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Abstract
Multi-View Reinforcement Learning (MVRL)
seeks to find an optimal control for an agent given
multi-view observations from various sources.
Despite recent advances in multi-view learning
that aim to extract the latent representation from
multi-view data, it is not straightforward to ap-
ply them to control tasks, especially when the
observations are temporally dependent on one an-
other. The problem can be even more challenging
if the observations are intermittently missing for
a subset of views. In this paper, we introduce
Fuse2Control (F2C), an information-theoretic ap-
proach to capturing the underlying state space
model from the sequences of multi-view observa-
tions. We conduct an extensive set of experiments
in various control tasks showing that our method
is highly effective in aggregating task-relevant
information across many views, that scales lin-
early with the number of views while retaining
robustness to arbitrary missing view scenarios.

1. Introduction
In real-world decision-making problems, the observa-
tion from the environment is often complex and high-
dimensional. This is because the agent is usually equipped
with multiple sensors to obtain a better sense of what’s
going on in the environment. For example, it is a stan-
dard practice to employ an array of sensors (e.g. lidars,
cameras, sonars, etc.) in an autonomous vehicle. Treating
each of these sensors as a view, Multi-View Reinforcement
Learning (Li et al., 2019) (MVRL) aims to learn an optimal
control policy in a complex control task based on multi-
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view observations. Although one could naively train an RL
agent directly taking the stack of entire observations, it is
unclear to handle incomplete observations from views that
are intermittently missing, e.g. sensors operating at different
frequencies or being occluded. Furthermore, it would be
very sample-inefficient especially when observations are of
high dimensions (Lake et al., 2017; Tassa et al., 2018; Kaiser
et al., 2019). Consequently, it is necessary to adopt represen-
tation learning from multiple observations, i.e. Multi-View
Learning (MVL), so that the agent learns to act based on
a low-dimensional latent representation of the state, which
retains robustness to missing views and provides sufficient
information about the true state relevant to decision making.

Leveraging the power of deep generative models, MVL has
made remarkable progress in recent years. Notably, multi-
view generative models (Wu & Goodman, 2018; Shi et al.,
2019; Sutter et al., 2020; Shi et al., 2019; Hwang et al., 2021)
jointly train per-view Variational Autoencoders (VAEs) and
obtain the latent representation by combining each repre-
sentation from all views via weighted averaging strategies,
such as Product of Experts (Wu & Goodman, 2018; Hwang
et al., 2021), Mixture of Experts (Shi et al., 2019), or some
more complex strategies (Sutter et al., 2020; 2021). These
methods naturally extend to the partial-view scenario where
an arbitrary subset of views could be missing per observa-
tion instance, while some of them are not computationally
scalable for a large number of views. Recently, Hwang et al.
(2021) showed that these approaches can be interpreted as
optimizing the Total Correlation (TC) (Watanabe, 1960).

However, the direct application of these multi-view genera-
tive models to control tasks is not straightforward since we
need to consider the sequential nature of the problem that
arises from the dynamics of the environment. For example,
it would be desirable to learn the latent state representation
that exhibits Markov property for the sake of simplicity in
the RL training loop. Furthermore, when some of the views
are missing at a particular timestep, we should still be able to
harness the available observation from previous time steps
to infer the latent state.

In this paper, we propose Fuse2Control (F2C), a principled
MVRL framework that discovers the underlying dynamics
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from multi-view observations and actions. Inspired by the
recent MVL approach in (Hwang et al., 2021), we formu-
late the task of learning the latent state representation across
multiple views as maximizing the informativeness measured
in terms of TC, which reflects the multi-view aspect as well
as the sequential nature of the problem. We show that a
number of deep learning approaches for State Space Mod-
els (SSMs) are covered as special cases of our formulation,
which facilitates understanding the problems associated with
their direct application to MVRL. To this end, we derive
an alternative lower bound that extends single-view (i.e.
flat) SSMs to multi-view SSMs (MV-SSMs) by introducing
Conditional Variational Information Bottlenecks (CVIBs)
into our objective. Combined with the precision weighted
averaging (Cochran & Carroll, 1953; Cochran, 1954), our
method is shown to be effective in handling missing views,
using computation that linearly scales with the number of
views. Through experiments on various multi-view manipu-
lation and locomotion tasks, we show that our method is not
only sample-efficient in policy optimization, but also robust
under various missing view scenarios.

2. Related Work
Data augmentation for learning representations in RL
RAD (Laskin et al., 2020a) showed that applying a rich set
of data augmentation techniques greatly accelerates learn-
ing an optimal policy. Following this work, there have
been a number of self-supervised learning methods. For
example, CURL (Laskin et al., 2020b), DRIBO (Fan & Li,
2022), and S2R (Yang et al., 2022) generate 2-view images
by applying data augmentation techniques to the original
image to isolate task-relevant information in the representa-
tion. While CURL minimizes contrastive loss between two
views, DRIBO and S2R optimize Multi-view Information
Bottleneck (Federici et al., 2020) and Conditional Entropy
Bottleneck (Fischer, 2020) respectively. However, it is im-
portant to note that all these methods mainly aim to increase
sample efficiency in one-view visual RL problems; all the
experiment domains in CURL, DRIBO, and S2R are limited
to two views where the second view is a result of image
augmentation, a simple yet noisy transformation of the first
view. Instead of generating redundant views, MvDAN (Hu
et al., 2020) learns multiple policies or value functions that
commonly use one-view observation and aggregates them
with an attention module to solve single-view RL problems.

Learning dynamics model in RL By maximizing the
log-likelihood of the trajectory data, state space models
(SSMs) (Krishnan et al., 2015; Lee et al., 2020a) or its re-
current variants (Hafner et al., 2019; 2020; 2021) explicitly
learn latent dynamics of the environment. These are closely
related to ours, which we will discuss in Section 4.2.

Multi-view learning Multi-view generative models (Wu
& Goodman, 2018; Shi et al., 2019; Sutter et al., 2020; 2021;
Hwang et al., 2021) are one of the main approaches to MVL,
jointly training multiple single-view VAEs. Based on their
structural assumptions of the joint representation to be a
weighted average of per-view representations, these meth-
ods can be trained even with an incomplete dataset where
views are arbitrarily missing. To encourage alignment of
per-view representations, MVTCAE (Hwang et al., 2021)
regularizes the joint representation to be evenly dependent
on all views while calibrating per-view representation en-
coders using CVIBs, which also plays a key role in our
MV-SSM. As another dominant approach, CMC (Tian et al.,
2020) and GMC (Poklukar et al., 2022) optimize the con-
trastive loss. Since CMC learns per-view representations
without joint representation, it can be trained with missing-
view data by minimizing the contrastive loss between every
pair of available views, although this makes the optimization
scale in quadratic with the number of views. In contrast,
GMC learns the joint representation by minimizing the loss
between joint representation and each of the per-view repre-
sentations. However, it does not support a straightforward
extension to missing-view scenarios since the joint repre-
sentation requires all views to be available during training.

Multi-View RL Based on VAE architectures, Li et al.
(2019) proposed a model to address MVRL. Without the
notion of a joint state, the model minimizes the Euclidean
distance between the encoded state from the first view and
those from the rest. As such, it treats the first view as a
primary view which is assumed to be always available. In
contrast, Keypoint3D (Chen et al., 2021) learns 3d visual
keypoints from multiple third-person view cameras, reg-
ularizing those keypoints to satisfy geometric constraints
imposed by the configuration of cameras. While it addresses
MVRL, it can be only applied to third-person camera views
whose calibration parameters are required to be known a-
priori. On the other hand, LookCloser (Jangir et al., 2022)
addresses MVRL using 2 images, one from an egocentric
and the other from the third-person-view camera, without
calibration parameters. LookCloser adopts cross-view atten-
tion for aggregating per-view representations. Although one
can extend it to more than 2 views by applying cross-view
attention to all pairs of views, its computation would scale
quadratically with the number of views.

3. Background
Total Correlation in Multi-View Learning The Total
Correlation (TC) (Watanabe, 1960) is one of the representa-
tive measures of dependency among a set of random vari-
ables (RVs). It is defined as the Kullback-Leibler divergence
between the joint distribution of the RVs and the product of
their marginal distributions. In the context of MVL with V
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observations o⃗ = {ov}Vv=1 obtained from an unknown joint
distribution pD(o⃗), the TC of observations is defined as

TC(O⃗) ≜ DKL

[
pD(o⃗)∥

∏V
v=1 pD (ov)

]
.

For a latent representation Z encoded by a stochastic en-
coder pθ (z|o⃗), we measure the informativeness of Z by
quantifying the reduction of the dependency among ov’s by
conditioning on the latent representation Z. Formally, it is
measured by the difference between TC and conditional TC,

TCθ(O⃗;Z) ≜ TC(O⃗)− TCθ(O⃗ | Z), (1)

where the TCθ(O⃗ | Z) is the expected Kullback-Leibler
divergence of the joint conditional from the factored condi-
tionals (Hwang et al., 2021), defined as

TCθ(O⃗|Z) ≜ Epθ(z)
[
DKL

[
pθ (o⃗|z) ∥

∏V
v=1 pθ (o

v|z)
]]
.

Note that the above formula involves encoder pθ (z|o⃗)
such that pθ (z) =

∫
pθ (z|o⃗) pD (o⃗) do⃗, pθ (o⃗|z) =

pθ (z|o⃗) pD (o⃗)/pθ (z), and pθ (ov|z) =
∫
pθ (o⃗|z) do⃗\v .

If pθ (z|o⃗) completely captures all the factors of variation in
o⃗ so that it encodes complete representation Z, TCθ(O⃗;Z)
would be maximized since any complete representation fac-
torizes pθ(o⃗|z) and thus makes the second term in Eq. (1)
vanish (Ver Steeg & Galstyan, 2015; Gao et al., 2019;
Ver Steeg & Galstyan, 2014; Hwang et al., 2021).

Ver Steeg & Galstyan (2014) observed that TCθ(O⃗;Z) can
be alternatively expressed as a decomposition into multiple
Mutual Information (MI) terms,

TCθ(O⃗;Z) =
∑V
v=1 Iθ (O

v;Z)− Iθ(O⃗;Z), (2)

where Iθ(O⃗;Z) is known as Information Bottleneck
(IB) (Tishby et al., 2000). To learn a balanced representa-
tion that is evenly dependent on views, Hwang et al. (2021)
derived a variational lower bound introducing Conditional
Variational IBs (CVIBs).

TCθ(O⃗;Z) = 1
V

V∑
v=1

[
(V 9 1) Iθ (O

v;Z) 9 Iθ(O⃗
\v;Z|Ov)

]
≥ V−1

V

V∑
v=1

[
H (Ov) + Epθ(z,o⃗)

[
ln qvϕ (o

v|z)
]]

− 1
V

V∑
v=1

EpD(o⃗)

[
DKL

[
pθ(z|o⃗)∥rvψ(z|ov)

]]︸ ︷︷ ︸
CVIB

. (3)

MV-POMDP We model the sequential decision-making
problem under multi-view observations as a Multi-View
Partially Observable Markov Decision Process (MV-
POMDP) (Kaelbling et al., 1998), defined by tuple

⋯

Figure 1. Graphical model of MV-POMDP.〈
S,A, O⃗, T,Ω, R, γ, p0

〉
, where S is the set of unknown

ground-truth states s, A is the set of actions a, O⃗ =
{Ov}Vv=1 is the set of V observations o⃗ = {ov}Vv=1,
T (s′|s, a) = Pr(st+1 = s′|st = s, at = a) is the transition
dynamics distribution, Ω(o⃗|s) =

∏V
v=1 Pr(o

v
t = ov|st = s)

is the joint observation probability distribution,R(s, a) ∈ R
is the immediate reward function for taking action a at state
s, γ ∈ [0, 1) is the discount factor, and p0(s) = Pr(s0 = s)
is the starting state distribution at timestep 0. Figure 1 de-
scribes the graphical model that represents the MV-POMDP.
Given an unknown data-collecting policy πD(at|o⃗≤t) that
is dependent on the history of observations, complete-view
trajectories can be collected from the following distribution.

pD(a≤T , o⃗≤T )

=

∫
p0(s0)

T∏
t=0

Ω(o⃗t|st)πD(at|o⃗≤t)T (st+1|st, at)ds≤T .

4. Method
Multi-View Reinforcement Learning (MVRL) is the prob-
lem of learning an optimal policy in an environment mod-
eled as an MV-POMDP. Since the ground-truth states are
not available, the agent has to infer the state from the history
of observations and actions, known as the belief state. Ide-
ally, the belief state should summarize all the information
up to the present about the ground-truth state. This Markov
property is essential for many off-the-shelf RL methods to
work properly. The main challenge here is to accurately
infer the belief state while observations from a subset of
views could be arbitrarily missing in each timestep. This is
compounded by the fact that some observations from views
may be of very high dimensions, such as raw images from
cameras. At the same time, we want the belief state to be of
low dimension to tame the complexity inside the RL loop.

