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Abstract
We study the class of location-scale or het-
eroscedastic noise models (LSNMs), in which
the effect Y can be written as a function of the
cause X and a noise source N independent of X ,
which may be scaled by a positive function g over
the cause, i.e., Y = f(X) + g(X)N . Despite the
generality of the model class, we show the causal
direction is identifiable up to some pathological
cases. To empirically validate these theoretical
findings, we propose two estimators for LSNMs:
an estimator based on (non-linear) feature maps,
and one based on neural networks. Both model
the conditional distribution of Y given X as a
Gaussian parameterized by its natural parameters.
When the feature maps are correctly specified, we
prove that our estimator is jointly concave, and a
consistent estimator for the cause-effect identifi-
cation task. Although the the neural network does
not inherit those guarantees, it can fit functions of
arbitrary complexity, and reaches state-of-the-art
performance across benchmarks.

1. Introduction
Distinguishing cause from effect, given only observational
data, is a fundamental problem in many natural sciences
such as medicine or biology, and lies at the core of causal
discovery. Without any prior knowledge, distinguishing
whether X causes Y (X → Y ), or whether Y causes X
(Y → X) is unattainable (Pearl, 2000). When assuming a
properly restricted structural causal model (SCM), however,
the true graph that generated the data is identifiable (Peters
et al., 2011). In its most general form, a structural causal

1Department of Computer Science, ETH Zurich, Switzerland
2Max Planck Institute for Intelligent Systems, Tübingen, Ger-
many 3Seminar for Statistics, ETH Zurich, Switzerland 4AI Cen-
ter, ETH Zurich, Switzerland. Correspondence to: Alexander
Immer <alexander.immer@inf.ethz.ch>, Alexander Marx <alexan-
der.marx@inf.ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

−2.5 0.0 2.5

Cause X

−2.5

0.0

2.5

E
ff

ec
t
Y

Causal Direction

−2.5 0.0 2.5

Effect Y

−2.5

0.0

2.5

C
au

se
X

Anticausal Direction

LSNM

ANM

Figure 1. Location-scale and additive noise model fits on MNU
pair 55. Both models show a similar mean regression but the
LSNM can model the scale of the variance. Therefore, the LSNM
correctly identifies the causal direction with a log-likelihood dif-
ference of ≈ 0.155 while the ANM identifies the wrong direction
with difference ≈ −0.001.

model expresses the effect Y as a function of the cause X
and an independent noise term N , that is, Y = f(X,N).

There exists a vast literature that derived assumptions under
which restricted SCMs are identifiable. That is, there exists
no backward model which fulfills the same modeling as-
sumptions as the assumed forward model. For simple linear
additive noise models (ANMs), for example, it has been
shown that if the data are non-Gaussian, then there exists
no backward model, such that the cause can be modeled
as a linear function of the effect and an additive indepen-
dent noise term (Shimizu et al., 2006). Instead, for all such
backward models, the noise will depend on the effect. Apart
from linear models, identifiability results have been estab-
lished for non-linear ANMs (Hoyer et al., 2009; Bühlmann
et al., 2014), where Y = f(X) + N and post non-linear
(PNL) noise models (Zhang & Hyvärinen, 2009; Zhang
et al., 2015), where Y = f2(f1(X) +N). Besides identifi-
ability, it has also been shown that consistent estimators for
ANMs exist (Kpotufe et al., 2014).

Here, we focus on location-scale noise models (LSNMs)
or heteroscedastic noise models,1 where the effect Y is ex-

1Heteroscedastic noise refers to the setting where the variance
of the noise is non-constant and depends on the value of X . To
emphasize that we model N as an independent source scaled by a
function over X , we use the notion of location-scale noise.
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pressed as Y = f(X) + g(X)N . LSNMs generalize the
classical ANM setting by allowing the noise source N to be
scaled by a positive function g(x). Naturally, if g(x) = 1,
an LSNM simplifies to an ANM. In Fig. 1, we provide an
example from a synthetic benchmark (Tagasovska et al.,
2020), in which the ground truth model follows an LSNM.
The ANM-based approach not only identifies the wrong
direction, but also, the causal and anti-causal model have
near identical log-likelihoods. Thus, the decision is merely
a coin flip. The LSNM model, however, identifies the true
direction with high confidence. Simply put, we can learn
both f(x) and g(x) for the causal direction and can thus sep-
arate the independent noise source from X , whereas in the
anti-causal direction we cannot find such a pair of functions.
Hence, the estimated noise remains skewed.

The previous example assumes that we already know the an-
swer to the following questions: Under which assumptions
are LSNMs identifiable? How and under which assumptions
can we consistently estimate f(x) and g(x)? How can we
combine these results to arrive at a score that allows us to
identify cause and effect from observational data?

Contributions In this paper, we address each of the ques-
tions above. In Sec. 2, we formally define LSNMs and show
that apart from some pathological cases—which are known
for the special case of Gaussian noise (Khemakhem et al.,
2021)—no backward model exists.2

In Sec. 3, we study the estimation of LSNMs under the
Gaussian noise assumption, which relates to the problem
of maximizing the conditional log-likelihood of Y given
X via heteroscedastic regression. Typical estimators aim
to learn f(x) as the mean of the Gaussian and g(x) as its
variance, which leads to a non-concave likelihood function.
We instead propose to relate f(x) and g(x) to the natural
parametrization of a Gaussian, with corresponding jointly
concave log-likelihood. Further, we show that we can consis-
tently estimate LSNMs via (non-linear) feature maps if they
are correctly specified. To allow for a more general class of
functions, we propose a second estimator based on neural
networks (NNs). Due to overparametrization, the NN-based
estimator does not have guarantees. In practice, however,
it reaches state-of-the-art performance, outperforming the
variant based on feature maps.

To use our estimators for cause-effect inference, we propose
LOCI (location-scale causal inference) in Sec. 4. Concretely,
we propose a variant of LOCI via log-likelihood estimation,
extending the approach of (Zhang & Hyvärinen, 2009) to
LSNMs, and implement a variant of LOCI following the
RESIT approach (regression with subsequent independence

2Concurrent work comes to a similar conclusion (Strobl &
Lasko, 2022), however, we provide a different proof and clarify
the implications of the result further.

testing) (Peters et al., 2014). For both strategies, we show
under which assumptions consistent estimation of cause and
effect is attainable with our estimator based on feature maps.

We evaluate all variants of LOCI on standard cause-effect
benchmark datasets and observe that LOCI achieves state-
of-the-art overall performance and almost perfect accuracy
on datasets which are in line with our assumptions—i.e.,
Gaussian ANMs and LSNMs.

For reproducibility, we make our code publicly available3

and provide all proofs in the Supplementary Material.

2. Identifiability of LSNMs
In this section, we focus on the identifiability of location-
scale noise models (LSNMs). A causal model is said to be
identifiable under a set of structural constraints, if only the
forward (causal) model is well specified and no backward
model fulfilling these structural constraints exists.

To formally analyze this problem, we first need to define
our assumed causal model.

Definition 1 (Location-Scale Noise Model) Given two in-
dependent random variables X and NY . If the effect Y is
generated by a location-scale noise model, we can express
Y as an SCM of the form

Y := f(X) + g(X)NY ,

where f :X → R and g:X → R+, i.e. g is strictly positive.

We provide an illustration of data generated by a location-
scale noise model in Fig. 1. LSNMs simplify to ANMs
when g(X) is constant, and to multiplicative noise models
when f(X) is constant.

