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Abstract
Hierarchical Clustering is a popular unsupervised
machine learning method with decades of his-
tory and numerous applications. We initiate the
study of differentially private approximation al-
gorithms for hierarchical clustering under the rig-
orous framework introduced by Dasgupta (2016).
We show strong lower bounds for the problem:
that any ε-DP algorithm must exhibit O(|V |2/ε)-
additive error for an input dataset V . Then, we
exhibit a polynomial-time approximation algo-
rithm with O(|V |2.5/ε)-additive error, and an
exponential-time algorithm that meets the lower
bound. To overcome the lower bound, we focus
on the stochastic block model, a popular model of
graphs, and, with a separation assumption on the
blocks, propose a private 1 + o(1) approximation
algorithm which also recovers the bottom-level
blocks exactly. Finally, we perform an empirical
study of our algorithms and validate their perfor-
mance.

1. Introduction
Hierarchical Clustering is a staple of unsupervised machine
learning with more than 60 years of history (Ward Jr, 1963).
Contrary to flat clustering methods (such as k-means, Jain
(2010)), which provide a single partitioning of the data, hier-
archical clustering algorithms produce a recursive refining
of the partitions into increasingly fine-grained clusters. The
clustering process can be described by a tree (or dendro-
gram), and the objective of the tree is to cluster the most
similar items in the lowest possible clusters, while separat-
ing dissimilar items as high as possible.

The versatility of such methods is apparent from the
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widespread use of hierarchical clustering in disparate ar-
eas of science, such as social networks analysis (Leskovec
et al., 2014; Mann et al., 2008), bioinformatics (Diez et al.,
2015), phylogenetics (Sneath & Sokal, 1962; Jardine & Sib-
son, 1968), gene expression analysis (Eisen et al., 1998),
text classification (Steinbach et al., 2000) and finance (Tum-
minello et al., 2010). Popular hierarchical clustering meth-
ods (such as linkage (Jain, 2010)) are commonly available
in standard scientific computing packages (Virtanen et al.,
2020) as well as large-scale production systems (Bateni
et al., 2017; Dhulipala et al., 2022).

Despite the fact that many of these applications involve pri-
vate and sensitive user data, all research on hierarchical clus-
tering (with few exceptions (Kolluri et al., 2021; Xiao et al.,
2014) discussed later) has ignored the problem of defining
privacy-preserving algorithms. In particular, to the best of
our knowledge, no work has provided differentially-private
(DP) (Dwork et al., 2014a) algorithms for hierarchical clus-
tering with provable approximation guarantees.

In this work, we seek to address this limitation by advancing
the study of differentially-private approximation algorithms
for hierarchical clustering under the rigorous optimization
framework introduced by Dasgupta (2016). This celebrated
framework introduces an objective function for hierarchical
clustering (see Section 3 for a formal definition) formalizing
the goal of clustering similar items lower in the tree.

Our algorithms are edge-level Differentially Private (DP)
on an input similarity graph, which is relevant when edges
of the input graph represents sensitive user information. De-
signing an edge-level DP algorithm requires proving that
the algorithm is insensitive to changes to a single edge of
the similarity graph. As we shall see, this is especially chal-
lenging for hierarchical clustering. In fact, commonly-used
hierarchical clustering algorithms (such as linkage-based
ones (Jain, 2010)) are deterministically sensitive to a single
edge, thus leaking directly the input edges. Moreover, as
we show, strong inapproximability bounds exist for Das-
gupta’s objective under differential privacy, highlighting the
technical difficulty of the problem.

Main contributions First, we show in Section 4 that no
edge-level ε-DP algorithm (even with exponential time)
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exists for Dasgupta’s objective with less than O(|V |2/ε)
additive error. This prevents defining private algorithms
with meaningful approximation guarantees for arbitrary
sparse graphs.

Second, on the positive side, we provide the first polynomial
time, edge-level approximation algorithm for Dasguta’s ob-
jective with O(|V |2.5/ε) additive error and multiplicative
error matching that of the best non-private algorithm (Agar-
wal et al., 2022). This algorithm is based on recent advances
in private cut sparsifiers (Eliáš et al., 2020). Moreover, we
show an (exponential time) algorithm with O(|V |2 log n/ε)
additive error, almost matching the lower bound.

Third, given the strong lower bounds, in Section 6 we
focus on a popular model of graphs with a planted hier-
archical clustering based on the Stochastic Block Model
(SBM) (Cohen-Addad et al., 2017). For such graphs, we
present a private 1 + o(1) approximation algorithm recov-
ering almost exactly the hierarchy on the blocks. Our algo-
rithm uses, as a black-box, any reconstruction algorithm for
the stochastic block model.

Fourth, we introduce a practical and efficient DP SBM com-
munity reconstruction algorithm (Section 6). This algorithm
is based on perturbation theory of graph spectra combined
with dimensionality reduction to avoid adding high noise
in the Gaussian mechanism. Combined with our clustering
algorithm, this results in the first private approximation al-
gorithm for hierarchical clustering in the hierarchical SBM.

Finally, we show in Section 7 that this algorithm can be
efficiently implemented and works well in practice.

2. Related Work
Our work spans the areas of differential privacy, hierarchi-
cal clustering and community detection in stochastic block
model. For a complete discussion, see Appendix A.

Graph algorithms under DP Differential pri-
vacy (Dwork et al., 2006) has recently the gold standard
of privacy. We refer to Dwork et al. (2014a) for a survey.
Relevant to this work is the area of differential privacy in
graphs. Definitions based on edge-level (Epasto et al., 2022;
Eliáš et al., 2020) and node-level (Kasiviswanathan et al.,
2013) privacy have been proposed. The most related work
is that on graph cut approximation (Eliáš et al., 2020; Arora
& Upadhyay, 2019), as well as that of private correlation
clustering (Bun et al., 2021; Cohen-Addad et al., 2022c).

Hierarchical Clustering Until recently, most work on
hierarchical clustering were heuristic in nature, with the
most well-known being the linkage-based ones (Jain, 2010;
Bateni et al., 2017). Dasgupta (2016) introduced a combina-
torial objective for hierarchical clustering which we study in

this paper. Since this work, many authors have designed al-
gorithms for variants of the problem with no privacy (Cohen-
Addad et al., 2017; 2019; Charikar & Chatziafratis, 2017;
Moseley & Wang, 2017; Agarwal et al., 2022; Chatziafratis
et al., 2020).

Limited work has been devoted to DP hierarchical clustering
algorithms. One paper (Xiao et al., 2014) initiates private
clustering via MCMC methods, which are not guaranteed to
be polynomial time. Follow-up work (Kolluri et al., 2021)
shows that sampling from the Boltzmann distribution (es-
sentially the exponential mechanism (McSherry & Talwar,
2007) in DP) produces an approximation to the maximiza-
tion version of Dasgupta’s function, which is a different
problem formulation. Again, this algorithm is not provably
polynomial time.

Private flat clustering Contrary to hierarchical cluster-
ing, the area of private flat clustering on metric spaces has
received large attention. Most work in this area has focused
on improving the privacy-approximation trade-off (Ghazi
et al., 2020; Balcan et al., 2017) and on efficiency (Hegde
et al., 2021; Cohen-Addad et al., 2022b;a).

Stochastic block models The Stochastic Block Model
(SBM) is a classic model for random graphs with planted
partitions which has received a significant attention in the
literature (Guédon & Vershynin, 2016; Montanari & Sen,
2016; Moitra et al., 2016; Fei & Chen, 2020; Ding et al.,
2022; Liu & Moitra, 2022). For our work, we focus on a
variant which has nested ground-truth communities arranged
in hierarchical fashion. This model has received attention
for hierarchical clustering (Cohen-Addad et al., 2017).

The study of private algorithms for SBMs is instead very
recent. One of the only results known for private (non-
hierarchical) SBMs is the work of Seif et al. (2022) which
provides quasi-polynomial time community detection algo-
rithms for some regimes of the model. Finally, concurrently
to our work, the manuscript of Chen et al. (2023) provides
strong approximation guarantees using semi-definite pro-
gramming for recovering SBM communities. Community
detection is a distinct problem from hierarchical clustering,
and this work is independent of ours.

The connection between existing work in the SBM and ours
is that, in Section 6, we design a hierarchical clustering
algorithm (Algorithm 1) which uses community detection
as a black-box. Moreover, we show a novel algorithm for
hierarchical SBM community detection (Algorithm 2), inde-
pendent of Chen et al. (2023), which is of practical interest
because it uses SVDs, instead of semidefinite programming,
and thus does not have a large polynomial run-time.
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3. Preliminaries
Our results involve the key concepts of hierarchical cluster-
ing and differential privacy. We define these two concepts
in the next sections.

3.1. Hierarchical Clustering

Hierarchical clustering seeks to produce a tree clustering
a set V of n items by their similarity. It takes as input an
undirected graph G = (V,E,w), where E ⊆ V × V is the
set of edges and w : V × V → R+ is a weight function
indicating similarity; i.e. a higher w(u, v) indicates u, v are
more similar. We extend the weight function w and say that
w(u, v) = 0 if w(u, v) /∈ E.

A hierarchical clustering (HC) of G is a tree T whose leaves
are V . The tree can be viewed as a sequence of merges
of subtrees of T , with the final merge being the root node.
A good hierarchical clustering merges more similar items
closer to the bottom of the tree. The cost function ωG(T )
of Dasgupta (Dasgupta, 2016), captures this intuition. We
have

ωG(T ) =
∑

(u,v)∈V 2

w(u, v)|leaves(T [u ∧ v])|, (1)

where T [u∧v] indicates the smallest subtree containing u, v
in T and |leaves(T [u ∧ v])| indicates the number of leaves
in this subtree. This cost function charges a tree T for each
edge based on the similarity w(u, v) and how many leaves
are in the subtree in which it is merged.

Additional Notation We let ω∗G = minT ωG(T ) de-
note the best possible cost attained by any tree T . We
write w(A,B) =

∑
a∈A,b∈B w(a, b) and we say w(G) =

w(G,G). Let A(G) be a hierarchical clustering algorithm.
We say A is an (an, bn)-approximation if

E[ωG(A(G))] ≤ anω∗G + bn, (2)

where the expectation is over the random coins of A. If an
algorithm is a (an, 0)-approximation algorithm, we often
refer to it as simply an an-approximation.

3.2. Differential Privacy

For hierarchical clustering we use the notion of graph pri-
vacy known as edge differential privacy. Intuitively, our
private algorithm behaves similarly whether or not the ad-
jacency matrix of G is altered in L1 distance by up to 1.
Specifically, we say G = (V,E,w) and G′ = (V,E′, w′)
are adjacent graphs if

∑
u,v∈V |w(u, v) − w′(u, v)| ≤ 1,

meaning that the adjacency matrices have L1 distance at
most one 1. This notion has been used before by Eliáš

1the constant one may be changed to any constant to match the
application, and our results carry over easily.

et al. (2020); Blocki et al. (2012) and it has many real-world
applications, such as when the graph is a social network
and the edges between users encode relationships between
them (Epasto et al., 2022). The definition of edge-DP is as
follows:
Definition 1. An algorithmA : G → Y satisfies (ε, δ)-edge
DP if, for any G = (V,E,w), G′ = (V,E′, w′) that are
adjacent, and any set of trees T ,

Pr[A(G′) ∈ T ] ≤ eε Pr[A(G) ∈ T ] + δ.

