
Omnipredictors for Constrained Optimization

Lunjia Hu * 1 Inbal Rachel Livni Navon * 1 Omer Reingold * 1 Chutong Yang * 1

Abstract
The notion of omnipredictors (Gopalan, Kalai,
Reingold, Sharan and Wieder ITCS 2022), sug-
gested a new paradigm for loss minimization.
Rather than learning a predictor based on a known
loss function, omnipredictors can easily be post-
processed to minimize any one of a rich family
of loss functions compared with the loss of hy-
potheses in a class C. It has been shown that such
omnipredictors exist and are implied (for all con-
vex and Lipschitz loss functions) by the notion
of multicalibration from the algorithmic fairness
literature. In this paper, we introduce omnipredic-
tors for constrained optimization and study their
complexity and implications. The notion that we
introduce allows the learner to be unaware of the
loss function that will be later assigned as well
as the constraints that will be later imposed, as
long as the subpopulations that are used to define
these constraints are known. We show how to
obtain omnipredictors for constrained optimiza-
tion problems, relying on appropriate variants of
multicalibration. We also investigate the implica-
tions of this notion when the constraints used are
so-called group fairness notions.

1. Introduction
A predominant usage for outcome prediction is to inform
the choice of a related action. Predicting the probability of
a medical condition may help decide on a medical interven-
tion or determine a life insurance premium rate. Predicting
the probability of rain may help decide on the method of
commuting to work or on a vacation destination or on wed-
ding plans. For each possible action and outcome pair, there
may be an associated loss – the cost of catching a cold while
riding to work on a bike in the rain or perhaps the cost of
changing a wedding venue at the last minute. A learning
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algorithm may try to come up with a hypothesis that de-
termines an action to minimize an expected loss based on
a particular loss function. The challenge in this prevalent
paradigm of loss minimization is that different loss func-
tions call for very different learning algorithms, which is
problematic for a variety of reasons (e.g. multiple relevant
loss functions or loss functions that are undetermined at
the time of learning). The notion of omnipredictors that
was introduced recently by Gopalan, Kalai, Reingold, Sha-
ran and Wieder (Gopalan et al., 2022) provides a way to
learn a single predictor that can be naturally post-processed
(without access to data) to an action that minimizes any one
of a very wide collection of loss functions. Gopalan et al.
(2022) showed that omniprediction is implied by multicali-
brated prediction, a notion introduced by Hébert-Johnson,
Kim, Reingold and Rothblum in the algorithmic fairness
literature (Hébert-Johnson et al., 2018).

While loss minimization is a natural goal, it may not be the
only consideration in choosing an action. There may, for
example, be capacity constraints (e.g. a limited number of
vaccines) as well as fairness and diversity considerations.
In this work, we introduce a notion of omniprediction that
applies to the task of loss minimization conditioned on a
set of constraints. For example, imagine we are deciding on
which patients would receive a medical intervention when
the budget for offering that intervention is limited (capacity
constraint), or when we want this intervention to be assigned
proportionally to the size of two subpopulations (statistical
parity), or when we want the probability of receiving an
intervention among patients who experience medical com-
plications to be the same in two different subpopulations
(equal opportunity). Our notion of omniprediction allows
learning a single predictor that could be used to minimize
a large collection of loss functions, even when arbitrary
subsets of constraints are imposed from a rich family of con-
straints. We show how to formalize such a notion (exposing
subtleties not existing in the original notion of omnipredic-
tion), how to obtain it using some variants of multicalibra-
tion, demonstrating that seeking an accurate depiction of
the current world may be useful even when the final goal
is a socially engineered action. Finally, we study the inter-
action between loss minimization and fairness constraints,
showing that loss minimization has the potential to support
fairness objectives.
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Unconstrained Omniprediction. We assume a distribu-
tion D, over pairs (x, y), where x ∈ X represents an indi-
vidual, and y represents an outcome associated with x. For
example, x is the attributes of a patient and y is whether
that patient experienced a specific medical condition (in this
paper, we will consider Boolean outcomes, i.e., y ∈ {0, 1},
but the notion could be generalized). We consider individ-
ual loss functions. A loss function ℓ is applied to an action
a and an outcome y and signifies the loss ℓ(y, a) incurred
when taking action a and observing outcome y (as we will
discuss below, our results apply to a more general set of
loss functions that can take into account membership of an
individual in some predefined subpopulation).

The learning task of loss minimization is to learn a func-
tion c mapping individuals to actions such that the expected
loss, E(x,y)∼D[ℓ(y, c(x))], is at least as small (up to some
error term) as E(x,y)∼D[ℓ(y, c

′(x))] for any function c′ in a
hypothesis class C. Note that different loss functions may re-
quire different functions c and different learning algorithms
to train them. The notion of omniprediction offers a way
for a single algorithm to learn a predictor p : X → [0, 1]
that allows optimizing any loss function in a rich family
(e.g. all loss functions that are convex and κ-Lipschitz in
the action). In this sense, p imitates the true probability
predictor p∗ : X → [0, 1] where p∗(x) = PrD[y = 1 | x].
Note that for every “nice” loss function, it is fairly easy to
transform p∗(x) to an action a = τℓ(p

∗(x)) that individ-
ually minimizes ℓ(y, a) (conditioned on x). Loosely, p is
an (L, C)-omnipredictor if for every ℓ ∈ L, applying τℓ to
p to get c(x) = τℓ(p(x)) minimizes loss ℓ compared with
the class C. An omnipredictor resolves the aforementioned
disadvantage of traditional loss minimization as it can be
trained without knowledge of the specific loss function cho-
sen and the loss function is only needed to decide on an
action.

It has been shown in (Gopalan et al., 2022) that omnipredic-
tion is a somewhat surprising application of the notion of
multicalibration, introduced by Hébert-Johnson et al. (2018)
with the motivation of preventing unfair discrimination. Cal-
ibration roughly asks that every prediction value be accurate
on average over the instances when the prediction value is
given. Multicalibration asks a predictor to be calibrated not
only over the entire population but also on many subpop-
ulations (thus, a multicalibrated predictor cannot trade the
accuracy of a relevant minority group for the benefit of the
majority population). Ignoring some subtleties, a predic-
tor p is C-multicalibrated (up to error α) if for all c ∈ C,∑

v

∣∣E(x,y)∼D[(y − v)c(x)1(p(x) = v)]
∣∣ ≤ α, where the

summation is over v in the range of p (we assume the range
is finite). It is shown in (Gopalan et al., 2022) that a C-
multicalibrated predictor is also an (L, C)-omnipredictor for
a wide class of loss functions (all convex and Lipschitz loss
functions), and Gopalan et al. (2023) relax the multicali-

bration requirement to calibrated multiaccuracy when the
loss functions have additional properties (e.g. when they
are induced by generalized linear models). As we discuss
in Appendix G, many previous algorithms can construct
multiaccurate and multicalibrated predictors, and some of
these algorithms have been implemented in real applications
such as mortality risk prediction (Barda et al., 2020).

Constraints are Essential but Challenging. Omnipredic-
tors constructed in previous work (Gopalan et al., 2022;
2023) allow us to efficiently solve various downstream loss
minimization tasks. Each of these tasks aims to minimize
the expectation of a loss function and beyond that the solu-
tions to these tasks are not guaranteed to satisfy any non-
trivial constraints. However, many loss minimization prob-
lems in practice naturally come with constraints that can-
not be simply expressed as minimizing an expected loss
E(x,y)∼D[ℓ(y, c(x))]. For example, if an action c(x) repre-
sents the amount of resources allocated to individual x, it is
common to impose a budget constraint E[c(x)] ≤ B for an
average budget B per individual. Other natural constraints
come from the algorithmic fairness literature and are known
as group fairness notions. Here, we assume that the entire
set X of individuals is partitioned into t subpopulations (i.e.,
groups) S1, . . . , St. Common examples of group fairness
constraints include statistical parity (E[c(x)|x ∈ Si] being
approximately equal for every choice of i = 1, . . . , t), equal
opportunity (E[c(x)|x ∈ Si, y = 1] being approximately
equal for every i), and equalized odds (for every b = 0, 1,
the expectation E[c(x)|x ∈ Si, y = b] being approximately
equal for every i).

Constraints as basic as the budget constraint already im-
pose challenges to the omniprediction results in previous
work. This is because in previous work the final action
c(x) = τℓ(p(x)) is extremely local: it depends only on
the loss function ℓ and the prediction p(x) for that single
individual x. Even if p(x) equals the true conditional prob-
ability PrD[y = 1|x], such local actions that completely
ignore the marginal distribution over individuals and the
predictions p(x′) for other individuals x′ ∈ X \ {x} can-
not in general minimize the squared loss under even the
simplest budget constraint (see Appendix A). While a loss
function can be optimized for every individual separately, to
determine whether an action c(x) would violate the budget
constraint, it is necessary to know the actions c(x′) assigned
to other individuals x′ ∈ X \ {x}. When constraints are
present, omnipredictors are only possible when we allow
more flexible ways of turning predictions into actions.

1.1. Our Contributions

We start by generalizing the powerful notion of omnipredic-
tion to more widely-applicable loss minimization tasks that
have constraints.
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Defining Omniprediction for Constrained Loss Min-
imization. We consider constrained loss minimization
tasks in general forms, where every task has an objective
function f0 : X ×A× {0, 1} → R and a collection of con-
straint functions fj : X×A×{0, 1} → R indexed by j ∈ J .
The goal of the task is to find an action function c : X → A
that minimizes the objective E(x,y)∼D[f0(x, c(x), y)] while
satisfying the constraints E(x,y)∼D[fj(x, c(x), y)] ≤ 0 for
every j ∈ J . Results in this paper extend to more gen-
eral tasks where we use an arbitrary Lipschitz function to
combine constraints as well as objectives (Appendix E).

Following previous work, for a class T of tasks and a class
C of hypotheses c : X → A, we say a predictor p : X →
[0, 1] is an omnipredictor if it allows us to “efficiently solve”
any task T ∈ T compared to the hypotheses in C. More
specifically, in our constrained setting, an omnipredictor p
allows us to “efficiently produce” a good action function
c : X → A for any task T ∈ T such that c approximately
satisfies all the constraints in T , and the objective achieved
by c does not exceed (up to a small error) the objective of
any c′ ∈ C that satisfy all the constraints of T .

A key challenge in formalizing omniprediction for con-
strained loss minimization is to specify the procedure of
“efficiently turning” a predictor p : X → [0, 1] into an action
function c : X → A for a specific task T ∈ T . As discussed
earlier, previous work only allows c(x) to be τ(p(x)) for
a transformation function τ that only depends on T , and
this local transformation is not sufficient in our constrained
setting. We need more flexible transformations, and we
also need to maintain the efficiency of such transforma-
tions. We solve this challenge by examining the semantics
behind the transformation τ(p(x)) in previous work: this
transformation corresponds to solving the task T optimally
while pretending that p(x) is the true conditional probability
PrD[y = 1|x]. We thus use transformations induced by
solving the task on a simulated distribution defined by p in
our definition of omniprediction (Definition 2.1). We show
that this not only makes omniprediction possible for con-
strained problems, but also maintains the efficiency of the
transformation. Moreover, as we discuss below, we can con-
struct omnipredictors for important families of constrained
loss minimization problems from group-wise variants of the
multiaccuracy and/or multicalibration conditions. Note that
conditions such as multiaccuracy and multicalibration are
already needed in previous omniprediction results that do
not handle constraints!

Constructing Omnipredictors for Group Objectives and
Constraints. We develop omnipredictors for an important
class of constrained loss minimization tasks, namely, tasks
with group objectives and constraints. Here, as in many
problems in the fairness literature, we assume that the set X
of individuals is partitioned into t groups S1, . . . , St, and

we let g : X → [t] denote the group partition function,
i.e., g(x) = i if and only if x ∈ Si. We say an objec-
tive/constraint function f : X × A × {0, 1} → R is a
group constraint if there exists f ′ : [t]× A× {0, 1} → R
such that f(x, a, y) = f ′(g(x), a, y) for every (x, a, y) ∈
X×A×{0, 1}. Tasks with group objectives and constraints
are significantly more general than unconstrained tasks in
previous work with a loss function ℓ(y, a) that does not
depend on the individual x at all.

In Section 4, we show that omnipredictors for loss minimiza-
tion problems with group objectives and constraints can be
obtained from group-wise multiaccuracy and/or multical-
ibration conditions. Here, group-wise multiaccuracy and
multicalibration require the predictor to satisfy multiaccu-
racy and multicalibration when conditioned on every group
Si (see Section 2.3 for formal definitions). Specifically, we
show the following results from the simplest setting to more
challenging ones:

1. We start by considering a simple but general class of
objectives/constraints that are convex and special (Defi-
nition 4.2). Objectives in this class include the common
ℓ1 loss, the squared loss, loss induced by generalized
linear models (up to scaling), and group combinations
of these loss functions (e.g. each group chooses the ℓ1
or the squared loss). Constraints in this class include
budget constraints and group fairness constraints such
as statistical parity, equal opportunity, and equalize
odds. In Theorem 4.4, we show that omnipredictors
for tasks with convex and special group objectives and
constraints can be obtained from group multiaccuracy
w.r.t. the hypothesis class C plus group calibration. This
generalizes the results in (Gopalan et al., 2023) to our
constrained and multi-group setting.

2. In Theorem 4.6, we show that for general convex and
Lipschitz group objectives and constraints, we can con-
struct omnipredictors from group multicalibration w.r.t.
C. This generalizes the results in (Gopalan et al., 2022)
to our constrained and multi-group setting.

3. In Theorem 4.7, we show that for general (non-convex)
group objectives and constraints, omnipredictors can
be obtained from group calibration plus group level-
set multiaccuracy w.r.t. C, namely, being accurate in
expectation over individuals x ∈ Si with c(x) = a for
every group i, hypothesis c ∈ C, and action a.

We provide counterexamples in Appendix I to show that it
is necessary to strengthen multiaccuracy/multicalibration to
their group-wise and occasionally level-set variants in our
constrained setting.

