
The Price of Differential Privacy under Continual Observation

Palak Jain * 1 Sofya Raskhodnikova * 1 Satchit Sivakumar * 1 Adam Smith * 1

Abstract
We study the accuracy of differentially private
mechanisms in the continual release model. A
continual release mechanism receives a sensitive
dataset as a stream of T inputs and produces, af-
ter receiving each input, an output that is accu-
rate for all the inputs received so far. We pro-
vide the first strong lower bounds on the error
of continual release mechanisms. In particular,
for two fundamental problems that are closely re-
lated to empirical risk minimization and widely
studied and used in the standard (batch) model,
we prove that the worst case error of every con-
tinual release algorithm is Ω̃(T 1/3) times larger
than that of the best batch algorithm. Previous
work shows only a Ω(log T) gap between the
worst case error achievable in these two models.
We also formulate a model that allows for adap-
tively selected inputs, thus capturing dependen-
cies that arise in many applications of continual
release. Even though, in general, both privacy
and accuracy are harder to attain in this model,
we show that our lower bounds are matched by
the error of simple algorithms that work even for
adaptively selected inputs.

1. Introduction
Differentially private (DP) data analysis (Dwork, McSh-
erry, Nissim, and Smith, 2006b) studies the design of algo-
rithms that publish aggregate statistics about input datasets
while preserving the privacy of individuals whose data they
contain. The published aggregates often include learn-
ing models trained on the private data, as in Apple’s
auto-complete feature, in Google’s search query sugges-
tions, and large-capacity language models deployed by Mi-

*Equal contribution 1Department of Computer Science,
Boston University, Boston, Massachusetts, USA. Correspondence
to: Palak Jain <palakj@bu.edu>, Sofya Raskhodnikova <so-
fya@bu.edu>, Adam Smith <ads22@bu.edu>, Satchit Sivaku-
mar <satchit@bu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

crosoft (Apple, 2017; Yang et al., 2018; Yu et al., 2022).

Many deployments of differential privacy operate in the
batch model: that is, they collect their input all at once and
produce a single output. However, in numerous situations,
sensitive data are collected over time, and published mod-
els and statistics need to be updated regularly. Examples
include COVID-19 dashboards that display statistics about
the number of COVID cases and deaths, ad campaign an-
alytics, recommendation systems, and predictive language
models. To investigate privacy in these situations, Dwork,
Naor, Pitassi, and Rothblum (2010a) and Chan, Shi, and
Song (2011) introduced the continual release model (some-
times referred to as the continual observation model). In
the continual release model, a mechanism receives a sen-
sitive dataset as a stream of T input records and produces,
after receiving each record, an accurate output on the ob-
tained inputs. Intuitively, the mechanism is DP if releasing
the entire vector of T outputs satisfies differential privacy.
Some deployments of differential privacy already fit this
model (Apple, 2017). Furthermore, the continual release
model arises as an intermediate step inside the analysis of
some batch algorithms, such as the DP-FTRL learning al-
gorithm (Kairouz et al., 2021). Despite the model’s preva-
lence, the theoretical understanding of continual release is
still limited, and only a handful of techniques have been de-
veloped to tackle it. The main challenge for privacy in this
model is that each individual record contributes to outputs
at multiple time steps.

Dwork et al. (2010a) and Chan et al. (2011) considered
the problem of computing summation in the continual re-
lease model when each record consists of one bit. Dwork
et al. (2010a) showed that an error of Ω(log T) is nec-
essary to privately release all running sums. Addition-
ally, both works designed the binary tree mechanism, a
continual release mechanism that achieves (additive) error
O(log2 T) for this problem. Since then, this mechanism
has been shown to accurately solve (with polylog T error)
many problems in the continual release model. (Further
related work is discussed in Appendix B.) Given this suc-
cess, one might conjecture that these results could be ex-
tended to a wide range of problems or at least to problems
closely related to summation. Indeed, the largest previ-
ously known gap between the worst case error achievable
in the batch and continual release models is Ω(log T), ex-

1

The Price of Differential Privacy under Continual Observation

hibited by summation.

1.1. Our Contributions

We ask what price DP algorithms must pay in accuracy to
solve a problem in the continual release model instead of
the batch model. We show that for two fundamental prob-
lems related to summation and widely studied in the batch
model, the gap is exponentially larger than the log T sep-
aration for summation. In addition, we formalize a more
realistic and broadly applicable model of continual release
that allows for adaptively chosen inputs. Surprisingly, for
the problems we consider, there is no increase in the error
when we step up our privacy and accuracy requirements to
deal with this more challenging setting.