Thus, we aim to learn the belief state encoding that is not
only minimal yet sufficiently informative about the ground-
truth state but also robust to missing views. For this, we
first derive an objective function based on TC that care-
fully relates states, actions, successor states, and multi-
view observations for each timestep (Section 4.1). We
then show a close connection between our formulation and
well-known (single-view) RL methods that learn state space
models (SSMs), which reveals problems associated when
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naively used for incomplete (missing-view) observations
(Section 4.2). We derive an alternative objective function
that extends SSMs to Multi-View SSMs (MV-SSMs), which
admits optimization that scales linearly with the number of
views and handles missing views effectively (Section 4.3).
Lastly, we finalize our framework by describing the overall
procedure for training MV-SSM and the RL policy (Sec-
tion 4.4).

4.1. Information Theoretic Approach to MVRL

To learn a stochastic encoder pθ for the latent state ŝ, it is
essential to investigate the relationship among the state, the
action, the successor state, and the multi-view observations
in two consecutive timesteps. As shown in Fig 1, the state
st91 and the action at91 in the previous timestep (t91) jointly
determine the successor state st, which yields new obser-
vations o⃗t = {ovt }Vv=1. From this generative flow behind
the graphical model, we remark two important properties
involving the ground state st:

1. Treating ⟨St91, At91⟩ as one joint random variable,
⟨st91, at91⟩ affects the generation of {ovt }Vv=1 and thus
⟨st91, at91⟩, o1t , ..., oVt are dependent.

2. Given st, however, o⃗t = {ovt }Vv=1 are solely depen-
dent on st. Consequently, ⟨st91, at91⟩, o1t , ..., oVt are
conditionally independent on one another.

Given a stochastic belief state encoder pθ (ŝt|o⃗t, ŝt91, at91)
and samples from the fixed and unknown data distribution
o≤t, a<t ∼ pD(·), these two properties are naturally satis-
fied for the latent state ŝt replacing the ground state st by
maximizing TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt), given by

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) (4)

= TCθ(⟨Ŝt91, At91⟩, O⃗t)− TCθ(⟨Ŝt91, At91⟩, O⃗t | Ŝt).

Intuitively, this is because the maximization of the first
term, TCθ(⟨Ŝt91, At91⟩, O⃗t), maximizes the dependency
among all the current observations and the previous state-
action pair, i.e. we want the belief state encoder to convey
as much information as possible from the previous state-
action pair, while the minimization of the second term,
TCθ(⟨Ŝt91, At91⟩, O⃗t | Ŝt), makes them independent when
Ŝt is observed, i.e. a Markovian transition.

Treating the state-action pair in the previous timestep
⟨Ŝt91, At91⟩ as an augmented view, Eq. (4) is apparantly
analogous to Eq. (1). However, unlike the first term
in TC being constant in Eq. (1), we need to optimize
TCθ(⟨Ŝt91, At91⟩, O⃗t) since it involves learning the belief
state encoder in the previous timestep.

Under mild assumptions on the data-collecting policy
πD, we further observe that the optimal solution of our

objective function yields the latent state that is suffi-
cient for optimal control (Li et al., 2006; Rakelly et al.,
2021). More formally, denoting the optimal policy π∗ =
argmaxπ∈Π Eπ[

∑H
i=1 γ

i−1r(si)] and optimal Q-function
Q∗ = Qπ

∗
, where Π is the set of stationary policies, we can

show that the following theorem:

Theorem 1. Let tuple M = ⟨S,A, T,R, γ, p0⟩ be the
underlying MDP in MV-POMDP. Assuming that data-
collecting policy πD is ergodic and has full support on
A, if the belief state encoder pθ (ŝt|o⃗t, ŝt91, at91) maxi-
mizes ∀t > 0, TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) (Eq. (4)), then
the state representation µ̂πD

(s) = limt→∞ pθ(ŝt|st = s) is
Q∗-sufficient for control. In other words, if any two states
s(1), s(2) ∈ S are mapped into the same representation such
that µ̂πD

(s(1)) = µ̂πD
(s(2)), their Q∗-values are identical

across all actions.

Proof. See Section A in the supplementary material.

In order to align the optimization of our objective function
with our theoretical observation, we adopt the assumption
made by Sermanet et al. (2018) that complete-view data
is available during the (pre)training of the representation.
However, we do not assume any pattern of the missing-view
observation õt ⊆ o⃗t provided in test time (e.g. training
policy, inferring missing views). Before we present the
technical details of the optimization, we make connections
to some well-known model learning methods for RL.

4.2. Connection to State Space Models (SSMs)

First, we rewrite TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) in terms of MI:

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) = Iθ(Ŝt91, At91; Ŝt)

+

V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(Ŝt91, At91, O⃗t; Ŝt) (5)

=

V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(O⃗t; Ŝt | Ŝt91, At91), (6)

where the equality in Eq. (5) follows from Eq. (2) and the
equality in Eq. (6) holds due to the chain rule for MI (see
Section B.1 and Section B.2 in the supplementary material).
Next, we introduce qvϕ and r0ψ to derive a variational lower
bound on Eq. (6) since the MI terms involve intractable
integrals (see Section B.3 for detailed derivation):

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt)

≥
V∑
v=1

[
H (Ovt ) + Epθ(ovt ,ŝt)

[
ln qvϕ (o

v
t |ŝt)

]]
(7)

− E
[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥r0ψ (ŝt|ŝt91, at91)

]]
,

where pθ(o
v
t , ŝt) =

∫
pD (o⃗≤t, a<t) pθ (ŝ0 | o⃗0)∏t

t′=1 pθ (ŝt′ |o⃗t′ , ŝt′91, at′91) do⃗
\v
t do⃗<tdŝ<tda<t and
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the expectation in the last term is with respect
to pθ(o⃗t, ŝt91, at91) =

∫
pD (o⃗≤t, a<t) pθ (ŝ0 | o⃗0)∏t91

t′=1 pθ (ŝt′ | o⃗t′ , ŝt′91, at′91) do⃗<tdŝ<t91da<t91. Eq. (7)
naturally introduces the observation model qvϕ (o

v
t | ŝt) for

v-th view and the state transition model r0ψ (ŝt | ŝt91, at91).

Interestingly, Eq. (7) shows that recent world models in
(single-view) RL that learn State Space Models (SSMs)
and Recurrent SSMs (RSSMs) can be interpreted as special
cases of our TC objective:

1. Ignoring the constant entropy termsH(Ovt ) and assum-
ing single-view observation (V = 1), Eq. (7) exactly
reduces to the ELBO objective for SSMs (Krishnan
et al., 2015; Lee et al., 2020a).

2. In addition, casting the history of states and actions
as the augmented view ⟨Ŝt91, At91⟩ = (Ŝ<t, A<t),
Eq. (7) reduces to the ELBO objective for the genera-
tive model analogous to RSSMs (Hafner et al., 2019;
2020; 2021), with a minor difference in the decoder
(see Section C.1 in the supplementary material).

Yet, a direct application of single-view SSM (and RSSM)
to the multi-view setting is non-trivial since (1) the state
encoder would require complete-view observations from all
sensors (views) o⃗ for training and inference, and (2) the
state encoder may end up learning to ignore less informa-
tive views, which can be critical when some observations
become missing during inference. We address these issues
by deriving an alternative objective in the next section.

4.3. Multi-View State Space Model (MV-SSM)

Objective To be able to handle missing-view observations
and evenly allocate dependency across views in our objec-
tive, we rewrite Eq. (5) by applying the chain rule for MI
(see Section B.2 for details).

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) (8)

= 1
V+1

V∑
v=1

[V · Iθ(Ovt ; Ŝt)︸ ︷︷ ︸
⋆

− Iθ(Ŝt91, At91, O⃗\v
t ; Ŝt|Ovt )︸ ︷︷ ︸

⋆⋆

]

+ 1
V+1

(
V · Iθ(Ŝt91, At91; Ŝt)︸ ︷︷ ︸

⋆⋆⋆

− Iθ(O⃗t; Ŝt|Ŝt91, At91)︸ ︷︷ ︸
⋆⋆⋆⋆

)
Compared to Eq. (6), this formulation explicitly introduces
V conditional MIs (⋆⋆) between the state and previous state-
action pair augmented with V -1 other observations given
each observation, while maintaining important terms such
as MI (⋆) between every observation and the latent state,
and the conditional MI (⋆⋆⋆⋆) between the latent state and
V observations given the previous state-action pair. The
new conditional MI terms penalize encoding information
not inferable from the given view, which are upper-bounded

by CVIBs that effectively regularize the joint latent state to
be evenly dependent on views (Hwang et al., 2021).

Eq. (8) also introduces MI (⋆⋆⋆) between the previous state-
action pair and the current latent state which is non-trivial
to bound. This is because the variational formulation of
Iθ(Ŝt91, At91; Ŝt) would involve reconstruction error of la-
tent variables that cannot be measured sensibly (Section B.5
for detailed information). To this end, we adopt Noise
Contrastive Estimation (NCE) (Oord et al., 2018) which is
known to lower-bound the MI between two RVs with low
variance (Poole et al., 2019). NCE loss is defined as

Iθ(Ŝt91, At91; Ŝt) (9)

≥ E
[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]
≜ INCE(t; θ),

where K is the batch size, the function g is a neural network
jointly optimized with states, and the expectation is with
respect to

∏K
k=1 pθ(ŝ

(k)
t91, a

(k)
t91, ŝ

(k)
t ).

MV-SSM Using the INCE objective, we are now ready to
derive a variational lower bound of Eq. (8) to generalize
SSMs to multi-view observations, given as

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) ≥ V
V+1INCE(t; θ)

+ V
V+1

V∑
v=1

[
H(Ovt )Epθ(ovt ,ŝt)

[
ln qvϕ (o

v
t |ŝt)

]]
− 1

V+1E
[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥r0ψ (ŝt|ŝt91, at91)

]]
− 1

V+1

V∑
v=1

E
[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥rvψ (ŝt|ovt )

]]
= TCMV-SSM(t; θ, ϕ, ψ), (10)

where the expectations in the last two terms are with respect
to pθ(o⃗t, ŝt91, at91). Each of V +1 CVIB terms (Hwang
et al., 2021) in Eq. (10) introduces and calibrates a state
encoder rvψ(ŝt | ovt ) for each view (see Section B.4 for
detailed derivation). Since the CVIB of each view is the for-
ward KL divergence between the joint state encoder and the
per-view state encoder, its optimization encourages the per-
view encoder to cover all the supports of the joint encoder.
Hwang et al. (2021) demonstrated that this enables each
per-view encoder to infer the joint latent state by capturing
the relevant factors of variation observed from the given
view, while maintaining uncertainty about the unobservable
factors. In addition, this optimization also regularizes the
joint state encoder, promoting balanced dependence on all
views including the previous state-action pair.

We define Multi-View State Space Model (MV-SSM) with
the following components obtained from the objective

5



Information-Theoretic State Space Model for Multi-View Reinforcement Learning

⋯

State 
transition 

model

Per-view 
state 

encoder

Joint 
state 

encoder

Figure 2. The state encoding process in F2C.

Eq. (10):

1. State transition model: r0ψ(ŝt | ŝt91, at91)
2. Per-view observation model: qvϕ(o

v
t | ŝt)

3. Joint state encoder: pθ(ŝt | o⃗t, ŝt91, at91)
4. Per-view state encoder: rvψ(ŝt | ovt )

4.4. Fuse2Control

We still need to address how to combine the latent states
inferred from per-view encoders when only a subset of views
is available.

Finally, we introduce Fuse2Control (F2C), an information-
theoretic MVRL framework that retains linear scalability to
multiple views and flexibility to missing views.

To this end, we follow the structural choice for the joint
encoders in MVAE (Wu & Goodman, 2018) and MVT-
CAE (Hwang et al., 2021). Specifically, we design each
per-view state encoder to be diagonal Gaussian such that
rvψ(ŝt|ovt ) = N (µvt , (σ

v
t )

2I) and the joint state encoder to
be their inverse-variance weighted (IVW) (Cochran & Car-
roll, 1953; Cochran, 1954) average, such that

pθ(ŝt | o⃗t, ŝt−1, at−1) ≜ N(µt, σ
2
t I), (11)

where µt ≜
∑V
v=0 µ

v
t /(σ

v
t )

2∑V
v=0 1/(σ

v
t )

2
and σ2

t ≜
1∑V

v=0 1/(σ
v
t )

2
,

where µ0
t and σ0

t are outputs of the state transition model
r0ψ(ŝt | ŝt91, at91). Commonly used for sensor fusion,
Eq. (11) allows the prior on the successive state inferred
from the previous state to be corrected by the posterior in-
formation observed from any subset of views available at
the moment. As a result, it encodes the multi-view observa-
tions and the state-action pair without introducing additional
parameters (θ = {ψv}Vv=0), with the computation cost that
linearly scales with the number of input views. Furthermore,
missing views can be naturally excluded in the computation
by setting σvt of corresponding views to∞.