We prove all our omniprediction results in a unified and
streamlined fashion using Lemma 3.1. Previously, Gopalan
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et al. (2023) also aim to build a unified framework for om-
nipredictors using the notion of outcome indistinguishability
(Dwork et al., 2021). While the initial omniprediction result
in (Gopalan et al., 2022) requires multicalibration (as an
unconstrained special case of our Theorem 4.6), Gopalan
et al. (2023) only require a weaker calibrated multiaccuracy
condition (as an unconstrained special case of our Theo-
rem 4.4) and they provide a simpler and more structured
analysis than Gopalan et al. (2022). However, the result in
Gopalan et al. (2023) requires the loss functions to satisfy
additional properties (we call such loss functions special
objectives in Definition 4.2), and it particularly focuses on
loss functions induced by generalized linear models. That
is, Gopalan et al. (2023) fall short of providing a simple
analysis that fully reconstructs the result in Gopalan et al.
(2022). By proving Theorems 4.4 and 4.6, we show that our
streamlined analysis using Lemma 3.1 can not only recon-
struct the results in Gopalan et al. (2022; 2023), but also
generalize them to the constrained setting.

Loss Minimization Can Augment Fairness. When solv-
ing an optimization task T using an omnipredictor p, for
fairness and interpretability reasons, it is natural to require
the solution c to be rank-preserving. That is, we require
c(x) ≥ c(x′) when p(x) ≥ p(x′). For example, this could
mean that we grant higher loans to individuals predicted
more likely to repay it. A violation of the rank-preserving
property corresponds to granting excessive loans to people
that are likely to default on it, which causes harm to these
individuals as well as the ones that deserve the loans more.
With group constraints, it makes more sense to only require
ranks to be preserved within each group, i.e., for individuals
x, x′ satisfying g(x) = g(x′). This is a necessary relaxation,
as group fairness constraints aim to increase opportunities
for individuals from certain groups (e.g. to rectify histori-
cal discrimination), which would not always preserve ranks
between individuals from different groups. However, some
unreasonable objectives would incentivize the solution to
be not rank-preserving even within a group. For example,
an unreasonable objective could be f(x, a, y) = 1− |a− y|
for all x ∈ Si, and f(x, a, y) = |a − y| for all other x,
assuming the actions a are in [0, 1] after scaling. This ob-
jective incentivizes giving loans to individuals in Si that
are likely to default on it, instead of those that are likely
to repay it. A group fairness constraint, such as parity, can
enforce giving a fair total amount of loan to the individuals
in Si but cannot promise that the loans are given to those
predicted to be more likely to repay it. This limitation of
group fairness notions has been repeatedly demonstrated (cf.
(Dwork et al., 2012) for an early example), and often abuses
of these notions lead to violations of the rank-preserving
requirement as in the example. In Section 5, we formally
study the conditions of the objective and constraints under
which we can ensure that the solution c obtained from an

omnipredictor p is rank-preserving within every group.

1.2. Related Work

Loss minimization under fairness or other constraints is a
rich research area. For any given fairness definition, it is nat-
ural to ask how to learn under the corresponding constraints
and how to minimize loss (or maximize utility). This has
been studied for various group notions of fairness (cf (Zafar
et al., 2017b)) but also for more refined notions such as met-
ric fairness and multi-group metric fairness (Dwork et al.,
2012; Rothblum & Yona, 2018; Kim et al., 2018). A com-
mon approach to combining loss minimization with fairness
constraints is to add a fairness regularizer to the risk mini-
mization (Donini et al., 2018; Kamishima et al., 2012; Zafar
et al., 2017b). Non-convex constraints have been considered
in (Cotter et al., 2019). Accordingly, they also formulate
the problem as a non-convex optimization problem which
may be hard to solve. There is also a line of empirical work
on loss minimization with fairness constraints (Zemel et al.,
2013; Zafar et al., 2017a; Goh et al., 2016). Finally, some
recent related works focus on other learning setting under
fairness constraint, like learning policies (Nabi et al., 2019),
online learning (Bechavod & Roth, 2022), federated learn-
ing (Hu et al., 2022b), and ranking (Dwork et al., 2019).

A key difference between our work and most previous work
on loss minimization is that we aim for learning a single
predictor that can efficiently solve a variety of downstream
constrained loss minimization tasks. Moreover, as we do
not make any assumption on the true data distribution D,
we consider it infeasible to learn the distribution D entirely
and we only require conditions such as multicalibration that
can be much easier to achieve using existing algorithms
in the literature. Some works, such as (Celis et al., 2019;
Agarwal et al., 2018; Narasimhan, 2018; Sharifi-Malvajerdi
et al., 2019), can deal with multiple loss minimization tasks
but they require approximately learning the true distribution
D within a small total variation distance or approximately
learning the true labels.

In an influential paper, Hardt, Price and Srebro (Hardt et al.,
2016) propose equalized odds and equal opportunity as
group notions of fairness. They give methods of post-
processing a predictor to enforce these constraints while
minimizing loss. They show optimality compared with solu-
tions that can be obtained from post-processing the predictor,
whereas in this work we directly aim for optimality with
respect to a rich pre-specified hypothesis class C. We con-
sider more general loss functions with real-valued actions
compared to the loss functions in (Hardt et al., 2016) that
only take binary values as input, and we also consider more
general constraints beyond the group fairness constraints in
(Hardt et al., 2016).

Rothblum & Yona (2021) use the notion of outcome in-
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distinguishability (Dwork et al., 2021), closely related to
multicalibration, to obtain loss minimization, not only on the
entire population but also on many subpopulations. Their
approach relies on a locality property of the loss function
which they term f -proper. When this property is satisfied,
for every fixed individual x0 ∈ X , the optimal action c(x0)
for that individual x0 only depends on E[y|x = x0] and not
on E[y|x = x1] for other individuals x1 ∈ X \ {x0}. In our
constrained setting, this locality property fails to hold: to
satisfy a group constraint, the action c(x0) must coordinate
with the actions c(x1) for other individuals x1 in or out of
the group/subpopulation of x0.

Independently of our work, Globus-Harris et al. (2022) also
study the problem of solving downstream tasks by post-
processing multicalibrated predictors. They focus on the
0-1 loss for classification tasks and thus their results do not
imply the full power of omnipredictors that handle arbitrary
loss functions from a rich family. They also focus on a
few specific group fairness constraints, whereas we consider
more general classes of constraints. By assuming multical-
ibration with respect to delicately-designed classes, their
predictors can be efficiently post-processed to satisfy con-
straints on intersecting groups. Again independently of our
work, Kim & Perdomo (2023) study omniprediction in an
(unconstrained) performative setting, where the distribution
of the outcome y of an individual x can change based on
the action c(x).

1.3. Limitations and Social Impacts

While our work is theoretical, we view it as giving a foun-
dation and proof-of-concept for potential omnipredictors to
be deployed in the real world with fairness considerations.
Omnipredictors allow us to efficiently solve optimization
problems and adapt to rich families of objectives and con-
straints, but carelessly choosing constraints and objectives
for the omnipredictors may not always lead to good deci-
sions. In some situations, different fairness constraints can
lead to contradictory fairness guarantees, and choosing a
wrong fairness constraint may lead to inappropriate actions.
Our results in Section 5 are motivated by situations where
fairness constraints alone are not enough for acceptable ac-
tions and a good objective is needed to augment the fairness
constraints for arguably fairer actions. In terms of limita-
tions of the results, our omnipredictors rely on a fixed group
partition g and a fixed (unknown) distribution D, and it re-
mains an interesting question to construct omnipredictors
that can adapt to changes in g and D as well. Addressing
this limitation could help protect new and evolving subpopu-
lations. It is an interesting question whether our techniques
(in particular Lemma 3.1) can be applied to tasks with more
general outcomes beyond binary outcomes y ∈ {0, 1}. Un-
constrained versions of such tasks have been considered by
Gopalan et al. (2022), and we leave it for future work to

generalize their results to the constrained setting.

2. Problem Setup
Throughout the paper, we use X to denote a non-empty
set of individuals, and use D to denote a distribution over
X × {0, 1}. We use A to denote a non-empty set of ac-
tions, and use c : X → A to denote an action function
that assigns an action c(x) to every individual x ∈ X (e.g.
hiring the individual or not). We occasionally consider a
randomized action function c : X → ∆A that assigns every
individual x ∈ X a distribution c(x) ∈ ∆A over actions
in A. For generality we sometimes only make statements
about randomized action functions, where one should view
a deterministic action function c : X → A as the random-
ized action function c′ : X → ∆A where c′(x) ∈ ∆A is the
degenerate distribution supported on c(x) for every x ∈ X .

2.1. Constrained Loss Minimization Tasks

Given a loss function f0 : X × A × {0, 1} → R and a
collection of constraints fj : X ×A× {0, 1} → R indexed
by j ∈ J , we define a constrained loss minimization task T
to be the following optimization problem:

minimize
c:X→A

E
(x,y)∼D

f0(x, c(x), y) (1)

s.t. E
(x,y)∼D

fj(x, c(x), y) ≤ 0 for every j ∈ J.

It is often challenging to solve a task T optimally, and we
need to consider approximate and potentially randomized
solutions. For β ∈ R and ε ∈ R≥0, we define solD(T, β, ε)
to be the set of randomized action functions c : X → ∆A

satisfying

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ β, and

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) ≤ ε for every j ∈ J.

For a class C of functions c : X → ∆A, we define

optD(T, C, ε) := inf{β ∈ R : C ∩ solD(T, β, ε) ̸= ∅}.

Note that optD(T, C, ε) may take any value in R ∪ {±∞},
where we define inf ∅ = +∞. In Appendix E, we show how
results in this paper extend to more general tasks where we
combine constraints and objectives using arbitrary Lipschitz
functions.

2.2. Omnipredictors for Constrained Loss Minimization

An omnipredictor, as introduced by Gopalan et al. (2022),
allows us to solve a family of downstream loss minimiza-
tion tasks without training a different model from scratch
for every task in the family. Previous work focuses on om-
nipredictors for unconstrained loss minimization (Gopalan
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et al., 2022; 2023). We generalize this notion to constrained
loss minimization as follows.

For a distribution D over X × {0, 1} and a predictor
p : X → [0, 1], we define the simulated distribution Dp

to be the distribution of (x, y′) ∈ X ×{0, 1} where we first
draw (x, y) from D and then draw y′ from the Bernoulli dis-
tribution Ber(p(x)) with mean p(x). For a hypothesis class
C consisting of functions c : X → ∆A, suppose we want to
solve a downstream constrained loss minimization task T on
the true distribution D and we want a comparable or better
solution than the best hypothesis c ∈ C. An omnipredictor
p should allow us to achieve this goal by finding an approx-
imately optimal solution c′ from another, ideally simpler,
hypothesis class C′ for the same task T but on the simulated
distribution Dp defined by the omnipredictor p. Such an
omnipredictor is particularly powerful when it works for
tasks T from a rich family T and when solving any T ∈ T
on the simulated distribution Dp over hypothesis class C′

is significantly easier than directly solving T on the true
distribution D over hypothesis class C. This leads to the
following formal definition of an omnipredictor:

Definition 2.1. Let D be a distribution over X ×{0, 1} and
ε ≥ 0 be a parameter. Let T be a collection of constrained
loss minimization tasks and let p : X → [0, 1] be a predictor.
For classes C, C′ of functions c : X → ∆A, we say p is
a (T , C, C′, ε)-omnipredictor on D if the following holds
for any T ∈ T . Defining β := optD(T, C, 0) ∈ R and
β′ := optDp

(T, C′, ε/3) ∈ R, we have

C′ ∩ solDp
(T, β′ + ε/3, 2ε/3) ⊆ solD(T, β + ε, ε).

Suppose we have an omnipredictor p as in the definition
above, and we want to solve an arbitrary constrained loss
minimization task T ∈ T in comparison with the class C,
i.e., we want to find a solution in solD(T, β + ε, ε). Instead
of collecting data points from D and solve the task from
scratch, we just need to find a solution in C′ ∩ solDp

(T, β′ +
ε/3, 2ε/3), i.e., a solution c′ ∈ C′ that approximately solves
the task on the simulated distribution Dp. This is usually
much easier than solving the task on the original distribution
D for the following two reasons:

Simplicity from Dp. First, since we know p, we know
the conditional distribution of y given x in (x, y) ∼ Dp,
and thus the only unknown part about Dp is the marginal
distribution of x, which can be learned from unlabeled data
drawn from D (i.e., examples of x in (x, y) ∼ D with y
concealed). For all the omniprediction results in this paper,
we assume that the downstream tasks have a group structure
specified by a fixed group partition function g : X →
[t] (see Section 4). To solve such tasks on the simulated
distribution Dp, all we need to know about the marginal
distribution of x is the probability that x belongs to each of a
few subsets defined independently of the actual downstream

task. We can estimate these probabilities when we train the
omnipredictor p, and no additional data (labeled or not) is
needed at all when we use p to solve downstream tasks (see
Appendix H).

Simplicity from C′. Second, solving downstream tasks
over the new class C′ can be computationally much more
efficient than solving them over the original class C. In all
of the omniprediction results in this paper, we choose C′ to
be very simple (as Cp,g and Crand

p,g in Definition 4.3) so that
its complexity depends on the number of groups and the
size of the range of p, which can be made to be very small
(O(1/ε)), whereas C can be significantly more complex.
Specifically, every function in Cp,g (resp. Crand

p,g ) assigns
the same action (resp. same distribution over actions) to
individuals x with the same p(x) and g(x). In Appendix H
we give very efficient algorithms for solving constrained
loss minimization tasks given omnipredictors.

In previous work on omniprediction without constraints,
the optimal solution c on the simulated distribution Dp

is trivial to find: it is given by choosing c(x) so that
Ey∼Ber(p(x)) f0(x, c(x), y) is minimized (Bayes optimal so-
lution). That is, the optimal c(x) depends only on x, f0,
and p(x) (often f0 does not depend on x and thus c(x) only
depends on f0 and p(x)). Because of this locality property,
previous definitions of omniprediction for unconstrained
loss minimization simply explicitly uses the optimal solu-
tion on the simulated distribution Dp without defining a
task on Dp or even without defining Dp at all. Our Defi-
nition 2.1 not only generalizes these previous definitions,
but also deals with more challenging tasks with constraints
where the locality property fails to hold.

