi-definite and can even have negative diagonal entries,
for TS with diagonal covariance matrix we threshold the estimated variances to be at least 0 and for TS with full covariance
matrix we threshold the eigenvalues of the estimated covariance matrix Σ̂′ to be at least 10−4.11

Arm Selection in 2D Maze Problem. All the algorithms we use in the 2D Maze problem first compute/sample some
values for each base arm (edge) and then select the super arm (path) that maximizes the sum of its base arms’ values (for
DiffTS we first map the sampled 20× 20 image back to a weighted graph and the remaining is the same). Concretely, we
implement this via Dijkstra’s shortest path algorithm applied to the weighted graphs with weights defined as the opposite
of the computed/sampled values. However, these weights are not guaranteed to be non-negative, and we thus clip all the
negative values to 0 before computing the shortest path.

E. Ablation Study
In this appendix, we perform ablation studies on the Popular and Niche and Labeled Arms problems to explore
the impacts of various design choices of our algorithms.

E.1. Predicted versus Sampled Noise in Posterior Sampling

In the DiffTS scheme that we develop (Algorithms 2 and 3), we propose to use the predicted noise z̄ℓ+1 in the construction
of the diffused observation ỹℓ. Alternatively, we can replace it by a sampled noise vector z̃ℓ+1 (the resulting algorithm
then becomes very similar to the ‘mix with a noisier version of the observation’ approach presented in Appendix B.2).
In Figure 9, we investigate how this decision affects the performance of DiffTS with diffusion priors trained on perfect
data set Dtr. It turns out that for the two problems considered here, there is not clear winner between the two options.
However, it seems that using only sampled noise produces noisier samples, which leads to significant increase in regret in
the Labeled Arms problem. We further confirm this intuition in Appendix F.2, where we show on a toy problem that the
use of predicted noise often leads to samples that are more consistent with the learned prior. However, this does not always
lead to performance improvement in bandit problems as the learned prior is never perfect.

E.2. Importance of Variance Calibration

Throughout our work, we have highlighted multiple times the importance of equipping the diffusion model with a suitable
variance estimate. We demonstrate this in Figure 8. We consider diffusion priors trained on the perfect data set Dtr along
with three different reverse variance schedules: (i) calibrated, i.e., Eq. (4); (ii) non-calibrated, i.e., Eq. (1); (iii) partially
calibrated– precisely, only the variance of X0 |x1 is calibrated. We see clearly that a non-calibrated reverse variance
schedule leads catastrophic regret performance. This is because the sampling process relies too much on the learned model;
in particular, the variance of pθ(X0 |x1) is fixed at zero. Instead, calibrating X0 |x1 itself already leads to significant
decrease in regret, making it as competitive as (and sometimes even better than) the fully calibrated alternative. This suggests
that the trade-off between the learned model and the observations mainly occurs at the last reverse step, whereas enlarging
the variance of the remaining reverse steps has little to no effect. [Yet, it is also clear from the experiment on the Popular
and Niche problem with presumed noise standard deviation 0.5 that calibrating the variance of all the reverse steps may

11Our implementation requires the prior covariance matrix to be positive definite.

23

Thompson Sampling with Diffusion Generative Prior

still be beneficial in some situation.]

E.3. Ablation Study for Training from Imperfect Data

Our algorithm for training from imperfect data (Algorithm 4) makes two important modifications to the original training
scheme: the Expectation Maximization-like procedure (abbreviated as EM hereinafter) and the use of SURE-based
regularization. Below we discuss their effects for three types of data: noisy data, incomplete data, and noisy and incomplete
data. We fix all the hyper-parameters to the ones used in the main experiment unless otherwise specified. In particular, we
set the noise standard deviation to σdata = 0.1 for noisy data and the missing rate to 0.5 for incomplete data.

For comparison, we also plot the regrets for the full covariance Gaussian prior baseline. The means and the covariance of
the prior are fitted with the three types of imperfect data that are used to train and calibrate the diffusion models, following
the procedure detailed in Appendix D.4.

Training from Noisy Data. To cope with noisy data, we add SURE-based regularization with weight λ to our training
objective (11). In this part, we focus on how the choice of λ affects the regret when the data are noisy. For the sake of
simplicity, we only complete the warm-up phase of the algorithm, that is, the models are only trained for 15000 steps with
loss function L and xℓ sampled from Xℓ |X0 = y0. In our experiments we note this is generally good enough for noisy data
without missing entries.