In addition to its computational efficiency, our design choice

for the joint state encoders to be an IVW average of the per-
view state encoders is particularly well-suited to our formu-
lation with CVIBs. This is because the calibrated per-view
encoders are specifically designed to express uncertainty
regarding unobserved factors, as discussed in Section 4.3.
Since each per-view encoder outputs a Gaussian latent state,
the dimensions associated with factors that are not observed
from a given view yield large predicted variance (σvt )

2. As
a result, by averaging the per-view latent states weighted by
the inverse of their predicted variances, we achieve a joint
state that effectively aggregates information across views.

Overall, we name our method Fuse2Control (F2C), an
information-theoretic MVRL framework that admits linear
scalability with the number of views and capability to han-
dle missing views during training and inference. Figure 2
describes the belief encoding process in F2C.

Using F2C, we can train the policy with any RL algorithm
on top of the latent state extracted from the MV-SSM. The
MV-SSM can be pretrained in advance (Section 5.1& Sec-
tion 5.2) or jointly trained with policy (Section 5.3).

5. Experiments
To evaluate the quality of the learned latent state in various
multi-view RL scenarios with missing views, we employ 3
sets of environments, Bipedal Walker, Simulation of Urban
Mobility (SUMO), and Metaworld. Our main objective here
is to see if the latent state from the proposed method ag-
gregates task-relevant information from different modalities
of views and helps the policy be robust to missing views.
Due to the space limit, we mainly focus on the challeng-
ing missing-view pattern with the varying availability of
all views (Zhang et al., 2019; 2020; Hwang et al., 2021).
Discussion on other missing-view scenarios with additional
results can be found in Section E.2.2 and Section E.2.3.

5.1. Bipedal Walker

To see if the latent state pretrained by our method is effective
in missing-view scenarios given many heterogeneous views,
we evaluated our method in the Bipedal Walker environment
from OpenAI gym (Brockman et al., 2016). Equipped with
various sensors, the agent needs to navigate in an environ-
ment of flat terrain with small variations. By controlling
4 motors in the legs, the agent receives a high reward if it
travels far away from its initial position while receiving a
huge negative reward whenever it falls down.

Multi-view observations We generate 5-heterogeneous-
view observations which are angular positions (5), angular
velocities (5), horizontal & vertical velocities (2), binary
indicators of ground contact in two legs (2), and LIDAR
measurements (10), where the numbers in parentheses are
dimensions of views. Learning the latent state from these
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Figure 3. The performance in Bipedal Walker under missing views. From the left to the right, we increase the number of missing views.

multi-view observations is nontrivial since identifying the
underlying relationship among them requires capturing tem-
poral dependency. For example, positions depend on veloci-
ties not in the current timestep, but in the earlier timesteps.

Baseline methods We compared F2C to various baseline
methods capable of learning from missing views such as
CMC (Tian et al., 2020), SLAC (Lee et al., 2020a), MVT-
CAE (Hwang et al., 2021), and Vanilla-RL. CMC learns per-
view representations by minimizing contrastive loss between
every pair of views. Since CMC does not learn the joint rep-
resentation, we compute the average of its representations
from any available views. MVTCAE (Hwang et al., 2021)
simultaneously learns joint representation and calibrates
per-view representation encoders. SLAC jointly trains SSM
and policy by maximizing the joint log-likelihood of obser-
vations and optimalities. Although it is a single-view RL
method, SLAC can be extended to the MVRL by adopting
the model structure same as MV-SSM in F2C and training it
with Eq. (7). Lastly, Vanilla-RL is the PPO algorithm (Schul-
man et al., 2017) which learns directly from missing views.
We used mean imputation (Van Buuren, 2018) in Vanilla-RL
to cope with missing-view observations.

Experiment setup We first pretrained the representa-
tion of each method using a complete-view trajectory
dataset. Based on the implementation in Bipedal Walker
from Barhate (2021), the dataset is collected through in-
teraction between the environment and PPO (Schulman
et al., 2017) agent trained for 3 million timesteps. After
pretraining all the methods, each method is evaluated by the
performance of PPO trained on the learned representation.
We adopted 5 different scenarios depending on how the
representation is extracted from observations with a fixed
number of missing views (0∼4). We uniformly sampled
views to drop in each timestep. Details on the experiment
can be found in Section D.1 in the supplementary material.

Results Figure 3 summarizes the performance of the pol-
icy trained with the representation learned by each method.
All the values are averaged over 5 seeds (0∼4). All methods
perform at their best when the observations are complete,
but they all show a noticeable drop in their performances
when 1 view is missing. This is mainly because the agent
prefers a safe yet suboptimal behavior since any missing
piece of information makes the walker significantly more

challenging to keep running forward without falling down
(see Section E.1.2 for visualization of exemplar behaviors).

Our method clearly outperforms all the baselines when there
is more than 1 missing view. Vanilla-RL performed surpris-
ingly well when there are only 0∼1 missing view, but signif-
icantly worse when more than one view is missing. We also
observe that CMC poorly performs in all cases of complete
and incomplete views. This is because the contrastive loss
in CMC encourages the representations from all views to be
similar, which enforces to discard of any view-specific in-
formation. Thus, it is limited to apply CMC when views are
heterogeneous. Although our method also aligns per-view
representations using CVIBs to the joint representation, it
successfully aggregates all available information, which re-
sults in remarkable robustness to any number of missing
views especially when 2 or more views are missing. We
compare our method to MVTCAE and SLAC below.

Ablation study MVTCAE and SLAC are special cases of
our F2C framework; F2C without relating latent states in
adjacent timesteps reduces to MVTCAE (Eq. (3)) and F2C
without per-view CVIBs reduces to SLAC (Eq. (7)). Com-
pared to our method, MVTCAE and SLAC significantly
degrade in all the missing-view cases. As shown in Fig-
ure 3, our method outperforms MVTCAE by a large margin
when there are multiple missing views, which clearly shows
the advantage of relating the current state to the previous
state-action pair by learning the latent transition dynamics.
Although SLAC also learns the transition dynamics, it fails
to match its performance to F2C in all scenarios. This is
because it does not regularize per-view encoders in its objec-
tive function, which forces the belief state encoder to merge
inaccurate per-view representations. Further analysis can be
found in Section E.1.

Runtime statistics The results of the training time of
different representation learning methods are presented in
Figure 4. The x-axis represents the number of input views,
while the y-axis represents the computation time of a sin-
gle iteration of the minibatch. We redundantly copied the
original 5 views to employ many views. The numbers are
averaged over 10 trials. Our method and SLAC have the
same performance since the difference between them lies
only in the coefficients of their objective function terms.
The results clearly demonstrate the advantage of MVSSM
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Figure 4. Average computation time of the optimization of each
method per iteration. All the numbers are averaged over 10 trials.

(ours) over CMC. Although our method’s computation time
is slower than other methods when the number of views is
5, it gradually increases with the number of input views,
similar to the MVTCAE whose computation cost also lin-
early scales with the number of views. In contrast, CMC
shows a dramatic increase in computation time due to the
optimization of the contrastive loss between every possible
pair of views, which yields quadratic computation time.

5.2. Simulation of Urban Mobility

To see if our method can be effective in realistic scenarios,
we evaluated our method in Simulation of Urban Mobility
(SUMO) (Krajzewicz et al., 2012), a traffic light control
environment. The goal is to manipulate traffic lights located
at each junction to improve the overall traffic flow. We
used the interface of 2×2 junctions provided by SUMO-
RL (Alegre, 2019), where every junction has 4 vertical and
4 horizontal lanes. New vehicles are randomly generated
with a probability of 0.1 at the end of lanes for every second.

Multi-view observations We take the observation from
each junction as a view. In every junction, the following 21-
dimensional information is observed to represent its state:
(1) the current status of the traffic light represented by one-
hot encoding (4D), (2) the duration time of the current traffic
light status bounded between [0, 1] (1D), (3) the population
density of all vehicles in each lane (8D), and (4) the popula-
tion density of stopped vehicles in each lane (8D). Since all
lanes in each junction are connected to other lanes in its adja-
cent junctions, there exists dependency across observations
from all junctions. When some views are missing, learning
the optimal behavior is challenging since the optimal action
in each junction would be dependent on the observations
from adjacent junctions which might be missing.

Experiment setup Same baseline methods and experi-
ment setup in Section 5.1 are used except SAC (Haarnoja
et al., 2018) is employed to train to policy. Further details
can be found in Section D.2 in the supplementary material.
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Figure 5. Experiment results in SUMO with complete views (left)
and missing views (right).

Results The performances of ours and baseline methods
are compared in Figure 5, where the left figure shows the
results under complete view while the right figure shows the
results under incomplete views. In the right figure, we only
report the performance of ours and omit the baselines since
they all yielded average returns of less than 5 when at least
one view was missing.

Overall, F2C outperforms all the baseline methods in both
complete-view and missing-view scenarios and performs
reasonably robust to missing views. This result implies that
our method discovers complex underlying dynamics across
the traffic lights and the population densities. On the other
hand, all the baseline methods fail to learn meaningful be-
havior when even one view is unavailable. Compared to
Bipedal Walker, this is because the dependency across ob-
servations in SUMO is much weaker; the traffic conditions
at adjacent junctions have stochastic effects on each other.
Additional experiment results can be found in Section E.2.

5.3. Metaworld

Following Chen et al. (2021), we employed 8 complex
robotic arm manipulation tasks in Metaworld (Yu et al.,
2020) to see if our method accelerates the policy optimiza-
tion when observations are high-dimensional.

Multi-view observations Three third-person-view cam-
eras in different poses are used in each task to observe the
robot arm agent and the objects. An example of 3-view im-
age observations is visualized in Section D.3 in Appendix.

Baseline methods In addition to all the baseline methods
in the previous experiments, we include LookCloser (Jangir
et al., 2022), a transformer-based MVRL algorithm. A brief
explanation of it can be found in Section 2. Due to the
space limit, we compare the performance of our method
for missing views. Evaluation in complete views with an
extensive set of pixel-based RL algorithms can be found in
Section E.3 in the supplementary material.

Experiment setup Following Chen et al. (2021), we eval-
uated the performance of the policies jointly trained with
representations of comparing methods and ours to see if our
method successfully captures task-relevant information in
the latent state given high dimensional image observations.
We applied the missing-view pattern randomly generated
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Figure 6. The performance in manipulation tasks given missing views (η = 0.5).

according to the protocol of Zhang et al. (2019). In specific,
we generate random view-missing patterns per trajectory by
setting the missing rate η =

∑V
v=1

Uv

(V×T ) to be 0.51, where
Uv is the number of samples missing in the v-th view. De-
tailed information on the experiment settings can be found
in Section D.3 in the supplementary material.

Results Figure 6 summarizes the performance of F2C and
comparing methods in the missing-view scenario. All values
are normalized by the performance of F2C under complete
views. Among 8 tasks, our method clearly outperforms
in 5 tasks (Close Drawer, Open Door, Push Wall,
Hammer, Pick&Place) and performs on par with the
strongest baselines in 2 task (Close Box, Peg Unplug).
Although our method underperforms in Open Window
compared to CMC, we observe that our method shows sta-
ble performance across all tasks. For example, our method
outperforms all the comparing methods in Pick&Place,
while the rest algorithms barely learn any meaningful poli-
cies. Furthermore, we observe that the performances of
F2C in complete views are reasonably well preserved in the
missing-view experiment as well.

Unlike previous experiments, CMC shows competitive per-
formance in some tasks (Open Window, Close Box,
and Peg Unplug). This is because those 3 third-person-
view cameras are redundant as they are commonly observing
the same robot arms and objects. As a result, optimizing
per-view representations with contrastive loss is less likely
to discard any important information uniquely observable
in some views. LookCloser fails to show competitive per-
formance given missing-view observations, which implies
that aggregating information across multi-view observations
based on cross-attention is not effective in missing-view
scenarios. Lastly, MVTCAE and SLAC show degenerate

1We ensured that at least one view is always available while
satisfying missing rate of 0.5.

performance compared to ours, showing the impact of learn-
ing transition dynamics along with regularizing per-view
encoders using CVIBs.