2.3. Group Multiaccuracy and Multicalibration

A main contribution of this paper is showing that om-
nipredictors for a variety of constrained loss minimization
problems can be obtained from group-wise multiaccuracy
and/or multicalibration conditions. The notions of multi-
accuracy and multicalibration are introduced by Hébert-
Johnson et al. (2018) and Kim et al. (2019), and there are
many algorithms for achieving these notions in previous
work (see Appendix G). We define these notions here as
special cases of the following generalized multicalibration
notion. For the definitions below, we assume D is a distri-
bution over X × {0, 1} and ε ≥ 0 is a parameter.

Definition 2.2 (Generalized multicalibration (GenMC) (see
e.g. Kim et al., 2022, Definition 1.1 in Supplementary Infor-
mation)). Let W be a class of functions w : X × [0, 1] →
R. We say a predictor p : X → [0, 1] satisfies (W, ε)-
generalized multicalibration w.r.t. distribution D if∣∣∣∣ E

(x,y)∼D
[(y − p(x))w(x, p(x))]

∣∣∣∣ ≤ ε for every w ∈ W.
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For simplicity, we additionally require the range of p,
range(p) := {p(x) : x ∈ X}, to be a finite subset of [0, 1].1

We use GenMCD(W, ε) to denote the set of predictors p
satisfying the conditions above.

We define multiaccuracy and multicalibration below as spe-
cial cases of GenMC in a general group-wise setting, by
choosing an appropriate function class W in every definition.
Here, we assume that the set X of individuals is partitioned
into t groups (i.e., subpopulations). We use g : X → [t]
to denote the group partition function that assigns every
individual x ∈ X a group index g(x) ∈ [t] := {1, . . . , t}.
Definition 2.3 (Group Multiaccuracy (GrpMA)). For a class
H of functions h : X → R and group index g : X → [t],
we define GrpMAD(H, g, ε) to be the set GenMCD(W, ε)
where W consists of all functions w : X × [0, 1] → R
such that there exist h ∈ H and τ : [t] → [−1, 1] satisfy-
ing w(x, v) = h(x)τ(g(x)) for every (x, v) ∈ X × [0, 1].
We say a predictor p is (H, g, ε)-multiaccurate w.r.t. dis-
tribution D if p ∈ GrpMAD(H, g, ε). When the distribu-
tion D is clear from context, we often drop it and write
GrpMA(H, g, ε) (similarly for other definitions below).

In Appendix B we give an equivalent definition of GrpMA
in a form closer to similar definitions in the literature. We
do this for other definitions below in this section as well.
Definition 2.4 (Group Multicalibration (GrpMC)). For a
class H of functions h : X → R and group index
g : X → [t], we define GrpMCD(H, g, ε) to be the
set GenMCD(W, ε) where W consists of all functions
w : X × [0, 1] → R such that there exist h ∈ H
and τ : [t] × [0, 1] → [−1, 1] satisfying w(x, v) =
h(x)τ(g(x), v) for every (x, v) ∈ X × [0, 1]. We say a
predictor p is (H, g, ε)-multicalibrated w.r.t. distribution D
if p ∈ GrpMCD(H, g, ε).

The following definition of group calibration is a special
case of group multicalibration where H only contains the
constant function h that maps every x ∈ X to 1:
Definition 2.5 (Group Calibration (GrpCal)). We define
GrpCalD(g, ε) to be the set GenMCD(W, ε) where W con-
sists of all functions w : X × [0, 1] → [−1, 1] such
that there exists τ : [t] × [0, 1] → [−1, 1] satisfying
w(x, v) = τ(g(x), v) for every (x, v) ∈ X × [0, 1]. We
say a predictor p is (g, ε)-calibrated w.r.t distribution D if
p ∈ GrpCalD(g, ε).

The following definition is a variant of group multiaccuracy
where the transformation τ also takes the function value

1As we discuss in Appendix H, a simple discretization allows
us to get a predictor p with range(p) ⊆ {0, 1/m, 2/m, . . . , 1} for
m = O(1/ε) that satisfy all the group multiaccuracy and multical-
ibration requirements we need for our results. Also, all previous
algorithms for achieving multicalibration naturally produce predic-
tors with such discrete ranges.

h(x) as input, and we view individuals x with the same
h(x) as belonging to the same level set of h.
Definition 2.6 (Group Level-Set Multiaccuracy (GrpLMA)).
For an arbitrary finite set A and a class H of functions
h : X → A, we define GrpLMAD(H, g, ε) to be the
set GenMCD(W, ε) where W consists of all functions
w : X × [0, 1] → [−1, 1] such that there exist h ∈ H and
τ : [t] × A → [−1, 1] satisfying w(x, v) = τ(g(x), h(x))
for every (x, v) ∈ X × [0, 1]. We say a predictor p
is (H, g, ε)-level-set multiaccurate w.r.t distribution D if
p ∈ GrpLMAD(H, g, ε).

When the group partition function g is a constant function
g0 that assigns every individual to the same group, we re-
cover notions in the standard single-group setting: multiac-
curacy (MAD(H, ε) := GrpMAD(H, g0, ε)), multicalibra-
tion (MCD(H, ε) := GrpMCD(H, g0, ε)), and calibration
(CalD(ε) := GrpCalD(g0, ε)).

3. Our Approach
We describe our general approach for constructing and an-
alyzing omnipredictors for constrained loss minimization
tasks. Our approach is similar in spirit to the outcome indis-
tinguishability perspective taken by (Gopalan et al., 2023),
but our approach is more general: it takes constraints into
account and can also be applied to reconstruct the results
in previous papers on omnipredictors (Gopalan et al., 2022;
2023). In particular, we overcome the limitation of (Gopalan
et al., 2023) that it falls short of fully explaining the initial
omnipredictors results in (Gopalan et al., 2022). Our ap-
proach is based on the following key lemma:
Lemma 3.1. Let D be a distribution over X × {0, 1} and
ε ≥ 0 be a parameter. Let T be a collection of constrained
loss minimization tasks and let C, C′ be classes of func-
tions c : X → ∆A. If a predictor p satisfies the following
two properties for every T ∈ T , then p is a (T , C, C′, ε)-
omnipredictor on D:

1. Let f0 be the loss function of T and (fj)j∈J be the
constraints of T . For every c ∈ C, there exists c′ ∈ C′

such that for every j ∈ {0} ∪ J ,

E
(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)

≤ E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) + ε/3. (2)

2. For every c ∈ C′ and every j ∈ {0} ∪ J ,

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)

≤ E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) + ε/3. (3)

Lemma 3.1 reduces the task of constructing an omnipredic-
tor to satisfying the conditions in (2) and (3). We prove
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Lemma 3.1 in Appendix C and show how to apply it to
construct omnipredictors for a variety of constrained loss
minimization tasks in Section 4. Lemma 3.1 allows us
to give short and streamlined proofs for all our results in
Section 4, and these results generalize previous results in
(Gopalan et al., 2022; 2023) as special cases.

4. Omnipredictors from Group Multiaccuracy
and Multicalibration

In this section, we apply Lemma 3.1 and show that we
can obtain omnipredictors for loss minimization tasks with
group objectives and constraints from group multiaccuracy
and/or multicalibration conditions. Here, we assume that
the individual set X is partitioned into t groups by a group
partition function g : X → [t] assigning a group index
g(x) ∈ [i] to every individual x ∈ X .
Definition 4.1. For a group partition g : X → [t], we say
an objective/constraint function f : X × A× {0, 1} → R
is a group objective/constraint if there exists f ′ : [t]×A×
{0, 1} → R such that f(x, a, y) = f ′(g(x), a, y) for every
(x, a, y) ∈ X ×A× {0, 1}.

Proofs for the results in this section are deferred to Ap-
pendix D. These results show that algorithms in previous
work for achieving multiaccuracy and multicalibration al-
low us to obtain omnipredictors even when constraints are
imposed on the loss minimization tasks. We discuss these
algorithms in more detail in Appendix G.

We start with a basic case where the objectives and con-
straints are convex and special, defined below. We use
∂f(x, a) to denote f(x, a, 1)− f(x, a, 0).
Definition 4.2. Let the action set A ⊆ R be an interval. We
say an objective/constraint function f : X×A×{0, 1} → R
is convex if f(x, ·, y) is convex for every fixed (x, y) ∈
X × {0, 1}. We say f is special w.r.t a group partition
g : X → [t] if there exist τ1, τ2 : [t] → [−1, 1] such that
∂f(x, a) = τ1(g(x)) + τ2(g(x))a.

Examples of convex and special group objectives when A =
[0, 1] include the ℓ1 loss f(x, a, y) = |a− y|/2, the squared
loss f(x, a, y) = (a− y)2/2, and group-wise combinations
of them (every group chooses either ℓ1 or squared loss).
As demonstrated in (Gopalan et al., 2023), loss functions
induced from generalized linear models are also special
after appropriate scaling. Examples of convex and special
constraints include all linear constraints, i.e., constraint
functions f for which there exist τ1, τ2 : [t] → [−1, 1] and
τ3, τ4 : [t] → R such that

f(x, a, y) = τ1(i)y + τ2(i)ay + τ3(i) + τ4(i)a (4)

for every (x, a, y) ∈ X ×A× {0, 1} where i := g(x). Lin-
ear constraints are general enough to express fairness con-
straints such as statistical parity, equal opportunity (equal

true positive rates), and equalized odds (equal true positive
rates and equal false positive rates) as follows. For every
group i ∈ [t], define ri := Pr[g(x) = i], r+i := Pr[g(x) =
i|y = 1], and r−i := Pr[g(x) = i|y = 0]. These fairness
constraints can be expressed as2

E[1(g(x) = i)c(x)] = ri E[c(x)],
(statistical parity)

E[1(g(x) = i)c(x)y] = r+i E[c(x)y],
(equal true positive rates)

E[1(g(x) = i)c(x)(1− y)] = r−i E[c(x)(1− y)].
(equal false positive rates)

Each of the above fairness constraints can be written as
E[f(x, c(x), y)] = 0 for an appropriate f satisfying (4).
For example, for statistical parity, we choose f as follows:

f(x, a, y) = 1(g(x) = i)a− ria. (statistical parity)

Moreover, we can express approximate fairness con-
straints as a combination of linear constraints because
|E[f(x, c(x), y)]| ≤ α is equivalent to E[f(x, c(x), y) −
α] ≤ 0 and E[−f(x, c(x), y)− α] ≤ 0.

For tasks with group objectives/constraints, we often choose
the class C′ in our definition of omnipredictors (Defini-
tion 2.1) to be Cp,g and Crand

p,g in the following definition:
Definition 4.3. For an action set A, a group partition func-
tion g : X → [t] and a predictor p : X → [0, 1], we define
Cp,g to be the class consisting of all functions c : X → A
such that there exists τ : [t] × [0, 1] → A satisfying
c(x) = τ(g(x), p(x)) for every x ∈ X . We define Crand

p,g

to be the class consisting of all functions c : X → ∆A

such that there exists τ : [t] × [0, 1] → ∆A satisfying
c(x) = τ(g(x), p(x)) for every x ∈ X .

We now state our omniprediction theorem for convex and
special constraints and objectives. In the theorems below,
we use D to denote an underlying distribution over X ×
{0, 1} and use C to denote a class of functions c : X → A.
Theorem 4.4. Let A = [0, 1] be an action set and let g :
X → [t] be a group partition. Let T be a class of tasks that
only have group constraints and group objectives that are all
convex and special. Let p be a predictor in GrpMAD(C, g,
ε/6)∩GrpCalD(g, ε/6) and define Cp,g as in Definition 4.3.
Then p is a (T , C, Cp,g, ε)-omnipredictor on D.

We remark that the convexity assumption in the theorem
above can be removed if we replace Cp,g with Crand

p,g (The-
orem D.9), in which case we can handle any finite action

2Here for simplicity we assume that we know ri, r
+
i , r

−
i . These

quantities can be estimated from unlabeled data and a predictor
satisfying group calibration. It is also natural to compute and
store estimates for these quantities when we train an omnipredictor
before seeing downstream tasks because these estimates are helpful
for general tasks, not just for those with group fairness constraints
(see Appendix H).
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set A ⊆ [0, 1]. Once we construct an omnipredictor using
Theorem 4.4 (and other theorems in this section), we can
efficiently transform it into nearly optimal actions for any
task T ∈ T (see Appendix H). Theorem 4.4 generalizes
the results in (Gopalan et al., 2023) that hold in the single-
group unconstrained setting. Our following theorem deals
with general convex and Lipschitz group objectives and
constraints and it generalizes the results in (Gopalan et al.,
2022).

Definition 4.5. We say an objective/constraint function
f : X × A × {0, 1} → R is κ-Lipschitz if f(x, ·, y) is
κ-Lipschitz for every fixed (x, y) ∈ X × {0, 1}. We say f
has B-bounded difference if ∂f(x, a) ∈ [−B,B] for every
(x, a) ∈ X ×A.

Theorem 4.6. Let A = [0, 1] be an action set and let
g : X → [t] be a group partition. Let T be a class of
tasks that only have group objectives and group constraints
that are all convex and 1-Lipschitz and have 1-bounded
differences. Let p be a predictor in GrpMCD(C, g, ε/15) ∩
GrpCalD(g, ε/15) and define Cp,g as in Definition 4.3. Then
p is a (T , C, Cp,g, ε)-omnipredictor on D.

Finally, we consider general group constraints. These con-
straints allow us to constrain the entire distribution of c(x)
(e.g. constraints on Pr[c(x) ∈ A′] for A′ ⊆ A) and the
distribution of c(x) within each group (e.g. constraints on
Pr[c(x) ∈ A′, g(x) = i]).