Edge DP states that given any output T of A, it is provably
hard to tell whether an adjacent G or G′ was used. For 0/1
weighted graphs, Definition 1 is equivalent to standard edge
DP for unweighted graphs (c.f. Definition 2.2.1 in (Pinot,
2018)).

4. Lower Bounds
We show that for the both objective functions considered,
there are unavoidable lower bounds on the objective function
for any differentially private algorithm. Our theorem applies
a packing-style argument (Hardt & Talwar, 2010), in which
we construct a large family F of graphs such that no tree
can cluster more than one graph in F well. However, a DP
algorithm A is forced to place mass on all trees. This limits
its utility as significant mass must be placed on trees which
do not cluster the input graphs well. Formally, we prove the
following theorem:
Theorem 1. For any ε ≤ 1

20 and n sufficiently large, let
A(G) be a hierarchical clustering algorithm which satisfies
ε-edge differential privacy. Then, there is a weighted graph
G with ω∗G ≤ O(nε ) such that

E[ωG(A(G))] ≥ Ω(n
2

ε ).

We prove this theorem in Section 4.1; we discuss the impli-
cations of the theorem here. Since there exists a graph
such that ω∗G ≤ O(nε ), yet ωG(A(G)) ≥ Ω(n

2

ε ), this
means that no differentially private algorithm A can be a
(O(nα), O(n

2α

ε )) approximation to hierarchical clustering
for any α < 1. It is possible for A to be a (1, O(n

2

ε ))-
approximation— in this case, for graphs with W total
weight, it easy to see that ω∗G ≤ O(nW ) and can be as
small as O(W ). Thus, it is necessary for W to be much
bigger than n

ε , meaning that G cannot be too sparse.

4.1. Proof of Theorem 1

To construct our lower bound, we consider the family of
graphs P(n, 5) consisting of n5 cycles of size 5. We observe
the following facts:

• Each G ∈ P(n, 5) has n edges. Thus, any G1, G2 ∈
P(n, 5) differ in at most 2n edges.
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• For any G ∈ P(n, 5), any binary tree which splits
the graph into its cycles before splitting any edges
in the cycles incurs a cost of at most n

5W5, where
W5 = ω∗C5

≤ 18.

It will be convenient to use the following definition:

Definition 2. For a graph G, a balanced cut is partition
(A,B) of V such that n3 ≤ |A|, |B| ≤ 2n

3 .

Any hierarchical clustering T can be mapped to a balanced
cut on G in the following way:

Definition 3. For a binary tree T whose leaves are V , let
the sequence N0, N1, . . . , Nr denote a recursive sequence
of internal nodes such that N0 is the root node, and Ni is
child of Ni−1 with more leaves in its subtree. Finally, Nr is
the first node in the sequence with fewer than 2n

3 leaves in
its subtree. Then, the balanced cut (A,B) induced by T is
the partition (leaves(Nr), V \ leaves(Nr)).

It is easy to see that (A,B) in the above definition is indeed
a balanced cut ofG, and for any edge (u, v) crossing (A,B),
we have |leaves(T [u ∧ v])| ≥ 2n

3 .

Our class C of graphs is a subset ofP(n, 5) for which no tree
clusters more than one element of C well. We characterize
a condition for which a tree T definitely does not cluster
G ∈ P(n, 5) well:

Definition 4. For a binary tree T , let (A,B) be its balanced
cut. We say (A,B) misses a cycle C ⊆ G if at least one
vertex of C lies in A and at least one vertex lies in B.

Now, we show that if T misses many cycles in its balanced
cut, it must incur high cost.

Lemma 1. For a graph G ∈ P(n, 5), let T be a HC with
balanced cut (A,B), and suppose that B misses at least
αn5 of the cycles in G, for 0 < α ≤ 1. Then,

ωG(T ) ≥ 4α

15
n2.

Proof: From the given information, we have thatw(A,B) ≥
2αn5 , as a missed cycle implies at least two edges are cut.
Thus,

ωG(T ) ≥
∑

u∈A,v∈B
w(u, v)|leaves(T [u ∧ v])|

≥ 2n
3 w(A,B) ≥ 4α

15 n
2.

We generate graphs from P(n, 5) at random, showing that
the probability that there exists a balanced cut (A,B) which
misses few cycles in both G1, G2 is exponentially small.
This will allow us to generate a large family of graphs such
that no balanced cut misses few cycles in more than one
graph. This results in the following lemma—in the follow-
ing, let B(G, r) = {T ∈ Tn : ωG(T ) < r}.

Lemma 2. For n sufficiently large, there exists a family
F ⊆ P(n, 5) of size 20.2n such that B(G, r)∩B(G′, r) = ∅
for any G,G′ ∈ F with r = n2

400 .

The proof of this lemma appears in Appendix B. Thus, no
tree can cluster more than one of our random graphs well,
and we can apply the packing argument to obtain Theorem 1.
We prove it as follows.

Proof of Theorem 1: Let F be the set of graphs guaranteed
by Lemma 2. We have |F| = 20.2n. Let FW contain the
same graphs ofF , but with each edge weighted by a positive
integer W satisfying 0.02 ≤ εW < 0.07. Each G,G′ ∈ F
differs by up to 2n edges, and applying group privacy W
times, we have that an algorithm A which satisfies ε-DP
satisfies 2nWε-DP on the graphs in FW .

Now, suppose A satisfies E[costG(A(G))] < W
800n

2

for any G ∈ FW . This implies Pr[costG(A(G)) ∈
B(G, W400n

2)] ≥ 1
2 for all G ∈ FW . However, we

know these balls are disjoint because of the disjointness
property on F . Furthermore, we have that Pr[A(G) ∈
B(G′, W400n

2)] ≥ e−2nWε 1
2 > 2−0.2n for all G′ ∈ FW .

1 ≥
∑

G′∈FW

Pr[A(G) ∈ B(G′, W400n
2)]

> 20.2n2−0.2n = 1.

This is a contradiction, and thus the algorithm A must have
error higher than W

800n
2 ≥ Ω(n

2

ε ) on some graph.

5. Algorithms for Private Hierarchical
Clustering

In this section, we design private algorithms for hierarchical
clustering which work on any input graph. In Section 5.1,
we propose a polynomial time (α,O(n

2.5

ε )) approximation
algorithm, whereα is the best approximation ratio of a black-
box, non-private hierarchical clustering algorithm. Then,
in Section 5.2, we show that the exponential mechanism is
a (1, O(n

2 logn
ε ))-approximation algorithm, implying our

lower bound is tight. The proofs of the results in this section
appear in Appendix C.2

5.1. Polynomial-Time Algorithm

Our algorithm makes use of a recent algorithm which re-
leases a sanitized, synthetic graph G′ that approximates
the cuts in the private graph G (Eliáš et al., 2020; Arora &
Upadhyay, 2019). Via post-processing, it is then possible to
run a non-private, black-box clustering algorithm. We are
able to relate the cost in G′ to that of G by reducing the cost
ωG(T ) to a sum of cuts. We start by defining the notion of
G′ approximating the cuts in G.
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Definition 5. For a given graph G = (V,E,w), we say
G′ = (V,E′, w′) is an (αn, βn)-approximation to cut
queries in G if for all S ⊆ V , we have

(1− αn)w(S, S)− βn min{|S|, n− |S|}
≤ w′(S, S) ≤ (1+αn)w(S, S)+βn min{|S|, n−|S|}.

As we alluded, earlier work shows that it is possible to re-
lease an (Õ( 1

ε
√
n

), Õ(
√
n
ε ))-approximation to cut queries

while satisfying differential privacy. Using this result, we
are able to run any blackbox hierarchical clustering algo-
rithm, and by post-processing, the final clustering T ′ will
still satisfy privacy. Even though T ′ is computed only view-
ing G′, we are able to relate ωG(T ′) to ω∗G using the fact
that G′ approximates the cuts in G, and a decomposition
of ωG′(T ′) into a sum of cuts. This idea recently appeared
in Agarwal et al. (2022), and is a critical component of our
theorem. In the end, we obtain the following:
Theorem 2. Given an (an, 0)-approximation to the cost
objective of hierarchical clustering, there exists an (ε, δ)-
DP algorithm which, with probability at least 0.8, is a ((1 +

o(1))an, O(n2.5 log2 n log2 1
δ

ε ))-approximation algorithm to
the cost objective.

Plugging in a state-of-the-art,
√

log n hierarchical clustering
algorithm of Charikar & Chatziafratis (2017), we obtain a
((1+o(1))

√
log n, Õ(n

2.5

ε ))-approximation. In a graph with
total edge weight W , we have W ≤ ωG(T ) ≤ nW , and
thus an approximation is possible if W > n1.5

ε . This means
the graph can have an average degree of

√
n
ε .

5.2. Exponential Mechanism

We consider an algorithm based on the well-known ex-
ponential mechanism (McSherry & Talwar, 2007). This
algorithm takes exponential time, but achieves greater per-
formance that is nearly tight with our lower bound (showing
that the lower bound can’t be improved significantly from
an information-theoretic point of view).

The exponential mechanism M : X → Y releases an ele-
ment from Y with probability proportional to

Pr[M(X) = Y ] ∝ eεuX(Y )/(2S),

where uX(Y ) is a utility function, and S =
maxX,X′,Y |uX(Y ) − uX′(Y )| is the sensitivity of
the utility function in X . This ubiquitous mechanism
satisfies (ε, 0)-DP.

In our setting, we use the utility function uG(T ) =
−ωG(T ). The sensitivity is bounded in the following fact.
Fact 1. For two adjacent input graphs G = (V,E,w) and
G′ = (V,E,w′), we have for all trees T that |ωG(T ) −
ωG′(T )| ≤ n.

Proof: We can write the difference as as

|ωG(T )− ωG′(T )|
=
∣∣∣∑u,v∈V 2(w(u, v)− w′(u, v))|leaves(T [u ∧ v])|

∣∣∣
≤∑u,v∈V 2 |w(u, v)− w′(u, v))| · |leaves(T [u ∧ v])|
≤ n∑u,v∈V 2 |w(u, v)− w′(u, v)| ≤ n.

Having controlled the sensitivity, we can apply utility results
for the exponential mechanism.

Lemma 3. There exists an (ε, 0)-DP, (1, O(n
2 logn
ε ))-

approximation algorithm for hierarchical clustering.

Thus, the exponential mechanism improves on the cost, and
shows that private hierarchical clustering can be done on
graphs with average degree O(nε ).

6. Private Hierarchical Clustering in the
Stochastic Block Model

In this section, we propose a hierarchical clustering algo-
rithm designed for input graph generated from the hierar-
chical stochastic block model (HSBM), a graph model with
planted communities arranged in a hierarchical structure.
We define this model in Section 6.1. Next, in Section 6.2,
we outline DPHCBlocks, a lightweight private hierarchical
clustering algorithm in the HSBM, which uses community
detection as a black box. This approach enables any DP
community detection algorithm to be used as a sub-routine.
Finally, in Section 6.3, we propose a practical, private com-
munity detection algorithm which is the first to work in
the general HSBM. Combining the results in Sections 6.2
and 6.3, we obtain a private, 1 + o(1)-approximation algo-
rithm to the Dasgupta cost function.