6. Conclusion
We presented the latent space model for MVRL. Inspired
by recent approaches in MVL, we derived the objective of
(recurrent) state space models from TC and generalized it to
multi-view settings. We also derived an alternative objective
of MVRL with CVIBs, which is more favorable over naive
log-likelihood objectives as it scales linearly with the num-
ber of views and able to handle missing views. To convey
minimal sufficient latent state to policy, our method can be
both pretrained with precollected dataset and trained end-
to-end, achieving better performance compared to strong
baseline methods in missing-view scenarios.

Acknowledgements
This work was supported by NRF of Korea
(NRF2019R1A2C1087634 and NRF2021R1A4A3032834),
Field-oriented Technology Development Project for
Customs Administration through NRF of Korea funded
by the MSIT and Korea Customs Service (NRF-
2021M3I1A1097938), IITP grant funded by MSIT
(No.2020-0-00940, Foundations of Safe Reinforcement
Learning and Its Applications to Natural Language
Processing; No.2022-0-00311, Development of Goal-
Oriented Reinforcement Learning Techniques for
Contact-Rich Robotic Manipulation of Everyday Objects;
No.2019-0-00075, AI Graduate School Program (KAIST);
No.2021-0-02068, AI Innovation Hub), ETRI grant
(22ZS1100, Core Technology Research for Self-Improving
Integrated AI System), KAIST-NAVER Hypercreative AI
Center, and Samsung Electronics.

9



Information-Theoretic State Space Model for Multi-View Reinforcement Learning

References
Alegre, L. N. SUMO-RL. https://github.com/
LucasAlegre/sumo-rl, 2019.

Barhate, N. Minimal pytorch implementation of proxi-
mal policy optimization. https://github.com/
nikhilbarhate99/PPO-PyTorch, 2021.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Ben-
gio, Y., Courville, A., and Hjelm, D. Mutual information
neural estimation. In International Conference on Ma-
chine Learning, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Chen, B., Abbeel, P., and Pathak, D. Unsupervised learning
of visual 3d keypoints for control. In ICML, 2021.

Cochran, W. G. The combination of estimates from different
experiments. Biometrics, 1954.

Cochran, W. G. and Carroll, S. P. A sampling investigation
of the efficiency of weighting inversely as the estimated
variance. Biometrics, 1953.

Fan, J. and Li, W. DRIBO: Robust deep reinforcement
learning via multi-view information bottleneck. In Inter-
national Conference on Machine Learning, 2022.

Federici, M., Dutta, A., Forré, P., Kushman, N., and Akata,
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A. Q∗-Sufficiency Analysis on Our Objective

Figure 7. Graphical model of belief state encod-
ing in MV-POMDP.

Data generation process Trajectories of observations and actions are col-
lected by an unknown policy πD(at|o⃗≤t) which is dependent on the history
of observations with full support on action space A. Then, trajectories are
drawn from the following distribution.

pD(a<T , o⃗≤T ) =

∫
pD(s≤T , a<T , o⃗≤T )ds≤T , (12)

where pD(s≤T , a<T , o⃗≤T ) is the unknown joint distribution of underlying
ground-truth states, actions, and observations defined as below:

pD(s≤T , a<T , o⃗≤T )

= p0(s0)Ω(o⃗0|s0)
T−1∏
t=0

πD(at|o⃗≤t)T (st+1|st, at) Ω(o⃗t+1|st+1).

Although we do not have direct access to ground-truth states, we can also
consider the joint distribution of the learned states along with ground-truth
states, actions, and observations.

pθ(ŝ≤T , s≤T , a<T , o⃗≤T ) = pD(s≤T , a<T , o⃗≤T )pθ(ŝ0|so)
∏T
t=1 pθ(ŝt|o⃗t, ŝt−1, at−1). (13)

State-encoding distribution with full support Note that steady-state distribution is:

µπD
(s) = lim

t→∞
pD(st = s) = lim

t→∞

∫
pD(st = s, s<t, a<t, o⃗≤t)ds<tda<tdo⃗≤t.

Since we assumed that µπD
(s) > 0 ∀s ∈ S (i.e. πD is ergodic and thus µπD

have full support), we can extract the latent
state ŝ from the steady state-encoding distribution µ̂πD

(s) as below, whose support on the input s is the entire state space:

µ̂πD
(s) ≜ lim

t→∞
pθ(ŝt|st = s), where pθ(ŝt|st) =

pθ(ŝt, st)

pD(st)
=

∫
pθ(ŝ≤T , s≤T , a<T , o⃗≤T ) dŝ<tds<tda<tdo⃗≤t∫

pD(s≤T , a<T , o⃗≤T ) ds<tda<tdo⃗≤t
.

Q∗-sufficiency Let the optimal policy π∗ = argmaxπ∈Π Eπ[
∑∞
i=1 γ

i−1r(si)] and optimal Q-function Q∗ = Qπ
∗
, where

Π is the set of stationary policies. Please note that π∗ is different from πD; π∗ is an optimal policy with direct access to the
ground-truth state while πD always covers full supports of the action space using the history of observations.

Following is the formal definition on Q∗-sufficiency (Li et al., 2006; Rakelly et al., 2021):
Definition 1 (Q∗-sufficiency). If µ̂πD

(s(1)) = µ̂πD
(s(2)), then Q∗(s(1), a) = Q∗(s(2), a) ∀a ∈ A,∀r(s) ∈ R.

In Section A.2, we prove Theorem 1 by showing that if the belief state encoder maximizes ∀t > 0 TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt),
the latent state ŝ encoded by θ(s) is Q∗-sufficient w.r.t. a set of all state-dependent reward functionsR. Before we directly
jump into the proof, we show in Section A.1 that following 3 lemmas hold, which are necessary for the proof:
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A.1. Background Lemmas

Lemma 1. Iθ(O⃗t+1; Ŝt, At) ≤ Iθ(St+1; Ŝt, At) ≤ I(St+1;St, At), ∀t ≥ 0.

Proof of Lemma 1.
(1) Iθ(O⃗t+1; Ŝt, At) ≤ Iθ(St+1; Ŝt, At):

Iθ(Ŝt, At;St+1, O⃗t+1) = Iθ

(
Ŝt, At;St+1

)
+
�����������:0

Iθ(Ŝt, At; O⃗t+1 | St+1)

= Iθ(Ŝt, At; O⃗t+1) + Iθ(Ŝt, At;St+1 | O⃗t+1)

≥ Iθ(Ŝt, At; O⃗t+1)

(2) Iθ(St+1; Ŝt, At) ≤ I (St+1;St, At):

Iθ(St+1;St, Ŝt, At) = I(St+1;St, At) +
����������:0

Iθ(St+1; Ŝt | St, At)
= Iθ(St+1; Ŝt, At) + Iθ(St+1;St | Ŝt, At)
≥ Iθ(St+1; Ŝt, At)

Thus, Iθ(O⃗t+1; Ŝt, At) ≤ I(St+1;St, At) ∀t ≥ 0. The equality holds when ⟨Ŝt, At⟩ completely predicts O⃗t+1. In such
case, Iθ(O⃗t+1; Ŝt, At) = Iθ(St+1; Ŝt, At) = I(St+1;St, At).

Lemma 2. TCθ(⟨Ŝt, At⟩, O⃗t+1; Ŝt+1) ≤ Iθ(Ŝt, At; O⃗t+1) + TC(O⃗t+1) ≤ I(St+1;St, At) + TC(O⃗t+1), ∀t ≥ 0.

Proof of Lemma 2. To make the analysis easier, we shift TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) one timestep ahead and rewrite it as
follows:

TCθ(⟨Ŝt, At⟩, O⃗t+1; Ŝt+1) = TCθ(⟨Ŝt, At⟩, O⃗t+1)− TCθ(⟨Ŝt, At⟩, O⃗t+1 | Ŝt+1), where

TCθ(⟨Ŝt, At⟩, O⃗t+1) = Epθ(ŝt,at,o⃗t+1)

[
log

pθ(ŝt, at, o⃗t+1)

pθ(ŝt, at)
∏V
v=1 pD(o

v
t+1)

]

= Epθ(ŝt,at,o⃗t+1)

[
log

pθ (ŝt, at, o⃗t+1)

pθ (ŝt, at) pD ( ⃗ot+1)

pD ( ⃗ot+1)∏V
v=1 pD

(
ovt+1

)]
= Iθ(Ŝt, At; O⃗t+1) + TC(O⃗t+1)

TCθ(⟨Ŝt, At⟩, O⃗t+1 | Ŝt+1) = Epθ(ŝt+1,ŝt,at,o⃗t+1)

[
log

pθ(ŝt, at, o⃗t+1|ŝt+1)

pθ(ŝt, at|ŝt+1)
∏V
v=1 pθ(o

v
t+1|ŝt+1)

]
= Epθ(ŝt+1,ŝt,at,o⃗t+1)

[
log

pθ(ŝt, at, o⃗t+1|ŝt+1)

pθ(ŝt, at|st+1)pθ(o⃗t+1|ŝt+1)

pθ(o⃗t+1|ŝt+1)∏V
v=1 pθ(o

v
t+1|ŝt+1)

]
= Iθ(Ŝt, At; O⃗t+1 | Ŝt+1) + TCθ(O⃗t+1 | Ŝt+1).

Thus, we obtain the following equality and inequalities:

TCθ(⟨Ŝt, At⟩, O⃗t+1; Ŝt+1) = Iθ(Ŝt, At; O⃗t+1) + TC(O⃗t+1)

− Iθ(Ŝt, At; O⃗t+1 | Ŝt+1)− TCθ(O⃗t+1 | Ŝt+1) (14)

≤ Iθ(Ŝt, At; O⃗t+1) + TC(O⃗t+1) (15)

≤ I(St, At;St+1) + TC(O⃗t+1), (16)

where the inequality in Eq. (15) holds due to the nonnegativity of conditional MI & conditional TC and the inequality
in Eq. (16) holds due to Lemma 1. Thus, our objective is bounded by I(St+1;St, At) + TC(O⃗t+1), a constant value
determined by the data distribution pD.

The equality TCθ(⟨Ŝt, At⟩, O⃗t+1; Ŝt+1) = I(St, At;St+1) + TC(O⃗t+1) holds if Ŝt+1 minimizes the conditional MI and
conditional TC in Eq. (14) (i.e., complete representation of O⃗t+1) in addition to the maximal predictive power of ⟨Ŝt, At⟩ on
O⃗t+1. Thus, θ at the global optimum of our objective function ensures the equality Iθ(Ŝt, At; O⃗t+1) = I(St, At;St+1).
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Lemma 3. For any t ≥ 0, if Iθ(O⃗t+1; Ŝt, At) = I(St+1;St, At), then T (st+1|st, at) = Epθ(ŝt|st) [pθ(st+1|ŝt, at)],
∀st ∈ supp pt(·),∀ŝt ∈ supp pθ(·|st),∀at.

Proof of Lemma 3. By Lemma 1, Iθ(O⃗t+1; Ŝt, At) = I(St+1;St, At) directly indicates that Iθ(St+1; Ŝt, At) =
I(St+1;St, At). From Figure 7, we can derive the following equality:

Iθ(St+1; Ŝt, St, At) = I(St+1;St, At) +
����������:0

Iθ(St+1; Ŝt | St, At)
= Iθ(St+1; Ŝt, At) + Iθ(St+1;St | Ŝt, At).

From Iθ(St+1; Ŝt, At) = I(St+1;St, At),
Iθ(St+1;St | Ŝt, At) = 0 = Epθ(ŝt,st,at) [DKL [pθ(st+1|ŝt, st, at)∥pθ(st+1|ŝt, at)]]

= Epθ(at|ŝt,st)pθ(ŝt|st)pD(st) [DKL [T (st+1|st, at)∥pθ(st+1|ŝt, at)]] ,

where the last equality holds because St+1 is conditionally independent of Ŝt given St, At (Iθ(St+1; Ŝt | St, At) = 0) so
that pθ(st+1|ŝt, st, at) = T (st+1|st, at).

If pD(st) > 0 and ŝt is the encoding of st so that pθ(ŝt|st) > 0, pθ(at|st, ŝt) also covers all the supports of the action space
as well since pθ(o⃗≤t|st, ŝt) is well-defined:

pθ(at|st, ŝt) =
∫
π(at|o⃗≤t)pθ(o⃗≤t|st, ŝt)do⃗≤t =

∫
π(at|o⃗≤t)

pθ(o⃗≤t, st, ŝt)

pθ(ŝt|st)pD(st)
do⃗≤t.

Thus, ∀st ∈ supp pD(·), ∀ŝt ∈ supp pθ(·|st), and ∀at,
T (st+1|st, at) = pθ(st+1|ŝt, at)
→ T (st+1|st, at)pθ(ŝt|st) = pθ(st+1|ŝt, at)pθ(ŝt|st)
→ T (st+1|st, at) = Epθ(ŝt|st)

[
pθ(st+1|ŝt, at)

]
.