Theorem 4.7. Let A be a finite non-empty action set and
let g : X → [t] be a group partition. Let T be a class
of tasks with group constraints and group objectives that
all have 1-bounded differences. Let p be a predictor in
GrpLMAD(C, g, ε/3)∩GrpCalD(g, ε/3) and define Crand

p,g as
in Definition 4.3. Then p is a (T , C, Crand

p,g , ε)-omnipredictor
on D.

We give counterexamples in Appendix I showing that
strengthening standard multiaccuracy and multicalibration
to their group-wise and/or level-set variants in the theorems
above is necessary.

5. Interaction between Group Fairness and
Loss Minimization

In this section we explain how we can use our omnipredic-
tors to get an additional property, which we call rank-
preserving. The intuition is that if we assume the predictor
p : X → [0, 1] describes an approximation to the true
probability Pr(x,y)∼D[y = 1], then we want individuals x
with higher p(x) to get higher action values, for real-valued
actions a ∈ R. This requirement can be thought of as a
fairness property, that individuals that are more likely to
succeed (within the same group) should get higher actions.

Definition 5.1. Let A ⊆ R be set of real-valued actions. We

say a transformation τ : [t]× [0, 1] → A is rank-preserving
if for all i ∈ [t] and v > v′ ∈ [0, 1] we have τ(i, v) ≥
τ(i, v′). Let p : X → [0, 1] be a predictor and g : X →
[t] be a group index function. We denote by rp-Cp,g the
set of all functions c ∈ Cp,g such that there exists a rank-
preserving transformation τ : [t] × [0, 1] → A satisfying
c(x) = τ(g(x), p(x)) for every x ∈ X .

Our goal is to show that for a large class of optimization
problems T , the post-processing of the omnipredictor can
output an optimal solution that is also rank-preserving. We
achieve this by showing that for every problem T ∈ T ,

optDp
(T, rp-Cp,g, ε) ≤ optDp

(T, Cp,g, ε). (5)

Inequality (5) implies that when we solve a downstream
task using an omnipredictor, i.e., when we compute a solu-
tion in Cp,g ∩ solDp

(T, β′ + ε/3, 2ε/3) as in Definition 2.1,
we can search only within the class rp-Cp,g instead of the
entire class Cp,g. This would ensure that our final solution
is rank-preserving. Searching over rp-Cp,g can be imple-
mented efficiently by adding linear constraints (for the rank-
preserving requirement) to the linear/convex programming
in Appendix H.

In Appendix F we prove Lemma F.4 showing that (5) holds
for a class of optimization problems when the loss functions
and constraints satisfy certain monotonicity conditions, and
there is a single linear constraint per group i ∈ [t]. In
Lemma F.6 we prove a randomized version of (5), when
the constraints are independent of the outcome y. We re-
mark that some monotonicity requirements from the loss
functions and the constraints are necessary to promise a
rank-preserving optimal solution.
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A. Constraints Require Global Transformations
We give a simple example where the optimal action c(x) for a constrained loss minimization problem depends not only
on the single prediction p(x) but also on the predictions p(x′) for other individuals x′ ̸= x, assuming that the predictor p
agrees with the ground truth: p(x) = E[y|x]. Let X = {x1, x2} be a set of two individuals, and let D be a distribution
of (x, y) ∈ X × {0, 1} such that the marginal distribution of x is the uniform distribution over X , and for a predictor
p : X → [0, 1] we have ED[y|x = xi] = p(xi) for every i = 1, 2. Consider the problem of minimizing the expected
squared loss ED[(y − c(x))2] under a budget constraint ED[c(x)] ≤ 1/2 over action functions c : X → R. Defining
a1 := c(x1), a2 := c(x2), p1 := p(x1), p2 := p(x2), we can write the problem as minimizing

ED[(y − c(x))2] =
1

2
(p1(1− a1)

2 + (1− p1)(0− a1)
2) +

1

2
(p2(1− a2)

2 + (1− p2)(0− a2)
2)

=
1

2
p1(1− p1) +

1

2
p2(1− p2) +

1

2
(a1 − p1)

2 +
1

2
(a2 − p2)

2 (6)

under the constraint a1 + a2 ≤ 1 over the variables a1, a2. Note that the first two terms in the objective (6) are independent
of the actions a1, a2, so minimizing (6) is equivalent to minimizing the Euclidean distance from point (a1, a2) to point
(p1, p2). The optimal solution (a1, a2) is given by projecting the two dimensional point (p1, p2) onto the feasible region
(grey area in Figure 1). It is clear that a1 depends on both p1 and p2, and similarly a2 depends on both p1 and p2. It is
straightforward to generalize this example to more than two individuals where the optimal action for any individual depends
on the predictions for all the other individuals.

<latexit sha1_base64="Qx0ggXRrXkBhVGnOY4qxl+7+kp4="></latexit>

(p1, p2)

<latexit sha1_base64="1iyI7m9Jrr9GeK0bsSHcD/37Hdo="></latexit>

(a1, a2)

<latexit sha1_base64="5W7rqZJvb2cseOr0zph/eIlElro="></latexit>

0

<latexit sha1_base64="0KnjvyGbn1sTW9o5SVrt6qR4NF8="></latexit>

1

<latexit sha1_base64="0KnjvyGbn1sTW9o5SVrt6qR4NF8="></latexit>

1

Figure 1. A simple constrained problem whose optimal solution has global dependence.

B. Proof of Equivalence in Multiaccuracy and Multicalibration Definitions
Below we state equivalent definitions of the notions in Section 2.3.

Equivalently to Definition 2.3, GrpMAD(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every
h ∈ H: ∑

i∈[t]

∣∣∣∣ E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]

∣∣∣∣ ≤ ε.

Equivalently to Definition 2.4, GrpMCD(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every
h ∈ H: ∑

i∈[t]

∑
v∈range(p)

∣∣∣∣ E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i, p(x) = v)]

∣∣∣∣ ≤ ε.

where the sum is over i ∈ [t] and v ∈ range(p).

Equivalently to Definition 2.5, GrpCalD(g, ε) is the set of predictors p : X → [0, 1] satisfying:

∑
i∈[t]

∑
v∈range(p)

∣∣∣∣ E
(x,y)∼D

[(y − p(x))1(g(x) = i, p(x) = v)]

∣∣∣∣ ≤ ε.
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Equivalently to Definition 2.6, GrpLMA(H, g, ε) is the set of predictors p : X → [0, 1] satisfying the following for every
h ∈ H: ∑

i∈[t]

∑
a∈A

∣∣∣∣ E
(x,y)∼D

[(y − p(x))1(g(x) = i, h(x) = a)]

∣∣∣∣ ≤ ε.

We prove the equivalence relationship for GrpMA. Similar proofs can be applied to other definitions.
Claim B.1. In Definition 2.3, a predictor p belongs to GrpMA(C, g, ε) if and only if∑

i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]| ≤ ε for every h ∈ H. (7)

Proof. We first show that p ∈ GrpMA(C, g, ε) implies (7). For a fixed h ∈ H , we choose τ : [t] → [−1, 1] such that

τ(i) = sign

(
E

(x,y)∼D
[(y − p(x))h(x)1(g(x) = i)]

)
, (8)

where sign(v) = 1 if v ≥ 0, and sign(v) = −1 if v < 0. By our assumption p ∈ GrpMA(C, g, ε),

ε ≥ E
(x,y)∼D

[(y − p(x))h(x)τ(g(x))]

=
∑
i∈[t]

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)τ(i)]

=
∑
i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]|. (by (8))

This proves (7). Now we prove that (7) implies p ∈ GrpMA(C, g, ε). For any h ∈ H and τ : [t] → [−1, 1],

E
(x,y)∼D

[(y − p(x))h(x)τ(g(x))]

=
∑
i∈[t]

E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)τ(i)]

≤
∑
i∈[t]

| E
(x,y)∼D

[(y − p(x))h(x)1(g(x) = i)]| (by τ(i) ∈ [−1, 1])

≤ ε. (by (7))

This proves p ∈ GrpMA(C, g, ε).

Remark B.2. The proof above can be adapted to show that if we restrict τ to only output values in {−1, 1} instead of [−1, 1],
we also get an equivalent definition of GrpMA, and this holds for other definitions in Section 2.3 as well.

C. Proof of Lemma 3.1
We restate and prove Lemma 3.1 below.

Lemma C.1. Let D be a distribution over X × {0, 1} and ε ≥ 0 be a parameter. Let T be a collection of constrained loss
minimization tasks and let C, C′ be classes of functions c : X → ∆A. If a predictor p satisfies the following two properties
for every T ∈ T , then p is a (T , C, C′, ε)-omnipredictor on D:

1. Let f0 be the loss function of T and (fj)j∈J be the constraints of T . For every c ∈ C, there exists c′ ∈ C′ such that for
every j ∈ {0} ∪ J ,

E
(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)

≤ E
(x,y)∼D

E
a∼c(x)

fj(x, a, y) + ε/3. (2)
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2. For every c ∈ C′ and every j ∈ {0} ∪ J ,

E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)

≤ E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) + ε/3. (3)

Proof. Fix an arbitrary task T ∈ T . Define β := optD(T, C, 0) and β′ := optDp
(T, C′, ε/3) as in Definition 2.1. By the

definition of β, for any β1 > β, there exists c ∈ C ∩ solD(T, β1, 0). By (2), there exists c′ ∈ C′ ∩ solDp(T, β1 + ε/3, ε/3).
This implies that β′ ≤ β1 + ε/3, and thus β′ ≤ β + ε/3. Now we have β′ + ε/3 ≤ β + 2ε/3, and thus

C′ ∩ solDp
(T, β′ + ε/3, 2ε/3) ⊆ C′ ∩ solDp

(T, β + 2ε/3, 2ε/3). (9)

Inequality (3) implies that for any β2 ∈ R and ε′ ∈ R≥0, C′ ∩ solDp(T, β2, ε
′) ⊆ solD(T, β2 + ε/3, ε′ + ε/3), and thus

C′ ∩ solDp
(T, β + 2ε/3, 2ε/3) ⊆ solD(T, β + ε, ε). (10)

Combining (9) and (10) completes the proof.

D. Proofs for Section 4
D.1. Proof of Theorem 4.4

Theorem 4.4. Let A = [0, 1] be an action set and let g : X → [t] be a group partition. Let T be a class of tasks that
only have group constraints and group objectives that are all convex and special. Let p be a predictor in GrpMAD(C, g,
ε/6) ∩ GrpCalD(g, ε/6) and define Cp,g as in Definition 4.3. Then p is a (T , C, Cp,g, ε)-omnipredictor on D.

We first prove three helper lemmas/claims below and then prove Theorem 4.4.
Claim D.1. For any predictor p : X → [0, 1], any function f : X ×A× {0, 1} → R and any c : X → A, we have

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))], (11)

where ∂f(x, a) := f(x, a, 1)− f(x, a, 0) for every (x, a) ∈ X ×A.

Proof. The claim is proved by plugging the following equation into the left-hand side of (11).

f(x, c(x), y) = f(x, c(x), 0) + y ∂f(x, c(x)).

We get

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y)

= E
(x,y)∼D

[f(x, c(x), 0) + y ∂f(x, c(x))]− E
(x,y)∼Dp

[f(x, c(x), 0) + y ∂f(x, c(x))].

The distributions D,Dp are identical on the x part, therefore f(x, c(x), 0) cancels out. The distribution Dp is defined such
that y = 1 with probability p(x), which finishes the proof.

Lemma D.2. In the setting of Theorem 4.4, for every c ∈ C, there exists c′ ∈ Cp,g such that for every convex and special
group objective/constraint f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼Dp

f(x, c′(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))]. (12)
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Since f is a special objective/constraint, there exist τ1, τ2 : [t] → [−1, 1] such that ∂f(x, c(x)) = τ1(g(x)) + τ2(g(x))c(x).
By our assumption that p ∈ GrpCal(g, ε/6), we have

E
(x,y)∼D

[(y − p(x))τ1(g(x))] ≥ −ε/6.

By our assumption that p ∈ GrpMA(C, g, ε/6), we have

E
(x,y)∼D

[(y − p(x))τ2(g(x))c(x)] ≥ −ε/6.

Combining them, we have

E
(x,y)∼D

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼D

[(y − p(x))(τ1(g(x)) + τ2(g(x))c(x))] ≥ −ε/3. (13)

Finally, define τ such that τ(i, v) = E[c(x)|g(x) = i, p(x) = v] and define c′(x) = τ(g(x), p(x)). It is clear that c′ ∈ Cp,g .
Moreover, by the convexity of f , we have

E
(x,y)∼Dp

f(x, c′(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y).

Combining this with (12) and (13) completes the proof.

Lemma D.3. In the setting of Theorem 4.4, for every c ∈ Cp,g, for every convex and special group objective/constraint
f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼D

f(x, c(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c(x))]. (14)

Since f is convex and special, there exists τ : [t] × A → [−2, 2] such that ∂f(x, a) = τ(g(x), a). Since c ∈ Cp,g, there
exists τ ′ : X × [0, 1] → A such that c(x) = τ(g(x), p(x)). Therefore,

E
(x,y)∼D

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼D

[(y − p(x))τ(g(x), τ ′(g(x), p(x)))] ≤ ε/3, (15)

where the last inequality holds by our assumption that p ∈ GrpCal(g, ε/6). Combining (14) and (15) completes the
proof.

Proof of Theorem 4.4. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.4 and observing that (2)
and (3) in Lemma 3.1 can be established by Lemma D.2 and Lemma D.3, respectively.

D.2. Proof of Theorem 4.6

Theorem 4.6. Let A = [0, 1] be an action set and let g : X → [t] be a group partition. Let T be a class of tasks that only
have group objectives and group constraints that are all convex and 1-Lipschitz and have 1-bounded differences. Let p be
a predictor in GrpMCD(C, g, ε/15) ∩ GrpCalD(g, ε/15) and define Cp,g as in Definition 4.3. Then p is a (T , C, Cp,g, ε)-
omnipredictor on D.