In the first problem, called MaxSum, each input consists
of d binary attributes1 and the goal is to approximate the
maximum of the attribute sums. We define the error of a
continual-release mechanism as the maximum error over
all the time steps. For MaxSum, the error at each time step
is the absolute value of the difference between the true an-
swer and the output of the mechanism at that time step.
The second problem, SumSelect, is the “argmax” version
of MaxSum: the goal is to find the index of the largest at-
tribute sum. The error at a particular time step for this prob-
lem is the absolute difference between the maximum sum
and the attribute sum for the index returned by the mecha-
nism at that time step.

Motivation Both problems are abstractions of practically
relevant tasks. For instance, consider a company mon-
itoring the performance of d predictive models on a se-
quence of labeled examples: if for each data point we
record whether each model made a successful predic-
tion, then MaxSum corresponds to the success rate of the
best model, and SumSelect corresponds to empirical risk
minimization—that is, the index of the best model. If the
data collected by a public health agency consists of records
indicating which of d medical conditions each person suf-
fers from, then MaxSum corresponds to the number of
cases of the most prevalent condition so far, and SumSelect
corresponds to the name of this condition.

Algorithms for both tasks are key ingredients in differen-
tially private solutions to more complex problems such as
empirical risk minimization (Bassily et al., 2014), synthetic
data generation (Hardt et al., 2012), and high-dimensional
optimization (Talwar et al., 2015). Consequently, these
tasks and their variants have been thoroughly investigated
in several models. Known algorithms and lower bounds
for these tasks provide pivotal pieces of our current under-
standing of the central model (McSherry & Talwar, 2007;

1Our algorithms and analyses work more generally, when in-
puts are from [0, 1]d (not just {0, 1}d).

Bafna & Ullman, 2017; Steinke & Ullman, 2017; Durfee
& Rogers, 2019; Qiao et al., 2021), the local model (Ka-
siviswanathan et al., 2011; Duchi et al., 2013; Edmonds
et al., 2020), the shuffle model, and the pan-private model
(Cheu & Ullman, 2021). Additionally, accurate continual-
release variants of SumSelect, if they existed, would en-
able variants of the DP-FTRL learning framework (Kairouz
et al., 2021) for a wider range of parameter spaces than are
currently known.

We prove tight bounds on the error for these two problems
in the continual release model in terms of the stream length
(or “time horizon”) T , the number of attributes (or the di-
mension) d, and the privacy parameter ε. To provide a com-
parison to the continual release model, we assume that al-
gorithms in the batch model get input datasets of size T . In-
tuitively, a batch algorithmA is differentially private if, for
all datasets x and x′ that differ in one record, all events un-
der the distributionsA(x) andA(x′) have similar probabil-
ities. The definitition of differential privacy (Definition 2.2)
takes two parameters: ε and δ. The setting where δ = 0 is
referred to as pure differential privacy. To provide a mean-
ingful privacy guaranty in the setting where δ > 0 (referred
to as approximate differential privacy, the parameter δ has
to be small (Kasiviswanathan & Smith, 2014); in our case,
δ = o(ε/T 2).) For continual release mechanisms, we study
event-level privacy, where each user’s data appears in a sin-
gle record, as opposed to user-level privacy, where a user’s
data could be distributed over multiple records. See Dwork
et al. (2010a) for discussion of these two variants.

Separation Between the Continual Release and the
Batch Models We demonstrate a strong separation be-
tween the continual release and the batch models. A com-
parison of the error achievable in the two models is pre-
sented in Table 1. The first row gives results on Summation
from previous work; the second and the third row give re-
sults on MaxSum and SumSelect. The first column sum-
marizes the error in the batch model: O(1) for MaxSum
and O

(
log d

)
for SumSelect. The former is obtained by

an instantiation of the Laplace mechanism of Dwork et al.
(2006b) and the latter, by an instantiation of the exponen-
tial mechanism of McSherry & Talwar (2007). In contrast,
we show that in the continual release model, these tasks
require error that is polynomial in either T or d; this is pre-
sented in the second column of the table (the results shown
in this column are for approximate differential privacy).