A.2. Q∗-Sufficiency of TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt)

Given θ at the global optimum of TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt), Iθ(Ŝt, At; O⃗t+1) = I(St, At;St+1) ∀t ≥ 0 by Lemma 2.

By Lemma 3 and stationary transition dynamics T inM such that T (st+1|st = s, at = a) ≡ T (st′+1|st′ = s, at′ = a)
∀s, a ∈ S ×A, ∀t, t′ ≥ 0, we have
T (s1|s0 = s, a0 = a) ≡ limt′→∞ Epθ(ŝt′ |st′=s)

[
pθ(st′+1|ŝt′ , at′ = a)

]
= limt′→∞ Eŝ∼µ̂πD

(s)

[
pθ(st′+1|ŝt′ = ŝ, at′ =

a)
]
.

Based on this property, we prove Q∗-sufficiency using Lemma 3 as below.

Proof of Theorem 1. If two states s(1), s(2) ∈ S are mapped into the same latent state space such that µ̂πD
(s(1)) = µ̂πD

(s(2)),
their Q∗ values are identical across all actions a ∈ A:

Q∗
r(s

(1), a) = Eπ∗

[ ∞∑
i=1

γi91Ri | s0 = s(1), a0 = a

]

= ET (s1|s0=s(1),a0=a)p∗(a1,...,s∞|s1)

[ ∞∑
i=1

γi91r(si)

]

= lim
t′→∞

Eŝ∼θ(s(1))Epθ(st′+1|ŝt′=ŝ,at′=a)p∗(a1,...,s∞|s1=st′+1)

[ ∞∑
i=1

γi−1r(si)

]
(17)

= lim
t′→∞

Eŝ∼θ(s(2))Epθ(st′+1|ŝt′=ŝ,at′=a)p∗(a1,...,s∞|s1=st′+1)

[ ∞∑
i=1

γi−1r(si)

]
= Q∗

r(s
(2), a),

where the equality in Eq. (17) holds due to Lemma 3 and stationary transition dynamics.

Previous work has observed that any Q∗-sufficient representation guarantees the convergence of the Q-learning algorithm
trained on top of the representation (Li et al., 2006; Rakelly et al., 2021).
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B. Derivations in Detail
Please note that all the derivations in this section relies on the joint distribution of observations, latent states, and actions,
which is defined as:

pθ(o⃗≤t, ŝ≤t, a<t) = pD(o⃗≤t, a<t)pθ(ŝ0|o⃗0)
t∏

t′=1

pθ(ŝt′ |o⃗t′ , ŝt′91, at′91). (18)

Please note that Eq. (18) is identical to marginalizing Eq. (13) over s≤t. Any joint distributions of some subsets of
o⃗≤t, ŝ≤t, a<t can be achieved by marginalizing pθ(o⃗≤t, ŝ≤t, a<t) w.r.t. random variables (RVs) that are absent in the given
subset. For example,

pθ(o⃗t, ŝt, ŝt91, at91) =

∫
pθ(o⃗≤t, ŝ≤t, a<t)do⃗<tdŝ<t91da<t91,

which implies that sampling RVs at a certain timestep (or two consecutive timesteps) requires to sample RVs at earlier
timesteps as well. In the example, samples of o⃗t, ŝt, ŝt91, at91 can be achieved by sampling o⃗≤t, ŝ≤t, a≤t91 and discarding
o⃗<t, ŝ<t91, a<t91. Samples of any subset of o⃗t, ŝt, ŝt91, at91 can be achieved in similar ways.

B.1. Rewriting TC in terms of MI (Eq. (5))

Let O0
t denote ⟨Ŝt91, At91⟩ to simplify notation. Then,

TCθ(O
0
t , O⃗t; Ŝt) = TCθ(O

0
t , O⃗t)− TCθ(O0

t , O⃗t | Ŝt)

= DKL

(
pθ(o

0, o⃗t)∥pθ(o0t )
V∏
v=1

pD(o
v
t )

)
− Epθ(ŝt)

[
DKL

(
pθ(o

0
t , o⃗t|ŝt)∥

V∏
v=0

pθ(o
v
t |ŝt)

)]

= Hθ(O
0
t ) +

V∑
v=1

H(Ovt )−Hθ(O
0
t , O⃗t)−

V∑
v=0

Hθ(O
v
t |Ŝt) +Hθ(O

0
t , O⃗t|Ŝt)

= Hθ(O
0
t ) +

V∑
v=1

H(Ovt )−
V∑
v=0

Hθ(O
v
t |Ŝt)−Hθ(O

0
t , O⃗t) +Hθ(O

0
t , O⃗t|Ŝt)

=

V∑
v=0

Iθ(O
v
t ; Ŝt)− Iθ(O0

t , O⃗t; Ŝt) (19)
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B.2. Chain Rule for MI (Eq. (6) and Eq. (8))
In Eq. (6),

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) = Iθ(Ŝt91, At91; Ŝt) +

V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(Ŝt91, At91, O⃗t; Ŝt)

=

V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(O⃗t; Ŝt | Ŝt91, At91),

where the first equality holds due to Eq. (19) and the last equality holds due to the chain rule for MI which we prove as
below:

Iθ(Ŝt91, At91; Ŝt)− Iθ(Ŝt91, At91, O⃗t; Ŝt)

= Epθ(ŝt91,at91,ŝt)
[
ln
pθ(ŝt|ŝt91, at91)

pθ(ŝt)

]
− Epθ(ŝt91,at91,ŝt,o⃗t)

[
ln
pθ(ŝt|o⃗t, ŝt91, at91)

pθ(ŝt)

]
=

∫ (∫
pθ(ŝt91, at91, ŝt, o⃗t)do⃗t

)
ln
pθ(ŝt|ŝt91, at91)

pθ(ŝt)
dŝt91dât91dŝt

−
∫
pθ(ŝt91, at91, ŝt, o⃗t) ln

pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt)

dŝt91dat91do⃗tdŝt

=

∫
pθ(ŝt91, at91, ŝt, o⃗t)

(
ln
pθ(ŝt|ŝt91, at91)

pθ(ŝt)
− ln

pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt)

)
dŝt91dat91do⃗tdŝt

= −
∫
pθ(ŝt91, at91, ŝt, o⃗t) ln

pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt|ŝt91, at91)

do⃗tdŝt

= −Epθ(ŝt91,at91,ŝt,o⃗t)
[
ln
pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt|ŝt91, at91)

]
= −Iθ(O⃗t; Ŝt | Ŝt91, At91). (⋆ ⋆ ⋆⋆)

Similarly, in Eq. (8),

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) =
V∑
v=0

V+1
V+1Iθ(O

v
t ; Ŝt)−

V∑
u=0

1
V+1Iθ(Ŝt91, At91, O⃗t; Ŝt)

= 1
V+1

V∑
v=0

[
V ·Iθ(Ovt ; Ŝ) + Iθ(O

v
t ; Ŝt)− Iθ(Ŝt91, At91, O⃗t; Ŝt)

]
= 1

V+1

V∑
v=1

[V · Iθ(Ovt ; Ŝt)︸ ︷︷ ︸
⋆

− Iθ(Ŝt91, At91, O⃗\v
t ; Ŝt | Ovt )︸ ︷︷ ︸

⋆⋆

]

+ 1
V+1

(
V · Iθ(Ŝt91, At91; Ŝt)︸ ︷︷ ︸

⋆⋆⋆

− Iθ(O⃗t; Ŝt | Ŝt91, At91)︸ ︷︷ ︸
⋆⋆⋆⋆

)
,

where the last equality holds due to the chain rule for MI which we prove as below:

Iθ(O
v
t ; Ŝt)− Iθ(Ŝt91, At91, O⃗t; Ŝt)

= Epθ(ŝt,ovt )
[
ln
pθ(ŝt|ovt )
pθ(ŝt)

]
− Epθ(ŝt91,at91,ŝt,o⃗t)

[
ln
pθ(ŝt|o⃗t, ŝt91, at91)

pθ(ŝt)

]
=

∫ (∫
pθ(ŝt91, at91, ŝt, o⃗t)dŝt91dat91do⃗

\v
t

)
ln
pθ(ŝt|ovt )
pθ(ŝt)

dovt dŝt

−
∫
pθ(ŝt91, at91, ŝt, o⃗t) ln

pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt)

dŝt91dat91do⃗tdŝt

=

∫
pθ(ŝt91, at91, ŝt, o⃗t)

(
ln
pθ(ŝt|ovt )
pθ(ŝt)

− ln
pθ(ŝt|o⃗t, ŝt91, at91)

pθ(ŝt)

)
dŝt91dat91do⃗tdŝt

= −
∫
pθ(ŝt91, at91, ŝt, o⃗t) ln

pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt|ovt )

do⃗tdŝt

= −Epθ(ŝt91,at91,ŝt,o⃗t)
[
ln
pθ(ŝt|ŝt91, at91, o⃗\vt , ovt )

pθ(ŝt|ovt )

]
= −Iθ(Ŝt91, At91, O⃗\v

t ; Ŝt | Ovt ). (⋆⋆)
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B.3. Variational Lower Bound on TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) that Introduces a Transition Model (Eq. (7))

Variational lower bound Deriving a variational bound on each, we bypass the direct computation of MI terms in Eq. (6),
Iθ(O

v
t ; Ŝt) and Iθ(O⃗t; Ŝt | Ŝt91, At91), which are involved with intractable integrals.

Iθ(O
v
t ; Ŝt) = Epθ(ŝt,ovt )

[
ln
pθ(o

v
t |ŝt)

pD(ovt )

]
= Epθ(ŝt,ovt )

[
ln
qvϕ(o

v
t |ŝt)pθ(ovt |ŝt)

pD(ovt )q
v
ϕ(o

v
t |ŝt)

]
= H(Ovt ) + Epθ(ŝt,ovt )

[
ln qvϕ(o

v
t |ŝt)

]
+ Epθ(ŝt)

[
DKL[pθ(o

v
t |ŝt)∥qvϕ(ovt |ŝt)]

]
≥ H(Ovt ) + Epθ(ŝt,ovt )

[
ln qvϕ(o

v
t |ŝt)

]
and

Iθ(O⃗t; Ŝt | Ŝt91, At91) = Epθ(ŝt91,at91,ŝt,o⃗t)
[
ln
pθ(ŝt|o⃗t, ŝt91, at91)
pθ(ŝt|ŝt91, at91)

]
= Epθ(ŝt91,at91,ŝt,o⃗t)

[
ln
pθ(ŝt|o⃗t, ŝt91, at91)r0ψ(ŝt|ŝt91, at91)
r0ψ(ŝt|ŝt91, at91)pθ(ŝt|ŝt91, at91)

]
= Epθ(ŝt91,at91,o⃗t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
− Epθ(ŝt91,at91)

[
DKL[pθ(ŝt|ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
≤ Epθ(ŝt91,at91,o⃗t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
.

Thus, TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) =
V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(O⃗t; Ŝt | Ŝt91, At91)

≥
V∑
v=1

[
H(Ovt ) + Epθ(ŝt,ovt )

[
ln qvϕ(o

v
t |ŝt)

]]
− Epθ(ŝt91,at91,o⃗t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
,

which is identical to Eq. (7). It is important to note that the gap between TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) and Eq. (7) is as below:

V∑
v=1

Epθ(ŝt)
[
DKL[pθ(o

v
t |ŝt)∥qvϕ(ovt |ŝt)]

]
+ Epθ(ŝt91,at91)

[
DKL[pθ(ŝt|ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
.

Since TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) is upper bounded by a constant (see Lemma 2), maximization of Eq. (7) naturally fits
qvϕ(o

v
t |ŝt) ≈ pθ(ovt |ŝt) and r0ψ(ŝt|ŝt91, at91) ≈ pθ(ŝt|ŝt91, at91).
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Practical optimization As discussed at the beginning of Section B, sampling RVs at the certain timestep requires to
sample RVs at earlier timesteps. Thus, we need to expand the expectations in Eq. (7) such that

Epθ(ŝt,ovt )
[
ln qvϕ(o

v
t |ŝt)

]
=

∫ (∫
pθ(o⃗≤t, ŝ≤t, a<t)do⃗<tdo⃗

\v
t dŝ<tda<t

)
ln qvϕ(o

v
t |ŝt)dovt dŝt

=

∫
pθ(o⃗≤t, ŝ≤t, a<t) ln q

v
ϕ(o

v
t |ŝt)do⃗≤tdŝ≤tda<t = Epθ(o⃗≤t,ŝ≤t,a<t)

[
ln qvϕ(o

v
t |ŝt)

]
.