We first prove three helper lemmas below and then prove Theorem 4.6.

Lemma D.4 ((Gopalan et al., 2022)). Let c : X → R be a function. Let g : X → [t] be a group partition function. Let
f : X × R× {0, 1} → R be a convex 1-Lipschitz group objective/constraint (Definitions 4.1, 4.2 and 4.5). Define τ, τ ′ :
[t] → R such that τ(i) = E[y|g(x) = i] and τ ′(i) = E[c(x)|g(x) = i] for every i ∈ [t]. Assume that

∑
i∈[t] |E(x,y)∼D[(y−

τ(i))c(x)1(g(x) = i)]| ≤ ε. We have

E
(x,y)∼D

[f(x, τ ′(g(x)), y)] ≤ E
(x,y)∼D

[f(x, c(x), y)] + 2ε.
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Lemma D.4 is essentially Theorem 19 in (Gopalan et al., 2022). The only difference is that in (Gopalan et al., 2022), the
function f is not allowed to depend on x, whereas in Lemma D.4, we allow f to depend on the group index g(x) of x. The
proof in (Gopalan et al., 2022) can be used here without any essential change.
Lemma D.5. In the setting of Theorem 4.6, for every c ∈ C, there exists c′ ∈ Cp,g such that for every convex 1-Lipschitz
group objective/constraint f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼Dp

f0(x, c
′(x), y) ≤ E

(x,y)∼D
f0(x, c(x), y) + ε/3. (16)

Proof. We fix an arbitrary c ∈ C and define τ, τ ′ : [t] × [0, 1] → [0, 1] such that τ(i, v) = E[y|g(x) = i, p(x) = v] and
τ ′(i, v) = E[c(x)|g(x) = i, p(x) = v] for every (i, v) ∈ [t]× [0, 1].

By our assumption that p ∈ GrpCal(g, ε/15),

E
(x,y)∼D

|p(x)− τ(g(x), p(x))| ≤ ε/15.

By our assumption that p ∈ GrpMC(C, g, ε/15),∑
i∈[t]

∑
v∈range(p)

| E
(x,y)∼D

[(y − p(x))c(x)1(g(x) = i, p(x) = v)]| ≤ ε/15.

Combining the inequalities above,∑
i∈[t]

∑
v∈range(p)

| E
(x,y)∼D

[(y − τ(g(x), p(x)))c(x)1(g(x) = i, p(x) = v)]| ≤ 2ε/15.

Define c′ : X → A such that c′(x) = τ ′(g(x), p(x)) for every x ∈ X . Clearly, c′ ∈ Cp,g . Taking the groups in Lemma D.4
to be {x ∈ X : g(x) = i, p(x) = v} here for (i, v) ∈ [t]× range(p), we have

E
(x,y)∼D

f(x, c′(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + 4ε/15. (17)

By Claim D.1,

E
(x,y)∼D

f(x, c′(x), y)− E
(x,y)∼Dp

f(x, c′(x), y) = E
(x,y)∼D

[(y − p(x))∂f(x, c′(x))]. (18)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ ′′ : [t]×A× → [−1, 1]
such that ∂f(x, a) = τ ′′(g(x), a). By our definition c′(x) = τ ′(g(x), p(x)),

E
(x,y)∼D

[(y − p(x))∂f(x, c′(x))] = E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))].

By our assumption that p ∈ GrpCal(g, ε/15),

E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))] ≥ −ε/15. (19)

Combining (17), (18), and (19) proves (16).

Lemma D.6. In the setting of Theorem 4.6, for every c ∈ Cp,g, for every convex 1-Lipschitz group objective/constraint
f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼D

f(x, c(x), y) ≤ E
(x,y)∼Dp

f(x, c(x), y) + ε/3.

Proof. The proof is similar to the proof of Lemma D.3 and we omit the details. In the proof of Lemma D.3, we use the
assumption that p ∈ GrpCal(g, ε/6) and the fact that there exists τ : [t] × A → [−2, 2] such that ∂f(x, a) = τ(g(x), a).
For our f with 1-bounded difference, we can similarly take τ : [t] × A → [−1, 1] and use our assumption that p ∈
GrpCal(g, ε/15) ⊆ GrpCal(g, ε/3).

Proof of Theorem 4.6. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.6 and observing that (2)
and (3) in Lemma 3.1 can be established by Lemma D.5 and Lemma D.6, respectively.
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D.3. Proof of Theorem 4.7

Theorem 4.7. Let A be a finite non-empty action set and let g : X → [t] be a group partition. Let T be a class of tasks
with group constraints and group objectives that all have 1-bounded differences. Let p be a predictor in GrpLMAD(C,
g, ε/3) ∩ GrpCalD(g, ε/3) and define Crand

p,g as in Definition 4.3. Then p is a (T , C, Crand
p,g , ε)-omnipredictor on D.

We first prove two helper lemmas below and then prove Theorem 4.7.

Lemma D.7. In the setting of Theorem 4.7, for every c ∈ C, there exists c′ ∈ Crand
p,g such that for every group objec-

tive/constraint f : X ×A× {0, 1} → R with 1-bounded difference, it holds that

E
(x,y)∼Dp

E
a∼c′(x)

f(x, a, y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. By Claim D.1,

E
(x,y)∼D

f(x, c(x), y)− E
(x,y)∼Dp

f(x, c(x), y) = E
(x,y)∼Dp

[(y − p(x))∂f(x, c(x))]. (20)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ : [t]×A → [−1, 1]
such that ∂f(x, a) = τ(g(x), a). By our assumption that p ∈ GrpLMA(C, g, ε/3),

E
(x,y)∼Dp

[(y − p(x))∂f(x, c(x))] = E
(x,y)∼Dp

[(y − p(x))τ(g(x), c(x)))] ≥ −ε/3. (21)

Combining (20) and (21), we have

E
(x,y)∼Dp

f(x, c(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3. (22)

Now we define τ ′ : [t]× [0, 1] → ∆A such that τ ′(i, v) is the conditional distribution of c(x) given g(x) = i and p(x) = v.
We define c′ : X → ∆A such that c′(x) = τ ′(g(x), c(x)). Clearly, c′ ∈ Crand

p,g . Since f is a group objective/constraint, there
exists τ ′′ : [t]×A× {−1, 1} → R such that f(x, a, y) = τ ′′(g(x), a, y). Now we have

E
(x,y)∼Dp

f(x, c(x), y) = E[E[f(x, c(x), y)|g(x), p(x)]]

= E[E[τ ′′(g(x), c(x), y)|g(x), p(x)]]

= E
x

[
E

a∼τ ′(g(x),p(x)),y∼Ber(p(x))
[τ ′′(g(x), a, y)]

]
= E

(x,y)∼Dp

E
a∼c′(x)

[f(x, a, y)]. (23)

Combining (22) and (23) completes the proof.

Lemma D.8. In the setting of Theorem 4.7, for every c ∈ Crand
p,g , for every group objective/constraint f : X×A×{0, 1} → R

with 1-bounded difference, it holds that

E
(x,y)∼D

E
a∼c(x)

f(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f(x, a, y) + ε/3. (24)

Proof. By our assumption c ∈ Crand
p,g , there exists τ : [t] × [0, 1] → ∆A such that c(x) = τ(g(x), p(x)) for every x ∈ X .

Consider the joint distribution of (x, a, y) where (x, y) ∼ D and a ∼ c(x). This distribution can be equivalently defined as
follows. We first construct a function τ ′ : [t]× [0, 1] → A at random, where τ ′(i, v) ∈ A is drawn independently from the
distribution τ(i, v) ∈ ∆A for every (i, v) ∈ [t]× [0, 1]. We then draw (x, y) ∼ D and choose c(x) = τ ′(g(x), p(x)). This
equivalent construction also works when we replace D with Dp. Therefore, to prove (24), it suffices to prove that for every
τ ′ : [t]× [0, 1] → A,

E
(x,y)∼D

f(x, τ ′(g(x), p(x)), y) ≤ E
(x,y)∼Dp

f(x, τ ′(g(x), p(x)), y) + ε/3. (25)
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By Claim D.1,

E
(x,y)∼D

f(x, τ ′(g(x), p(x)), y)− E
(x,y)∼Dp

f(x, τ ′(g(x), p(x)), y)

= E
(x,y)∼D

[(y − p(x))∂f(x, τ ′(g(x), p(x)))]. (26)

Since we assume that f is a group objective/constraint and it has 1-bounded difference, there exists τ ′′ : [t]×A → [−1, 1]
such that ∂f(x, a) = τ ′′(g(x), a). Therefore,

E
(x,y)∼D

[(y − p(x))∂f(x, τ ′(g(x), p(x)))]

= E
(x,y)∼D

[(y − p(x))τ ′′(g(x), τ ′(g(x), p(x)))]

≤ ε/3, (27)

where the last inequality follows from our assumption p ∈ GrpCal(g, ε/3). Combining (26) and (27) proves (25).

Proof of Theorem 4.7. The proof is completed by applying Lemma 3.1 to the setting of Theorem 4.7 and observing that (2)
and (3) in Lemma 3.1 can be established by Lemma D.7 and Lemma D.8, respectively.

D.4. Variant of Theorem 4.4

Theorem D.9. Let D be a distribution over X×{0, 1}. Let A ⊆ [0, 1] be a finite action set. Let T be a class of tasks that only
have group constraints and group objectives that are all special. Let C be a class of functions c : X → A. Let p be a predictor
in GrpMAD(C, g, ε/6) ∩ GrpCalD(g, ε/6) and define Crand

p,g as in Definition 4.3. Then p is a (T , C, Crand
p,g , ε)-omnipredictor

on D.

We first prove two helper lemmas below and then prove Theorem D.9.

Lemma D.10. In the setting of Theorem D.9, for every c ∈ C, there exists c′ ∈ Crand
p,g such that for every special group

objective/constraint f : X ×A× {0, 1} → R, it holds that

E
(x,y)∼Dp

E
a∼c′(x)

f(x, a, y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

Proof. Using the same argument as in the proof of Lemma D.2, we can show that

E
(x,y)∼Dp

f(x, c(x), y) ≤ E
(x,y)∼D

f(x, c(x), y) + ε/3.

This is the same as (22) as in the proof of Lemma D.7, and the rest of the proof follows the same argument as in the proof of
Lemma D.7.

Lemma D.11. In the setting of Theorem D.9, for every c ∈ Crand
p,g , for every special group objective/constraint f :

X ×A× {0, 1} → R, it holds that

E
(x,y)∼D

E
a∼c(x)

f(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f(x, a, y) + ε/3.

Proof. The proof follows from the same argument as the proof of Lemma D.8. In Lemma D.8, we use the assumption that
p ∈ GrpCal(g, ε/3) and that f has 1-bounded difference. Here we have the assumption that p ∈ GrpCal(g, ε/6), and since
we assume f is special and A ⊆ [0, 1], we know that f has 2-bounded difference.

Proof of Theorem D.9. The proof is completed by applying Lemma 3.1 to the setting of Theorem D.9 and observing that
(2) and (3) in Lemma 3.1 can be established by Lemma D.10 and Lemma D.11, respectively.
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E. Lipschitz Combination of Constraints
We show that all our omniprediction results in Section 4 can be extended to more general constrained loss minimization
tasks where we combine the constraints using a Lipschitz function. Specifically, we consider more general tasks where each
task T not only has an objective f0 : X ×A× {0, 1} → R and constraints fj : X ×A× {0, 1} for j ∈ [m], but also has a
combining function Γ : Rm → R. The task T corresponds to the following optimization problem:

minimize
c:X→A

E
(x,y)∼D

f0(x, c(x), y) (28)

s.t. Γ

(
E

(x,y)∼D
f1(x, c(x), y), . . . , E

(x,y)∼D
fm(x, c(x), y)

)
≤ 0.

The task in (1) can be viewed as a special case of (28) where Γ is the max function: Γ(r1, . . . , rm) = max(r1, . . . , rm).
For a task T in the form of (28), for β ∈ R and ε ∈ R≥0, we can again define solD(T, β, ε) to be the set of randomized
action functions c : X → ∆A satisfying

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ β, and

Γ

(
E

(x,y)∼D
E

a∼c(x)
f1(x, a, y), . . . , E

(x,y)∼D
E

a∼c(x)
fm(x, a, y)

)
≤ ε.

Correspondingly, for a class C consisting of functions c : X → ∆A, we define

optD(T, C, ε) := inf{β ∈ R : C ∩ solD(T, β, ε) ̸= ∅}.

We can then similarly define omnipredictors for these tasks in the same way as in Definition 2.1.

Here we focus on obtaining omnipredictors for tasks with Lipschitz combining functions Γ. We say Γ is κ-Lipschitz (in the
ℓ∞ norm) if |Γ(r1, . . . , rm)− Γ(r′1, . . . , r

′
m)| ≤ κmaxi∈[m] |ri − r′i|. For tasks with 1-Lipschitz combining functions, we

have the following analogue of Lemma 3.1:

Lemma E.1. Let T be a class of constrained loss minimization tasks each having a 1-Lipschitz combining function. Let C
and C′ be classes of action functions f : X → ∆A as in Definition 2.1. If a predictor p satisfies the following two properties
for every T ∈ T , then p is a (T , C, C′, ε)-omnipredictor:

1. Let f0 be the loss function of T and (fj)j∈J be the constraints of T . For every c ∈ C, there exists c′ ∈ C′ such that

E
(x,y)∼Dp

E
a∼c′(x)

f0(x, a, y) ≤ E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) + ε/3, and (29)∣∣∣ E
(x,y)∼Dp

E
a∼c′(x)

fj(x, a, y)− E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)
∣∣∣ ≤ ε/3 for every j ∈ J. (30)

2. For every c ∈ C′,

E
(x,y)∼D

E
a∼c(x)

f0(x, a, y) ≤ E
(x,y)∼Dp

E
a∼c(x)

f0(x, a, y) + ε/3, and (31)∣∣∣ E
(x,y)∼D

E
a∼c(x)

fj(x, a, y)− E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y)
∣∣∣ ≤ ε/3 for every j ∈ J. (32)

Lemma E.1 can be proved similarly to Lemma 3.1 using the observation that (30) implies the following by the 1-Lipschitz
assumption on Γ and an analogous observation for (32):

Γ

(
E

(x,y)∼Dp

E
a∼c′(x)

f1(x, a, y), . . . , E
(x,y)∼Dp

E
a∼c′(x)

fm(x, a, y)

)
≤ Γ

(
E

(x,y)∼D
E

a∼c(x)
f1(x, a, y), . . . , E

(x,y)∼D
E

a∼c(x)
fm(x, a, y)

)
+ ε/3.