To prove identifiability of such a restricted SCM, it is com-
mon to derive an ordinary differential equation (ODE),
which needs to be fulfilled such that a backward model
exists, see e.g. Hoyer et al. (2009), or Zhang & Hyvärinen
(2009). Intuitively, the solution space of such an ODE speci-
fies all cases in which the model is non-identifiable, leaving
all specifications which do not fulfill the ODE as identifi-
able. In the following theorem, we derive such a differential
equation for LSNMs and discuss its implications.

Theorem 1 Assume the data is such that a location-scale
noise model can be fit in both directions, i.e.,

Y = f (X) + g (X)NY , X ⊥⊥NY

X = h (Y ) + k (Y )NX , Y ⊥⊥NX .

Let ν1 (·) and ν2 (·) be the twice differentiable log densities

3https://github.com/AlexImmer/loci
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of Y and NX respectively. For compact notation, define

νX|Y (x|y) = log
(
pX|Y (x|y)

)
= log

(
pNX

(
x− h (y)
k (y)

)
/k (y)

)
= ν2

(
x− h (y)
k (y)

)
− log (k (y)) and

G (x, y) = g (x) f ′ (x) + g′ (x) [y − f (x)] .

Assume that f (·), g (·), h (·), and k (·) are twice differen-
tiable. Then, the data generating mechanism must fulfill the
following PDE for all x, y with G (x, y) ̸= 0.

0 = ν′′1 (y) +
g′ (x)
G (x, y)

ν′1 (y) +
∂2

∂y2
νX|Y (x|y)+ (1)

g (x)

G (x, y)

∂2

∂y∂x
νX|Y (x|y) + g′ (x)

G (x, y)

∂

∂y
νX|Y (x|y) .

The equality derived in Theorem 1 is equivalent to the re-
sult concurrently provided by Strobl & Lasko (2022) up to
fixing a sign error in the terms involving g′ (x). We derived
this result independently using a different proof technique
and additionally note that pX|Y (x|y) cannot be written as
univariate function with argument ([x− h (y)] /k (y)) if
Y → X is an LSNM with non-constant k (·).

The conclusion of Strobl & Lasko (2022) is that if we have
x0 such that G (x0, y) ̸= 0 for all but countably many
y, then knowing νX|Y (x0|y), G (x0, y) ̸= 0, g (x0) and
g′ (x0) leads to ν1 (y) being constrained to a two dimen-
sional affine space as (1) becomes an ODE. This is in anal-
ogy to the result of Hoyer et al. (2009) for ANMs. For this
case, Zhang & Hyvärinen (2009) have refined the result and
provide a list of all possible cases of unidentifiable models:
only for specific choices of f (·) and ν2 (·), one can find
ν1 (·) such that the model is invertible.

This conclusion carries over to the LSNM. Assume there
exist different values x such that G (x, y) ̸= 0 for all but
countably many y. If g (·) is strictly positive and f (·) is in-
jective, this applies to all x ∈ R except for at most countably
many. Each such value leads to a different ODE in y when
plugging it into Eq. (1). Only when the solution spaces of
all ODEs overlap such that the same ν1 (·) is found, which
must also be valid log-density, the model can be invertible.
This is not the case for generic combinations of g (·), G (·, ·)
and νX|Y (·|·) but only for very specific exceptions. Thus,
apart from some pathological cases, an LSNM cannot be
invertible. A precise characterization of these cases as in
(Zhang & Hyvärinen, 2009) for the post-nonlinear model,
which involves the ANM as a special case, has not yet been
found for LSNM to the best of our knowledge.

To provide a bit more intuition regarding the assumptions
of Theorem 1, note that the results only apply to random

variables X with unbounded support. This is implied by
requiring that the log-density of NX has to be twice dif-
ferentiable. For example, X could not follow a uniform
distribution. This also implies that g(·) has to be a non-
linear (or constant) function since otherwise g(·) is negative
for some attainable values of X and does not strictly map
to R+ as required by our assumptions. Assuming that the
noise variable is Gaussian, necessary conditions for the dis-
tributions of X and Y as well as the functions f (·), g (·),
h (·), and k (·) can be found (Khemakhem et al., 2021).
For completeness, we provide the corresponding result as
Theorem 4 in Supplementary Material B.

3. Estimation of LSNMs
To separate the independent noise source NY = Y−f(X)

g(X)

from Y , we derive a consistent maximum likelihood estima-
tor for the log-likelihood of Y given X and a parameter vec-
tor θ that models f(x) and g(x). The typical parametriza-
tion then attempts to fit f(x) as the mean of a Gaussian
and g(x) as the standard deviation, such as iterative fea-
sible generalized least-squares (Harvey, 1976; Amemiya,
1985). However, this leads to non-concavity of the asso-
ciated log-likelihood and therefore massively complicates
consistency of the estimator. In particular, we would de-
fine θ1(x) = µ(x) and θ2(x) = σ2(x) and have the Gaus-
sian log-likelihood log p(y|x,θ) = logN (y|θ1(x), θ2(x)).
Then, differentiating twice with respect to θ2(x), we have

∂2 logN (y|θ1(x), θ2(x))
∂θ2(x)2

=
θ2(x)− 2(θ1(x)− y)2

2θ2(x)3
,

which is negative if θ2(x) < 2(θ1(x)−y)2 since θ2(x) > 0
as it models the variance. Therefore, the Hessian can be
indefinite and the log-likelihood cannot be guaranteed to be
concave. With a non-concave estimator, deriving any kind
of consistency claims is challenging (Wooldridge, 2015).
Consistent estimation, however, is crucial to guarantee that
an estimator can provably identify the causal direction.

To achieve consistent estimation and consequently provide
an estimator that can identify the causal direction in the
large-data limit, we choose to parameterize the Gaussian
with its natural parameters, η1(x), η2(x) with the inverse
mapping µ(x) = − η1(x)

2η2(x)
and σ2(x) = − 1

2η2(x)
. Due

to properties of the natural parametrization of exponential
families, it is clear that the Gaussian log-likelihood

log p(y|x,η(x))=c+ η(x)T
[
y
y2

]
+

η1(x)
2

4η2(x)
+ log

√
−2η2(x)

(2)
with c = −1/2 log (2π), is strictly concave in η1(x), η2(x)
(Brown, 1986) with constraint η2(x) < 0. However, the
parametrization of the natural parameters through learnable
functions matters.
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We are particularly interested in non-linear Gaussian
LSNMs. We therefore assume to know the right feature
maps giving rise to ground truth η1(x) and η2(x). With
(non-linear) feature maps ψ(x) ∈ RD, ϕ(x) ∈ RD

+ , and
parameters w1 ∈ RD,w2 ∈ RD

+ , we have

η1(x) = ψ(x)
Tw1 and η2(x) = −ϕ(x)Tw2 (3)

with corresponding log-likelihood as log p(y|x,w). The
second natural parameter, η2(x), is ensured to be nega-
tive due to positive feature map and parameters. The log-
likelihood of this model is then jointly concave in w1,w2

due to the composition of a concave log-likelihood with a
linear model and constraint w2 > 0.

Lemma 1 With natural parameters modelled as η1(x) =
ψ(x)Tw1 and η2(x) = −ϕ(x)Tw2, the Gaussian log-
likelihood function in Eq. (2) is jointly concave in w1,w2.

The result relies primarily on the concavity of exponen-
tial family distributions in their natural form and has been
used in a similar context for heteroscedastic Gaussian pro-
cesses (Le et al., 2005). In contrast, the commonly used iter-
ative feasible generalized least-squares (FGLS) method for
heteroscedastic regression is formulated with a non-concave
loss. For example, Cawley et al. (2004) use a similar for-
mulation using feature maps but their model is not jointly
concave because they do not use natural parameters.