Epθ(ŝt91,at91,o⃗t)
[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
=

∫ (∫
pθ(o⃗≤t, ŝ<t, a<t)do⃗<tdŝ<t91da<t91

)
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]dŝt91dat91do⃗t

=

∫
pθ(o⃗≤t, ŝ<t, a<t)DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]dŝ<tda<tdo⃗≤t

= Epθ(o⃗≤t,ŝ<t,a<t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
.

Thus, we used the objective function to train (MV-)SSM in SLAC (Lee et al., 2020a) (constant entropy terms are ignored).

Thus, TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt)

≥
V∑
v=1

[
H(Ovt ) + Epθ(o⃗≤t,ŝ≤t,a<t)

[
ln qvϕ(o

v
t |ŝt)

]]
− Epθ(o⃗≤t,ŝ<t,a<t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
.
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B.4. Variational Lower Bound on TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) that Introduces Multiple CVIBs (Eq. (10))

Variational lower bound Similar to the previous section, we derive variational bounds on MI terms in Eq. (8)) to avoid
intractability of them. Since variational bounds on Iθ(Ovt ; Ŝt) (⋆) and Iθ(O⃗t; Ŝt | Ŝt91, At91) (⋆⋆⋆⋆) are already derived
in Section B.3, we provide a variational bounds on Iθ(Ŝt91, At91, O⃗

\v
t ; Ŝt | Ovt ) (⋆⋆). We refer the interested readers to

Section 2.3 in (Poole et al., 2019) for the complete derivation of the variational lower bound on Iθ(Ŝt91, At91; Ŝt) (⋆⋆⋆).

Iθ(Ŝt91, At91, O⃗
\v
t ; Ŝt | Ovt ) = Epθ(ŝt91,at91,ŝt,o⃗t)

[
ln
pθ(ŝt|ŝt91, at91, o⃗\vt , ovt )

pθ(ŝt|ovt )

]
= Epθ(ŝt91,at91,ŝt,o⃗t)

[
ln
pθ(ŝt|ŝt91, at91, o⃗t)rvψ(ŝt|ovt )

rvψ(ŝt|ovt )pθ(ŝt|ovt )

]
= Epθ(ŝt91,at91,o⃗t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|ovt )]

]
− EpD(ovt )

[
DKL[pθ(ŝt|ovt )∥rvψ(ŝt|ovt )]

]
≤ Epθ(ŝt91,at91,o⃗t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|ovt )]

]

Iθ(Ŝt91, At91; Ŝt) = Epθ(ŝt91,at91,ŝt)
[
ln

pθ(ŝt91, at91, ŝt)

pθ(ŝt91, at91)pθ(ŝt)

]
≥ E∏K

k=1 pθ(ŝ
(k)
t91,a

(k)
t91,ŝ

(k)
t )

[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]
≜ INCE(t; θ)

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) = 1
V+1

V∑
v=1

[V · Iθ(Ovt ; Ŝt)︸ ︷︷ ︸
⋆

− Iθ(Ŝt91, At91, O⃗\v
t ; Ŝt | Ovt )︸ ︷︷ ︸

⋆⋆

]

+ 1
V+1

(
V · Iθ(Ŝt91, At91; Ŝt)︸ ︷︷ ︸

⋆⋆⋆

− Iθ(O⃗t; Ŝt | Ŝt91, At91)︸ ︷︷ ︸
⋆⋆⋆⋆

)
,

≥ V
V+1INCE(t; θ) +

V
V+1

V∑
v=1

[
H(Ovt ) + Epθ(ovt ,ŝt)

[
ln qvϕ (o

v
t |ŝt)

]]
− 1

V+1E
[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥r0ψ (ŝt|ŝt91, at91)

]]
− 1

V+1

V∑
v=1

E
[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥rvψ (ŝt|ovt )

]]
= TCMV-SSM(t; θ, ϕ, ψ),

which is identical to Eq. (10). When INCE(t; θ) tightly approximates Iθ(Ŝt91, At91; Ŝt) (⋆⋆⋆), the gap between
TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) and Eq. (10) is as below:

V∑
v=1

[
V
V+1 · Epθ(ŝt)

[
DKL[pθ(o

v
t |ŝt)∥qvϕ(ovt |ŝt)]

]
+ 1

V+1 · EpD(ovt )

[
DKL[pθ(ŝt|ovt )∥rvψ(ŝt|ovt )]

]]
+ 1

V+1 · Epθ(ŝt91,at91)
[
DKL[pθ(ŝt|ŝt91, at91)∥r0ψ(ŝt|ŝt91, at91)]

]
.

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) is upper bounded by a constant as observed in Lemma 2. Thus, maximization of Eq. (10) naturally
fits rvψ(ŝt|ovt ) ≈ pθ(ŝt|ovt ) in addition to qvϕ(o

v
t |ŝt) ≈ pθ(ovt |ŝt) and r0ψ(ŝt|ŝt91, at91) ≈ pθ(ŝt|ŝt91, at91).
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Practical optimization As discussed at the beginning of Section B, sampling RVs at the certain timestep requires to
sample RVs at earlier timesteps. Thus, we need to expand the expectations in Eq. (10) such that

Epθ(ŝt91,at91,o⃗t)
[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|o⃗t)]

]
=

∫ (∫
pθ(o⃗≤t, ŝ<t, a<t)do⃗<tdŝ<t91da<t91

)
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|o⃗t)]dŝt91dat91do⃗t

=

∫
pθ(o⃗≤t, ŝ<t, a<t)DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|o⃗t)]dŝ<tda<tdo⃗≤t

= Epθ(o⃗≤t,ŝ<t,a<t)

[
DKL[pθ(ŝt|o⃗t, ŝt91, at91)∥rvψ(ŝt|o⃗t)]

]
.

E∏K
k=1 pθ(ŝ

(k)
t91,a

(k)
t91,ŝ

(k)
t )

[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]

=

∫ (∫
pθ(o⃗

(1)
≤t , ŝ

(1)
≤t , a

(1)
<t )dŝ

(1)
<t91da

(1)
<t91do⃗

(1)
≤t

) K∏
k=2

pθ(ŝ
(k)
t91, a

(k)
t91, ŝ

(k)
t )

1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

dŝ
(1)
t91da

(1)
t91dŝ

(1)
t dŝ

(2)
t91da

(2)
t91dŝ

(2)
t ...dŝ

(K)
t91 da

(K)
t91 dŝ

(K)
t

=

∫
pθ(o⃗

(1)
≤t , ŝ

(1)
≤t , a

(1)
<t )

K∏
k=2

pθ(ŝ
(k)
t91, a

(k)
t91, ŝ

(k)
t )

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

dŝ
(1)
≤tda

(1)
<tdo⃗

(1)
≤t dŝ

(2)
t91da

(2)
t91dŝ

(2)
t ...dŝ

(K)
t91 da

(K)
t91 dŝ

(K)
t

= E
pθ(o⃗

(1)
≤t
,ŝ

(1)
≤t
,a

(1)
<t )

∏K
k=2 pθ(ŝ

(k)
t91,a

(k)
t91,ŝ

(k)
t )

[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]
.

Repeating the same procedures for K times, we end up with

INCE(t; θ) = E∏K
k=1 pθ(o⃗

(k)
≤t
,ŝ

(k)
≤t
,a

(k)
<t )

[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]
.

Finally, following is the objective function we used to train MV-SSM in Fuse2Control (constant entropy terms are ignored).

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) ≥ V
V+1E∏K

k=1 pθ(o⃗
(k)
≤t
,ŝ

(k)
≤t
,a

(k)
<t )

[
1

K

K∑
i=1

log
eg(ŝ

(i)
t91,a

(i)
t91,ŝ

(i)
t )

1
K

∑K
j=1 e

g(ŝ
(j)
t91,a

(j)
t91,ŝ

(i)
t )

]

+ V
V+1

V∑
v=1

[
H(Ovt ) + Epθ(o⃗≤t,ŝ≤t,a<t))

[
ln qvϕ (o

v
t |ŝt)

]]
− 1

V+1Epθ(o⃗≤t,ŝ<t,a<t)

[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥r0ψ (ŝt|ŝt91, at91)

]]
− 1

V+1

V∑
v=1

Epθ(o⃗≤t,ŝ<t,a<t)

[
DKL

[
pθ (ŝt|o⃗t, ŝt91, at91) ∥rvψ (ŝt|ovt )

]]
= TCMV-SSM(t; θ, ϕ, ψ),
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B.5. Investigation on Iθ(Ŝt91, At91; Ŝt)

Iθ(Ŝt91, At91; Ŝt) = Epθ(ŝt,ŝt91,at91)
[
ln
pθ(ŝt91, at91|ŝt)
pθ(ŝt91, at91)

]
= Epθ(ŝt,ŝt91,at91)

[
ln
pθ(ŝt91, at91|ŝt)qϕ(ŝt91, at91|ŝt)
pθ(ŝt91, at91)qϕ(ŝt91, at91|ŝt)

]
= Hθ(ŝt91, at91) + Epθ(ŝt,ŝt91,at91)[qϕ(ŝt91, at91|ŝt)]
+ Epθ(ŝt) [DKL[pθ(ŝt91, at91|ŝt)||qϕ(ŝt91, at91|ŝt)]]
≥ Hθ(Ŝt91, At91) + Epθ(ŝt,ŝt91,at91)[qϕ(ŝt91, at91|ŝt)] (20)

Unlike observations drawn from the data distribution pD(o⃗≤T , a≤T ) each of which has constant entropy H(Ov), the first
term Hθ(Ŝt91, At91) in Eq. (20) is no longer constant since it is a function of ŝt91 encoded by the pθ(ŝt91|o⃗t91, ŝt92, at92)
as we discussed in Section 4.1. Thus, reconstruction of ŝt91, at91 from ŝt does not necessarily maximize Iθ(Ŝt91, At91; Ŝt);
maximization of the entropy term in addition to maximization of the second term (the negative reconstruction term) in
Eq. (20) is required. Furthermore, maximizing the second term yields a trivial solution since both pθ and qϕ are parameterized
distributions where their outputs can easily be matched to meaningless values.

To resolve the issue, we can adopt sample-based MI estimators (Belghazi et al., 2018; Oord et al., 2018; Hjelm et al., 2018;
Poole et al., 2019) to lower bound Iθ(Ŝt91, At91; Ŝt) since sampling ŝt, o⃗t, ŝt91, at91 from the density pθ (ŝt, o⃗t, ŝt91, at91)
is available without computing the density. Among these estimators which lower bound MI, we found that noise contrastive
estimation (NCE) (Oord et al., 2018) shows numerical stability in the optimization due to its low variance estimation as
observed by (Poole et al., 2019).

C. Connection to Previous Works
C.1. Connection to RSSM

Given only one observation from single view, setting O0
t = (Ŝ<t, A<t) reduces to the model close to RSSM.

TCθ(O
0
t , O⃗t; Ŝt) =

V∑
v=1

Iθ(O
v
t ; Ŝt) + Iθ(Ŝ<t, A<t; Ŝt)− Iθ(Ŝ<t, A<t, O⃗t; Ŝt)

=

V∑
v=1

Iθ(O
v
t ; Ŝt)− Iθ(O⃗t; Ŝt | Ŝ<t, A<t)

≥
V∑
v=1

H(Ovt ) +

V∑
v=1

Epθ(ovt ,ot)[ln qϕ(o
v
t |ŝt)]

− Epθ(o⃗t,ŝ<t,o<t)

[
DKL

(
pθ(ŝt|o⃗t, ŝ<t, a<t)∥rψ(ŝt|ŝ<t, a<t)

)]
(21)

Plugging V = 1, Eq. (21) matches to RSSM (Hafner et al., 2019; 2020; 2021), only with minor difference in decoders. In
the original RSSM, the decoder receives o0t in addition to ŝt while the decoder in Eq. (21) only receives ŝt.