6.1. Hierarchical Stochastic Block Model of Graphs

In this section, we consider unweighted graphs (V,E) where
each edge has weight 1. Observe that differential privacy
(Definition 1) corresponds to adding or removing an edge
from G. In the HSBM (Cohen-Addad et al., 2017), there is
a partition of V into blocks (communities) B1, B2, . . . , Bk
of V with the properties that two items in the same block
have the same set of edge probabilities, and that items in
different blocks are less likely to be connected with these
probabilities following a hierarchical structure.

The probabilities of the edges in B are specified by a tree
P with leaves B = B1, . . . , Bk, internal nodes N , and a
function f : N∪B → [0, 1]. To capture the decreasing prob-
ability of edges, f must satisfy f(n1) < f(n2) whenever n1

is an ancestor of n2 in P . Formally, we have (Cohen-Addad
et al., 2017):
Definition 6. Let B = B1, . . . , Bk; P be a tree with leaves
in B and internal nodes N ; and f : N ∪ B → [0, 1] be a
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function satisfying that f(n1) < f(n2) whenever n1 is an
ancestor of n2 in P . We refer to the triplet (B,P, f) as a
ground-truth tree. Then, HSBM(B,P, f) is a distribution
over graphs G whose edges are drawn independently, such
that for u, v ∈ P , we have

Pr[(u, v) ∈ G] = f(LCAP (Bu, Bv)),

where LCAP denotes the least common ancestor of the
blocks Bu, Bv containing u, v in P .

Due to the randomness of the graphG, it would be unreason-
able to expect to be able to recover the exact (B,P, f) from
G. Our algorithms will recover an approximate ground-truth
tree, according to the following definition:

Definition 7. (From Cohen-Addad et al. (2017)): Let
(B,P, f) be a ground-truth tree, and let (B, T, f ′) be an-
other ground-truth tree with the same set of blocks. We
say (B, T, f ′) is a γ approximate ground-truth tree if for
all u, v ∈ B, γ−1f(LCAP (u, v)) ≤ f ′(LCAP ′(u, v)) ≤
γf(LCAP (u, v)).

For γ ≈ 1, an approximate ground-truth tree means that
HSBM(B,P, f) and HSBM(B,P ′, f ′) are essentially the
same distribution.

6.2. Producing a DP Hierarchical Clustering Given
Communities

Given the blocks (communities) of an HSBM, we now pro-
pose DPHCBlocks, a lightweight, private algorithm for
returning a 1 + o(1)-approximation to the Dasgupta cost.
Our algorithm uses some ideas from the non-private algo-
rithm proposed in Cohen-Addad et al. (2017; 2019).

DPHCBlocks takes in G generated from HSBM(B,P, f),
as well as the blocks B. To produce an approximate
ground-truth tree, it considers similarities sim(Bi, Bj) =
wG(Bi,Bj)
|Bi||Bj | for every pair of blocks. It then performs a pro-

cess similar to single linkage: until all blocks are merged, it
greedily merges the groups with the highest similarity, and
considers the similarity between this new group and any
other groups to be the maximum similarity of any pair of
blocks between the groups. Privacy comes from addition of
Laplace noise in the similarity calculation, which is the only
place in which the private graph G is used. DPHCBlocks
appears as Algorithm 1.

DPHCBlocks accesses the graph via the initial sim-
ilarities sim(Bi, Bj). By observing the sensitivity
maxBi,Bj |wG′(Bi, Bj) − wG(Bi, Bj)| is at most 1, we
are able to prove its privacy. We also use the fact that adding
an edge can only affect sim(Bi, Bj) for just one choice of
Bi, Bj .

Theorem 3. DPHCBlocks satisfies ε-edge DP in the pa-
rameter G.

Proof. Observe the algorithm can be viewed as a post-
processing of the set B = {sim(Bi, Bj) + Lij : i, j ∈ k}
where Lij ∼ Lap( 1

ε ) i.i.d. Suppose an edge is added be-
tween Bi, Bj . Then, sim(Bi, Bj) + Lij is protected by
ε-edge DP by the Laplace mechanism, observing the sensi-
tivity of wG(Bi, Bj) is 1. The other quantities in B follow
the same distribution, so B itself satisfies ε-edge DP.

We stress that, crucially, Algorithm 1 and all our algorithms
are DP for any input graphG, even if the graphs do not come
from the HSBM model. We will use the input distribution
assumptions only in the utility proofs.

We are also able to show a utility guarantee that
DPHCBlocks is a (1 + o(1), 0)-approximation to the cost
objective. In order to prove this, we need to assume that
the blocks in the HSBM are sufficiently large (at least n2/3)
and that the edge probabilities are at least logn√

n
. These

assumptions are necessary to ensure concentration of the
graph cuts between blocks, so that an accurate approximate
tree may be formed. Also, it requires that ε ≥ 1√

n
—this

is an extremely light assumption, and it still permits us to
use a small, constant value of ε to guarantee strong privacy.
Formally,

Theorem 4. For ε ≥ 1√
n

and a graph G drawn from

HSBM(B,P, f) such that |Bi| ≥ n2/3 and f ≥ logn√
n

, with
probability 1 − 2

n , the tree T outputted by DPHCBlocks
satisfies ωG(T ) ≤ (1 + o(1))ωG(T ′).

In fact, we show a stronger result that the tuple (B, T, f ′) re-
turned by DPHCBlocks is a 1 + o(1)-approximate ground-
truth tree for HSBM(B,P, f). By a result from Cohen-
Addad et al. (2019), this implies it achieves the approxima-
tion guarantee. We defer the proof to Appendix D.1.

6.3. DP Community Detection in the HSBM

We now develop a DP method of identifying the blocks
B of graph drawn from the HSBM. Combined with our
clustering algorithm DPHCBlocks, this forms an end-to-
end algorithm for hierarchical clustering in the HSBM in
which the communities are not known.

In order to describe our algorithm, DPCommunity, we in-
troduce some notation. For a model HSBM(B,P, f), we
associate an n× n expectation matrix A given by the prob-
abilities that edge (i, j) appears in G. We then let Â be a
randomized rounding of A to {0, 1} which is simply the ad-
jacency matrix of G. DPCommunity recovers communities
when they are separated in the sense defined by

∆ = min
u∈Bi,v∈Bj :i 6=j

‖Au −Av‖2,

where Au is the uth column of A. Next, we let
σ1(A), . . . , σn(A) denote the singular values of A in or-
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Algorithm 1 DPHCBlocks, a hierarchical clustering algo-
rithm in the HSBM given the blocks.

Input: G = (V,E) drawn from the HSBM; blocks
B1, . . . Bk partitioning V , privacy parameter ε
Output: Tree T .
for i = 1 to k do
Ti is a random HC with leaves Bi

end for
sim(Bi, Bj)← wG(Bi,Bj)+Lij

|Bi||Bj | , where Lij ∼ Lap( 1
ε ).

C = {B1, . . . , Bk}
T = forest(T1, . . . , Tk)
while |C| ≥ 1 do
A1, A2 = arg maxA1,A2∈C sim(A1, A2)
Merge A1, A2 in T ; C = A1 ∪A2

f ′(C) = sim(A1, A2)
C = (C \ {A1, A2}) ∪ {C}
for S ∈ C \ {C}: do
sim(S,C)← maxBi∈S,Bj∈C sim(Bi, Bj)

end for
end while
Return: (B, T, f ′).

der of decreasing magnitude. Finally, we let Π
(k)
A denote

the projection onto the top k left singular values of A—
formally, if Uk consists of the top k singular values of A,
then Π

(k)
A = UkU

T
k .

DPCommunity is given the adjacency matrix Â of a graph
drawn from HSBM(B,P, f), as well as k, the number of
blocks. In practice, k may be treated as a hyperparam-
eter to be optimized. DPCommunity uses the spectral
method (McSherry, 2001; Vu, 2014) to cluster the columns
of Â. These results show that the columns in F = Π

(k)

Â
(Â)

forms a clustering of the points into their original blocks.
To make this private, we use stability results of the SVD to
compute (an upper bound of) the sensitivity Γ of F , and add
noise N via the Gaussian mechanism. Since N,F are both
n×nmatrices, the l2 error introduced byN grows with

√
n,

which is large. Our final observation is that, since the dis-
tances in F are all that matter, we may project F to log(n)-
dimensional space using Johnson-Lindenstrauss (Johnson,
1984), and then add Gaussian noise whose error grows with√

log n. DPCommunity is shown in Algorithm 2.

There are two important remarks about DPCommunity.
First, to ensure an accurate, private upper bound on Γ, we
need the mild assumption that the spectral gap σk(Â) −
σk+1(Â) is not too small, and if it is, the algorithm returns
⊥. For most choices of parameters in the SBM, the spectral
gap is always much larger than needed—the check is only
to ensure privacy even for input graphs not from the SBM.
Second, due to ease of theoretical analysis, Â is split into
two parts, and one part is projected onto the top k singular

vectors of the other. This removes probabilistic dependence
between variables, but the high level ideas are the same.

Algorithm 2 DPCommunity, a community recovery Algo-
rithm

Input: Â, adjacency matrix generated from
HSBM(B,P, f), privacy parameter ε.
Output: fz , an estimate of blocks on a set Z2 ⊆ V .
Compute a random partition Y t Z1 t Z2 of V such that
|Y | = n

2 , |Z1| = |Z2| = n
4 .

Ã1 ← ÃY Z1 (submatrix of Â with rows Y , cols. Z1).
Ã2 ← ÃY Z2

d̃k ← σk(Â1)− σk+1(Â1)− 8
ε ln 4

δ + Lap( 8
ε )

σ̃1 ← σ1(Â2) + 4
ε ln 4

δ + Lap( 4
ε )

if d̂k ≤ 10( 8
ε ln 4

δ ) then
return ⊥

end if
Γ̃← σ̃1

d̂k
,m← 64 ln 2n

δ .

F ← PΠ
(k)

Â1
(Â2), where P ∼ N (0, 1√

m
)m×n/2.

F̃ ← F +N , where N ∼ 3kΓ̃
ε

√
2 ln 5

δN (0, 1)m×n/4.

return F̂

We now analyze privacy and utility. Full proofs of the re-
sults in this section appear in Appendix 6. Our privacy
analysis involves analyzing the release of the singular val-
ues σ1, σk, σk+1, and F̃ . The bulk of this analysis comes
from analyzing the sensitivity of F̃ , which uses the accu-
racy of the Johnson-Lindenstrauss transform and spectral
perturbation bounds.
Theorem 5. (Privacy): For ε < 1, Algorithm 2 satisfies
(ε, δ)-DP with respect to a change of one edge in Â.