We thus omit the proof of Lemma E.1. The only difference between Lemma E.1 and Lemma 3.1 in the requirements
needed for p to be an omnipredictor is the additional absolute values in (30) and (32). As all our proofs in Section 4 are
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through Lemma 3.1, they can be adapted to tasks with constraints combined by a Lipschitz function using Lemma E.1. The
absolute values in (30) and (32) only require us to make sure that for every constraint function f , both f and −f satisfy
the assumptions needed for our theorems in Section 4 (e.g. we need to replace “convex” by “affine”). Note that all linear
constraints f defined in (4) satisfy that both f and −f are convex and special. Ideas in this section can be applied to tasks
where the objective function is also a Lipschitz combination:

minimize
c:X→A

Γ′
(

E
(x,y)∼D

f ′
1(x, c(x), y), . . . , E

(x,y)∼D
f ′
m′(x, c(x), y)

)
s.t. Γ

(
E

(x,y)∼D
f1(x, c(x), y), . . . , E

(x,y)∼D
fm(x, c(x), y)

)
≤ 0.

F. Rank-preserving Transformations of Omnipredictors
In this section we identify cases where we can ensure that our solutions to downstream tasks given an omnipredictor p is
rank-preserving (Definition 5.1). Specifically, we identify conditions under which (5) is satisfied.

Our results in this section focus on actions a ∈ [0, 1] and assume that the objective function is rank-preserving:

Definition F.1. Let g : X → [t] be a group partition function. We say an objective function f0 : X×[0, 1]×{0, 1} → [0, 1] is
rank-preserving (within groups), if there exists a function f : [t]×[0, 1]×{0, 1} such that for all x ∈ X, a ∈ [0, 1], y ∈ {0, 1},
we have f0(x, a, y) = f(g(x), a, y) and for every i ∈ [t] and a > a′ ∈ [0, 1],

f(i, a, 1) ≤ f(i, a′, 1)

f(i, a, 0) ≥ f(i, a′, 0).

Rank preserving a desired property which holds when the loss function represents the distance between the taken action and
the outcome. In particular, the ℓ1 loss and squared loss satisfy it, as well as every loss function of form f(x, a, y) = dist(a, y),
when dist is a distance function.

We also assume that the predictor p which we use to solve downstream tasks is monotone:

Definition F.2. Let D be a distribution over X × {0, 1} and let g : X → [t] be a group partition function. We say a
predictor p : X → [0, 1] is monotone w.r.t. D and g if for every i ∈ [t] and for every v, v′ ∈ [0, 1] satisfying v > v′, we have
E(x,y)∼D[y|p(x) = v, g(x) = i] ≥ E(x,y)∼D[y|p(x) = v′, g(x) = i].

This monotonicity requirement is satisfied if D = Dp. In Appendix F.1 we describe how to modify p using samples from D
to satisfy this requirement even when D is different from Dp.

We start with the simpler case, where we assume that the constraint combines functions that are fixed for each group:

Definition F.3. Let D be a distribution over X × {0, 1}. Let g : X → [t] be a group partition function. Let A be an action
set. Let σ1, . . . , σt : A× {0, 1} → R be functions. We say a constrained loss minimization task T as in (28) is compatible
with σ1, . . . , σt if T only has a single constraint of the form

Γ(ξ1, . . . , ξt) ≤ 0 (33)

for some function Γ : Rt → R where ξi := E(x,y)∼D[1(g(x) = i)σi(c(x), y)].

In the lemma below we establish (5) when each σi is restricted to the form σi(a, y) = α1y + α2a + α3ay for some
α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0. The flexibility in the combining function Γ allows the constraint (33) to
express group fairness constraints such as statistical parity and equal opportunity even when each σi is restricted in this
special form.

Lemma F.4. Let D be a distribution over X × {0, 1}, and g : X → [t] be a group partition function. Let A = [0, 1] be the
action set, and let σ1, . . . , σt : A×{0, 1} → R be functions where each σi can be written as σi(a, y) = α1y+α2a+α3ay
for some α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0. Let T be a task compatible with σ1, . . . , σk and assume its objective
function f0 : X ×A× {0, 1} → R is rank-preserving and convex. For a predictor p : X → [0, 1], assuming p is monotone
w.r.t. D and g (which is always satisfied when D = Dp), we have

optD(T, rp-Cp,g, ε) = optD(T, Cp,g, ε).
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Furthermore, given any deterministic c ∈ Cp,g, such that c(x) = τ(g(x), p(x)) for a transformation τ : [t] × V → A,
there exists an algorithm running in time polynomial in t, |V | , ε and outputting a transformation τ̃ : [t]× V → A that is
rank-preserving, and c′(x) = τ̃(g(x), p(x)) has the same objective value as c up to a factor of ε with high probability.

We remark that the requirement α2(α2 + α3) ≥ 0 cannot be removed. Without this requirement, it could be the case that
some functions in rp-Cp,g satisfy the constraint but none of them is rank-preserving. This highlights the importance of
picking appropriate loss functions and constraints if we want to achieve fair outcome.

Proof. We prove the claim by an iterative process, taking τ that is not rank-preserving on some inputs and correcting it.

Suppose τ is not rank-preserving, and there exists i ∈ [t], v, v′ ∈ V such that (τ(i, v)− τ(i, v′))(v − v′) < 0. We show a
local correction from τ to τ ′ such that τ ′ is rank-preserving on v, v′. The final transformation is created by fixing all such
violations. We denote

θ = Pr
(x,y)∼D

[p(x) = v|g(x) = i, p(x) ∈ {v, v′}] (34)

qv = E
(x,y)∼D

[y|g(x) = i, p(x) = v] (35)

qv′ = E
(x,y)∼D

[y|g(x) = i, p(x) = v′] (36)

Constraint value. Let us assume
θ|α2 + α3qv| ≤ (1− θ)|α2 + α3qv′ |. (37)

This is without loss of generality because otherwise we can switch the roles of v and v′, in which case θ and 1 − θ also
switch. Our goal is to update the values of τ(i, v) and τ(i, v′) so that they no longer violate the rank-preserving property
while keeping ξi defined below unchanged so that the constraint of T is still satisfied:

ξi := E
(x,y)∼D

[1(g(x) = i)σi(τ(g(x), p(x)), y)].

By our assumption, we can write σi as σi(a, y) = α1y + α2a + α3ay for α1, α2, α3 ∈ R satisfying α2(α2 + α3) ≥ 0.
We only change the values of τ(i, v) and τ(i, v′), so to keep ξi unchanged, it suffices to keep the following conditional
expectation unchanged:

E
(x,y)∼D

[σi(τ(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}] (38)

= α1(θqv + (1− θ)qv′) + α2(θτ(i, v) + (1− θ)τ(i, v′)) + α3(θqvτ(i, v) + (1− θ)qv′τ(i, v′)). (39)

Simply switching between τ(i, v) and τ(i, v′) does not work, as the constraint can be violated. Instead, we set τ ′(i, v) =
τ(i, v′), and then we want to set τ ′(i, v′) to some value keeping the expectation in Equation (38) exactly the same. We
denote τ ′(i, v′) = z and look for z such that

α1(θqv + (1− θ)qv′) + α2(θτ(i, v
′) + (1− θ)z) + α3(θqvτ(i, v

′) + (1− θ)qv′z)

= α1(θqv + (1− θ)qv′) + α2(θτ(i, v) + (1− θ)τ(i, v′)) + α3(θqvτ(i, v) + (1− θ)qv′τ(i, v′))

That is,

z =
α2θ + α3θqv

α2(1− θ) + α3(1− θ)qv′
τ(i, v) +

α2(1− 2θ) + α3((1− θ)qv′ − θqv)

α2(1− θ) + α3(1− θ)qv′
τ(i, v′). (40)

We can only set τ ′(i, v′) to a value z ∈ [0, 1], so we need to check that the above expression is in this range. We can write
z = γτ(i, v) + (1− γ)τ(i, v′) for

γ =
α2θ + α3θqv

α2(1− θ) + α3(1− θ)qv′
=

θ

1− θ
· α2 + α3qv
α2 + α3qv′

. (41)

We prove γ ∈ [0, 1] as follows, which implies z ∈ [0, 1] (as the range of τ is also [0, 1]). To prove γ ≥ 0, we know that
θ ∈ [0, 1], so we need to show that the second expression is also positive. From the lemma requirement, we have that
α2(α2 + α3) ≥ 0, together with qv, q

′
v ∈ [0, 1] we get that (α2 + qvα3)/(α2 + qv′α3) ≥ 0 and so γ ≥ 0. The fact γ ≤ 1

follows from (37).
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Objective. We are left with showing that the objective of T (i.e., expected value of f0) is not increased by the correction.
For simplicity of notations we denote ℓ0(v) = f0(x, τ(i, v), 0) and ℓ1(v) = f0(x, τ(i, v), 1) for some x with g(x) = i. The
values of ℓ0(v) and ℓ1(v) are independent of the actual choice of such x because f0 is a group constraint by Definition F.1.

Since the objective value is an expectation and therefore additive, it is enough to analyze the value for x such that
g(x) = i, p(x) ∈ {v, v′}. The original expected objective value for these x’s is

E
(x,y)∼D

[f0(x, τ(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}]

= ℓ1(v)θqv + ℓ0(v)θ(1− qv)

+ ℓ1(v
′)(1− θ)qv′ + ℓ0(v

′)(1− θ)(1− qv′).

The same expectation with τ ′ is given by

E
(x,y)∼D

[f0(x, τ
′(g(x), p(x)), y)|g(x) = i, p(x) ∈ {v, v′}]

= ℓ1(v
′)θqv + ℓ0(v

′)θ(1− qv)

+ f0(i, z, 1)(1− θ)qv′ + f0(i, z, 0)(1− θ)(1− qv′)

≤ ℓ1(v
′)θqv + ℓ0(v

′)θ(1− qv)

+ (γℓ1(v) + (1− γ)ℓ1(v
′))(1− θ)qv′

+ (γℓ0(v) + (1− γ)ℓ0(v
′))(1− θ)(1− qv′).

The last inequality holds because of the convexity of f0. Taking the difference, we get

E
(x,y)∼D

[f0(x, τ(g(x), p(x), y)− f0(x, τ
′(g(x), p(x), y)|g(x) = i, p(x) ∈ {v, v′}]

≥ (ℓ1(v)− ℓ1(v
′))θqv + (ℓ0(v)− ℓ0(v

′))θ(1− qv)

+ γ(ℓ1(v
′)− ℓ1(v))(1− θ)qv′ + γ(ℓ0(v

′)− ℓ0(v))(1− θ)(1− qv′)

= (ℓ1(v)− ℓ1(v
′))(θqv − γ(1− θ)qv′)

+ (ℓ0(v
′)− ℓ0(v))(γ(1− θ)(1− qv′)− θ(1− qv)). (42)

We show that the expression above is nonnegative. We focus on the case where v > v′, and a similar argument applies
to the other case v < v′. By our assumption that τ(i, v), τ(i, v′) violate the rank-preserving property, we know that
τ(i, v′) ≥ τ(i, v). By our assumption that f0 is rank-preserving,

ℓ1(v)− ℓ1(v
′) = f0(i, τ(i, v), 1)− f0(i, τ(i, v

′), 1) ≥ 0,

ℓ0(v
′)− ℓ0(v) = f0(i, τ(i, v

′), 0)− f0(i, τ(i, v), 0) ≥ 0. (43)

By (41),

γ =
θ

1− θ
· (α2 + α3)qv + α2(1− qv)

(α2 + α3)qv′ + α2(1− qv′)
.

By our monotonicity assumption on p, we have qv ≥ qv′ . Using our assumption that α2(α2 + α3) ≥ 0 in the equation
above, we get

θ

1− θ

1− qv
1− qv′

≤ γ ≤ θ

1− θ

qv
qv′

.

Therefore,

θqv − γ(1− θ)qv′ ≥ 0.

γ(1− θ)(1− qv′)− θ(1− qv) ≥ 0. (44)

Plugging (43) and (44) into (42) proves that (42) is nonnegative. Therefore correcting τ does not increase the objective.

After preforming this step for every pair v, v′ that violate the rank-preserving property, the resulting transformation τ̃ is
rank-preserving.
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The correction described above uses the exact value of θ, qv, qv′ . In order to implement such algorithm in practice, we
approximate θ, qv, qv′ , and update τ based on our approximation. Using the approximation instead of the exact values can
reduce objective by the approximation error. The running time of the algorithm is polynomial in |V | , t, δ when δ is the
accuracy parameter.

The previous theorem modified a transformation τ into a rank-preserving one by “correcting” its values for every violation.
Allowing the correction to be randomized, the theorem holds for a larger collection of constraints. In order to do so, we first
define rank-preserving for a randomized transformation.

Definition F.5. A randomized transformation τ : [0, 1]× [t] → ∆A for A = [0, 1] is rank-preserving within groups, if for
every i ∈ [t], v > v′ ∈ V and γ ∈ [0, 1],

Pr[τ(i, v) ≥ γ] ≥ Pr[τ(i, v′) ≥ γ].

Let p : X → [0, 1] be a predictor and g : X → [t] be a group index function. We denote by rp-Crand
p,g the set of all functions

c ∈ Crand
p,g such that there exists a rank-preserving transformation τ : [t]× [0, 1] → ∆A satisfying c(x) = τ(g(x), p(x)) for

every x ∈ X .