To achieve consistent estimation, we need the log-likelihood
to be strictly concave (to guarantee global identification)
when given a certain number of samples T > 0. This condi-
tion can be formulated in terms of the Fisher information,
which is the expectation of the negative log-likelihood Hes-
sian under the predictive sample for each data point.

Assumption 1 There exists T0 > 0, s.t. for any T ≥ T0 the
Fisher information matrix of the Gaussian log-likelihood in
Eq. (2) parameterized as in Eq. (3), i.e.,

IT (w) = − 1

T

T∑
i=1

Ey∼p(y|xi;w)

[
∇2

w log p(y|xi;w)
]

(4)

is positive definite with respect to any w ∈ RD × RD
+ .

In our case, the Fisher information and the Hessian coincide
since we have a generalized linear model with exponential
family likelihood (Sec. 9.2 in Martens, 2020). Therefore,
the Fisher information is guaranteed to be at least positive
semi-definite according to Lemma 1. In particular, each
summand in Eq. (4) will have rank two. Thus, our assump-
tion essentially requires that, upon observing enough data
points, these summands span different sub-spaces of R2D

such that their sum is full rank. For sensible feature maps
and non-degenerate distributions on x, we expect this as-
sumption to hold. This is trivially the case forD = 2, which

could, for example, be a linear model with ϕ(x) = x and
ψ(x) = |x|, because each summand is already full rank.

Theorem 2 Let {(yi, xi)}i=i,...,T be an iid sample with
conditional density p(y|xi;w∗) as defined through Eqs. (2)
and (3), withw∗ ∈ RD ×RD

+ , and correctly specified (non-
linear) feature maps ψ(x) ∈ RD and ϕ(x) ∈ RD

+ . Further,
there exists a T0 > 0 for which Assumption 1 holds, and
suppose the usual smoothness criteria hold:

i) Derivatives up to second order can be passed under the
integral sign in

∫
dP (y|x,w).

ii) Third derivatives ∇3 log p(y|x,w) are bounded by a
function M(y|x) on RD × RD

+ , s.t.

sup
θ∈RD×RD

+

|∇3 log p(y|x,w)jkl| ≤M(y|x)

for all j, k, l, and E[M(y|x)] <∞.

Then, for T ≥ T0 the maximum likelihood estimate ŵT is
weakly consistent, i.e., for T → ∞, ŵT

p→ w∗. Further,
ŵT is asymptotically normal in a sense that

√
T (ŵT −

w∗)
d→ N (0, I(w∗)−1).

The key assumptions for this Theorem to hold are that the
feature maps are correctly specified and that they fulfill
Assumption 1, which we discussed above. The remaining
assumptions ensure the smoothness of the log-likelihood and
are needed to prove the theorem following the approach of
Cramér (1946). There exists follow-up work, which shows
that these smoothness criteria can be relaxed, e.g., Kulldorff
(1957) and Wald (1949), however, we used the conditions
provided by Cramér (1946) as they are more intuitive. Last,
we can also achieve consistency (but not asymptotic normal-
ity) by substituting the smoothness criteria in Theorem 2
with the condition

E[| log p(y|x,w)|] <∞ ,

as discussed in (Wooldridge, 2015, Ch. 15).

In Supplementary Material A, we describe an algorithm to
estimate the model parameters. Due to the concavity in w,
the algorithm can make use of closed-form iterations and
reliably converges to a global optimum. In general however,
we expect our model to be misspecified and the underlying
feature maps to be unknown. In this case, we use approxi-
mate feature maps for our linear model. For example, we
use spline-based feature maps in our experiments (Eilers &
Marx, 1996). In Supplementary Material E, we compare
the performance of our proposed estimator to the commonly
used iterative feasible generalized least squares (IFGLS)
algorithm, which does not rely on a jointly concave log-
likelihood formulation. We find that our estimator clearly
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improves upon IFGLS. Especially, for small datasets, which
are common in causal inference, and large numbers of fea-
ture maps it leads to significantly less overfitting.

In the case where we do not know the true feature maps,
we can alternatively use neural networks to learn them. Pa-
rameterized by weights w ∈ RD, we have neural network
f : R × RD → R2 that maps from a scalar input to the
two natural parameters of the heteroscedastic likelihood. In
particular, we model

η1(x) = f1(x,w) and η2(x) = − 1
2 exp(f2(x,w)),

which uses an additional exponential link function that en-
sures positivity while maintaining differentiability. For de-
tails, see Supplementary Material A.2.

4. Cause-Effect Inference
After studying identifiability and estimation of LSNMs, we
now propose two strategies to instantiate our estimators:
a likelihood-based estimator and an independence-based
estimator. Both assume we can separate the independent
noise NY from X,Y . Hence, we first show under which
conditions maximizing Eq. (2) is equivalent to minimizing
the dependence between estimated noise N̂ and X .

One way to measure the dependence between two continu-
ous random variables is mutual information

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy ,

which is zero iff X and Y are independent. Suppose
there exists an invertible mapping from (x, nY )

T to (x, y)T ,
where the mapping function f is defined as an SCM with
model class F , and f can be parameterized by θ. For such
an invertible mapping with corresponding Jacobian transfor-
mation matrix JX→Y , mutual information (sample version)
of X and NY can be expressed as (Zhang et al., 2015)

I (x,nY |θ) = −
1

T

T∑
i=1

log

(
p(xi)p(nY,i|θ)

pF (xi, yi)|JX→Y |

)
, (5)

where (x,nY ) = {(xi, nY,i)}i=1,...,T is an iid sample of
size T , pF (x, y) is the density induced by the SCM with
model class F , and |JX→Y | is the absolute value of the
determinant of JX→Y . To arrive at Eq. (5), we exploit that

p(x, nY ) = pF (x, y)|JX→Y | .

Zhang et al. (2015) note that for ANMs, |JX→Y | = 1 can
be ignored. For LSNMs, however, |JX→Y | evaluated at
(x, nY ) is equal to |g(x)| and thus, cannot be ignored.

If pF (x, y) is induced by a Gaussian LSNM, the condi-
tional log-density of y given x as defined in Eq. 2 already

includes the scaling through |g(x)| since it can be written as
log p(nY |θ)− log |g(x)|. Moreover, p(x) and pF (x, y) are
independent of θ. The mutual information in Eq. (5) is thus
minimized as log p(y|x,θ) is maximized. Moreover, Zhang
et al. (2015) show that

I(x, n̂Y |θ̂T )
p→ 0

as T → ∞, for any consistent MLE θ̂T . For LSNMs our
estimator derived in Sec. 3 fulfills this condition.

4.1. Likelihood-Based Inference

Cause-effect inference via maximum likelihood or related
measures such as through the Minimum Description Length
principle or Bayesian estimators has proven to be a success-
ful approach for cause-effect inference (Mooij et al., 2010;
Bühlmann et al., 2014; Marx & Vreeken, 2017). The gen-
eral approach is to compare the log-likelihood estimate (or
a related score) for the presumed causal direction X → Y ,

ℓX→Y (θ̂T ) =

T∑
i=1

log
(
p(xi)p

(
yi|xi, θ̂T

))
, (6)

to the corresponding score in the Y → X direction, i.e,
ℓY→X(ξ̂T ).4 Thus, we estimate thatX causes Y if ℓX→Y >
ℓY→X , Y causes X if ℓX→Y < ℓY→X , and do not decide
if both terms as equal.