The results are shown in Figure 9. As we can see, the value of λ has a great influence on the regret achieved with the
learned prior. However, finding the most appropriate λ for each problem is a challenging task. Using a larger value of λ
helps greatly for the Labeled Arms problem when it is given the ground-truth standard deviation σreward = 0.1, but is
otherwise harmful for the Popular and Niche problem. We believe that finding a way to determine the adequate value
of λ will be an important step to make our method more practically relevant.

Training from Incomplete Data. The EM step is mainly designed to tackle missing data. In Figure 10 we show how the
induced regrets differ when the models are trained with and without it and when the observations are missing at random but
not noisy. To make a fair comparison, we also train the model for a total of 24000 (instead of 15000) steps when EM is not
employed. As we can see, in all the setups the use of EM results in lower regret.

Training from Incomplete and Noisy Data. To conclude this section we investigate the effects of EM and SURE-based
regularization when the data are both noisy and incomplete. We either drop totally the regularization term, i.e., set λ = 0,
or skip the EM step (but again we train the models for 24000 steps with the configuration of the warm-up phase in this
case). We plot the resulting regrets in Figure 11. For the models without EM, the variance calibration algorithm proposed in
Appendix C.5 (Algorithm 6) does not work well so we calibrate it with a perfect calibration set Dcal.12 However, even with
this the absence of EM consistently leads to the worst performance. On the other hand, dropping the regularization term
only causes clear performance degradation for the Labeled Arms problem. This is in line with our results in Figure 9.

F. Additional Experiments
In this appendix, we first supplement our numerical section Section 5 with results obtained under different assumed noise
levels. After that, we present additional experiments for the posterior sampling and the training algorithms.

F.1. Experimental Results with Different Assumed Noise Levels

To further validate the benefit of diffusion priors, we conduct experiments for the four problems introduced in Appendix D.1
under different assumed noise levels. The results are shown in Figure 12. We see that DiffTS achieves the smallest regret
in 15 out of the 18 plots, confirming again the advantage of using diffusion priors. Moreover, although DiffTS performs
worse than either GMMTS or GTS-full in iPinYou Bidding and Labled Arms for a certain assumed noise level, the
smallest regret is still achieved by DiffTS when taking all the noise levels that we have experimented with into account.

Finally, it is clear from Figure 12 that the choice of the assumed noise level σ̂ also has a great influence on the induced
regret. The problem of choosing an appropriate σ̂ is however beyond the scope of our work.

12Indeed, by design Algorithm 6 only gives good result when the posterior sampling step provides a reasonable approximation of x0.
How to calibrate the variance of a poorly performed model from imperfect data is yet another difficult question to be addressed.

24

Thompson Sampling with Diffusion Generative Prior

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

Re
gr

et

GTS-full
DiffTS predicted noise
DiffTS sampled noise

Labeled Arms σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

Re
gr

et

GTS-full
DiffTS predicted noise
DiffTS sampled noise

Labeled Arms σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS predicted noise
DiffTS sampled noise

Popular&Niche σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS predicted noise
DiffTS sampled noise

Popular&Niche σ̂ = 0.05

Figure 7. Regret comparison for DiffTS with predicted or independently sampled noise in the construction of diffused observation ỹℓ.

0 1000 2000 3000 4000 5000
Iterations

0

100

200

300

400

500

600

700

Re
gr

et

GTS-full
DiffTS calibrated
DiffTS non-calibrated
DiffTS p(x0|x1) calibrated

Labeled Arms σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

100

200

300

400

500

600

700

Re
gr

et

GTS-full
DiffTS calibrated
DiffTS non-calibrated
DiffTS p(x0|x1) calibrated

Labeled Arms σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS calibrated
DiffTS non-calibrated
DiffTS p(x0|x1) calibrated

Popular&Niche σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS calibrated
DiffTS non-calibrated
DiffTS p(x0|x1) calibrated

Popular&Niche σ̂ = 0.05

Figure 8. Regret comparison for DiffTS with three different types of reverse variance schedules.

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS λ= 0
DiffTS λ= 0.1
DiffTS λ= 0.5

Labeled Arms σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS λ= 0
DiffTS λ= 0.1
DiffTS λ= 0.5

Labeled Arms σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS λ= 0
DiffTS λ= 0.1
DiffTS λ= 0.5

Popular&Niche σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS λ= 0
DiffTS λ= 0.1
DiffTS λ= 0.5

Popular&Niche σ̂ = 0.05

Figure 9. Regret comparison for DiffTS trained on noisy data with different regularization weight λ.