To prove the utility of DPCommunity, we prove that recov-
ery is possible provided that ∆ is larger than some threshold
depending on ε, the singular values of A, the minimum
edge probability, and the minimum block size, along with
other mild assumptions on k and the block sizes. These
assumptions are necessary, as there will be too little data for
concentration otherwise. Formally,
Theorem 6. (Utility): Let Â be drawn from
HSBM(B,P, f), τ = max f(x), and s = minki=1 |Bi|.
There is a universal constant C such that if
τ ≥ C logn

n , s ≥ C
√
n log n, k < n1/4, δ < 1

n ,
σk(A) ≥ C max{√nτ, 1

ε ln 4
δ }, and

∆ > C max
{
k(ln 1

δ )3/2

ε
σ1(A)
σk(A) ,

√
nτ
s +

√
kτ log n+

√
nkτ
σk

}
,

then with probability at least 1 − 3n−1, DPCommunity
returns a set of points F̃ = {fi : i ∈ Z2} such that

‖fi − fj‖2 ≤ 2∆
5 if ∃u. i, j ∈ Bu

‖fi − fj‖2 ≥ 4∆
5 otherwise.
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Thus, if the assumptions are met, then F̃ consists of k well-
separated clusters which indicate the communities of each
point in the sampled set Z2 ⊂ V . These communities can
be found using a simple routine such as k-centers. In order
to cluster all of V , we can simply divide the privacy budget
into log n parts, run DPCommunity log n times, and merge
the clusters.

To illustrate our theorem in a simple example, consider the
HSBM with k equal-sized blocks, and let fP (n) = p when
n is a parent of a leaf in P , and fP (n) = q otherwise, with
p ≥ q. This corresponds to probability p of an edge within a
block and probability q of an edge between any two blocks.
In this case, we obtain the following.
Corollary 1. In the above HSBM, DPCommunity recovers
the exact communities when δ ≤ 1

n , k < n1/4, and
√
p −

√
q ≥ Ω(

k ln 1
δ√

εn1/4 ).

Compared to previous work in the SBM with privacy, our al-
gorithm requires a larger assumption on

√
p−√q (Seif et al.

(2022); Chen et al. (2023) require
√
p−√q ≥

√
k
εn ). How-

ever, previous work either uses semi-definite programming
or does not run in polynomial time, whereas DPCommunity
is a practical use of the significantly more efficient Singular
Vector Decomposition. Furthermore, our algorithm works
in the fully-general HSBM, whereas previous work has no
analogue of Theorem 6.

Algorithm 3 DPClusterHSBM a hierarchical clustering
algorithm in the HSBM given the blocks.

Input: Â, adjacency matrix generated from
HSBM(B,P, f), number of blocks k, privacy pa-
rameter ε.
Output: An hierarchical clustering T of Â.
for i ∈ {1, . . . , log n} do
F̂ ← DPCommunity(Â, ε

2 logn )

Bi1, . . . , B
i
k ← k-centers(F̂ , k)

end for
B1, . . . , Bk ← Union-Find(B1

1 , . . . , B
1
k, . . . , B

logn
k )

T ← DPHCBlocks(Â, {B1, . . . , Bk}, ε2 )
return T

Combining Theorems 4 and 6, we are able to obtain DP-
ClusterHSBM, an end-to-end hierarchical clustering algo-
rithm in the HSBM (Algorithm 3). This algorithm runs
DPCommunity log n times, using k-centers each run to
find the well-separated communities in the subset Z2 ⊆ V
returned by DPCommunity. Running log n times ensures
that with high probability, each point in V will participate
in at least one Z2; these clusters may then be merged using
a union-find data structure.
Corollary 2. Let Â be drawn from HSBM(B,P, f), and
let τ = max f(x) and s = minki=1 |Bi|. Then, if ε > 1√

n
,

δ < 1
n , s ≥ n3/4, f ≥ logn√

n
, and the parameters s, τ, A,∆

satisfy the conditions of Theorem 6, then DPClusterHSBM
satisfies (ε, δ)-edge DP and is a 1 + o(1) approximation to
the Dasgupta cost.

Corollary 2 gives a 1 + o(1) multiplicative approximation
the the Dasgupta cost for the given parameter regimes of the
HSBM. This is a nearly-optimal cost that avoids the additive
error of the algorithms in Section 5.

7. Experiments
The purpose of this section is evaluate Algorithm 1 designed
for the HSBM model. First, we outline our methods and
then we discuss our results.

Experimental Setup We tested our clustering algorithms
on a real-world graph and generated synthetic graphs from
the HSBM model. We compared the performance of DP-
ClusterHSBM to several baseline algorithms. We ran algo-
rithms at ε ∈ {0.5, 1.0, 2.0}, as well as with no privacy.

To enable the replication of our work, we make the code
available open-source 2.

Datasets Our real-world graph was generated from the
MNIST digits dataset (LeCun, 1998) (with 1797 digits) by,
for each digit, adding an undirected edge corresponding to
one of its 120 nearest neighbors in pixel space. We gen-
erated graphs from HSBM(B,P, f) with n = 2048 nodes,
k = {4, 8} blocks, with block sizes chosen proportional to
{1, γ, . . . , γk−1}, where γk−1 = 3. This has the effect of
creating differently-sized blocks. We selected P to be a bal-
anced tree over the blocks, and f that increases uniformly
in the interval [0.1, 0.9] as the tree is descended.

Algorithms We ran DPClusterHSBM and several base-
line algorithms. In the implementation of DPClus-
terHSBM, we used a modified version of DPCommunity
for practical considerations. This does not affect the privacy
guarantees but it simplifies the algorithm. In particular, we
privately release Ã1 using the Laplace mechanism, and com-
pute ΠÃ1

(Â2) without projection. We are then able to add
Gaussian noise tailored to the sensitivity of ΠÃ1

, rather than
to Γ which proved to be a rough upper bound in practice.

For our baselines, we considered a naive private approach
in which we release A using the Laplace mechanism and
truncate these values to be non-negative to form a sanitized,
weighted graph. Then, we ran single, complete, and aver-
age linkage, and recorded the best of these methods. We
refer collectively to these baselines as Linkage. Second,
we formed a tree by recursively partitioning the graph into

2https://bitbucket.org/jjimola/dphc/src/
master/
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Figure 1. Cost for HSBM graphs with 2048 nodes and k clusters
and MNIST graph with 1797 nodes.

its (approximately) sparsest cut. As shown in Charikar &
Chatziafratis (2017), this is an O(

√
log n, 0)-approximation

in the sanitized graph. We refer to this baseline as Sparse-
Cut.

Metrics For each graph and clustering algorithm, and the
value of ε, we computed ωG(T ), averaged over 5 runs.

7.1. Results

Our results appear in Figure 1. In addition to the cost for
each algorithm, we included the cost of a random tree. The
data had low variance: for each of the 5 runs used to com-
pute each bar, the values were within 0.5% of each other.

For all trials, the cost of Linkage was much higher than the
other two algorithms; even with ε = 2, Linkage did not
offer improvement of more than 10% reduction in cost over
the random tree. Thus, the rest of our discussion focuses on
DPClusterHSBM and SparseCut.

For the synthetic graphs, the cost of DPClusterHSBM is
lower than SparseCut, particularly when ε = 0.5. In this
case, when k = 4 (resp. 8), DPClusterHSBM offered
a 14.4% (resp. 14.2%) reduction in cost over the random
tree, whereas SparseCut offered an 11.5% (resp. 10.3%)
reduction. Thus, DPClusterHSBM offers up to 38% more
reduction in cost than SparseCut, over the cost of a random
tree. Even when ε = 0.5, the cost of DPClusterHSBM is

just 5.8% (resp. 9.6%) higher than the cost of the best tree
with no privacy.

For ε = 1, 2 on HSBM graphs, the costs of SparseCut and
DPClusterHSBM fall to within 1% of each other, though
DPClusterHSBM consistently outperforms the former for
all values of ε. Moreover, notice that for ε = 2, the costs
of both algorithms are within 1% of the non-private tree,
indicating that for higher ε the cost of privacy becomes
negligible.

For the graph generated from MNIST, all algorithms per-
form as poorly as a random tree for ε = 0.5. This indicates
that the noise introduced by the high privacy constraint de-
stroys the clusters, which are less-well structured than those
of the HSBM graphs. At ε = 1, the error of SparseCut
is 10% higher than DPClusterHSBM. For ε = 2, the cost
of SparseCut is 5% higher than that of DPClusterHSBM,
and DPClusterHSBM attains error within 3% of the best
tree with no privacy. This is consistent with our previous ob-
servation that DPClusterHSBM offers improvement over
the baselines, particularly when ε is not too high.

8. Conclusion
We have considered hierarchical clustering under differen-
tial privacy in Dasgupta’s cost framework. While strong
lower bounds exist for the problem, we have proposed al-
gorithms with nearly matching approximation guarantees.
Furthermore, we showed the lower bounds can be overcome
in the HSBM, and nearly optimal trees can be found in this
setting using efficient methods. For future work, one could
consider private hierarchical clustering in a less structured
model than the HSBM in hopes of overcoming the lower
bound here as well.

References
Agarwal, A., Khanna, S., Li, H., and Patil, P. Sublinear

algorithms for hierarchical clustering. arXiv preprint
arXiv:2206.07633, 2022.

Arora, R. and Upadhyay, J. On differentially private graph
sparsification and applications. Advances in neural infor-
mation processing systems, 32, 2019.

Balcan, M.-F., Dick, T., Liang, Y., Mou, W., and Zhang, H.
Differentially private clustering in high-dimensional eu-
clidean spaces. In International Conference on Machine
Learning, pp. 322–331. PMLR, 2017.

Bateni, M., Behnezhad, S., Derakhshan, M., Hajiaghayi,
M., Kiveris, R., Lattanzi, S., and Mirrokni, V. Affinity
clustering: Hierarchical clustering at scale. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in

9



Differentially-Private Hierarchical Clustering with Provable Approximation Guarantees

Neural Information Processing Systems 30, pp. 6864–
6874. Curran Associates, Inc., 2017.

Bhatia, R. Matrix Analysis, volume 169. Springer Verlag,
1997.

Blocki, J., Blum, A., Datta, A., and Sheffet, O. The johnson-
lindenstrauss transform itself preserves differential pri-
vacy. In 2012 IEEE 53rd Annual Symposium on Founda-
tions of Computer Science, pp. 410–419. IEEE, 2012.

Bun, M., Elias, M., and Kulkarni, J. Differentially private
correlation clustering. In International Conference on
Machine Learning, pp. 1136–1146. PMLR, 2021.

Charikar, M. and Chatziafratis, V. Approximate hierarchical
clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 841–854. SIAM,
2017.

Chatziafratis, V., Yaroslavtsev, G., Lee, E., Makarychev, K.,
Ahmadian, S., Epasto, A., and Mahdian, M. Bisect and
conquer: Hierarchical clustering via max-uncut bisection.
In International Conference on Artificial Intelligence and
Statistics, pp. 3121–3132. PMLR, 2020.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. Differ-
entially private empirical risk minimization. Journal of
Machine Learning Research, 12(3), 2011.

Chen, H., Cohen-Addad, V., d’Orsi, T., Epasto, A., Imola, J.,
Steurer, D., and Tiegel, S. Private estimation algorithms
for stochastic block models and mixture models. arXiv
preprint arXiv:2301.04822, 2023.

Cohen-Addad, V., Kanade, V., and Mallmann-Trenn, F. Hi-
erarchical clustering beyond the worst-case. Advances in
Neural Information Processing Systems, 30, 2017.

Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and
Mathieu, C. Hierarchical clustering: Objective functions
and algorithms. Journal of the ACM (JACM), 66(4):1–42,
2019.