When closely inspecting Eq. (6), we observe—similar
to the ANM case (Zhang et al., 2015)—that comparing
1/T ℓX→Y to 1/T ℓY→X for LSNMs is equivalent to com-
paring I(x, n̂Y |θ̂T ) to I(y, n̂X |ξ̂T ) since pF (x, y) is a con-
stant appearing on both sides. Thus, maximum likelihood
can be used to identify cause and effect for an LSNM, when-
ever the model is identifiable as discussed in Sec. 2 and the
estimator is consistent (Sec. 3). We formalize these points
in Theorem 3, which is adapted from Zhang et al. (2015).

Theorem 3 [Zhang et al. (2015)] Let PF (X,Y ) be the
joint distribution induced by an LSNM according to Def. 1
with NY∼N (0, 1), parametrization θ, and consistent MLE
θ̂T . Given an iid sample (x,y) ∼ PF (X,Y ) of size T ,

lim
T→∞

ℓX→Y (θ̂T )− ℓY→X(ξ̂T ) ≥ 0 ,

with equality, if and only if, a backward model parameter-
ized by ξ exists according to Theorem 4, and ℓY→X(ξ̂T )
converges to ℓY→X(ξ) as T →∞.

Clearly, if we know p(x) and all assumptions in Theorem 3
are fulfilled, our estimator based on non-linear feature maps
is suitable to consistently identify cause and effect according
to Theorem 3. In practice, we assume a fully Gaussian
model, meaning that we also model p(x) as Gaussian. It
would, however, be straightforward to use a different prior.

4We drop the arguments, whenever clear from context.
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4.2. Independence-Based Inference

As a second approach, we apply regression with subsequent
independence testing (RESIT) (Peters et al., 2014). Due to
the additional degree of freedom to fit the scale of an LSNM,
we expect our estimators to be beneficial in this setting.

That is, we first estimate the residuals N̂Y = Y−f̂(X)
ĝ(X) using

one of the estimators proposed in Sec. 3, and subsequently
test whether N̂Y is independent of the presumed cause X .
We repeat these steps for the Y → X direction and decide
for that direction with the larger p-value; i.e., the smaller
the p-value, the more evidence for rejecting independence.
If both p-values are insignificant, both directions admit an
LSNM, and one could decide to not force a decision.

A possible problem with such a RESIT approach is that
the estimated residuals may be inherently dependent on the
input (Kpotufe et al., 2014; Mooij et al., 2016), when we
do not use a suitable estimator. As discussed by Mooij et al.
(2016), a regression estimator is suitable, if i) it is L2 con-
sistent, or ii) it is weakly consistent, but we perform sample
splitting—i.e., we estimate the function parameters on one
half of the data and estimate the dependence between residu-
als and potential cause on the other half of the data. Further,
Mooij et al. (2016, Thm. 20) proved that Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005) is con-
sistent given such a suitable estimator.5 Therefore, we chose
HSIC for our empirical evaluation.

L2-consistency is a stronger statement than what we proved
in Theorem 2. For our estimator, we would need to show
that the Fisher information is sufficiently peaked at θ to
achieve L2 consistency, which is difficult for arbitrary non-
linear feature maps. Even though, our estimator is suitable
for Gaussian LSNMs if we perform sample splitting, we
observe a substantially improved performance when using
the full dataset for training and independence testing.

4.3. Location-Scale Causal Inference

To instantiate the estimators above, we propose LOCI
(location-scale cause-effect inference), which follows a sim-
ple two-step procedure: We first standardize the data to
avoid any bias that might be induced by the scale of the
involved variables (Reisach et al., 2021).6 Then, we use
one of the estimators proposed in Sec. 3 to estimate f and
g for the X → Y direction, and h and k for the Y → X
direction. Last, we determine the causal direction, either
by choosing the direction with the higher likelihood, as
described in Sec. 4.1 (LOCIM), or the one with the larger
p-value provided by HSIC, as proposed in Sec. 4.2 (LOCIH).

5These results have also been extended beyond the two-variable
case by Pfister et al. (2018).

6Since we assume a Gaussian LSNM, the marginals for X and
Y cancel when comparing ℓX→Y to ℓY →X after standardization.

We expect the likelihood-based approach to perform best
for Gaussian ANMs and LSNMs, since it is consistent in
these settings, while we expect LOCIH to have an advantage
when the data is non-Gaussian distributed.

5. Related Work
Cause-effect inference is a well-studied problem, and the
first identifiability results have been established for linear
additive noise models (Shimizu et al., 2006), where the ef-
fect Y can be expressed as a linear function of the cause X
and an additive non-Gaussian error term. It has been proven
that the backward model does not exist for a broad range
of ANMs (Hoyer et al., 2009; Peters et al., 2011; Hu et al.,
2018; Peters et al., 2017; Bühlmann et al., 2014), and con-
sistency results for ANMs have been derived (Kpotufe et al.,
2014). Further, these results on identifiability have been
extended to post non-linear causal models (Zhang & Hyväri-
nen, 2009) and a link to maximum likelihood estimation has
been established (Zhang et al., 2015).

A line of research that is not based on assumptions on the
SCM builds upon the principle of independent mechanisms
and postulates that the mechanism (pY |X ) is independent of
the cause (pX ), whereas this does not hold for the anti-causal
direction (Janzing & Schölkopf, 2010; Peters et al., 2017).
Besides being a postulate, the principle of independent
mechanism can also be linked to known identifiability re-
sults, e.g., to the likelihood approach we presented in Sec. 4.
For Gaussian additive noise models for example, pY |X mod-
els the residual distribution which is independent of pX for
correctly specified models. Note, however, that for location-
scale noise models, the definition has to be revisited and we
cannot consider pY |X as an independent mechanism, since
the independent noise source is equal to pY |X · |JX→Y |.7
Approaches motivated by this postulate either try to ap-
proximate the involved distributions directly (Janzing et al.,
2012; Sgouritsa et al., 2015; Goudet et al., 2018), or aim
to approximate its information-theoretic counterpart: the
algorithmic independence of conditionals postulate (Janz-
ing & Schölkopf, 2010), which compares the Kolmogorov
complexities (Kolmogorov, 1965) of the involved factoriza-
tions. Since Kolmogorov complexity is not computable, it
is typically approximated via Minimum Description Length
or Minimum Message Length (Kalainathan, 2019; Marx &
Vreeken, 2017; Mitrovic et al., 2018; Mooij et al., 2010;
Mian et al., 2021). In a broader sense, these approaches also
link to (penalized) likelihood methods or Bayesian struc-
ture learning (Peters & Bühlmann, 2014; Bühlmann et al.,
2014; Marx & Vreeken, 2019b; Lorch et al., 2021), which
are of increasing interest, especially for graphs beyond the
bivariate setting (Zheng et al., 2018; Vowels et al., 2022).

7A related concept with identifiability results for discrete data
is entropic causal inference (Kocaoglu et al., 2017).
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Figure 2. Performance of LOCI with maximum likelihood and HSIC estimator using either neural network ( ) or linear regressor
( ) in comparison to the baselines ( ) on benchmark datasets by Tagasovska et al. (2020). On these datasets, our model is either
well-specified or slightly misspecified and therefore LOCIM performs best. LOCIM with neural network regressor makes no error on these
datasets while other methods designed for similar data misclassify some pairs.