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM

Labeled Arms σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM

Labeled Arms σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM

Popular&Niche σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM

Popular&Niche σ̂ = 0.05

Figure 10. Regret comparison for DiffTS trained on incomplete data with or without EM.

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM
DiffTS EM without SURE

Labeled Arms σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM
DiffTS EM without SURE

Labeled Arms σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

25

50

75

100

125

150

175

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM
DiffTS EM without SURE

Popular&Niche σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

Re
gr

et

GTS-full
DiffTS perfect data
DiffTS without EM
DiffTS EM
DiffTS EM without SURE

Popular&Niche σ̂ = 0.05

Figure 11. Regret comparison for DiffTS trained on noisy and incomplete data with or without EM / SURE-based regularization.

25

Thompson Sampling with Diffusion Generative Prior

0 1000 2000 3000 4000 5000
Iterations

0

25

50

75

100

125

150

175

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

25

50

75

100

125

150

175

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.1

(a) Popular and Niche

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.2

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.3

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

100

120

140

160

R
eg

re
t

DiffTS (ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

R
eg

re
t

DiffTS (ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.2

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

R
eg

re
t

DiffTS
UCB1

GTS-diag
GTS-full

Imerfect data σ̂ = 0.3

(b) iPinYou Bidding

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

1400

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

1200

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.1

(c) 2D Maze

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

300

350

R
eg

re
t

DiffTS (ours)
UCB1
GTS-diag

GTS-full
GMMTS-10
GMMTS-25

Perfect data σ̂ = 0.1

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

300

350

R
eg

re
t

DiffTS (Ours)
UCB1

GTS-diag
GTS-full

Imperfect data σ̂ = 0.1

(d) Labeled Arms

Figure 12. Regret performances on four different problems with priors fitted/trained on either exact expected rewards (perfect data) or
partially observed noisy rewards (imperfect data) and with different assumed noise levels σ̂. The results are averaged over tasks of a test
set and shaded areas represent standard errors.

26

Thompson Sampling with Diffusion Generative Prior

(a) 30 samples from the training set.

(b) 30 feature vectors generated by the learned diffusion model.

(c) 30 samples from the test set. Red squares indicate missing values.

(d) Feature vectors reconstructed with learned diffusion model and Algorithm 2 using predicted noise vectors z̄ℓ. The inputs are the ones
shown in 13c.

(e) Feature vectors reconstructed with learned diffusion model and Algorithm 2 using independently sampled noise vectors z̃ℓ. The inputs
are the ones shown in 13c.

Figure 13. Feature vectors of the toy problems presented in Appendix F.2. Rows and columns correspond respectively to features and
samples. For visualization purpose, the features are ordered in a way that those of the same group are put together. The darker the color
the higher the value, with white and black representing respectively 0 and 1.

27

Thompson Sampling with Diffusion Generative Prior

(a) Original images (b) Corrupted images (c) Modelorig generated (d) Modelorig reconstructed

(e) Modelcor14 generated (f) Modelcor14 reconstructed (g) Modelcor16 generated (h) Modelcor16 reconstructed

Figure 14. Various images related to the MNIST data set. The three models Modelorig, Modelcor14, and Modelcor16 are respectively trained
on the original data set, on the corrupted data set for 14000 steps, and on the corrupted data set for 16000 steps (Modelcor16 is trained on
top of Modelcor14 for another 2000 steps; see the text for more details). ‘Generated’ means unconditional sampling while ‘reconstructed’
means posterior sampling with Algorithm 2 applied to the corrupted images shown in (b).

F.2. Comparison of Posterior Sampling Strategies on a Toy Problem

In this part, we demonstrate on a toy problem that using predicted noise z̄ℓ+1 to construct the diffused observation ỹℓ leads
to more consistent examples compared to using independently sampled noise vectors.

Data Set and Diffusion Model Training. We consider a simple data distribution over R200. The 200 features are grouped
into 20 groups. For each sample, we randomly select up to 6 groups and set the values of the corresponding features to
1. The remaining features take the value 0. Some samples from this distribution are illustrated in Figure 13a. As for the
diffusion model, the model architecture, hyper-parameters, and training procedure are taken to be the same as those for the
Popular and Niche problem (Appendix D). In Figure 13b we see that the data distribution is perfectly learned.