More detailed versions of our results are given in Table 2.
For approximate differential privacy, we show that when
d is sufficiently large, MaxSumd and SumSelectd require
error that scales as roughly Ω̃(3

√
T). For pure differential

privacy, the error required for MaxSum and SumSelect is
even larger, roughly Ω̃(

√
T).

2

The Price of Differential Privacy under Continual Observation

Table 1. Bounds on the error of (ε, δ)-DP mechanisms in the continual release model compared to their batch model counterparts. The
corresponding upper and lower bounds differ only in the polylog(T) terms, highlighted in blue. For approximate differential privacy,
the lower bounds apply when δ = o(ε/T 2), and the upper bounds apply when δ > poly

(
1
T

)
. For simplicity, the dependence on ε is

suppressed in the table.
Batch Continual Release Model ReferenceModel Lower Bounds Upper Bounds

Summation Θ(1) Ω(log T) O(log2 T)
Dwork et al. (2010a)
Chan et al. (2011)

MaxSum Θ(1) Ω̃
(
min

{
3
√
T ,

√
d
})

Õ
(
min

{
3
√
T ,
√
d polylog(T)

}) Thm. 3.1
Cor. E.3, E.6

SumSelect Θ(log d) Ω̃
(
min

{
3
√
T log2 d,

√
d, T

})
Õ
(
min

{
3
√
T log2 d,

√
d polylog(T), T

}) Thm. 4.1
Cor. E.3, E.6

Table 2. More detailed statements of our results on the additive error of (ε, 0)-DP and (ε, δ)-DP mechanisms in the continual release
model. The corresponding upper and lower bounds differ only in the polylog(T) terms, highlighted in blue. For approximate differential
privacy, the lower bounds apply when δ = o(ε/T 2), and the upper bounds apply when δ > poly

(
1
T

)
. All our results are stated and

proved for ε < 1, but they apply for ε bounded by any larger constant as well.

Approximate DP (δ > 0) Pure DP (δ = 0) Reference

MaxSum
Ω̃
(

min
{

3

√
T
ε2 ,
√
d
ε , T

})
Ω̃
(

min
{√

T
ε ,

d
ε , T

})
Thm. 3.1

Õ
(

min
{

3

√
T
ε2 ,
√
d polylog(T)

ε , T
})

Õ
(

min
{√

T
ε ,

d polylog(T)
ε , T

})
Cor. E.3, E.6

SumSelect
Ω̃
(

min
{

3

√
T log2 d
ε2 ,

√
d
ε , T

})
Ω̃
(

min
{√

T log d
ε , dε , T

})
Thm. 4.1

Õ
(

min
{

3

√
T log2 d
ε2 ,

√
d polylog(T)

ε , T
})

Õ
(

min
{√

T log d
ε , d polylog(T)

ε , T
})

Cor. E.3, E.6

Lower Bound Technique: Reductions via Sequential
Embedding We obtain our lower bounds via a novel se-
quential embedding technique. This approach embeds mul-
tiple separate instances of an appropriately chosen base
problem on the same sensitive dataset in the batch model
into a single instance of a continual release problem. It
allows us to use a continual release algorithm to solve mul-
tiple instances of the base problem. We can then invoke
lower bounds for the batch model to obtain hardness re-
sults in the continual release model. For both MaxSum
and SumSelect, we can adjust the parameters of our reduc-
tions to get nearly tight lower bounds for all values of the
dimension d and time horizon T for both pure and (ε, δ)-
differential privacy.

For MaxSum, the corresponding base problem is to com-
pute one of the sums over which the maximum is taken.
Such sums correspond to 1-way marginals of a dataset, and
we apply lower bounds for releasing all 1-way marginals in
the batch model by Hardt & Talwar (2010) (for pure differ-
ential privacy) and Bun et al. (2018) (for (ε, δ)-differential
privacy) in conjunction with our reduction. For SumSelect,
the base task in the batch model is selecting the index of the
largest coordinate sum restricted to a subset of coordinates.

Multiple disjoint instances of the base task are captured by
a problem we call k-IndSelectd, where k indicates the num-
ber of instances. To obtain lower bounds for this problem
in the batch model, we use a simple packing argument in
the case of pure differential privacy and prove a new lower
bound for selecting top-k sums using a result of Steinke &
Ullman (2017) for a related problem in the case of (ε, δ)-
differential privacy.