For location-scale noise models, several independent identi-
fiability results exist. HECI (Xu et al., 2022) and FOM (Cai
et al., 2020) are two proposals, which extend the identifia-
bility results for ANMs (Blöbaum et al., 2018), which focus
on the low-noise regime. In particular, Xu et al. (2022)
develop an approach that partitions the domain space and
develop a loss based on the geometric mean between error
terms, and Cai et al. (2020) suggest a score based on fourth-
order moments, which they estimate via heteroscedastic
Gaussian process regression. Approaches without iden-
tifiability results have also shown strong empirical per-
formance on location-scale benchmark datasets, such as
QCCD (Tagasovska et al., 2020), based on non-parametric
quantile regression, and estimators for conditional diver-
gences (Fonollosa, 2019; Duong & Nguyen, 2021). Most
related to our approach is the concurrent work of (Strobl &
Lasko, 2022), who prove Theorem 1 independently of us via
a different technique as discussed in Sec. 2. Strobl & Lasko
(2022), however, focus on root cause analysis and use a
heuristic two stage algorithm, GRCI, to learn the mean and
variance via cross validation. Subsequently, they estimate
the degree of dependence via mutual information.

In contrast to previous work, we not only provide identifia-
bility results for LSNMs, but also bridge the gap and provide
the first consistent estimator for causal LSNMs. Further, we
find that our LSNM maximum-likelihood estimator can out-
perform iterative feasible generalized least-squares (IFGLS,
Harvey, 1976), the de-factor standard for heteroscedastic
models, especially on small data (cf. Supplementary Mate-
rial E). Additionally, we provide a neural network-based
approach to learn LSNMs, which exhibits state-of-the-art
performance on a variety of benchmark tasks.

6. Experiments
We empirically compare LOCI to state-of-the-art bivariate
causal inference methods and study the benefit of modelling
location-scale noise as well as a post-hoc independence test.

The performance of bivariate causal inference methods is
assessed in terms of accuracy and area under the decision
rate curve (AUDRC).8 The accuracy measures the fraction
of correctly inferred cause-effect relationships and the AU-
DRC measures how well the decision certainty indicates
accuracy. The certainty is, for example, indicated by the
likelihood or p-value difference in both directions. Thus, a
high AUDRC indicates that an estimator tends to be correct
when it is certain and only incorrect when it is uncertain.
Mathematically, given the ground truth direction t(·) and
a causal estimator for the direction f(·) on M pairs with
ordering π(·) according to the estimator’s certainty, we have

AUDRC = 1
M

∑M
m=1

1
m

∑m
i=11f(π(i))=t(π(i)).

That is, we average the accuracy when iteratively adding
the pair the estimator is the most certain about. Hence, both
accuracy and AUDRC are between 0 and an optimum of 1.

Overall, we find that LOCI performs on par with the best
methods for causal pair identification and can achieve per-
fect accuracy even when the model assumptions are slightly
violated. In the case of additive noise models, our estimators
perform on par with custom estimators for these cases. In the
case of location-scale noise models, our method performs
often better than previously proposed estimators for this
purpose. We also find that the location-scale noise model
estimators we designed greatly improve over correspond-
ing additive noise model estimators with the same structure.
Across the 13 benchmarks we consider, our method ranks
first and improves over concurrent methods for causal in-
ference of location scale noise models like GRCI (Strobl &
Lasko, 2022) and HECI (Xu et al., 2022).

8We choose AUDRC over AUPR and AUROC, since it weights
correctly identified X → Y pairs in the same way as correctly iden-
tified Y → X pairs and thus avoids an arbitrary selection of true
positives and true negatives, which can lead to non-interpretable
results on unbalanced datasets (Marx & Vreeken, 2019a, Table 1).
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Baselines. We consider CAM (Bühlmann et al., 2014),
which is based on homoscedastic maximum likelihood and
a corresponding approach based on additional independence
tests (Peters et al., 2014, RESIT). Further, we compare to
three methods that are also designed for heteroscedastic-
ity: QCCD (Tagasovska et al., 2020), which uses quantile
regression, HECI (Xu et al., 2022), which uses binning,
and GRCI (Strobl & Lasko, 2022), which uses non-linear
regression and cross-validation based scores. In Supplemen-
tary Material D, we add CGNN (Goudet et al., 2018) and
ICGI (Janzing et al., 2012) as non-LSNM baselines.

Datasets. To assess the performance of our method on
datasets where the model assumptions are only slightly vi-
olated, we consider the five synthetic datasets proposed
by Tagasovska et al. (2020) that consist of additive (AN,
ANs), location scale (LS, LSs), and multiplicative (MNU)
noise-models. The datasets with suffix ‘s’ use an invert-
ible sigmoidal function making identification more difficult.
Further, we assess the performance of our approach on a
wide variety of common benchmarks where our assumptions
are most likely violated. We consider the Net dataset con-
structed from random neural networks, the Multi datasets
using polynomial mechanisms and various noise settings (in-
cluding post non-linear noise), and the Cha dataset used for
the effect pair challenge (Guyon et al., 2019). Further, we
consider the SIM and Tübingen datasets of the benchmark
by Mooij et al. (2016).

6.1. Additive, Location-Scale, and Multiplicative Noise

The five datasets proposed by Tagasovska et al. (2020) can
be modelled using the location-scale noise model that we
assume (Def. 1) and therefore provide an optimal test case
for our methods and theoretical results. MNU additionally
provides an interesting test-case because it is not generated
with Gaussian noise. In Fig. 2, we display the accuracy of
our estimators using both a linear model with feature maps
and a neural network. We find that our estimators, especially
LOCIM relying on the maximum likelihood, achieve almost-
perfect performance on this benchmark. In the following,
we compare the performances of the methods in detail.

Comparison to Methods for Additive Noise Models.
The direct comparison to CAM (Bühlmann et al., 2014)
and RESIT (Peters et al., 2014) is relevant because these
two methods rely on additive noise models and can be seen
as equivalents to LOCIM and LOCIH, respectively. Fig. 2
shows that our method with a neural network estimator,
NN-LOCIM, achieves perfect performance across the five
datasets while the method based on feature maps performs
only slightly worse. In particular, LOCIM performs better
than the homoscedastic variant CAM and LOCIH performs
significantly better than RESIT. In the case where the as-

LS LSs MNU
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Figure 3. Improvement of using our location-scale noise model
(LSNM) estimators (striped area) over corresponding additive
noise model (ANM) estimators (solid area) with the same net-
work architectures and feature maps. The ANM estimators use
a Gaussian likelihood with fixed observation noise. Only on LS,
the likelihood-based ANM estimators are on par with the LSNM
variant (ANMM performing 3% points better than LOCIM on LS).

sumptions seem to be aligned with our estimators, no in-
dependence test is needed and LOCIM performs better than
LOCIH. In Fig. 3, we further show how the LSNM esti-
mators that we propose improve over an ANM estimator
using the same feature maps or neural network architec-
ture. Especially on the three datasets that have complex
noise models, LS, LSs, and MNU, our estimators greatly
improve the performance. Across all benchmarked datasets,
ANM estimators perform the worst on these three and an
additional independence test can further decrease the per-
formance below 10% accuracy. Instead, using our LSNM
estimators leads to almost perfect accuracy with or without
the independence test.

Comparison to location-scale estimators. Although
QCCD (Tagasovska et al., 2020), GRCI (Strobl & Lasko,
2022), and HECI (Xu et al., 2022) are designed in particular
for heteroscedastic models, they do not achieve perfect per-
formance on this benchmark like NN-LOCIM. In particular,
these methods struggle on additive noise models with sig-
moid non-linearity (ANs) and on datasets with the assumed
location-scale noise model (LS) while our proposed method,
in particular with a flexible neural network, achieves perfect
performance across all these cases.