Cohen-Addad, V., Epasto, A., Lattanzi, S., Mirrokni,
V., Munoz, A., Saulpic, D., Schwiegelshohn, C., and
Vassilvitskii, S. Scalable differentially private cluster-
ing via hierarchically separated trees. arXiv preprint
arXiv:2206.08646, 2022a.

Cohen-Addad, V., Epasto, A., Mirrokni, V., Narayanan,
S., and Zhong, P. Near-optimal private and scalable k-
clustering. In Advances in Neural Information Processing
Systems, 2022b.

Cohen-Addad, V., Fan, C., Lattanzi, S., Mitrović, S.,
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Hegde, A., Möllering, H., Schneider, T., and Yalame, H.
Sok: Efficient privacy-preserving clustering. Proceedings
on Privacy Enhancing Technologies, 2021(4):225–248,
2021.

Jain, A. K. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8):651–666, 2010. doi:
10.1016/j.patrec.2009.09.011. URL https://doi.
org/10.1016/j.patrec.2009.09.011.

Jardine, N. and Sibson, R. A model for taxonomy. Mathe-
matical Biosciences, 2(3-4):465–482, 1968.

Johnson, W. B. Extensions of lipschitz mappings into a
hilbert space. Contemp. Math., 26:189–206, 1984.

Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and
Smith, A. Analyzing graphs with node differential privacy.
In Theory of Cryptography Conference, pp. 457–476.
Springer, 2013.

Kolluri, A., Baluta, T., and Saxena, P. Private hierarchi-
cal clustering in federated networks. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2342–2360, 2021.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of
massive datasets. Cambridge university press, 2014.

Liu, A. and Moitra, A. Minimax rates for robust commu-
nity detection. CoRR, abs/2207.11903, 2022. doi: 10.
48550/arXiv.2207.11903. URL https://doi.org/
10.48550/arXiv.2207.11903.

Machanavajjhala, A., He, X., and Hay, M. Differential pri-
vacy in the wild: A tutorial on current practices & open
challenges. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, pp. 1727–
1730, 2017.

Mann, C. F., Matula, D. W., and Olinick, E. V. The use of
sparsest cuts to reveal the hierarchical community struc-
ture of social networks. Social Networks, 30(3):223–234,
2008.

McSherry, F. Spectral partitioning of random graphs. In
Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 529–537. IEEE, 2001.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pp. 94–
103. IEEE, 2007.

Moitra, A., Perry, W., and Wein, A. S. How robust are
reconstruction thresholds for community detection? In
Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pp. 828–841, 2016.

Montanari, A. and Sen, S. Semidefinite programs on sparse
random graphs and their application to community de-
tection. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 814–827, 2016.

Moseley, B. and Wang, J. Approximation bounds for hier-
archical clustering: Average linkage, bisecting k-means,
and local search. Advances in neural information pro-
cessing systems, 30, 2017.

Murtagh, F. and Contreras, P. Algorithms for hierarchi-
cal clustering: an overview. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 2(1):
86–97, 2012.

Pinot, R. Minimum spanning tree release under differential
privacy constraints. arXiv preprint arXiv:1801.06423,
2018.

Roy Chowdhury, A., Wang, C., He, X., Machanavajjhala, A.,
and Jha, S. Crypte: Crypto-assisted differential privacy
on untrusted servers. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, pp. 603–619, 2020.

Seif, M., Nguyen, D., Vullikanti, A., and Tandon, R. Differ-
entially private community detection for stochastic block
models. arXiv preprint arXiv:2202.00636, 2022.

Sneath, P. H. and Sokal, R. R. Numerical taxonomy. Nature,
193(4818):855–860, 1962.

11

https://doi.org/10.1109/TIT.2020.2966438
https://doi.org/10.1109/TIT.2020.2966438
http://dx.doi.org/10.1007/s00440-015-0659-z
http://dx.doi.org/10.1007/s00440-015-0659-z
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.48550/arXiv.2207.11903
https://doi.org/10.48550/arXiv.2207.11903


Differentially-Private Hierarchical Clustering with Provable Approximation Guarantees

Steinbach, M., Karypis, G., Kumar, V., et al. A comparison
of document clustering techniques. In KDD workshop on
text mining, volume 400, pp. 525–526. Boston, 2000.

Tumminello, M., Lillo, F., and Mantegna, R. N. Correlation,
hierarchies, and networks in financial markets. Journal of
Economic Behavior & Organization, 75(1):40–58, 2010.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

Vu, V. A simple svd algorithm for finding hidden partitions.
arXiv preprint arXiv:1404.3918, 2014.

Vu, V. H. Spectral norm of random matrices. In Proceedings
of the thirty-seventh annual ACM symposium on Theory
of computing, pp. 423–430, 2005.

Ward Jr, J. H. Hierarchical grouping to optimize an objective
function. Journal of the American statistical association,
58(301):236–244, 1963.

Xiao, Q., Chen, R., and Tan, K.-L. Differentially private
network data release via structural inference. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 911–920,
2014.

12



Differentially-Private Hierarchical Clustering with Provable Approximation Guarantees

A. Related Work
Differential Privacy Differential privacy (Dwork et al., 2006) has recently become the gold standard of privacy used by
institutions such as the US census (Dwork, 2019) and large tech companies (Erlingsson et al., 2014). In a nutshell, DP
algorithms provide plausible deniability for the input data of any user. There is a vast literature on DP algorithms for a
disparate range of problems and many different models for differential privacy (Dwork et al., 2006; McSherry & Talwar,
2007; Chaudhuri et al., 2011; Roy Chowdhury et al., 2020; Machanavajjhala et al., 2017; Dwork, 2019) (we refer to Dwork
et al. (2014a) for a survey).

Among this rapidly growing literature, our work builds on multiple work on differentially privacy, namely DP PCA
algorithms (Dwork et al., 2014b), DP Johnson Lindenstrauss projections (Blocki et al., 2012), DP cut sparsification in
graphs (Eliáš et al., 2020) as well as DP stochastic block model reconstruction (reviewed later).

Private graph algorithms Especially relevant to this work is the area of differential privacy in graphs. DP has been
declined in graph problems both as the edge-level (Epasto et al., 2022; Eliáš et al., 2020) and node-level model (Ka-
siviswanathan et al., 2013). The most related work in this area is that on graph cut approximation (Eliáš et al., 2020; Arora &
Upadhyay, 2019), as well as that of graph clustering with DP in correlation clustering model (Bun et al., 2021; Cohen-Addad
et al., 2022c).

Hierarchical Clustering As we discussed in the introduction, hierarchical clustering has been studied for decades in
multiple fields. For this reason, a significant number of algorithms for hierarchical clustering have been introduced (Murtagh
& Contreras, 2012). Up until recently (Dasgupta, 2016), most work on hierarchical clustering has been heuristic in nature,
defining algorithms based on procedures without specific theoretical guarantees in terms of approximation. Most well-
known among such algorithms are the linkage-based ones (Jain, 2010; Bateni et al., 2017). Dasgupta (2016) introduced
for the first time a combinatorial approximation objective for hierarchical clustering which is the one studied in this
paper. Since this work, many authors have designed algorithms for variants of the problem (Cohen-Addad et al., 2017;
2019; Charikar & Chatziafratis, 2017; Moseley & Wang, 2017; Agarwal et al., 2022; Chatziafratis et al., 2020) exploring
maximization/minimization versions of the problem on dissimilarity/similarity graphs.

Limited work has been devoted to DP hierarchical clustering algorithms. One paper (Xiao et al., 2014) initiates private
clustering via MCMC methods, which are not guaranteed to be polynomial time. Follow-up work (Kolluri et al., 2021) shows
that sampling from the Boltzmann distribution (essentially the exponential mechanism (McSherry & Talwar, 2007) in DP)
produces an approximation to the maximization version of Dasgupta’s function, which is a different problem formulation.
Again, this algorithm is not provably polynomial time.

Private flat clustering Contrary to hierarchical clustering, the area of private flat clustering on metric spaces has received
large attention. Most work in this area has focus on improving the privacy-approximation trade-off (Ghazi et al., 2020;
Balcan et al., 2017) and on efficiency (Hegde et al., 2021; Cohen-Addad et al., 2022b;a).

Stochastic block models The Stochastic Block Model (SBM) is a classic model for random graphs with planted partitions
which has received significant attention in the literature. Most work in this area has focus on providing exact or approximate
recovery of communities for increasingly more difficult regimes of the model (Guédon & Vershynin, 2016; Montanari &
Sen, 2016; Moitra et al., 2016; Fei & Chen, 2020; Ding et al., 2022; Liu & Moitra, 2022). Specifically for our work, we
focus on a variant of the model which has nested ground-truth communities arranged in a hierarchical fashion. This model
has received attention for hierarchical clustering (Cohen-Addad et al., 2017).

The study of private algorithms for SBMs is instead very recent and no work has addressed private recovery for hierarchical
SBMS. One of the only results known for private (non-hierarchical) SBMs is the work of Seif et al. (2022) which provides a
quasi-polynomial time algorithm for some regimes of the model. This paper require either non-poly time or ε ∈ Ω(log(|V |)).
Finally, very recently and currently to our work, the manuscript of Chen et al. (2023) has been published. This work provides
strong approximation guarantees using semi-definite programming for recovering SBM communities. None of these papers
can be used directly to approximate hierarchical clustering on HSBMs. For this reason in Section 6 we design a hierarchical
clustering algorithm (Algorithm 1) which uses as subroutine a DP SBM community detection algorithm. Moreover, we
show a novel algorithm for SBMs (Algorithm 2) (independent to that of Chen et al. (2023)) which is of practical interest as it
does not require procedure with large polynomial dependency on the size of the input, such solving a complex semi-definite
program.
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B. Omitted proofs from Section 4
B.1. Proof of Lemma 2

We start with the following lemma:

Lemma 4. Let G1, G2 be two graphs drawn uniformly at random from P(n, 5). Let α = 1
100 . The probability that there

exists a balanced cut (A,B) which misses at most α5 n of the cycles for both G1, G2 is at most 2−0.4n.

Proof. Let (A,B) be any balanced cut with |A| = βn, for 1
3 ≤ β ≤ 2

3 . Let E1(A,B) be the event that (A,B) misses at
most α

Xn cycles in G1, and define E2(A,B) similarly for G2. We observe the desired probability can be upper bounded by∑
(A,B) a balanced cut

Pr[E1(A,B)] Pr[E2(A,B)]. (3)

In the above sum, the balanced cuts (A,B) are fixed, and the graphs G1, G2 are generated independently. We consider
an equivalent random process, where G1 ∈ P(n, 5) is fixed, and then (A,B) is generated by picking a uniformly random
string S ∈ {0, 1}n with βn 1s. There are

(
n
βn

)
possible strings. We will now upper bound the number of strings for which

E1(A,B) holds. When E1(A,B) holds, we can choose c cycles which are monochromatic 1s, where c is a non-negative
integer such that 5c < n, plus αn

5 cycles which are not necessarily monochromatic. Within these αn
5 cycles, there are αn

vertices from which we can choose d ≤ αn remaining 1s. The total number of 1s is 5c+ d, and thus 5c+ d = βn. Thus,
the total number of admissible strings is at most

∑
5c+d=βn,d≤αn

(
n/5

c

)(
n/5

αn/5

)(
αn

d

)
.