Lemma F.6. Let A ⊆ [0, 1] be a discrete action set, g : X → [t] be a group partition function, and T be a task with
constraints that are independent of the outcome. For a predictor p and a distribution D, assuming p is monotone w.r.t. D
and g (which is always satisfied when D = Dp), we have

optD(T, rp-Crand
p,g , ε) = optD(T, Crand

p,g , ε).

Furthermore, given any c ∈ Crand
p,g , such that c(x) = τ(g(x), p(x)) for a transformation τ : [t]× V → A, there exists an

algorithm running in time polynomial in t, |V | , ε and outputting a randomized transformation τ̃ : [t] × V → A that is
rank-preserving, and c′(x) = τ̃(g(x), p(x)) has the same objective value as c up to a factor of ε with high probability.

Proof. The proof follows the same structure of the previous proof. Let τ be a randomized transformation, and assume that
there exists v > v′ such that τ is not rank-preserving on v, v′. We describe a single step in an iterative process, transforming
τ into τ ′.

Intuitively, we take the histogram of the values of τ on the input set {x ∈ X|g(x) = i, p(x) ∈ {v, v′}}, and assign v′ the
lower values in the histogram and v the upper ones.

We define

θ = Pr
(x,y)∈D

[p(x) = v|g(x) = i, p(x) ∈ {v, v′}] (45)

θa =θPr[τ(i, v) = a] + (1− θ) Pr[τ(i, v′) = a], ∀a ∈ A (46)

when the probability in the second definition is over the internal randomness of τ . For every a ∈ A, we define the function
u : A → [0, 1] indicating how much of θa is coming from τ(i, v). That is, for all a ∈ A if θ ̸= 0 we have

u(a) = θPr[τ(i, v) = a]/θa.

When θa = 0, u(a) can take any value in [0, 1]. Notice that by definition, Pr[τ(i, v′) = a] = θa(1− u(a))/(1− θ).

We define τ ′ by creating an analog function u′ : A → [0, 1], when u′ indicates if a certain outcome a ∈ A is in the upper
part of the histogram (and should be assigned to τ ′(i, v)) or lower part (and should be assigned to τ ′(i, v′)). Fractional
values u′(a) imply that a is in the middle of the histogram, i.e. assigned to both. For every a ∈ A let

u′(a) =


1 if

∑
a′≥a θa′ ≤ θ

0 if
∑

a′≤a θa′ ≤ 1− θ
1
θa

(
θ −

∑
a′>a θa′

)
otherwise.

(47)

We are now ready to define τ ′ to equal τ on all except (i, v), (i, v′), in which we have:

∀a ∈ A Pr[τ ′(i, v) = a] =
θau

′(a)

θ
(48)
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∀a ∈ A Pr[τ ′(i, v) = a] =
θa

1− θ
(1− u′(a)). (49)

Notice that τ ′ is rank-preserving on inputs (i, v), (i, v′) by definition.

We next show that τ ′ satisfies all of the constraints in the same way was τ . Let fj(i, a, y) = f(i, a) be any constraint that is
not a function of y. Then we have

E
(x,y)∼D

[f(i, τ(i, p(x)))] =
∑
a∈A

Pr
(x,y)∼D

[τ(i, p(x)) = a]f(i, a).

The transformations τ, τ ′ only differ on inputs (i, v), (i, v′), so it is enough to analyze the difference on these inputs. For
every a ∈ A,

Pr
(x,y)∼D

[τ(i, p(x)) = a|g(x) = i, p(x) ∈ {v, v′}] = θPr[τ(i, v) = a] + (1− θ) Pr[τ(i, v′) = a] = θa.

For the new transformation,

Pr
(x,y)∼D

[τ ′(i, p(x)) = a|g(x) = i, p(x) ∈ {v, v′}] = θPr[τ ′(i, v) = a] + (1− θ) Pr[τ ′(i, v′) = a]

= θ
θau

′(a)

θ
+ (1− θ)

θa
1− θ

(1− u′(a)) = θa.

Therefore, we get that E(x,y)∼D[f(i, τ(i, p(x)))] = E(x,y)∼D[f(i, τ
′(i, p(x)))].

We are left with proving that this correction does not increase the loss. We define qv, qv′ as in the previous proof.

qv = E
(x,y)∼D

[y|g(x)i, p(x) = v] (50)

qv′ = E
(x,y)∼D

[y|g(x)i, p(x) = v′]. (51)

The expected loss of τ on the relevant inputs:

E
(x,y)∈D

[f0(i, τ(i, x), y)|g(x) = i, p(x) ∈ {v, v′}]

= θ
∑
a∈A

Pr[τ(i, v) = a] (qvf0(i, a, 1) + (1− qv)f0(i, a, 0))

+ (1− θ)
∑
a∈A

Pr[τ(i, v′) = a] (qv′f0(i, a, 1) + (1− qv′)f0(i, a, 0))

=
∑
a∈A

f0(i, a, 1)θa (u(a)qv + (1− u(a))qv′)

+
∑
a∈A

f0(i, a, 0)θa (u(a)(1− qv) + (1− u(a))(1− qv′)) .

By definition, the loss of τ ′ is exactly the same only with u′ instead of u.

Comparing the two losses we get:

E
(x,y)∈D

[f0(i, τ(i, x), y)|g(x) = i, p(x) ∈ {v, v′}]− E
(x,y)∈D

[f0(i, τ
′(i, x), y)|g(x) = i, p(x) ∈ {v, v′}] (52)

=
∑
a∈A

θa(f0(i, a, 1)− f0(i, a, 0))(u(a)− u′(a))(qv − qv′). (53)

Denote γa = (u(a)− u′(a))(qv − qv′). From our assumption, qv ≥ qv′ . From the definition of u′(a), for every a ∈ A we
have ∑

a′≥a∈A

u′(a) ≥
∑

a′≥a∈A

u(a).
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Since
∑

a∈A u(a) =
∑

a∈A u′(a), we have that
∑

a γa = 0, and that there exists ã such that γa ≤ 0 for all a > ã, and
γa ≥ 0 for all a ≥ ã. Since the function f0 is rank preserving, we have that for every a > a′,

f0(i, a, 1)− f0(i, a, 0) ≤ f0(i, a
′, 1)− f0(i, a

′, 0).

Therefore, ∑
a,γa≤0

γa(f0(i, a, 1)− f0(i, a, 0)) ≤
∑

a,γa≥0

γa(f0(i, a, 1)− f0(i, a, 0)).

Which implies that
∑

a γa(f0(i, a, 1)− f0(i, a, 0)) ≥ 0 and the loss of τ ′ is at most the loss of τ .

The final transformation τ̃ is created by repeatedly applying the above step until τ̃ is rank-preserving. The process ends after
|V |2 such switching steps.

When performing the algorithm in practice we do not know u, θ, qv, qv′ exactly and need to approximate them at every step.
This adds an error to the algorithm.

F.1. Monotone predictor

In the following claim we show that a calibrated predictor with a discrete range can be modified to one that is monotone (as
in Definition F.2) with high probability, by merging small level sets and level sets that are close together. This claim only
holds for functions w with bounded range, although the rest of the section holds more generally. We remark that as long as
the hypothesis class H contains bounded functions h : X → [0, 1], then the claim below holds for all classes W defining
group or level-set calibration on Section 2.3. In case of group multi-accuracy or calibration with negative value of τ , the
claim below should be run on each part {x|g(x) = i} separately.
Claim F.7. Let V ⊂ [0, 1] be a discrete set, and let W be a class of functions w : X × [0, 1] → [0, 1] containing a function
fv(x, v

′) = 1(v = v′) for all v ∈ V . Let p : X → [0, 1] be a predictor with a discrete range V such that p ∈ GenMCD(W, ε).
Then there is an algorithm running in time O(|V |3 1

ε2δ ), uses O(|V |3 1
ε2δ ) samples, that with probability 1− δ outputs a

monotone predictor p′ ∈ GenMCD(W, 6ε).

Proof. We describe a simple algorithm for merging the levels of p that are too close to each other or too small. We start by
looking at the partition of X defined by p, then merge parts that are too small or too close to each other. Let P = P1, . . . P|V |
be the partition of x defined by p.

The algorithm sample S of size O(|V |3 1
ε2δ ) of (x, y) ∼ D, and do:

1. While there exists a part Pi such that Pr(x,y)∈S [x ∈ Pi] <
2ε
|V | , merge Pi with its neighbor.

2. While there are Pi, Pj ∈ P such that∣∣∣∣ E
(x,y)∈S

[y|x ∈ Pi]− E
(x,y)∈S

[y|x ∈ Pj ]

∣∣∣∣ < 2ε

|V |
,

merge Pi, Pj .

3. Set p′ : X → [0, 1] by choosing for every part x ∈ Pi the value E(x′,y′)∈S [y
′|x′ ∈ Pi].

From Claim J.1, by taking O(|V |3 1
ε2δ ), with probability 1 − δ/2 the algorithm approximates Pr(x,y)∼D[p(x) = v] up

to an error of ε
|V | . After the first step of the algorithm, each Pi has size at least ε

|V | . Therefore, from Claim J.1 the
algorithm approximates E(x,y)∈S [y|x ∈ Pi] up to an additive error of ε

|V | with probability 1− δ/2 for all parts. Assuming
all approximations are correct, the predictor p′ is monotone. Therefore, p′ is monotone with probability at least 1− δ.

To prove the generalized calibration, we first use the function fv ∈ W and get that for every v ∈ V ,∣∣∣∣ E
(x,y)∼D

[(y − v)1(p(x) = v)]

∣∣∣∣ ≤ ε, (54)
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Assume that the algorithm skips Item 2, and only preforms merging for small sets and asigns new values. Let p′′ be this
predictor. Then for p′′ we have,∣∣∣∣ E

(x,y)∼D
[(y − p′′(x))w(x, v)]

∣∣∣∣
≤

∣∣∣∣ E
(x,y)∼D

[(y − p′′(x))w(x, v)] + E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)]

∣∣∣∣
≤ ε+

∣∣∣∣ E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)]

∣∣∣∣
≤ ε+

∣∣∣∣∣∣ Pr
(x,y)∼D

[p(x) in small Pi] +
∑

large Pi

E
(x,y)∼D

[(p′′(x)− p(x))w(x, v)1(x ∈ Pi)]

∣∣∣∣∣∣
≤ 3ε+

∣∣∣∣∣∣
∑

large Pi

E
(x,y)∼D

[(p′′(x)− p(x))1(x ∈ Pi)]

∣∣∣∣∣∣
≤ 3ε+

∣∣∣∣ E
(x,y)∼D

[(y − v)1(p(x) = v)]

∣∣∣∣+ ∑
large Pi

∣∣∣∣ E
(x,y)∼D

[(y − v)1(p′′(x) = v)]

∣∣∣∣ . (55)

Where large Pi’s are those that the algorithm does not merge in Item 1. From Equation (54), the first expectation is bounded
by ε. From the paragraph above, with probability at least 1−δ/2 the we have

∣∣E(x,y)∈S [y|x ∈ Pi]− E(x,y)∼D[y|x ∈ Pi]
∣∣ ≤

ε/ |V | for all large partitions Pi. Together we get
∣∣E(x,y)∼D[(y − p′′(x))w(x, v)]

∣∣ ≤ 5ε.

Our monotone predictor p′ has an extra step in Item 2, in which the algorithm merges parts Pi, Pj . The algorithm only
merges parts in which the expected value of y, E[y|x ∈ Pi] is within distance ε

V . Therefore, even if we preform |V | merges,
we have that

E
(x,y)∼D

[|p′(x)− p′′(x)|] ≤ ε.

Substituting p′(x) instead of p′′(x) on equation Equation (55) can only increase the expected value by ε.

G. Algorithms for Multiaccuracy and Multicalibration
The computational and sample complexity of learning a multiaccuracy/multicalibrated predictor w.r.t. a function class C using
i.i.d. data points from the true distribution D depends on the complexity and structure of the class C. In (Hébert-Johnson
et al., 2018), the authors show that the task can be efficiently reduced to weak agnostic learning for C (Kalai et al., 2008;
Feldman, 2010). This implies that the sample and computational complexity of learning a multicalibrated predictor cannot
be much larger than weak agnostic learning. Hu et al. (2022a) concretely characterize the sample complexity of learning
a multiaccurate/multicalibrated predictor in terms of the fat-shattering dimension of C (Kearns & Schapire, 1990), and
they also study the sample complexity of multiaccuracy/multicalibration with additional realizability assumptions about
D, which is a setting further explored by Hu & Peale (2023) (results in our paper do not require any assumption on D).
Gopalan et al. (2023) propose and implement algorithms for calibrated multiaccuracy and demonstrate their efficiency
compared to achieving multicalibration. Many of our results in this paper require group multiaccuracy/multicalibration,
and such a predictor can be obtained by first learning a multiaccurate/multicalibrated predictor w.r.t. C on each group
and then combining. Some of our results in this paper require group level-set multiaccuracy. This can be equivalently
viewed as multiaccuracy w.r.t. a larger class C(g) of binary functions c′ : X → {−1, 1} such that there exist c ∈ C and
τ : [t]×A → {−1, 1} satisfying c′(x) = τ(g(x), c(x)) for every x ∈ X . The complexity of C(g) depends on the complexity
of C and the group partition g.

H. Optimization Algorithms on the Simulated Distribution
An omnipredictor p, as in Definition 2.1, allows us to solve downstream tasks T ∈ T on the true distribution D by solving
the task on the simulated distribution Dp. In this section, we show very efficient algorithms for solving the task on the
simulated distribution for all the settings we consider in Section 4.

Specifically, in Definition 2.1, we define β′ := optDp
(T, C′, ε/3) ∈ R. Suppose the objective of T is f0 : X × A ×
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{0, 1} → R and the constraints of T are fj : X × A × {0, 1} → R for every j ∈ J . The task of finding a solution in
C′ ∩ solDp(T, β

′ + ε/3, 2ε/3) is to solve the following optimization problem approximately:

minimize
c∈C′

E
(x,y)∼Dp

E
a∼c(x)

f0(x, a, y) (56)

s.t. E
(x,y)∼Dp

E
a∼c(x)

fj(x, a, y) ≤ 0 for every j ∈ J.