6.2. Performance on other Datatsets

We assess the performance of our method on 8 other bench-
mark datasets where the LSNM assumptions might be vi-
olated. Despite this, we find that the proposed methods
perform on par or better than existing state-of-the-art meth-
ods for bivariate causal inference. In particular our NN-
LOCIH estimator performs best in aggregate accuracy over
all benchmarks followed by GRCI (Strobl & Lasko, 2022).
In turn, GRCI (Strobl & Lasko, 2022) performs slightly
better in terms of AUDRC followed by our method. Overall,
our method performs best on 7 out of the 13 benchmarks
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Figure 4. Average accuracy and area under the decision rate curve
(AUDRC) over all 13 benchmark datasets. LOCI with a neural
network performs best overall in terms of accuracy, GRCI in terms
of AUDRC.

considered. The detailed results for all figures can be found
in Tables 1 and 2 in the Supplementary Material. In compar-
ison to the five benchmarks where our assumptions hold ap-
proximately, the additional independence test greatly helps
improve performance on the other 8 benchmark sets.

Overall, the results on various benchmarks suggest that
LOCIM should be used if one expects the Gaussian noise
assumptions to hold. If the assumptions are likely violated,
LOCIH should be preferred.

7. Conclusion
We considered the problem of cause-effect inference in
location-scale noise models from observational data. We
proved that the causal direction is identifiable for LSNMs
except for some pathological cases, and proposed two empir-
ical estimators for this setting: a concave feature map-based
estimator and a neural network-based approach. For cause-
effect inference, we instantiated both variants in a likelihood-
based framework, as well as performed subsequent indepen-
dence testing. The likelihood approach has almost perfect
accuracy on benchmark data that approximately meets our
assumptions, whereas the independence-based approach is
more stable when the data is non-Gaussian. Overall, the
neural network instantiation has a slight edge over the fea-
ture map-based estimator. The latter, however, outperforms
comparable methods such as IFGLS and might be of inde-
pendent interest. For future work, it would be interesting to
inverstigate the non-Gaussian setting in more detail.
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A. Heteroscedastic Regression Algorithms
Here we describe the estimators we use for maximum likelihood. We assume the data are vectors x ∈ RT and observations
y ∈ RT . Further, we place an uninformative Gaussian prior on the parameter vector w ∼ N (0, δ−1I). Assuming
conditional independence, the log joint with parameters w is

log p(y,w|x) =
T∑

i=1

log p(yi|xi,w) + logN (w;0, δ−1I) .

This ensures that the log joint log p(y,w|x) is strictly concave for our concave estimator and helps with optimization. It
can further be used to adjust the complexity of the model by adapting δ. In our case, we use a very small δ with value 10−6

which does not regularize but rather helps inverting the Hessian for closed-form updates described below.

A.1. Concave Linear Heteroscedastic Regression

Optimizing the parameters of the concave heteroscedastic regression model with fixed feature maps can partly be done in a
closed-form and partly requires gradient-based optimization. The parameter w1 that controls the first natural parameter
through η1(x) = ψ(x)Tw1 can be optimized in closed-form. We define Ψ = [ψ(x1), . . . ,ψ(xT )]

T ∈ RT×D as the design
matrix. Differentiating the log-likelihood with respect to w1, we have

∇w1
log p(y,w|x) = ΨT (y −α ◦Ψw1)− δw1,

whereα = −[ 1
2η2(x1)

, . . . , 1
2η2(xT ) ]

T denotes variances for each data point. Therefore, this is easily recognized as a weighted
least-squares problem that can be solved as

w1 ← (ΨT diag(α)Ψ+ δI)−1ΨTy,

where diag(α) is a T ×T diagonal matrix with entries α. While the objective is also concave inw2 that controls the second
natural parameter η2(x), there is no closed-form solution available. Therefore, we optimize this part of the objective using
the L-BFGS optimizer (Byrd et al., 1995) with the additional constraint thatw2 ≥ 0. We then fit the model alternatingly,
similar to FGLS, by first using the closed-form solution for w1 and then optimizing the second parameter w2 for multiple
steps using L-BFGS. We iterate until the objective value does not improve anymore.

A.2. Neural Network Heteroscedastic Regression

In general, it is expected that our model is misspecified or that we do not know the underlying feature maps. To deal with
this case, we use neural networks that can automatically learn the feature maps specifically per problem instead of relying
on splines or more traditional feature maps. In contrast to common implementations of neural networks for heteroscedastic
regression, which parameterize the mean and variance, we employ the natural parametrization in line with our model based
on feature maps. With neural network f : R× RD → R2 we have

η1(x) = f1(x,w) and η2(x) = − 1
2 exp(f2(x,w)),

which uses an additional exponential link function to ensure positivity while maintaining differentiability. Further, above
model is sensible because for a single layer a zero-mean Gaussian prior would cause a prior predictive mode at unit variance
and hence match the data after standardization. To optimize the model, we use the Adam optimizer (Kingma & Ba, 2014).

B. Theoretical Results
Theorem 1 Assume the data is such that a location-scale noise model can be fit in both directions, i.e.,

Y = f (X) + g (X)NY , X ⊥⊥NY

X = h (Y ) + k (Y )NX , Y ⊥⊥NX .

12
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Let ν1 (·) and ν2 (·) be the twice differentiable log densities of Y and NX respectively. For compact notation, define

νX|Y (x|y) = log
(
pX|Y (x|y)

)
= log

(
pNX

(
x− h (y)
k (y)

)
/k (y)

)
= ν2

(
x− h (y)
k (y)

)
− log (k (y)) and

G (x, y) = g (x) f ′ (x) + g′ (x) [y − f (x)] .

Assume that f (·), g (·), h (·), and k (·) are twice differentiable. Then, the data generating mechanism must fulfill the
following PDE for all x, y with G (x, y) ̸= 0.

0 = ν′′1 (y) +
g′ (x)
G (x, y)

ν′1 (y) +
∂2

∂y2
νX|Y (x|y)+ (1)

g (x)

G (x, y)

∂2

∂y∂x
νX|Y (x|y) + g′ (x)

G (x, y)

∂

∂y
νX|Y (x|y) .

Proof: We follow the proof technique of (Zhang & Hyvärinen, 2009), i.e., we build upon the linear separability of the
logarithm of the joint density of independent random variables. That is, for a set of independent random variables whose
joint density is twice differentiable, the Hessian of the logarithm of their density function is diagonal everywhere (Lin, 1997).
We first define the joint distribution p(x, nY ) via the change of variable formula, then derive the Hessian of its logarithm,
and lastly, derive an PDE which is necessary to hold such that an inverse model can exist.

We define the change of variables from {x, nY } to {y, nX}

y = f (x) + g (x)nY ,

nX = [x− h (y)] /k (y) .

The according Jacobian matrix amounts to ∂y/∂x g (x)
1

k (y)
− ∂y/∂xk (y)h

′ (y) + [x− h (y)] k′ (y)
k (y)

2 −g (x) k (y)h
′ (y) + [x− h (y)] k′ (y)

k (y)
2

 ,

with absolute determinant g (x) /k (y) such that

p (x, nY ) =
g (x)

k (y)
p (y, nX) .

Under independence it holds

∂2

∂x∂nY
log (p (x, nY )) = 0 such that

∂2

∂x∂nY
log

(
g (x)

k (y)
p (y, nX)

)
=

∂2

∂x∂nY
[ν1 (y) + ν2 (nX) + log (g (x))− log (k (y))] = 0.