We make the simple observation that
(
αn
d

)
≤ 2αn. Furthermore, we observe that there are αn

5 admissible choices of c, d. In
the following, we use the fact that 2H2(β)n−lnn ≤

(
n
βn

)
≤ 2H2(β)n, where H2(p) is the binary entropy function. We upper

bound the number of admissible strings with

αn

5
max

(β−α)n≤5c≤βn

(
n/5

c

)(
n/5

αn/5

)
2αn ≤ αn

5
max

(β−α)n≤5c≤βn
2H2(5c/n)n/52H2(α)n/52αn

≤ n2H2(β)n/52H2(α)n/52αn.

Dividing this number by
(
n
βn

)
, the total possible number of strings, we obtain

Pr[E1(A,B)] ≤ n2(H2(β)+H2(α))n/5+αn

2H2(β)n−lnn

≤ 2

(
H2(β)+H2(α)

5 +α−H2(β)
)
n+lnn

≤ 2−0.7n,

where the last line follows from the fact that 1
3 ≤ β ≤ 2

3 and that α = 1
100 so that H2(α) ≤ 0.081. By a similar argument,

we have Pr[A2(B)] ≤ 2−0.7n.

Thus, (3) can be upper bounded by

2n Pr[E1(A,B)] Pr[E2(A,B)] ≤ 2n2−2×0.7n ≤ 2−0.4n.

Having shown the result for two random graphs, we apply the union bound to show that for exponentially many random
graphs, it is unlikely that any tree can cluster more than one graph in the family well. We now prove Lemma 2.
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Proof. Let F consist of 20.2n graphs generated uniformly at random P(n, 5). For each pair of graphs G1, G2, we have by
Lemma 4 every balanced cut will miss at least α5 n cycles in either G1 or G2 with probability 1 − 2−0.4n. By the union
bound applied 1

220.4n times for each pair of graphs, we have with probability 1
2 that every balanced cut will miss at least α5 n

cycles in all but at most one graph in F .

Every tree can be mapped to a balanced cut, so by Lemma 1, any tree will cost at least 4α
15 n

2 ≥ n2

400 on all but at most one
member of F . This allows us to conclude that the sets B(G, r) are disjoint for all G ∈ F .

C. Omitted proofs from Section 5
C.1. Proof of Theorem 7

First, we state a theorem about private graph sparsification.

Theorem 7. There is a polynomial-time, (ε, δ)-edge differentially private algorithm which, on input graph G = (V,E,w),

outputs a graph G′ which with probability 0.9 is a (z,O(nz))-approximation to cut queries in G, where z = O(
log2 1

δ

ε
logn√
n

).

Proof. We apply an edge sparsification algorithm of Arora & Upadhyay (2019), which given a graph with Laplacian L,
outputs a graph with Laplacian L′ with O( nγ2 ) edges such that

(1− γ)((1− z)L+ zLn) � L′ � (1 + γ)((1− z)L+ zLn),

where Ln is the Laplacian of an unweighted Kn. The value of the cut w(S, S) is given by by 1TSL1S ; therefore, we have

(1− γ)((1− z)w(S, (S))− z|S|(n− |S|)) ≤ w′(S, S) ≤ (1 + γ)((1− z)w(S, S) + z|S|(n− |S|))

Using the fact that |S|(n− |S|) ≤ nmin{|S|, n− |S|} and letting γ → 0, we estabish that G′ is a (z, nz) approximation to
cut queries in G.

Next, we reduce the cost to a sum of cuts. This idea appeared in Agarwal et al. (2022).

Lemma 5. Suppose G′ is an (αn, βn)-approximation to cut queries in G for some α < 1. Let T ′ be any tree which satisfies
ωG′(T

′) ≤ anω∗G′ . Then,
ωG(T ′) ≤ (1 + 2αn)anω

∗
G + (4an + 2)βnn

2.

For the revenue objective, let T ′ be any tree which satisfies ωMW
G′ (T ′) ≥ anωMW∗

G′ . Then,

ωMW
G (T ′) ≥ (1− 2αn)anω

MW∗
G − 2(an + 1)βnn

2 − 2(an + 1)αnn
3.

A proof of this lemma appears in the next section.

Finally, we are ready to prove the theorem.

Proof. (Of Theorem 7): First, release a private graph G′ using Theorem 7, which is a (z, nz)-cut approximation with

probability at least 0.9, where z = O(
log2 1

δ

ε
logn√
n

). We use the black box hierarchical clustering algorithm, which finds a
tree such that E[ωG(T ′)] ≤ anω∗G. Then, we apply Lemma 5, obtaining

E[ωG(T ′)] ≤ (1 + 2z)anω
∗
G + (4an + 2)zn3.

For the revenue objective, our black box hierarchical clustering finds a tree T ′ such that E[ωMW
G (G′)] ≥ anωMW∗

G . We apply
Lemma 5, obtaining

ωMW
G (T ′) ≥ (1− 2z)anω

MW∗
G − 4(an + 1)zn3.
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C.2. Proof of Lemma 5

We start with the well-known representation of ωG(T ) (Dasgupta, 2016):

ωG(T ) =
∑

S→(S1,S2) in T

|S|w(S1, S2),

where the sum is indexed by internal splits of T , which splits a set S of leaves into two parts S1, S2. Using the identity
w(S1, S2) = 1

2w(S1, S1) + 1
2w(S2, S2)− 1

2w(S, S), we substitute:

ωG(T ) =
1

2

∑
S→(S1,S2) in T

|S|w(S1, S1) + |S|w(S2, S2)− |S|w(S, S)

In the above sum, if we assign cuts to their respective nodes, then we obtain the following: The root node is assigned
−|S|w(S, S) = 0. Each internal node S1 which is not a leaf node or the root is assigned |S|w(S1, S1)− |S1|w(S1, S1) =
|S2|w(S1, S1), where S → (S1, S2) is the parent split of S1. Finally, each leaf node S1 is assigned |S|w(S1, S1) =
|S2|w(S1, S1) + w(S1, S1), using the fact that |S1| = 1. This brings us to the following decomposition (Agarwal et al.,
2022):

ωG(T ) =
∑

S→(S1,S2) in T

|S2|w(S1, S1) + |S1|w(S2, S2)

︸ ︷︷ ︸
ω1
G(T )

+

n∑
i=1

w(v, v)︸ ︷︷ ︸
ω2
G

.

We refer to the leftmost term of the above as ω1
G(T ), and the rightmost term as ω2

G. Observe the second quantity does not
depend on T . Now, for any tree T , we have

ω1
G′(T ) ≤

∑
S→(S1,S2) in T

(
|S2|((1 + αn)wG(S1, S1) + βn min{|S1|, n− |S1|})

+ |S1|((1 + αn)wG(S2, S2) + βn min{|S2|, n− |S2|})
)

≤ (1 + αn)ω1
G(T ) + βn

∑
S→(S1,S2) in T

|S2|min{|S1|, n− |S1|}+ |S1|min{|S2|, n− |S2|}

≤ (1 + αn)ω1
G(T ) + βn

∑
S→(S1,S2) in T

2|S1||S2|

≤ (1 + αn)ω1
G(T ) + βnn

2,

where the final line comes from an induction argument: if f(n) ≤ max1≤i≤n f(i)f(n− i) + 2βi(n− i), then we can show
via induction that f(n) ≤ n2β

2 . By a similar process, we can show the following inequalities

(1− αn)ω1
G(T )− βnn2 ≤ ω1

G′(T ) ≤ (1 + αn)w1
G(T ) + βnn

2 (4)

(1− αn)ω2
G − βnn ≤ ω2

G′ ≤ (1 + αn)ω2
G + βnn (5)

This implies that
(1− αn)ωG(T )− 2βnn

2 ≤ ωG′(T ) ≤ (1 + αn)ωG(T ) + 2βnn
2.

This allows us to derive that

ωG(T ′) ≤ (1 + αn)ωG′(T
′) + 2βnn

2

≤ (1 + αn)anωG′(T
∗) + 2βnn

2

≤ (1 + αn)an((1 + αn)ω∗G + 2βnn
2) + 2βnn

2

≤ (1 + 2αn)anω
∗
G + (4an + 2)βnn

2

Plugging T ∗, the optimal tree for G, into the above, we obtain that ω∗G′ ≤ (1 + αn)ω∗G + 2βnn
2, and therefore,

ωG′(T
′) ≤ an(1 + αn)ω∗G + 2anβnn

2.

We also have that (1− αn)ωG(T ′)− 2βnn
2 ≤ ωG′(T ′), and we obtain our result by rearranging.
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C.3. Proof of Lemma 3

Using a general lemma about the exponential mechanism (McSherry & Talwar, 2007), we are able to prove a bound on the
algorithm error.

Lemma 6. Let f(X,Y ) be a function with sensitivity 1 in X . Suppose we run the exponential mechanism M : X → Y
with finite range Y using utility function uX(Y ) = f(X,Y ). Let OPT (X) = minY ∈Y uX(Y ). If our privacy budget is ε,
then for each X ∈ X , we have

Pr[uX(M(X)) ≤ OPT (X) + 2
log(|Y|)

ε
] ≥ 1− 1

|Y| .

Proof. Let Z = {Y ∈ Y : uX(Y ) ≤ OPT (X) + 2 log(|Y|)
ε }. We are guaranteed that the optimal element, Z∗, with

uX(Z∗) = OPT (X), is in Z . We want to lower bound the quantity Pr[M(X) ∈ Z]. Observe that

Pr[M(X) ∈ Z] =

∑
Z∈Z e

−εuX(Z)/2∑
Z∈Z e

−εuX(Z)/2 +
∑
Y ∈Y,Y /∈Z e

−εuX(Y )/2

≥ e−εuX(Z∗)/2

e−εuX(Z∗)/2 +
∑
Y ∈Y,Y /∈Z e

−εuX(Y )/2

=
e−εOPT (X)/2

e−εOPT (X)/2 +
∑
Y ∈Y,Y /∈Z e

−εuX(Y )/2
.

The second line holds because the function g(z) = z
z+K for K > 0 is decreasing as z → 0. The bottom sum can be upper

bounded with |Y|e−ε(OPT (X)+2 log(|Y|)/ε)/2 ≤ 1
|Y|e

−εOPT (X)/2. Thus, we are left with

Pr[M(X) ∈ Z] ≥ 1

1 + 1/|Y| ≥ 1− 1

|Y| .

For hierarchical clustering, our algorithm is a corollary of the previous result:

Proof. We apply the exponential mechanism with utility function uG(T ) = − 1
nωG(T ), which has sensitivity 1. The range

of the algorithm is the space of trees with n nodes; there are at most nn trees of this size. By Lemma 6, the utility satisfies
Pr[

ω∗G
n ≤

ωG(M(G))
n + 2n logn

ε ] ≥ 1− o(1), and hence the algorithm is a (1, O(n
2 logn
ε ))-approximation.

For the revenue objective, we apply the exponential mechanism with utility function uG(T ) = 1
2nω

MW
G (T ), which

has sensitivity 1. By Lemma 3, the utility satisfies Pr[
ωMW
G (M(G))

2n ≤ ωMW∗
G

2n + 2n logn
ε ] ≥ 1 − o(1). This establishes

(1, O(n
2 logn
ε ))-approximation.