The main idea behind our sequential embedding technique
is to embed a sensitive dataset into the first part of the
stream given to the continual release algorithm. The re-
maining parts of the stream do not depend on the dataset
and are chosen to force the continual release algorithm to
output good approximations to separate instances of the
base problem on the sensitive dataset. The technique was
subsequently used to obtain lower bounds for other prob-
lems (Ghazi et al., 2023); see Section 1.2.

Continual Release with Adaptively Chosen Inputs The
continual release model of Dwork et al. (2010a) and Chan
et al. (2011) assumes that the input stream is chosen obliv-
iously, before the algorithm is run. This means that the
data at time t cannot depend on the values the algorithm

3

The Price of Differential Privacy under Continual Observation

returned at prior steps, even though they arrive after ear-
lier outputs are released. We formalize a more realistic
model that allows the stream elements to be chosen on-
line by an adversary that observes the outputs of the con-
tinual release algorithm. This model gives a more faith-
ful representation of real-life settings, where the data may
change based on prior feedback from the algorithm. For
example, a city might adjust its social distancing policy
based on DP estimates of COVID cases, which could in
turn affect the number of new cases. Recommendations
by Amazon might change what the customers are buy-
ing and affect which products are most popular. The new
model captures these and many other scenarios better than
the original continual release model and is in line with
the explosion of research on adversarially robust stream-
ing (Mironov et al., 2011; Ben-Eliezer et al., 2022a;b; Has-
sidim et al., 2022; Cohen et al., 2022; Beimel et al., 2022).
The model where input is chosen adaptively has been con-
sidered implicitly in previous work, specifically, in the ap-
plication of continual-release algorithms for summation to
online learning (Thakurta & Smith, 2013). In Section 5.1,
we provide a general, explicit game-based formulation of
the continual release model with adaptively chosen inputs.

In general, both privacy and accuracy are harder to attain
in this model2. However, for the specific problems we con-
sider, it turns out that there is no overhead in terms of ac-
curacy when the input stream is selected adaptively. We
show that our lower bounds (that hold even when the in-
put stream is selected obliviously) are matched by algo-
rithms that work even with adaptively selected streams. We
achieve this by analyzing variants of classical continual re-
lease algorithms in the new model.

Each of our lower bounds (summarized in Table 2) is the
minimum of three terms, corresponding to different pa-
rameter regimes. They are matched (up to polylogarithmic
factors in T and 1/δ), in each regime, by the best of two
simple mechanisms and one trivial mechanism. The trivial
mechanism always outputs an arbitrary value in the right
range. The first simple mechanism is based on recomputing
the value of the desired statistic (e.g., MaxSum) at regular
intervals and providing the same answer until it is recom-
puted again. The second simple mechanism uses the binary
tree mechanism to track all d coordinates separately and
takes the maximum (or, in the case of SumSelect, argmax)
of the noisy values. We analyze these mechanisms in the
continual release model with adaptively chosen inputs for
MaxSum, SumSelect, and general functions of sensitiv-
ity 1 in Appendix E .

Privacy analysis in the adaptive setting is subtle. In the

2In a subsequent work, Denisov et al. (2022) give an example
of a protocol that is private in the original continual release model,
but not in the model with adaptively chosen inputs.

nonadaptive setting, one argues that the algorithm’s out-
puts on any two fixed datasets that differ in exactly one
element are indistinguishable. In contrast, the two input
streams in the adaptive setting may diverge in an arbitrary
number of records based on prior outputs of the mecha-
nism. Because of this, one cannot generally reduce the
proof of privacy with adaptively chosen inputs to a proof
in the nonadaptive model. Instead, we build on techniques
from simulation-based proofs in cryptography to argue di-
rectly, for specific algorithms, that the joint distributions of
the two input streams and their corresponding output dis-
tributions are indistinguishable.

We note that adaptive composition—a standard tool in the
analysis of differentially private mechanisms—is inade-
quate for dealing with the issue of adaptively chosen in-
puts. A continual release mechanism does not have to use
independent randomness at each time step so one cannot,
in general, apply adaptive composition directly.

1.2. Discussion and Open Questions

This paper has two key contributions: first, we establish
strong lower bounds on the error of continual release mech-
anisms; second, we introduce the model with adaptively
chosen inputs and then analyze algorithms for MaxSum
and SumSelect in this model. Together, our mechanisms
and lower bounds provide a comprehensive characteriza-
tion of the error for MaxSum and SumSelect up to polylog-
arithmic factors in T and 1/δ across all parameter regimes.