Evaluating this quantity and dividing by (∂y/∂x) (∂y/∂nY ) leads to

ν′′1 (y) + ν′1 (y)

[
g′ (x)

G (x, nY )

]
+ ν′′2 (nX)

[
h′ (y) + k′ (y)nX

k (y)
2

[
h′ (y) + k′ (y)nX −

g (x)

G (x, nY )

]]
+

ν′2 (nX)

2
[
nXk

′ (y)2 + h′ (y) k′ (y)
]

k (y)
2 − h′′ (y) + nXk

′′ (y)
k (y)

− h′ (y) g′ (x) + nXk
′ (y) g′ (x)

k (y)G (x, nY )
−

g (x) k′ (y)

k (y)
2
G (x, nY )

]
+
k′ (y)2 − k (y) k′′ (y)

k (y)
2 − g′ (x) k′ (y)

k (y)G (x, nY )
= 0, (7)

13
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where
G (x, nY ) =

∂y

∂x

∂y

∂nY
= g (x) [f ′ (x) + g′ (x)nY ] .

Assuming injectivity of f (·) and positivity of g (·), G (x, nY ) can only be 0 on a set of measure 0. Finally, plugging in all
the definitions in Eq. (1) and taking the derivatives, one finds that Eq. (1) is identical to Eq. (7). □

Lemma 1 With natural parameters modelled as η1(x) = ψ(x)Tw1 and η2(x) = −ϕ(x)Tw2, the Gaussian log-likelihood
function in Eq. (2) is jointly concave in w1,w2.

Proof: To prove concavity of the model, we show that the Hessian of the loss w.r.t. parameters w1,w2 is negative
semidefinite. We write η(x) = [η1(x), η2(x)]

T ∈ R2 for the natural parameter vector and thus have the log-likelihood

log p(y|x,η) = −1

2
log (2π) + η(x)T

[
y
y2

]
+
η1(x)

2

4η2(x)
+

1

2
log(−2η2(x)) .

Further, we concatenate both parameters and feature maps so that we have w = [wT
1w

T
2]

T ∈ R2D and Φ(x) ∈ R2D×2 is a
block-diagonal concatenation of feature maps such that the first column is ψ(x) followed by zeros and the second column is
D zeros followed by −ϕ(x), i.e.,

Φ(x) =

(
ψ(x) 0
0 −ϕ(x)

)
.

We then have η(x) = Φ(x)Tw for our natural parameters. By the chain rule, the Hessian w.r.t. parameters w can be written
as

∇2
w log p(y|x,w) = [∇wη(x)]

T[∇2
η log p(y|x,η)][∇wη(x)] + [∇2

wη(x)]
T[∇η log p(y|x,η(x))]

= Φ(x)[∇2
η log p(y|x,η)]Φ(x)T,

because the second derivative of η(x) = Φ(x)Tw w.r.t. w is zero due to linearity thus eliminating the sec-
ond summand. Because negative definiteness of ∇2

η log p(y|x,η) implies negative semidefiniteness for any matrix
Φ(x)∇2

η log p(y|x,η)Φ(x)T, it only remains to show that ∇2
w log p(y|x,w) is indeed negative definite. While negative

definiteness already follows from the natural parameterisation, the Hessian is given by:

∇2
η log p(y|x,η) =

(
1

2η2(x)
− η1(x)

2η2(x)2

− η1(x)
2η2(x)2

η1(x)
2

2η2(x)3
− 1

2η2(x)2

)
.

To show that this matrix is negative definite, we use the determinant criterion. This requires that odd upper determinants
be negative and even ones positive. The upper left determinant is negative since 1

2η2(x)
is negative due to η2(x) < 0. The

determinant of the entire matrix is given by − 1
4η2(x)3

and is positive due to η2(x) < 0. This shows that the log-likelihood
Hessian w.r.t. η is negative definite and concludes the proof that the log-likelihood is concave in w. □

Theorem 2 Let {(yi, xi)}i=i,...,T be an iid sample with conditional density p(y|xi;w∗) as defined through Eqs. (2) and (3),
with w∗ ∈ RD × RD

+ , and correctly specified (non-linear) feature maps ψ(x) ∈ RD and ϕ(x) ∈ RD
+ . Further, there exists

a T0 > 0 for which Assumption 1 holds, and suppose the usual smoothness criteria hold:

i) Derivatives up to second order can be passed under the integral sign in
∫
dP (y|x,w).

ii) Third derivatives∇3 log p(y|x,w) are bounded by a function M(y|x) on RD × RD
+ , s.t.

sup
θ∈RD×RD

+

|∇3 log p(y|x,w)jkl| ≤M(y|x)

for all j, k, l, and E[M(y|x)] <∞.

Then, for T ≥ T0 the maximum likelihood estimate ŵT is weakly consistent, i.e., for T →∞, ŵT
p→ w∗. Further, ŵT is

asymptotically normal in a sense that
√
T (ŵT −w∗)

d→ N (0, I(w∗)−1).
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Proof: We first establish that the true parameter w∗ is identifiable. Since the density p(y|x,w∗) is part of the exponential
family, the parameter space RD ×RD

+ is a convex set, and for T ≥ T0, I(w) > 0 for allw ∈ RD ×RD
+ (by Assumption 1),

it follows that any w ∈ RD × RD
+ is globally identifiable as proven by Rothenberg (1971)[Theorem 3].

Since there exists a T ≥ T0, so that I(w) > 0 for anyw ∈ RD ×RD
+ , the main condition for Cramér’s consistency proof is

also fulfilled (Cramér, 1946). Combined with the smoothness conditions i) and ii), we fulfill all criteria according to Cramér
(1946) resp. Liang (1984), who layed out the assumptions for conditional log-likelihoods such that the claim holds. □

Theorem 3 [Zhang et al. (2015)] Let PF (X,Y ) be the joint distribution induced by an LSNM according to Def. 1 with
NY∼N (0, 1), parametrization θ, and consistent MLE θ̂T . Given an iid sample (x,y) ∼ PF (X,Y ) of size T ,

lim
T→∞

ℓX→Y (θ̂T )− ℓY→X(ξ̂T ) ≥ 0 ,

with equality, if and only if, a backward model parameterized by ξ exists according to Theorem 4, and ℓY→X(ξ̂T ) converges
to ℓY→X(ξ) as T →∞.

Proof: From Eq. (2) and Eq. (5), it follows that for LSNMs,

ℓX→Y (θ̂T ) =

T∑
i=1

pF (xi, yi)− T · I(x, n̂Y |θ̂T )

ℓY→X(ξ̂T ) =

T∑
i=1

pF (xi, yi)− T · I(y, n̂X |ξ̂T ) .

Thus, it suffices to show that
lim

T→∞
I(x, n̂Y |θ̂T )− I(y, n̂X |ξ̂T ) ≤ 0 ,

with equality, if and only if, a backward model parameterized by ξ exists according to Theorem 4, and ℓY→X(ξ̂T ) converges
to ℓY→X(ξ) as T → ∞. By consistency of θ̂T , limT→∞ I(x, n̂Y |θ̂T ) = 0 (Zhang et al., 2015). Further, if and only
if a backward model exists s.t. Y ⊥⊥NX , the mutual information in the backward direction is zero. As a consequence,
the empirical estimator approaches zero, if and only if a backward model exist and ℓY→X(ξ̂T ) approaches ℓY→X(ξ) as
T →∞. Otherwise limT→∞ I(y, n̂X |ξ̂T ) > 0. □

In the following, we state the theoretical result by Khemakhem et al. (2021) on Gaussian LSNMs. Note that we slightly
changed the theorem as the original version has a typo in the definition of g and k.

Theorem 4 (Khemakhem et al. (2021)) Assume the data follows the model in Def. 1 with NY standard Gaussian, NY ∼
N (0, 1). If a backward model exists, i.e.