Since Hafner et al. (2019; 2020; 2021) aim to optimize the ELBO of trajectories, their derivation decomposes ELBO for
every timestep. As a result, the observation model (decoder) in their formulation is conditioned on the history of previous
latent states and actions in addition to the current latent state. This makes training the observation model straightforward.
However, the observation model could rely on the history instead of the current latent state, resulting in non-Markov latent
states, which is explicitly addressed in our work.
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C.2. Connection to MVTCAE

Due to nonnegativity of (conditional) TC, following inequality holds:

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) = TCθ(⟨Ŝt91, At91⟩, O⃗t)− TCθ(⟨Ŝt91, At91⟩, O⃗t | Ŝt), where

TCθ(⟨Ŝt91, At91⟩, O⃗t) = Epθ(ŝt91,at91,o⃗t)

[
log

pθ(ŝt91, at91, o⃗t)

pθ(ŝt91, at91)
∏V
v=1 pD(o

v
t )

]

= Epθ(ŝt91,at91,o⃗t)

[
log

pθ (ŝt91, at91, o⃗t)

pθ (ŝt91, at91) pD (o⃗t)

pD (o⃗t)∏V
v=1 pD (ovt )

]
= Iθ(Ŝt91, At91; O⃗t) + TC(O⃗t)

TCθ(⟨Ŝt91, At91⟩, O⃗t | Ŝt) = Epθ(ŝt,ŝt91,at91,o⃗t)
[
log

pθ(ŝt91, at91, o⃗t|ŝt)
pθ(ŝt91, at91|ŝt)

∏V
v=1 pθ(o

v
t |ŝt)

]
= Epθ(ŝt,ŝt91,at91,o⃗t)

[
log

pθ(ŝt91, at91, o⃗t|ŝt)
pθ(ŝt91, at91|st)pθ(o⃗t|ŝt)

pθ(o⃗t|ŝt)∏V
v=1 pθ(o

v
t |ŝt)

]
= Iθ(Ŝt91, At91; O⃗t | Ŝt) + TCθ(O⃗t | Ŝt).

Thus, our objective function can be rewritten as

TCθ(⟨Ŝt91, At91⟩, O⃗t; Ŝt) = Iθ(Ŝt91, At91; O⃗t) + TC(O⃗t)

− Iθ(Ŝt91, At91; O⃗t | Ŝt)− TCθ(O⃗t | Ŝt)

= Iθ(Ŝt91, At91; O⃗t)− Iθ(Ŝt91, At91; O⃗t | Ŝt) (22)

+ TC(O⃗t)− TCθ(O⃗t | Ŝt)

= Iθ(Ŝt91, At91; O⃗t; Ŝt)) + TCθ(O⃗t; Ŝt) (23)

(Alternative) = TCθ(⟨Ŝt91, At91⟩, ⟨O⃗t⟩; Ŝt) + TCθ(O⃗t; Ŝt), (24)

where the first term Iθ(Ŝt91, At91; O⃗t; Ŝt) in Eq. (23) is known as Interaction Information (II) (McGill, 1954; Hwang et al.,
2020), another generalization of MI which also measures dependency among multiple random variables similar to TC.
Eq. (22) implies that Iθ(Ŝt91, At91; O⃗t; Ŝt) is maximized when the dependency between the previous state-action pair and
the current observation is maximized while the dependency of them is conditionally minimized given the current latent state.
Thus, optimization of Iθ(Ŝt91, At91; O⃗t; Ŝt) yields the Markov property in the space of the learned latent state. Treating
⟨O⃗t⟩ as one joint random variable similar to ⟨Ŝt−1, At−1⟩, II can be also written in TC as in Eq. (24).

Interestingly, the second term in Eq. (23) is the objective function of MVTCAE along with joint encoder pθ(st|o⃗t), which
are also the objective function and the joint belief state encoder of MV-SSM in the first timestep t = 0. Thus, Eq. (23) and
Eq. (24) clearly indicate that our objective function allows the latent state both to capture the temporal dependency to relate
two consecutive latent states and to learn the complete representation of multi-view observations (Hwang et al., 2021).
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D. Details of Experiment
We provide detailed information about the experimental setup and hyperparameter settings in each environment. To make
fair comparisons in each environment, we followed the choice of policy optimization algorithm and its hyperparameters
determined by the publisher of each code base; PPO implementation in Bipedal Walker from Barhate (2021), SAC
implementation in SUMO from Lee et al. (2020b), and PPO implementation in Metaworld from Chen et al. (2021). In each
environment, the same network architectures for encoders are applied to CMC, MVTCAE, SLAC, and F2C as well as the
same decoders for MVTCAE, SLAC, and F2C, and the same dynamics models for SLAC and F2C. To train the dynamics
models for SLAC and F2C, we employed 3 fully connected layers in Bipedal Walker and Metaworld, and 1 LSTM layer &
1 fully connected layer in SUMO. The transition dynamics model introduces one additional hyperparameter H which is
the length of the history of the past observations and actions. In addition, we chose the size of the latent representations to
be 24 and 84 dimensions in Bipedal Walker and SUMO respectively, which match the size of the stacked complete-view
observations in these environments. This ensures that the policies of all methods have the same number of parameters as
Vanilla-RL, which directly learns from the raw observation of all views. In Metaworld, the size of the representation is
128, which follows Keypoint3D (Chen et al., 2021). All networks in policies and representations models are optimized by
Adam (Kingma & Ba, 2015) for all environments. The code is available at: https://github.com/gr8joo/F2C

Hyperparameter Bipedal Walker Metaworld
Number of Views (N) 5 3
Policy PPO PPO
PPO batch size 4,000 6,400
Rollout buffer size 4,000 100,000
# Epochs per update 80 8
Gamma 0.99 0.99
GAE lambda - 0.95
Clip range ( ϵ ) 0.2 0.2
Entropy coefficient 0.005 0.0
Value function coefficient - 0.5
Gradient clip - 0.5
Target KL - 0.12
Learning rate (actor) 3e-4 3e-4
Learning rate (critic) 1e-3 3e-4
Learning rate (representation) 3e-4 3e-4
Observation buffer size - 100,000
# Unsupervised learning steps - 400
Subsequence length (H) 8 4
Size of the latent state (representation) 24 128

Table 1. The summary of hyperparameters in Bipedal Walker and Metaworld.
D.1. Bipedal Walker

Bipedal Walker is an OpenAI gym (Brockman et al., 2016) environment built on the Box2D physics engine. Equipped with
LIDAR sensors, the agent needs to navigate a flat terrain with small random variations. The agent’s heavy hull is supported
by two legs. By controlling 4 motors in the legs (2 in the hips and the other 2 in the knees), the agent receives high reward if
it travels far away from its initial position while receiving large negative reward when it falls down.

Baseline methods CMC, MVTCAE, SLAC, and Vanilla-RL (PPO).

Experiment setup The following 3-step evaluation procedure is applied to all representation learning methods:

1. Collect a trajectory dataset composed of complete-view observations and actions by training a PPO policy from scratch
for 3 million timesteps.

2. Pretrain each method across 5 seeds (0∼4) for 50 epochs using the precollected dataset.

3. For every fixed number of missing views (0∼4), train PPO for 3 million timesteps on top of the frozen latent state
extracted from each pretrained method with its corresponding seed. All the accumulated rewards of each method is
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averaged over 5 seeds (0∼4).

The dataset collected in Step 1 was split into train (0.8) and validation (0.2) sets, where the numbers in parentheses are
approximate ratios. In step 2, we saved the weights of the model when the loss evaluated with validation set is at its
minimum. Please note that Vanilla-RL directly trained PPO with multi-view observations from the environment filling the
missing view observations with mean values of the train data. For the given fixed number of missing views, the views to be
missing were uniformly and randomly chosen in every timestep. Detailed information on the hyperparameter settings can be
found in Table 1.

D.2. SUMO

Simulation of Urban Mobility (SUMO) (Krajzewicz et al., 2012) is a realistic traffic light control environment. The
goal is to manipulate traffic lights located at each junction to improve the overall traffic flow. Specifically, the agent
in the environment needs to maximize the accumulative reward where the reward in every timestep is defined to be
minj∈{1,2,3,4}

1
waiting time in junctionj so that proceeding the traffic flow in the junction with the heaviest traffic is encouraged.

We used the inferface of 2×2 junctions provided by SUMO-RL (Alegre, 2019), where every junction has 4 horizontal lanes
and 4 vertical lanes. New vehicles are randomly generated with a probability of 0.1 at the end of each lane for every second.

... ...

...

...

...
... ...

...

...

...

...

...

(a) Visualization of an example state of 4 junctions. (b) 4 available actions in each junction.

Figure 8. Visualization of SUMO environment.

Baseline methods CMC, MVTCAE, SLAC, and Vanilla-RL (SAC).

Experiment setup Similar to Section D.1, following 3 steps are applied to all representation learning methods:

1. Collect a trajectory dataset composed of complete-view observations and actions by training an SAC policy from
scratch for 1 million timesteps.

2. Pretrain each method across 7 seeds (0∼6) for 50 epochs using the precollected dataset.

3. For every fixed number of missing views (0∼2), train SAC for 1 million timesteps on top of the frozen latent state
extracted from the pretrained method with the corresponding seed. The accumulated rewards of each method is
averaged over 7 seeds (0∼6).

In SUMO, we did not split the data since it has a relatively small number of samples compared to the dataset in Bipedal
Walker. We saved the weights of representation methods after training for 50 epochs and fixed them for training SAC based
on these representations. Vanilla-RL(m) directly trained SAC with multi-view observations from the environment filling the
missing view observations with mean values of the precollected dataset. For the given fixed number of missing views, the
views to be missing were uniformly and randomly chosen in every timestep. Detailed information on the hyperparameter
settings can be found in Table 2.
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Hyperparameter Value
Number of Views (N) 4
Policy SAC
batch size 100
Replay buffer size 1,000,000
Gamma 0.99
Entropy coefficient 0.01
Number of hidden layers (all networks) 2
Number of hidden units per layer 100
Target smoothing coefficient 0.005
Target update interval 1
Temperature of relaxed categorical 0.1
Learning rate (actor & critic & representation) 3e-4
Subsequence length (H) 10
Size of the latent state (representation) 84

Table 2. The summary of hyperparameters in SUMO

D.3. Metaworld

In order to see if our method accelerates policy optimization when jointly trained with the policy, we conducted 8 complex
robotic arm manipulation tasks in Metaworld (Yu et al., 2020) following the evaluation environment and protocols from
Chen et al. (2021). Each task has 50 randomized configurations such as initial poses of robot arms, objects, and goals. 3
third-person-view cameras in different poses are used in each task to observe the robot arm and the objects. Since the state of
the gripper attached at the end of the robot arm might not be visible in any of these three cameras, we used the ground-truth
binary indicator which indicates whether the gripper is open or closed. This indicator is concatenated to the learned latent
state and fed into the policy network.

Figure 9. Visualization of 3 third-person-view observations in the task Close drawer of Metaworld environment.

Baseline methods In the complete-view scenario, we additionally employed a set of various pixel-based RL algorithms
such as (1) CURL (Laskin et al., 2020b), (2) RAD (Laskin et al., 2020a), (3) Keypoint3D (Chen et al., 2021), and (4)
LookCloser (Jangir et al., 2022) besides CMC, MVTCAE, SLAC, and Vanilla-RL (PPO). Brief explanations on these
methods can be found in Section 2. In the missing-view scenario, however, we only included LookCloser, since we were not
able to find straightforward extensions to the other baselines. We also excluded the Vanilla-RL method from our baseline
methods, since we do not have a precollected dataset to compute mean values for replacing the missing-view observations.

Following Lee et al. (2020a), we applied image augmentation techniques to CMC, Keypoint3D, CURL, and RAD, but not
for VAE-based methods such as MVTCAE, SLAC, and F2C. As a result, these VAE-based methods have different shapes for
the input images. To handle image views in different shapes, we applied the same CNN architectures to MVTCAE, SLAC,
and F2C different from CMC, CURL, RAD, and Keypoint3D while preserving the same dimensions of output features to be
128. Otherwise, we removed all the bells and whistles equally applicable to all methods such as training reward models in
SLAC (Lee et al., 2020a) or utilizing empty scene of each task in Keypoint3D (Chen et al., 2021).

Experiment setup Following Chen et al. (2021), we jointly trained each representation method and PPO whose hyperpa-
rameters are determined by Chen et al. (2021). As a result, our objective function in Metaworld is as below:∑τ

t=τ9H+1 TCMV-SSM(t; θ) + E[Q(ŝτ , aτ ) 9 log π(aτ |ŝτ )], (25)

where Q is the state-action value function that learns to minimize the soft Bellman residual and the expectation in the last
term is with respect to p(o⃗0)pθ(ŝ0|o⃗0)

∏τ
t=1 pπold(at91|ŝt91)pπold(o⃗t|o⃗t91, at91)pθ(ŝt|o⃗t, ŝt91, at91).
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We extended SLAC to the MVRL setting by adopting the model structure from MV-SSM in F2C and optimizing Eq. (25)
by replacing the first term with Eq. (7). Following Chen et al. (2021), we also employed a buffer to keep sequences
of observations and actions to train MV-SSM only for a few steps ahead of each policy gradient update. Algorithm 1
summarizes the overall optimization process. Lastly, all the experiment results in Metaworld are averaged over 7 seeds
(0∼6).

Algorithm 1 Fuse2Control

Input: NRepeat # of iterations to repeat entire processes.
NMV-SSM # of steps to train MV-SSM.
B batch size, T rollout length, H horizon length.