In Theorems 4.4 and 4.6, the action set A is the interval [0, 1], and the objective f0 and the constraints fj are convex group
objective/constraints. That is, for every j ∈ {0} ∪ J , there exists f ′

j : [t] × A × {0, 1} → R such that fj(x, a, y) =
f ′
j(g(x), a, y) for every (x, a, y) ∈ X ×A× {0, 1}, and the function f ′

j(i, ·, y) is convex for every i ∈ [t] and y ∈ {0, 1}.
Moreover, the class C′ is the class Cp,g in Definition 4.3, i.e., C′ consists of all functions c : X → A such that there exists
τ : [t] × [0, 1] → A satisfying c(x) = τ(g(x), p(x)) for every x ∈ X . Thus, (56) becomes the following equivalent
problem:

minimize
τ :[t]×[0,1]→[0,1]

E
(x,y)∼Dp

f ′
0(g(x), τ(g(x), p(x)), y) (57)

s.t. E
(x,y)∼Dp

f ′
j(g(x), τ(g(x), p(x)), y) ≤ ε/3 for every j ∈ J.

Let V := range(p) denote the range of p. Since the functions c ∈ C in Theorem 4.4 and Theorem 4.6 output bounded
values c(x) ∈ A = [0, 1], we can always make sure that V is finite and has size O(1/ε′) when we require p to be (C, g, ε′)-
multiaccurate and/or (C, g, ε′)-multicalibrated because discretizing the values p(x) to multiples of ε′/2 can only increase
the group multiaccuracy/multicalibration error by at most ε′/2. Let prob(i, v) denote Pr(x,y)∼Dp

[g(x) = i, p(x) = v]. The
optimization problem (57) above is equivalent to

minimize
τ :[t]×V→[0,1]

∑
i∈[t]

∑
v∈V

prob(i, v)
(
vf ′

0(i, τ(i, v), 1) + (1− v)f ′
0(i, τ(i, v), 0)

)
(58)

s.t.
∑
i∈[t]

∑
v∈V

prob(i, v)
(
vf ′

j(i, τ(i, v), 1) + (1− v)f ′
j(i, τ(i, v), 0)

)
≤ ε/3 for every j ∈ J.

Suppose for now that we know the probabilities prob(i, v). The optimization problem (58) above is a convex program with
size O(t |V | · |J |) and thus can be solved efficiently assuming that we can efficiently compute f ′

j for every j ∈ {0} ∪ J and
its sub-gradient. When we do not know prob(i, v), we can estimate it to sufficient accuracy using i.i.d. data points from
the marginal distribution of x in (x, y) ∼ Dp, which is the same marginal distribution of x in (x, y) ∼ D. Thus these data
points are exactly unlabeled data points from the true distribution D. By standard concentration results (e.g. Claim J.1),
using n = O(ε−2

1 (|V |t + log(1/δ))) data points we can compute an estimate est(i, v) for each prob(i, v) such that with
probability at least 1− δ, ∑

i∈[t]

∑
v∈V

|est(i, v)− prob(i, v)| ≤ ε1/3.

The computation of these estimates est is independent of the actual loss minimization task. Thus it can be done when we
train the omnipredictor p, in which case no data is needed when solving a downstream task using p and these estimates.

In Theorems 4.7 and D.9, the action set A is a finite set, and the objective f0 and the constraints fj are group objec-
tive/constraints. The class C′ is the class Crand

p,g , i.e., C′ consists of all functions c : X → ∆A such that there exists
τ : [t] × [0, 1] → ∆A satisfying c(x) = τ(g(x), p(x)) for every x ∈ X . Thus, (56) becomes the following equivalent
problem:

minimize
τ :[t]×[0,1]→∆A

E
(x,y)∼Dp

E
a∼τ(g(x),p(x))

f ′
0(g(x), a, y) (59)

s.t. E
(x,y)∼Dp

E
a∼τ(g(x),p(x))

f ′
j(g(x), a, y) ≤ ε/3 for every j ∈ J.

Defining V and prob(i, v) as before and using τ ′(i, v, a) to denote the probability mass on a ∈ A in τ(i, v), the optimization
problem (59) above is equivalent to the following:

minimize
τ ′:[t]×V×A→R

∑
i∈[t]

∑
v∈V

∑
a∈A

prob(i, v)τ ′(i, v, a)
(
vf ′

0(i, a, 1) + (1− v)f ′
0(i, a, 0)

)
(60)
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s.t.
∑
i∈[t]

∑
v∈V

∑
a∈A

prob(i, v)τ ′(i, v, a)
(
vf ′

j(i, a, 1) + (1− v)f ′
j(i, a, 0)

)
≤ ε/3, ∀j ∈ J,

∑
a∈A

τ ′(i, v, a) = 1, ∀(i, v) ∈ [t]× V,

τ ′(i, v, a) ≥ 0, ∀(i, v, a) ∈ [t]× V ×A.

This optimization problem (60) is a linear program of size O(t |V | · |A| · |J |) and thus can be solved efficiently.

I. Counterexamples
I.1. Group Multiaccuracy is Necessary

We show that the group multiaccuracy and group calibration assumptions in Theorem 4.4 cannot be replaced by standard
(non-group-wise) multicalibration.
Claim I.1. Let A = [0, 1] be an action set. There exists a non-empty set X over individuals, a group partition function
g : X → [t], a distribution D over X × {0, 1}, a task T , a class C of functions c : X → A, a predictor p : X → [0, 1]
with the following properties. The task T has the ℓ1 objective f0(x, a, y) = |a− y| and linear constraints (as in (4)). The
predictor p belongs to MC(C, 0) ∩ Cal(0). However, p is not a ({T}, C, Cp,g, ε)-omnipredictor for sufficiently small ε > 0.

Proof. We assume that X = {x1, x2, x3, x4} and (x, y) ∼ D can be sampled by first drawing x from the uniform
distribution over X , and then drawing y ∼ Ber(p∗(x)) for

p∗(x) =


0.5, if x = x1,

0.5, if x = x2,

0, if x = x3,

1, if x = x4.

The function class C consists of a single function c defined by

c(x) =


0.75, x = x1,

0.25, x = x2,

0, x ∈ {x3, x4}.

The groups are defined by

g(x) =

{
1, x ∈ {x1, x3},
2, x ∈ {x2, x4}.

The constraints fj of the task T are defined by

f1(x, a, y) = 1(i = 1)0.375− 1(i = 1)a

f2(x, a, y) = −1(i = 1)0.375 + 1(i = 1)a

f3(x, a, y) = 1(i = 2)0.125− 1(i = 2)a

f4(x, a, y) = −1(i = 2)0.125 + 1(i = 2)a

That is, they require that E[c(x)|g(x) = 1] = 0.375,E[c(x)|g(x) = 2] = 0.125. We can easily see that c satisfies the
constraint:

E
x
[c(x)|g(x) = 1] = 0.75 · 0.5 = 0.375,

E
x
[c(x)|g(x) = 2] = 0.25 · 0.5 = 0.125.
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We choose p : X → [0, 1] to be the constant function satisfying p(x) = 0.5 for all x ∈ X . We show that p ∈
MC(C, 0) ∩ Cal(0). We start from calibration:

E
(x,y)∼D

[y] = 0.5 = E
(x,y)∼D

[p(x)].

Now we show multicalibration with respect to c ∈ C:

E
(x,y)∼D

[c(x) · (y − p(x))]

= E
(x,y)∼D

[c(x) · (y − 0.5)]

= 0.25 (0.75(0.5− 0.5) + 0.25(0.5− 0.5) + 0 · (0− 0.5) + 0 · (1− 0.5))) = 0.

The objective value of c is:

β := optD(T, C, 0)
= E

(x,y)∼D
[f0(i, c(x), y)]

= 0.125 (|1− 0.75|+ |0− 0.75|+ |1− 0.25|+ |0− 0.25|) + 0.25 (|0, 0|+ |1, 0|)
= 0.125 (2 · 0.25 + 2 · 0.75) + 0.25 = 0.25 + 0.25

= 0.5.

Since p is a constant function, any c′ ∈ Cp,g must satisfy c′(x1) = c′(x3) and c′(x2) = c′(x4) because g(x1) = g(x3)
and g(x2) = g(x4). To satisfy the constraints up to a small error ε, c′ must be close to assigning 0.375 to x1 and x3, and
assigning 0.125 to x2 and x4. We calculate the loss for this c′:

E
(x,y)∼D

[f0(i, c
′(x), y)] = 0.125 (|1− 0.375|+ |0− 0.375|+ |1− 0.125|+ |0− 0.125|)

+ 0.25 (|0− 0.325|+ |1− 0.125|)
= 0.125 (0.625 + 0.375 + 0.125 + 0.875) + 0.25 (0.375 + 0.875)

= 0.25 + 0.25 · 1.25
= 0.5625

> β.

This implies that for small enough ε, we have Cp,g ∩ solD(T, β + ε, ε) = ∅, and thus p cannot be a ({T}, C, Cp,g, ε)-
omnipredictor.

I.2. Group Level-Set Multiaccuracy is Necessary

We show an example task with non-convex constraints and a non-special objective, and thus none of our Theorems 4.4, 4.6
and D.9 could be applied to the example. Theorem 4.7 is applicable, but it requires group level-set multiaccuracy. Below
we show that for this task group multicalibration is indeed not enough and the level-set variant is necessary to guarantee
omniprediction.
Claim I.2. Let A = [0, 1] be an action set. There exists a non-empty set X over individuals, a group partition function
g : X → [t], a distribution D over X × {0, 1}, a task T , a class C of functions c : X → A, a predictor p : X → [0, 1] with
the following properties. The task T only has group constraints and objectives with 1-bounded differences. The predictor p
belongs to GrpMCD(C, g, 0) ∩ GrpCalD(g, 0). However, p is not a ({T}, C, Crand

p,g , ε)-omnipredictor for sufficiently small
ε > 0.

Proof. Let X = {x1, x2, x3} and let g : X → [t] be the trivial group partition that assigns every individual x ∈ X to the
same group g(x) = 1. The distribution D is defined by first choosing x ∈ X uniformly at random, and then choosing
y ∼ Ber(p∗(x)) for

p∗(x) =


0.25, x = x1,

1, x = x2,

0.25, x = x3.
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The function class C contains only a single function C = {c} defined by:

c(x) =


0.1, x = x1,

0.2, x = x2,

0.3, x = x3.

We choose the objective f0 of T to be the cubic loss: f0(x, a, y) = |a− y|3. We choose the collection of constraints fj of T
to be

f1(x, a, y) = 1(a = 0.1)− 1

3

f2(x, a, y) = −1(a = 0.1) +
1

3

f3(x, a, y) = 1(a = 0.2)− 1

3

f4(x, a, y) = −1(a = 0.2) +
1

3

f5(x, a, y) = 1(a = 0.3)− 1

3

f6(x, a, y) = −1(a = 0.3) +
1

3

For an action function c′ : X → A to satisfy these constraints exactly, it must satisfy

Pr
(x,y)∼D

[c′(x) = a] = 1/3 for every a ∈ {0.1, 0.2, 0.3} .

It is clear that the only function c ∈ C satisfies the constraints. The objective value achieved by c is

β := optD(T, C, 0) = E
(x,y)∼D

[f0(x, c(x), y)]

=
∑
j

Pr[x = xj ]

(
E

(x,y)∼D
[y|x ∈ Uj ]|1− cj |3 + (1− E

(x,y)∼D
[y|x ∈ Uj ])|cj |3

)

=
1

3

(
1

4
(0.9)3 +

3

4
(0.1)3 + 1(0.8)3 + 0(0.2)3 +

1

4
(0.7)3 +

3

4
(0.3)3

)
= 0.267.

The predictor p : X → [0, 1] defined by p(x) = 0.5 for all x ∈ X . We show that p ∈ GrpMCD(C, g, 0) ∩ GrpCalD(g, 0).
We show it, starting from calibration:

E
(x,y)∼D

[y] = 0.5 = E
(x,y)∼D

[p(x)].

For group multicalibration with respect to c ∈ C:

E
(x,y)∼D

[c(x) (y − p(x))] =
1

3

(
− 1

10
· 1
4
+

2

10
· 1
2
− 3

10
· 1
4

)
= 0

Since both p and g are constant functions, any c′ ∈ Crand
p,g has to give all x ∈ X the same distribution c(x) of actions. To

satisfy the constraints up to a small error ε, c′(x) must be close to the uniform distribution over {0.1, 0.2, 0, 3} for every x.
When c′(x) is this uniform distribution for every x, we have

E
(x,y)∼D

E
a∼c(x)

[f0(x, a, y)] =
∑

b∈{0,1},a∈{0.1,0.2,0.3}

Pr
(x,y)∼D

[y = b, c(x) = a] |y − a|3

=
1

2
· 1
3

(
(0.9)3 + (0.1)3 + (0.8)3 + (0.2)3 + (0.7)3 + (0.3)3

)
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= 0.27

> β.

Therefore, for small enough ε > 0, we have Crand
p,g ∩ solD(T, β + ε, ε) = ∅, and thus p cannot be a ({T}, C, Crand

p,g , ε)-
omnipredictor.

J. Helper Claims
The following claim is a standard result (see e.g. (Canonne, 2020, Theorem 1)):
Claim J.1. Let Z be a non-empty set partitioned into Z(1), . . . , Z(m). For ε, δ ∈ (0, 1/2) and an integer n ≥ W (ε−2(m+
log(1/δ))) for a sufficiently large absolute constant W > 0, let z1, . . . , zn ∈ Z be n data points drawn i.i.d. from any
distribution D over Z. Then with probability at least 1− δ, the following inequality holds:

m∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

1(zi ∈ Z(j))− Pr
z∼D

[z ∈ Z(j)]

∣∣∣∣∣ ≤ ε.
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