X = h(Y ) + k(Y )NX

where NX ∼ N (0, 1), NX ⊥⊥Y and k > 0, then one of the following scenarios must hold:

1. (g, f) =
(

1√
Q
, PQ

)
and (k, h) =

(
1√
Q′ ,

P ′

Q′

)
where Q,Q′ are polynomials of degree two, Q,Q′ > 0, P, P ′ are

polynomials of degree two or less, and pX , pY are strictly log-mix-rational-log. In particular, lim−∞ g = lim+∞ g =
0+, lim−∞ f = lim+∞ f <∞, similarly so for k, h, and f, g, h, k are not invertible.

2. g, k are constant, f, g are linear and pX , pY are Gaussian densities.

C. Societal Impact
Causal inference in general has the potential to greatly improve the reliability of learning systems by uncovering causal
relationships instead of, potentially spurious, correlations. Our work contributes to this endeavour and we do not anticipate
any negative societal impacts because our work is mostly of theoretical nature.
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D. Experimental Protocol and Results
All considered datasets were standardized to zero mean and unit variance for our methods, and use the recommended
pre-processing for the baselines. We use the scores of the estimators provided and only if they are strictly greater (or lower
for some methods) in the right direction, a given pair is counted as correct. For the baselines we use the standard settings of
the respective papers introducing them. Except for standardization, the datasets are not adjusted except for the Tübingen
dataset, where we remove the 6 multivariate and 3 discrete pairs. For the overall performance in Fig. 4, we weight each
dataset the same irrespective of the number of pairs.

For our estimators LOCIM and LOCIH, we use spline feature maps (Eilers & Marx, 1996) of order 5 and with 25 knots
implemented in scikit-learn (Pedregosa et al., 2011). We run our maximum likelihood estimator LOCIM for up to 100
steps or until the likelihood change in a step is below 10−6. For the independence-test-based estimator, we compute the
residuals r of the estimator and standardize them using the estimate of the standard deviation s with r = y−µ̂

σ̂ and then test
for independence of r and the corresponding input x. We predict based on the p-value of the test in both directions.

For the neural network based estimators, NN-LOCIM and NN-LOCIH, we use a neural network with a single hidden layer
of width 100 and TanH activation function. The first output of the network is unrestricted and the second output applies
an exponential function to ensure a positive output as described in Eq. 3 and App. A.2. The parameters are optimized by
full-batch gradient-descent on the log-likelihood using Adam (Kingma & Ba, 2014) with initial learning rate 10−2 that is
decayed to 10−6 using a cosine learning rate schedule for 5 000 steps.

All numbers displayed in the main text figures are organized below in Tables 1 and 2 with additional baselines IGCI (Janzing
et al., 2012) and CGNN (Goudet et al., 2018).

AN ANs LS LSs MNU SIM SIMc SIMln SIMG Tue Cha Net Multi

NN-LOCIM 100 100 100 100 100 48 50 79 78 57 43 76 72
NN-LOCIH 100 100 95 89 100 79 83 72 78 60 72 87 78
LOCIM 99 98 94 94 93 52 48 77 74 52 46 75 66
LOCIH 99 98 85 53 90 75 76 73 81 56 70 84 66
GRCI 100 94 98 87 88 77 77 77 70 82 70 85 77
QCCD 100 82 100 96 99 62 72 80 64 77 54 80 51
HECI 98 55 92 55 33 49 55 65 56 71 57 72 91
CGNN 99 90 98 90 97 48 57 71 80 66 61 69 71
IGCI 20 35 46 34 11 37 45 51 53 68 55 55 92
CAM 100 100 100 53 86 57 60 87 81 58 47 78 35
RESIT 100 100 61 6 2 77 82 87 78 57 72 78 37

Table 1. Accuracies of all methods on all benchmark data sets considered. These data were used for the barplots in the main text.

AN ANs LS LSs MNU SIM SIMc SIMln SIMG Tue Cha Net Multi

NN-LOCIM 100 100 100 100 100 60 63 95 89 66 47 86 93
NN-LOCIH 100 100 99 97 100 89 93 86 93 56 71 97 77
LOCIM 98 95 88 86 90 68 56 90 87 45 55 84 75
LOCIH 100 96 92 54 92 84 85 88 91 47 68 93 51
GRCI 100 100 100 95 97 90 92 92 88 73 71 96 74
QCCD 100 91 100 100 100 71 83 92 76 84 61 94 63
HECI 100 63 99 72 20 59 64 86 73 78 57 84 99
CGNN 100 99 100 98 100 59 66 89 93 77 63 81 91
IGCI 18 35 60 49 1 34 41 51 63 74 58 61 99
CAM 100 100 100 36 76 68 69 87 88 70 41 85 40
RESIT 100 100 69 4 0 75 84 83 71 71 83 81 68

Table 2. Area under the decision rate curve (AUDRC) of all the estimators used on all benchmark data sets. This data was used for the
overall performance displayed in Fig. 4.
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E. Performance Comparison of LSNM Estimators
Our LSNM estimator that can achieve consistency under the right assumptions is different to the standard method commonly
used for such estimation. Because we use the natural exponential family parametrization of the Gaussian log-likelihood,
we have concavity in the linear model parameters while different common formulations do not have this property. The
de-facto standard is iterative feasible generalized least-squares (IFGLS) estimator that regresses to the mean and the squared
residuals in an alternating fashion (Harvey, 1976; Cawley et al., 2004). Such estimators are mostly developed and used in
the context of econometrics (Amemiya, 1985; Wooldridge, 2015) and, to the best of our knowledge, an approach based on
natural parameters of the Gaussian location-scale noise model has only been proposed in the context of Gaussian process
regression (Le et al., 2005). In the following, we empirically compare our method to IFGLS.

In Fig. 5 and 6, we compare both estimators on a simple sinusoidal example with x ∼ U [−4π, 4π] and y ∼
N (sin(x), 0.1(4π − |x|) + 0.2) so that the observation noise is small at the borders and large in the middle of the
problem domain. We increase the number of samples T from 100 to 10000 and report the KL-divergence from the estimated
predictive density qest to the true density p averaged over a grid of 104 points from the left to the right boundary of the
dataset (−4π to 4π). We repeat this procedure for 100 times and, due to numerical outliers, show the median performance
of both estimators. In Fig. 5, we use the common heuristic of setting the number of knots of the spline features to

√
T and in

6, we set it to T
10 leading to overly complex features that make fitting harder.

Overall, we observe that the proposed estimator is more robust for smaller datasets for both strategies of selecting the
number of features. Further, IFGLS fails catastrophically for too many complex features due to overfitting of the mean and
thus iteratively also the variance. Our estimator does not seem to suffer from this problem. We hypothesize that this is due
to the jointly concave objective proposed. However, it is apparent from Fig. 5 that both estimators behave asymptotically the
same. This shows overall that our proposed estimator performs appropriately and, as can be seen on the right hand side of
both figures, can successfully fit mean and variance simultaneously. We hypothesize that both estimators work equally well
given optimal feature maps and leave a thorough investigation of the proposed estimator for future work.
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Figure 5. Performance of our maximum likelihood estimator using spline features of order 5 and the common heuristic of knots =
√
T .

In comparison to iterative feasible generalized least-squares (IFGLS in ) , our concave estimator ( ) performs significantly better
with fewer samples although both behave asymptotically the same. The right two figures show the fits at T = 1000.
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Figure 6. Performance of our maximum likelihood estimator using spline features of order 5 and more features than common with
knots = T

10
with T samples. Additional complexity makes IFGLS greatly overfit and prevents it from converging while the concave

estimator still works somewhat reliably. On the right, the two fits at T = 1000 of both methods are shown.
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