D. Omitted proofs from Section 6
D.1. Proof of Theorem 4

In order to prove this theorem, we will show that DPHCBlocks finds a (1 + o(1))-approximate ground-truth tree, and then
appeal to a result showing the such trees are approximately optimal with high probability (Cohen-Addad et al., 2019):

Lemma 7. (Lemma 5.10 from Cohen-Addad et al. (2019)) Let G be a graph drawn from HSBM(B,P, f), where pmin =

mini∈B∪N f(i) ≥ ω(
√

logn
n ). Let (B,P ′, f ′) be a γ-approximate ground-truth tree. Then, with probability 1− 2−n, we

have
costG(P ′) ≤ γ(1 + o(1))cost∗G,

We now show that DPHCBlocks outputs an approximate ground-truth tree. We introduce a high-probability event and prove
that if it happens, then the output is an approximate ground-truth tree.

17



Differentially-Private Hierarchical Clustering with Provable Approximation Guarantees

Our event E states that sim(Bi, Bj) as used in DPHCBlocks is a good estimate for f(LCAP (Bi, Bj)). Intuitively, this
makes sense, as if one had access to f(LCAP (Bi, Bj)), then it would be easy to construct P (or an equivalent tree) using
single linkage. Formally, we let E denote the event that there exists α such that for all Bi, Bj ,∣∣sim(Bi, Bj)− f(LCAP (Bi, Bj))

∣∣ ≤ αf(LCAP (Bi, Bj)). (6)

The following lemma shows that E occurs with high probability.

Lemma 8. If |Bi| ≥ n2/3 for all i, j, ε ≥ 1
n1/2 , and f(x) ≥ logn

n1/2 , then the event E occurs with α = 8
n1/6 with probability

at least 1− 2
n .

Proof. The values wG(Bi, Bj) are distributed according to Binomial(Nij , pij), where Nij = |Bi||Bj | and pij =
f(LCAP (Bi, Bj)). By Hoeffding’s bound, we have that

Pr[|wG(Bi, Bj)− pijNij | ≥ 2 log n
√
Nij ] ≤

1

n3
.

Furthermore, we have that Pr[|Lij | ≥ 6 logn
ε ] ≤ 1

n3 . Plugging in sim(Bi, Bj) =
wG(Bi,Bj)+Lij

Nij
, we obtain

Pr

[
|sim(Bi, Bj)− pij | ≥

2 log n√
Nij

+
6 log n

εNij

]
≤ 2

n3
.

BecauseNij ≥ n4/3 and ε ≥ 1
n1/2 , we have 2 logn√

Nij
+ 6 logn

εNij
≤ 8 logn

n2/3 ≤ 8
n1/6 pij . Thus, we obtain Pr[|sim(Bi, Bj)−pij | ≥

αpij ] ≤ 2
n3 , with α = 8

n1/6 . Taking a union bound over all
(
k
2

)
≤ n2 choices of i, j, we obtain our result.

Finally, we show that when E occurs, then DPHCBlocks finds an approximate ground-truth tree. A similar result was
proved in Cohen-Addad et al. (2019), though our lemma statement is sufficiently different that we include a proof here.

Lemma 9. Assume that event E occurs. Then, the tuple (B, T, f ′) returned by Algorithm 1 is a (1 + α)-approximate
ground-truth tree for (B,P, f).

Proof. We want to show that for all Bi, Bj ∈ V , we have

(1− α)f(LCAP (Bi, Bj)) ≤ f ′(LCAP ′(Bi, Bj)) ≤ (1 + α)f(LCAP (Bi, Bj)).

Let I = LCAT (Bi, Bj) be the internal node in which Bi, Bj are merged, and let Ci, Cj be the children of I such that
Bi ⊆ Ci and Bj ⊆ Cj . We have that

f ′(LCAP ′(Bi, Bj)) = sim(Ci, Cj) = max
B∈Ci,B′∈Cj

sim(B,B′).

Thus, it holds that sim(Bi, Bj) ≤ f ′(LCAP ′(Bi, Bj)). As event E holds, we have that sim(Bi, Bj) ≥ (1 −
α)f(LCAP (Bi, Bj)).

To finish, we show that sim(Ci, Cj) ≤ (1 + α)f(LCAP (Bi, Bj). Let J = LCAP (Bi, Bj) be the internal node in which
Bi, Bj are merged in P , and let Di, Dj be the children of J such that Bi ⊆ Di and Bj ⊆ Dj . We consider the following
two cases.

Case 1: Ci ⊆ Di and Cj ⊆ Dj . Then, we have

sim(Ci, Cj) ≤ max
B∈Di,B′∈Dj

sim(B,B′) ≤ (1 + α) max
B∈Di,B′∈Dj

f(LCAP (B,B′)).

AsDi, Dj are nodes of the ground-truth tree, it holds that f(LCAP (B,B′)) is the same for any choice ofB ∈ Di, B
′ ∈ Dj .

In particular, this is true for f(LCAP (Bi, Bj)).
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Case 2: There exists B` such that B` ⊆ Ci and B` * Di (or the same holds for Ci, Di replaced by Cj , Dj). WLOG,
suppose the former case holds. Then, there exists a child N of I whose children are NL, NR, such that NL ⊆ Di and
NR ∩Di = ∅. It then follows that

sim(NL, NR) ≤ (1 + α) max
B∈NL,B′∈NR

f(LCAP (B,B′)) ≤ (1 + α)f(LCAP (Bi, Bj)),

where the second inequality holds because f is decreasing as we ascend P . However, we also have that sim(NL, NR) ≥
sim(Ci, Cj), as sim also obeys this property (if the last inequality did not hold, then NL, NR would not have been merged).
This finishes the last case.

The proof follows by applying Lemma 8 and then Lemma 9.

D.2. Proof of Theorem 5

D.2.1. OVERVIEW

When running DPCommunity, fix Y, Z1, Z2, and let (Â1, Â2) and (Â′1, Â
′
2) be the splits of Â and an adjacent database Â′.

We will view the matrix F = P (Π
(k)

Â1
(Â2)) as a vector, and then show that releasing F plus appropriate Gaussian noise

satisfies privacy via the Gaussian mechanism. Our proof will bound the L2 sensitivity of F , given by

∆2(F ) = ‖P (Π
(k)

Â1
(Â2))− P (Π

(k)

Â′1
(Â′2))‖F ,

in terms of the quantity Γ = σ1(Â2)

σk(Â1)−σk(Â2)
. Recall that P is a random m× n

2 projection matrix. To control this sensitivity,
we will need the fact that P preserves the distances in A via the Johnson-Lindenstrauss projection theorem:

Theorem 8. (Johnson-Lindenstrauss projection theorem (Johnson, 1984)): Let 0 ≤ α < 1
2 and 0 ≤ β ≤ 1, and m = 8

ln 2
β

α2 .
If x ∈ Rn is a vector and P ∼ N (0, 1√

m
)m×n is a random matrix then with probability 1− β, we have

(1− α)‖x‖2 ≤ ‖Px‖2 ≤ (1 + α)‖x‖2

We use the above theorem to show that the matrix P does not increase the sensitivity ∆(F ) with high probability.
Lemma 10. Let 0 ≤ δ < 1 and m = 64 ln 2n

δ . Then, if P ∼ N (0, 1√
m

)m×n/2 the following holds with probability at least

1− δ
4 :

∆(F ) ≤ 3

2
‖Π(k)

Â1
(Â2)−Π

(k)

Â′1
(Â′2)‖F .

Proof. Let the columns of Π
(k)

Â1
(Â2) be {a1, . . . , an/4} and the columns of Π

(k)

Â′1
(Â′2) be {a′1, . . . , an′/4}. By the union

bound, Theorem 8 with α = 1
2 and β = δ

n applies to all vectors ai − a′i with probability at least 1− δ
4 . Thus, we have

∆2(F )2 =

n/4∑
i=1

‖P (ai)− P (a′i)‖22 ≤ (1 + α)2

n/4∑
i=1

‖ai − a′i‖22 = (1 + α)2‖Π(k)

Â1
(Â2)−Π

(k)

Â′1
(Â′2)‖2F .

The result follows.

Finally, we need a bound on the stability of the projection Π
(k)

Â1
when Â1 is perturbed. This is the result of the Davis-Kahan

Theorem (Bhatia, 1997).
Theorem 9. Let Â1, Â

′
1 be matrices where dk = σk(Â1)− σk+1(Â1) > 0. Then,

‖Π(k)

Â1
−Π

(k)

Â′1
‖F ≤

‖Â1 − Â′1‖F
dk

.

Furthermore, the above holds replacing ‖ · ‖F with ‖ · ‖2.

Having bounded the L2-sensitivity, we finally use the well-known Gaussian mechanism (Dwork et al., 2014a)

Theorem 10. If x ∈ Rm has L2 sensitivity at most S, then releasing x+N , where N ∼ S
ε

√
2 ln 1.25

δ N (0, 1)m satisfies
(ε, δ)-DP.
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D.2.2. PROOF

Let Â and Â′ be two adjacent inputs, and consider two runs of DPCommunity with fixed Y,Z1, Z2, and P ; we will show
that the outputs satisfy (ε, δ)-DP. Let Â′1 and Â′2 be the values of Â1 and Â2 when Â′ is used instead of Â. DPCommunity
can be viewed as a post-processing of the private release of values dk = σk(Â1)− σk+1(Â1), σ1(Â2), and F ; thus, we will
show that releasing each of these values satisfies privacy.

Using Lindskii’s inequality (Bhatia, 1997), each rank i singular value of Â1, Â2 can only change by 1 when Â is changed
to Â′. Thus, the sensitivity of dk is 2, of σ1 is 1, and thus the release of d̃k = dk + 8

ε ln 4
δ + Lap( 8

ε ) and σ̃1 =

σ1 + 4
ε ln 4

δ + Lap( 4
ε ) both satisfy ( ε4 , 0)-DP. Thus, we will show that releasing F̃ satisfies ( ε2 , δ)-DP, and privacy will

follow by composition.

By Lemma 10 with probability at least 1− δ
4 , we have

∆2(F ) ≤ 3
2‖Π

(k)

Â1
(Â2)−Π

(k)

Â′1
(Â′2)‖F

We have either Â1 = Â′1 or Â2 = Â′2. We analyze the cases separately.

Case Â1 = Â′1: Then, Â2 and Â′2 differ in one bit, so Â2 = Â′2 + E, where E is a matrix that is ±1 in one entry and 0
everywhere else. Then,

3
2‖Π

(k)

Â1
(Â2)−Π

(k)

Â1
(Â′2)‖F = 3

2‖Π
(k)

Â1
(E)‖F ≤ 3

2‖E‖F ≤ 3
2 ,

where the inequality holds because projecting vectors onto a subspace cannot increase their magnitude.

Case Â2 = Â′2: Then, Â1 and Â′1 differ in one bit, so ‖Â1 − Â′1‖F ≤ 1. We have

‖Π(k)

Â1
(Â2)−Π

(k)

Â′1
(Â′2)‖F ≤ 2k‖(Π(k)

Â1
−Π

(k)

Â′1
)(Â2)‖2 ≤ 2k‖Π(k)

Â1
−Π

(k)

Â′1
‖2‖Â2‖2,

where the first inequality holds because each term has rank at most k, so the entire quantity has rank at most 2k, and the
second holds by sub-multiplicativity of ‖ · ‖2. By Theorem 9, we have ‖Π(k)

Â1
−Π

(k)

Â′1
‖2 ≤ 1

dk
. Thus, we have

3

2
‖Π(k)

Â1
(Â2)−Π

(k)

Â′1
(Â′2)‖F ≤

3k‖Â2‖2
dk

= 3kΓ.