Initialize DObs
for iter = 1 to NRepeat do

Initialize DRollout.
for b = 1 to B do

Run policy πθold to collect (o⃗, a, r)1:T
DRollout ← DRollout ∪ (o⃗, a, r)1:T
DObs ← DObs ∪ (o⃗, a)1:T

end for
for i = 1 to NMV-SSM do

Sample subsequence (o⃗, a)τ−H+1:τ ∼ DObs
Train MV-SSM by optimizing Eq. (10)

end for
Estimate advantage values Â1:T,1:N on DRollout
for t = 1 to T do

Sample subsequence (o⃗, a, r)τ−H+1:τ ∼ DRollout
Jointly train π and MV-SSM by optimizing Eq. (18)

end for
πold ← π

end for
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E. Additional Experiment Results
E.1. Bipedal Walker

E.1.1. RESULTS FROM ANOTHER AXIS
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Figure 10. The performance of each method in Bipedal Walker.

To give a better sense of how robust each method is, we plot the performance of each model with a varying number of
missing views in Figure 10.

E.1.2. QUALITATIVE RESULTS

Figure 11. Visualization of trajectories from two different agents. An agent trained in the complete-view scenario (top) and An agent
trained in the 1-missing-view scenario (bottom).

As all the methods including ours show noticeable decrease in their performance when 1 view is missing, we investigate in
Figure 11 the behaviours of two policies trained on top of the frozen latent state from MV-SSM in Section 5.1; one is the
policy trained with complete views (top row) and the other is the policy trained with 1 missing view randomly chosen per
timestep (bottom row). In Figure 11, we visualize the agents every 25 steps out of a total of 500 steps. The accumulated
rewards of the visualized episodes of the agents with complete views (top row) and 1 missing view (bottom row) are
approximately 280 and 153, respectively.

Figure 11 shows that the policy trained with complete views barely hits the ground with its knees, which allows the agent to
run faster. In contrast, the other policy trained with 1 missing view frequently hits the ground with its knees, which results in
slower motion. However, such suboptimal behaviour allows the agent to avoid falling down, which prevents large negative
reward. As a result, the agent prefers the safe behaviour when the fine-grained control of the agent is not feasible due to the
information loss induced by missing views.
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E.1.3. DIFFERENT CHOICE OF THE DIMENSIONS OF THE LATENT STATE

To see the impact of the size of the representation dimensions, we additionally conducted an experiment with the 12-
dimensional representation, which is half of our original choice of the size.

0M 1M 2M 3M
Environment Steps

-100
-50

0
50

100
150
200
250

Ep
iso

de
 R

et
ur

n

# of Missing Views = 0

0M 1M 2M 3M
Environment Steps

-100
-50

0
50

100
150
200
250

# of Missing Views = 1

0M 1M 2M 3M
Environment Steps

-100
-50

0
50

100
150
200
250

# of Missing Views = 2

0M 1M 2M 3M
Environment Steps

-100
-50

0
50

100
150
200
250

# of Missing Views = 3

0M 1M 2M 3M
Environment Steps

-100
-50

0
50

100
150
200
250

# of Missing Views = 4

F2C (ours) CMC MVTCAE SLAC

Figure 12. The performance in Bipedal Walker with 12 dimensional representation.

Figure 12 summarizes the result. Although our method still shows the most robust performance to the missing views, it
shows a noticeable performance drop compared to the result of using 24-dimensional representation. We hypothesize that
this is because of the contrastive loss since it enforces all the positive pairs of (⟨ŝt, at⟩, ŝt+1) to be distinguishable from the
negative pairs. Considering that some of the positive and negative pairs in the minibatch can be from the same trajectory,
distinguishing them only with 12-dimensional information might be limited.

E.1.4. DROPOUT OVER THE VIEWS

To see if regularizing over-reliance on some views with our objective function (Eq.10) has clear advantages over simple
dropout regularization, we applied dropout to pretraining CMC and SLAC. We found that applying dropout to F2C and
MVTCAE had negligible or negative effects, as they already have mechanisms to avoid over-reliance on some views in their
objective function. We also observed that applying dropout (along with average pooling) did not improve Vanilla-RL, as
average pooling discards view-specific information when employed without any auxiliary objective other than the expected
return. To improve the performance of CMC and SLAC with dropout, we searched for the optimal drop rate among [0.2, 0.4,
0.6] for each method.
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Figure 13. The performance in Bipedal Walker under missing views. From the left to the right, we increase the number of missing views.
We replace two baseline methods CMC and SLAC with CMC+Dropout and SLAC+Dropout respectively.

Figure 13 shows the results in the Bipedal Walker environment. We observed that dropout effectively improved both SLAC
and CMC. While SLAC and F2C perform similarly when all views are available or only one view is missing, F2C clearly
outperforms SLAC when multiple views are missing. Although SLAC shows strong performance when only one view is
missing, its performance noticeably drops when at least one view is additionally missing, whereas F2C remains robust to
missing views. The performance of CMC is still not comparable to F2C, regardless of the number of missing views.
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E.2. SUMO

E.2.1. DROPOUT OVER THE VIEWS
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Figure 14. The performance in SUMO with complete views (left), 1-missing view (middle), and 2-missing views (right). We replace two
baseline methods CMC and SLAC with CMC+Dropout and SLAC+Dropout respectively.

As in Section E.1.4, we applied dropout to pretraining CMC & SLAC and searched for the optimal drop rate among [0.2,
0.4, 0.6]. Figure 14 presents the results in the SUMO environment. We found that CMC with dropout still fails to encode
informative representations for the training policy, whereas dropout improved SLAC in missing-view cases. However, SLAC
fails to preserve its performance when at least one view is missing, whereas F2C performs much more robustly to missing
views, reasonably preserving its performance. Overall, our results indicate that regularizing over-reliance on some views
with our objective function (Eq.10) has clear advantages over the simple dropout regularization.

E.2.2. BENIGN SEQUENCE WITH FIXED MISSING VIEWS

In our previous experiments (Section 5, Section E.1, and Section E.2.1), we focused on scenarios where the availability of
views varied randomly at each timestep, resulting in missing-view observations. However, in this section, we also explore a
different type of missing-view pattern referred to as the ”benign” scenario, where the availability of views remains constant
across all timesteps. We formally define these two missing-view patterns, utilizing the notation of missing-view observation
as below:

1. Random missing views: Each view has varying availability for every timestep. For example, an observation from v-th
view available at timestep t (ovt ∈ õt) may or may not be available in the next timestep (ovt+1 ∈ õt+1 or ovt+1 /∈ õt+1).
The same rule applies to an observation from any other view v′ that was not available in timestep t (ov

′

t /∈ õt).

2. Fixed missing views: Each view has fixed availability throughout the trajectory. Specifically, an observation from
v-th view available at timestep t (ovt ∈ õt) must be also available in the next timestep (ovt+1 ∈ õt+1), while an
observation from any other view v′ that was not available in timestep t (ov

′

t /∈ õt) must not be available in the next
timestep either (ov

′

t+1 /∈ õt+1).
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Figure 15. The performance in SUMO with dropping the last view.

We conducted an additional evaluation in SUMO with a fixed missing view, which can be considered as a more realistic
scenario since using fewer sensors to reduce costs is a common practice. Specifically, based on the representations pretrained
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with complete views as before, we trained the policy with dropping the last view, since all views are equally important in
SUMO. Figure 15 shows the results, indicating that the constant availability of views improved the performance of SLAC
and MVTCAE, while Vanilla-RL and CMC were unaffected. However, the results also demonstrate that our method, F2C,
outperforms all baseline methods, indicating its robust performance not only under random missing-view patterns but also in
more benign scenarios.

E.2.3. RECONSTRUCTION ERROR OF FIXED MISSING VIEWS

To further investigate the quality of learned representations of F2C, SLAC, and MVTCAE, we measured the error in
predicting missing views given various missing-view combinations. To compute the error in unseen trajectories, we collected
a new dataset following the same protocol in Section 5.2. For every possible subset of views, we treated it as a set of missing
views that were not available across all trajectories for all timesteps. We then extracted the joint representation of available
views and fed it to the decoders of the missing views to infer each missing view.

Method 1 missing view 2 missing views 3 missing views Avg. of all cases

F2C (ours) 0.227 ± 0.021 0.230 ± 0.011 0.273 ± 0.011 0.248 ± 0.008

SLAC+Dropout 0.559 ± 0.115 0.530 ± 0.062 0.471 ± 0.045 0.508 ± 0.037

MVTCAE 4.821 ± 0.527 5.720 ± 0.410 8.474 ± 0.740 6.770 ± 0.466

Table 3. Reconstruction error with the fixed missing views.

Table 3 summarizes the results. The second, third, and fourth columns show the average error over all subsets with the same
subset size, and the last column reports the average error across all cases. The table clearly demonstrates that our method has
superior capability in reconstructing missing views and robustness to the increasing number of missing views. This result
implies that optimizing per-view encoders with CVIBs in our objective function yields better joint representations, which
is the IVW average of per-view representations. On the other hand, SLAC underperforms in all missing-view scenarios,
implying that implicit optimization of per-view encoders via dropout is limited. Lastly, MVTCAE shows poor performance
since inferring missing views based only on the current observations is limited when dependency across views is weak.
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E.3. Evaluation in Metaworld with Complete Views
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Figure 16. The performance in manipulation tasks given complete observations.

Baseline methods We introduce a set of various pixel-based RL algorithms such as (1) CURL (Laskin et al., 2020b), (2)
RAD (Laskin et al., 2020a), (3) Keypoint3D (Chen et al., 2021), and (4) LookCloser (Jangir et al., 2022) in addition to
CMC, MVTCAE, SLAC, and Vanilla-RL (PPO). A brief explanation on these methods can be found in Section 2.

Experiment setup Following Chen et al. (2021), we evaluated the performance of the policies jointly trained with
representations of comparing methods and ours to see if our method successfully captures task-relevant information in the
latent state given high dimensional image observations.

Results Figure 16 summarizes the results on learning from complete views. Among 8 control tasks, our method
outperforms all the baseline methods in 5 tasks (Close Drawer, Open Door, Push Wall, Pick & Place, Peg
Unplug) and performs on par with the best performing method in 2 tasks (Close Box, Hammer), while underperforming
in 1 task (Open Window). On average of all tasks, the result clearly shows that our method has better sample efficiency
exhibiting steeper and steadier learning curves. On the other hand, Vanilla-RL barely shows some sign of learning throughout
training episodes, which implies that learning to extract meaningful information without any auxiliary supervision poses a
significant bottleneck in learning the optimal control. Interestingly, LookCloser outperforms all methods in 1 task (Open
Window) and shows competitive performance in 3 tasks (Push Wall, Hammer, Peg Unplug). The result implies
that cross attention based on Trasnformer (Vaswani et al., 2017) encoders can be effective when complete views are
given, although it shows degenerate performance give missing views as we observed in Section 5.3. Although RAD and
Keypoint3D show competitive performance in Hammer or Open Window, their performances are limited in other tasks.

Ablation study MVTCAE and SLAC are special cases of our F2C framework as we discussed in Section 5.1. As shown in
Figure 16, our method clearly outperforms MVTCAE in all tasks except Close Box, which clearly shows the advantage
of learning transition dynamics in complex manipulation tasks. However, SLAC shows degenerate performance across all
tasks, indicating the importance of regularizing per-view encoders.

F. Computation Resources
For Bipedal Walker, we used 40 CPU instances (n1-highcpu-32) from Google Cloud Platform (GCP).

For SUMO and Metaworld, we used 10 systems equipped with following devices.
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
Memory: 32 GB
GPU: Nvidia TITAN V (Driver version: 440.44 & CUDA version: 10.2)
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G. Note
G.1. Societal Impact

Given smaller number of sensors, we expect that our method can be positively used to reduce environmental waste and
carbon footprint by matching its performance to expensive sensor systems (e.g. autonomous driving vehicles, factory
automation sensors, etc.). However, we also see the possibility for our method to raise security issues. Specifically, treating
each source of information allowed to be accessed as an available view and each source of the information prohibited to be
accessed as a missing view, one might be able to uncover the private information by inferring the missing views using our
method.

G.2. Limits

Although our method effectively handles incomplete multi-view data, it still requires all available views in every timestep to
be aligned. Thus, we leave as future work the multi-view learning from a set of independent single-view datasets.

G.3. License

We used the Metaworld (Yu et al., 2020) environment and the official implementation of Keypoint3D (Chen et al., 2021),
which are licensed under the MIT License.

G.4. New Assets

In the environment Bipedal Walker and SUMO, we collected datasets on our own to pretrain representations (latent states)
of comparing methods and ours. We provide their anonymized links below.

Bipedal Walker: https://zenodo.org/record/6583263, https://zenodo.org/record/6583291

SUMO: https://zenodo.org/record/7568625#.Y9EtznZByHs
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