Posterior Sampling. We proceed to investigate the performance of our posterior sampling algorithm on this example. For
this, we form a test set of 100 samples drawn from the same distribution and drop each single feature with probability 0.5 as
shown in Figure 13c. We then conduct posterior sampling with the learned model using Algorithm 2 (σ is set to 0). To define
the diffused observation ỹℓ, we either follow (8) or replace the predicted noise z̄ℓ+1 by an independently sampled noise
vector z̃ℓ+1 ∼ N (0d, Id). The corresponding results are shown in Figures 13d and 13e. As we can see, using predicted
noise clearly leads to samples that are more consistent with both the observations and the learned prior.

To provide a quantitative measure, in the constructed samples we define a group to be ‘relevant’ if the values of all its
features are greater than 0.8. We then compute the recall and precision by comparing the ground-truth selected groups and
the ones identified as relevant. When predicted noise is used, the average recall and precision are both at 100%. On the
other hand, when independently sampled noise is used, the average recall falls to around 85% (this value varies due to the
randomness of the sampling procedure but never exceeds 90%) while the average precision remains at around 98%.

28

Thompson Sampling with Diffusion Generative Prior

(a) Original images (b) Corrupted images (c) Modelorig generated

(d) Modelorig reconstructed (e) Modelcor generated (f) Modelcor reconstructed

Figure 15. Various images related to the Fashion-MNIST data set. The two models Modelorig and Modelcor are respectively trained on the
original data set and the corrupted data set. ‘Generated’ means unconditional sampling while ‘reconstructed’ means posterior sampling
with Algorithm 2 applied to the corrupted images shown in (b).

F.3. Training from Imperfect Image Data

To illustrate the potential of the training procedure introduced in Section 4, we further conduct experiments on the MNIST
and Fashion-MNIST (Xiao et al., 2017) data sets. Both data sets are composed of gray-scale images of size 28× 28. MNIST
contains hand-written digits whereas Fashion-MNIST contain fashion items taken from Zalando shopping catalog. Some
images of the two data sets are shown in Figures 14a and 15a.

Data Corruption and Experimental Setup. For our experiments, we scale the images to range [0, 1] and corrupt the
resulting data with missing rate 0.5 (i.e., each pixel is dropped with 50%) and noise of standard deviation 0.1. As we only
use training images, this results in 60000 corrupted images for each of the two data sets. We further separate 1000 images
from the 60000 to form the calibration sets. We then train the diffusion models from these corrupted images following
Algorithm 4, with S = 5000 warm-up steps, J = 3 repeats of the EM procedure, and S′ = 3000 inner steps for each repeat
(the total number of training steps is thus 14000). The learning rate and the batch size are respectively fixed at 10−4 and 128.

For the regularization term, we take λ = 0.2 for MNIST and λ = 0.1 for Fashion-MNIST. The constant ε is set to 10−5

as before. As in Ho et al. (2020); Song et al. (2021), we note that the use of exponential moving average (EMA) can
lead to better performance. Therefore, we use the EMA model for the posterior sampling step. The EMA rate is 0.995
with an update every 10 training steps. For comparison, we also train diffusion models on the original data sets with the
aforementioned learning rate and batch size for 10000 steps. Finally, to examine the influence of the regularization weight λ
on the generated images, we consider a third model for MNIST trained on top of the 14000-step model with corrupted data.
For this model, we perform an additional posterior sampling step and then train for another 2000 steps with λ = 1. The
remaining details, including the model architecture, are the same as those for the 2D Maze experiment.

29

Thompson Sampling with Diffusion Generative Prior

Results. In Figures 14 and 15, we show images from the original data set, from the corrupted data set, and produced by
the trained models either by unconditional sampling or data reconstruction with Algorithm 2. Overall, our models manage
to generate images that resemble the ones from the original data set without overly sacrificing the diversity.

Nonetheless, looking at the samples for Fashion-MNIST we clearly see that a lot of details are lost in the images generated
by or reconstructed with diffusion models. In the case of training from perfect data, this can clearly be improved with
various modifications to the model including change in model architecture, number of diffusion steps, and/or sampling
algorithms (Karras et al., 2022). This would become more challenging in the case of training from imperfect data as the
image details can be heavily deteriorated by noise or missing pixels.

On the other hand, the effect of the regularization parameter λ can be clearly seen in the MNIST experiment from Figure 14.
Larger λ enables the model to produce digits that are more ‘connected’ but could cause other artifacts. As in any data
generation task, the definition of a good model, and accordingly the appropriate choice of λ, varies according to the context.

To summarize, we believe that the proposed training procedure has a great potential to be applied in various areas, including
training from noisy and incomplete image data, as demonstrated in Figures 14 and 15. However, there is still some way to
go in making the algorithm being capable of producing high-equality samples for complex data distribution.