By concentration of Laplace variables, we have d̃k ≤ dk and σ̃1 ≥ σ1, so Γ ≤ σ̃1

d̃k
= Γ̃ with probability at least 1 − δ

2 .

Thus, the sensitivity ∆(F ) is at most 3kΓ̃, and ( ε2 ,
δ
4 )-DP follows via Theorem 10. Factoring in the aformentioned failure

probabilities, the entire release of F̃ satisfies ( ε2 , δ)-DP.

D.3. Proof of Corollary 6

D.3.1. OVERVIEW

Recall that DPCommunity sees a matrix Â drawn from HSBM(B,P, f), with expectation matrix A. We define τ2 =
max f(x), s = minki=1 |Bi|, and ∆ = minu∈Bi,v∈Bj ,i6=j ‖Au − Av‖2. We will show that DPCommunity approximates
Π

(k)

Â1
(Â2), which is guaranteed to cluster the original communities via the following result (Vu, 2014). We let the columns

of Π
(k)

Â1
(Â2), which is indexed by the set Z2, be {bi : i ∈ Z2}.

Theorem 11. (Vu (2014)): There exists a universal constant C such that if τ2 ≥ C logn
n , s ≥ C log n, and k < n1/4.

∆ > C(τ
√

n
s + τ

√
k log n+ τ

√
nk

σk(A) ), with probability at least 1− n−1, then the columns {bi : i ∈ Z2} in Π
(k)

Â1
(Â2) satisfy:

‖bi − bj‖2 ≤
∆

4
if ∃u. i ∈ Bu, j ∈ Bu (i.e. i, j are in the same community)

‖bi − bj‖2 ≥ ∆ otherwise.
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Thus, the clusters in Π
(k)

Â1
(Â2) cluster the original communities assuming ∆ is large enough. We will show that F̃

clusters the original communities assuming some condition on ∆. Since DPCommunity returns F̃ = P (Π
(k)

Â1
(Â2)) +N ,

where N is Gaussian noise, our proof involves showing that the distances in F̃ approximate those in Π
(k)

Â1
using the

Johnson-Lindenstrauss lemma and concentration of the Gaussian noise.

We formally restate Theorem 6:

Theorem 12. Let Â be drawn from HSBM(B,P, f). There is a universal constant C > 2000 such that if τ2 ≥ C logn
n ,

s ≥ C√n log n, k < n1/4, δ < 1
n , σk(A) ≥ C max{τ√n, 1

ε ln 4
δ }, and

∆ > C max
{
k(ln 1

δ )3/2

ε
σ1(A)
σk(A) , τ

√
n
s + τ

√
k log n+ τ

√
nk

σk

}
,

then with probability at least 1− 3n−1, DPCommunity returns a set of points F̃ = {fi : i ∈ Z2} such that

‖fi − fj‖2 ≤
2∆

5
if ∃u. i, j ∈ Bu

‖fi − fj‖2 ≥
4∆

5
otherwise,

and thus the clusters in F̃ indicate the communities.

D.3.2. PROOF OF THEOREM 12

Let the columns of F̃ be {fi : i ∈ Z2}. We have fi = P (bi) + ni, where ni ∼ 3kΓ̃
ε

√
2 ln 5

δN(0, 1)m. By concentration

bounds, we have with probability 1 − 1
n that each ni satisfies ‖ni‖2 ≤ 3kΓ̃

ε

√
2 ln 5

δ

√
2m lnn , K. Next, applying

Theorem 8 on the vectors bi−bj for i, j ∈ Z2, we have 0.9‖bi−bj‖2 ≤ ‖P (bi)−P (bj)‖2 ≤ 1.1‖bi−bj‖2 with probability
1− δ > 1− 1

n . Thus, if ∃u. i ∈ Bu, j ∈ Bu, then

‖fi − fj‖2 ≤ ‖P (bi)− P (bj)‖2 + ‖ni‖2 + ‖nj‖2
≤ 1.1‖bi − bj‖2 + 2K

≤ 0.275∆ + 2K,

Otherwise, we have

‖fi − fj‖2 ≥ ‖P (bi)− P (bj)‖2 − ‖ni‖2 − ‖nj‖2
≥ 0.9‖bi − bj‖2 − 2K

≥ 0.9∆− 2K.

Finally, we show that K can be upper bounded by the singular values of the expectation matrix A. This can be done with the
following two lemmas which are proven implicitly in Vu (2014).

Lemma 11. Let A be an m× n (with m ≥ n) matrix of expectations in [0, 1], and let Â be a randomized rounding of A to
{0, 1}. Then, with probability at least 1− 1

n , we have for all 1 ≤ i ≤ m, |σi(A)− σi(Â)| ≤ 4τ
√
n+ 4 log n, where τ2 is

the maximum probability in A.

Proof. Each σi+1(A) is equal to maxrank(Ai)=i ‖A−Ai‖2. Let A∗i , Â
∗
i be rank i matrices such that σi+1(A) = ‖A−A∗i ‖2

and σi+1(Â) = ‖Â− Â∗i ‖2. We have that σi+1(A) ≤ ‖A− Â∗i ‖2 ≤ ‖Â− Â∗i ‖2 + ‖A− Â‖2.

Thus, it remains to bound ‖A − Â‖2. Let the columns in A − Â be a1, . . . , an. Using Lemma 7 from Vu (2005), we
have that with probability at least 1− 1

n3 , the length of the projection of ai onto a basis vector ei is at most 4(τ + logn√
n

).

Thus, the total length ‖Aei‖2 is at most 4(τ + logn√
n

, and thus ‖A‖2 ≤
√
n4(τ + logn√

n
) establishing that σi+1(A) ≤

σi+1(Â) + 4
√
nτ + 4 log n. Likewise, we can show that σi+1(A) ≥ σi+1(Â)− 4

√
nτ − 4 log n.
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Lemma 12. Let A be an expectation matrix of HSBM(B,P, f) with k blocks with minimum block size s ≥ 16
√
n log n,

and let C be the submatrix of A with rows Y and columns Z, where |Y | = n
2 and |Z| = n

4 are chosen randomly from [n]
such that Y ∩ Z = ∅. Then, with probability at least 1− 1

n , for all 1 ≤ i ≤ k, we have

( 1
8 −

√
n logn
s )σi(A1) ≤ σi(A1) ≤ ( 1

8 +
√
n logn
s )σi(A1)

Proof. Observe that the blocks in C are indexed in rows by B1 ∩ Y, . . . , Bk ∩ Y and in columns by B1 ∩ Z, . . . , Bk ∩ Z.
By Chernoff’s bound, with probability at least 1− 1

n2 , we have for all i that

1

2
−
√
n log n

|Bi|
≤ |Bi ∩ Y ||Bi|

≤ 1

2
+

√
n log n

|Bi|
1

4
−
√
n log n

|Bi|
≤ |Bi ∩ Z||Bi|

≤ 1

4
+

√
n log n

|Bi|
.

We have σk(A) = minrank(Ak−1)=k−1 ‖A−Ak−1‖F and σk(C) = minrank(Ck−1)=k−1 ‖C − Ck−1‖F ; let A∗k−1 and C∗k−1

be the maximizers of the previous expressions. Let A′ denote the matrix C∗k−1 with rows and columns duplicated such that
each element (A′)ij is equal to (C∗k−1)xy , where x, y are any two points in the same block as i, j, respectively. Accounting
for the duplication factors of each block, we have(

1

2
−
√
n log n

s

)(
1

4
−
√
n log n

s

)
‖A−A′‖F ≤ ‖C − C∗k−1‖F ,

and thus we see that ( 1
8 −

√
n logn
s )σk(A) ≤ σk(A1). By a similar sampling argument, we can show that ( 1

8 +
√
n logn
s )σk(A) ≥ σk(A1). Repeating the argument for

√
σi(A)2 + · · ·σk(A)2 = minrank(Ai−1)=i−1 ‖A − Ai−1‖F ,

we obtain the result for all 1 ≤ i ≤ k.

Let A1, A2 be the expectation matrices of Â1, Â2 for fixed Y, Z2. Using Lemmas 11 and 12, we have that σ1(Â2) ≤
σ1(A2) + 4τ

√
n+ 4 log n ≤ ( 1

8 +
√
n logn
s )σ1(A) + 4τ

√
n+ 4 log n ≤ 3

32σ1(A) + 4τ
√
n+ 4 log n. Applying these again,

we obtain

dk(Â1) = σk(Â1)− σk+1(Â1)

≥ σk(A1)− σk+1(A1)− 8τ
√
n− 8 log n

≥ (
1

8
−
√
n log n

s
)(σk(A)− σk+1(A))− 8τ

√
n− 8 log n

≥ 1

16
σk(A)− 8τ

√
n− 8 log n

Finally, we have Γ̃ = σ̃1(Â2)

d̃k(Â1)
, which with probability at least δ, will satisfy

Γ̃ ≤ σ1(Â2) + 8
ε ln 4

δ

dk(Â1)− 16
ε ln 4

δ

≤
3
32σ1(A) + 4τ

√
n+ 4 log n+ 8

ε ln 4
δ

1
16dk(A)− 8τ

√
n− 8 log n− 16

ε ln 4
δ

.

By our assumption that σk(A) ≥ 1024 max{τ√n, 1
ε ln 4

δ }, we obtain that Γ̂ ≤ 4 σ1(A)
σk(A) , This implies that

K ≤
12k
√
m ln 5

δ lnn

ε

σ1(A)

σk(A)
=

48k
√

2 ln 2n
δ ln 5

δ lnn

ε

σ1(A)

σk(A)
≤ 96k(ln 5

δ )3/2

ε

σ1(A)

σk(A)
,

where the last step follows because δ < 1
n . From our assumption, we have 2K ≤ 0.1∆, and the result follows.

D.4. Proof of Corollary 1

In this special case, we can write A = P ⊗ 1B , where P is a k × k matrix with p on the diagonal and q everywhere else,
1s is a s× s matrix consisting of all 1s, and ⊗ denotes the Kronecker product. It is easy to see that the eigenvalues of P
are {p+ q(k − 1), p− q, . . . , p− q}, and the eigenvalues of 1s are {s, 0, . . . , 0}. The eigenvalues of A are the product of
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the two sets of eigenvalues of P and 1s. Thus, the top k largest eigenvalues are s(p+ q(k − 1)) and then k − 1 copies of
s(p− q).

Thus, the following properties of A hold: (1) σ1 = s(p+ q(k − 1))] ≤ sk(p+ q), (2) σk = s(p− q), (3) τ =
√
p, and (4)

∆ = (p− q)√s. We are able to apply Theorem 12 when

(p− q)√s ≥ s(p+ q)

s(p− q)
Ck(log 1

δ )3/2

ε

(p− q)2

p+ q
≥ C(k log 1

δ )3/2

√
n

.

This establishes the result.
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