G. Expected Reward Visualization
In Figures 16 to 21 we provide various visualizations of the bandit mean reward vectors either of the training sets or
generated by the learned priors.

30

Thompson Sampling with Diffusion Generative Prior

(a) 40 samples from the perfect training set Dtr.

(b) 40 samples from the perfect training set Dtr, reordered to put the arms of the same group together. The popular arms are on the
right side of the figure.

(c) 40 mean reward vectors generated the diffusion model trained on perfect data, reordered to put the arms of the same group
together. The popular arms are on the right side of the figure.

(d) 50 mean reward vectors generated by the 25-component GMM fitted on perfect data, reordered to put the arms of the same
group together. The popular arms are on the right side of the figure.

Figure 16. Visualization of the mean reward vectors of the Popular and Niche problem. Rows and columns correspond to tasks and
arms. The darker the color the higher the value, with white and black representing respectively 0 and 1. Diffusion models manage to learn
the underlying patterns that become recognizable by humans only when the arms are grouped in a specific way.

31

Thompson Sampling with Diffusion Generative Prior

(a) 100 samples from the perfect training set Dtr.

(b) 60 samples from the perfect training set Dtr, grouped by labels and showing only 5 labels. Note that each arm has multiple
labels and thus appears in multiple groups.

(c) 60 mean reward vectors generated by the diffusion model trained on perfect data, grouped by labels and showing only 5 labels.
Note that each arm has multiple labels and thus appears in multiple groups.

(d) 60 mean reward vectors generated by the 25-component GMM fitted on perfect data, grouped by labels and showing only 5
labels. Note that each arm has multiple labels and thus appears in multiple groups.

Figure 17. Visualization of the mean reward vectors of the Labeled Arms problem. Rows and columns correspond to tasks and arms.
The darker the color the higher the value, with white and black representing respectively 0 and 1. While human eyes can barely recognize
any pattern in the constructed vectors, diffusion models manage to learn the underlying patterns that become recognizable by humans only
when the arms are grouped in a specific way.

32

Thompson Sampling with Diffusion Generative Prior

(a) 40 samples from the imperfect training set Ďtr. Red squares indicate missing values.

(b) 40 mean reward vectors generated by the diffusion model trained on imperfect data.

Figure 18. Mean reward vectors of the Popular and Niche problem. Rows and columns correspond to tasks and arms. For ease of
visualization, the arms are reordered so that arms of the same group are put together and popular arms are on the right of the figures. The
darker the color the higher the value, with white and black representing respectively 0 and 1.

(a) 60 samples from the imperfect training set Ďtr. Red squares indicate missing values.

(b) 60 mean reward vectors generated by the diffusion model trained on imperfect data.

Figure 19. Mean reward vectors of the Labeled Arms problem. Rows and columns correspond to tasks and arms. For ease of
visualization, the arms are grouped by labels and only arms that are associated to 5 labels are shown. The darker the color the higher the
value, with white and black representing respectively 0 and 1.

33

Thompson Sampling with Diffusion Generative Prior

(a) 50 samples from the perfect training set Dtr.

(b) 50 mean reward vectors generated by the diffusion model trained on perfect data.

(c) 50 mean reward vectors generated by the 25-component GMM fitted on perfect data.

(d) 50 samples from the imperfect training set Ďtr. Red squares indicate missing values.

(e) 50 mean reward vectors generated by the diffusion model trained on imperfect data.

Figure 20. Mean reward vectors of the iPinYou Bidding problem. Rows and columns correspond respectively to tasks and arms. For
visualization purpose, we order the tasks by the position of their optimal arm. The darker the color the higher the value, with white and
black representing respectively 0 and 1.

34

Thompson Sampling with Diffusion Generative Prior

(a) Sample from the perfect training set Dtr.

(b) Sample generated by the diffusion model trained on perfect
data.

(c) Sample generated by the 25-component GMM fitted on prefect
data.

(d) Sample from the imperfect training set Ďtr. Red squares and
edges indicate missing values.

(e) Sample generated by the diffusion model trained on imperfect
data.

Figure 21. The weighted grid graphs and the corresponding 2D maze representations of the 2D Maze problem. For visualization, the
weights (mean rewards) are first clipped to [−1, 0]. Then, for the grid graphs darker the color higher the mean reward (i.e., closer to 0)
while for the maze representations it is the opposite. Also note that for the maze representations only a part of the pixels correspond the
the edges of the grid graphs, while the remaining pixels are filled with default colors (black or white). The red paths indicate the optimal
(super-)arms.

35