Our new model is relevant in practical settings: our analysis
applies to a deployed (binary-tree based) machine learning
protocol by Kairouz et al. (2021). Furthermore, a follow-
up on our work by Denisov et al. (2022) investigates im-
provements to the binary tree mechanism that have been
deployed and proves they are private in the model with
adaptively chosen inputs. The structure of the mechanisms
they consider requires the use of the adaptive model in the
analysis even when the data are fixed ahead of time.

In the course of their work, Denisov et al. (2022) delve
deeper into the model with adaptively chosen inputs: they
show that any mechanism that adds additive Gaussian noise
is private in the adaptive model; they also construct an (ar-
tificial) protocol that is DP in the continual release model
with nonadaptive inputs, but not DP with adaptive inputs.
It is open to separate the two continual release models in
the sense our work separates the batch model and the con-
tinual release model: by providing problems that require a
large error blowup in the more demanding model.

Our lower bounds point to fundamental differences be-
tween the continual release and the batch models. In the
batch model, low sensitivity of a function can be easily ex-
ploited to provide an accurate DP algorithm for releasing

4

The Price of Differential Privacy under Continual Observation

this function. It was consistent with prior work that a ver-
sion of the widely-used exponential mechanism tailored to
SumSelect in the continual release model could match the
accuracy of summation. Our work rules out this possibility.
We show that in the continual release model, low sensitivity
alone is insufficient. To get DP mechanisms with very low
(say, polylogarthmic in T) error for problems that do not
reduce to low-dimensional summation or histograms, one
must find and exploit new kinds of structure in the function
being repeatedly evaluated.

Notably, our lower bounds apply even to “offline” algo-
rithms that receive the entire input stream before producing
output; i.e., they do not rely on the algorithm’s uncertainty
of what comes later in the stream. It would be interesting to
find natural problems that separate the offline and the con-
tinual release models, as discussed in Denisov et al. (2022).

Finally, our sequential embedding technique has already
found application in follow-up work of Ghazi et al. (2023),
where it is used to establish lower bounds for other prac-
tically important problems such as counting distinct ele-
ments.

1.3. Organization of Paper

In Section 2, we define the continual release model with
nonadaptively chosen inputs and state the problems we
consider. Additional preliminaries appear in Appendix A.
Related work not covered in the introduction is described
in Appendix B. Sections 3–5 present our technical results
and the definition of the continual release model with adap-
tively chosen inputs. All omitted proofs appear in appen-
dices.

2. Definitions
2.1. Continual Release with Nonadaptively Chosen

Inputs

A mechanism in the continual release model (Dwork et al.,
2010a; Chan et al., 2011) is an algorithm that receives its
input x = (x1, . . . , xT) ∈ X T as a stream. At each time
step t ∈ [T], it gets a record xt and outputs an answer at.
The output stream (a1, . . . , aT) is denoted by a. We use
x[t] = (x1, . . . , xt) for t ∈ [T] to denote the first t records
in a stream x (similarly, a[t] = (a1, . . . , at).) The total
number of records in the stream, denoted by T , is called
the time horizon. For simplicity, we assume T is known to
the mechanism.

We consider two variants of the continual release model.
(1) The continual release model of Dwork et al. (2010a)
and Chan et al. (2011): This model assumes that the in-
put stream x is fixed before the mechanism runs. This
means that the data at time t cannot depend on the val-

ues the algorithm returned at prior steps, even though they
arrive after earlier outputs are released. (2) The continual
release model with adaptively chosen inputs: This model
allows an adversary to choose each input record xt for
t ∈ {2, . . . , T} based on the previous outputs a1, . . . , at−1

of the mechanism. This model gives a more faithful repre-
sentation of real-life settings, where the data may change
based on prior feedback from the algorithm. We formalize
this model in Section 5.1.

All our lower bounds are for the model with nonadaptively
chosen inputs and, consequently, imply the same lower
bounds for the model with adaptively chosen inputs. In
contrast, all our algorithms work with adaptively chosen
inputs (and, consequently, in the special case when inputs
are chosen nonadaptively).

We refer to standard algorithms that get their input in one
batch and produce one output as batch algorithms. For clar-
ity, we refer to continual release algorithms as mechanisms.

Accuracy We start by defining how well a given output
approximates the value of a function. We use a notion of
error that depends on the function. Given a function f :
X ∗ → Y , a dataset x ∈ X ∗, and an answer a ∈ Y , let
ERRf (x, a) be a nonnegative number that quantifies how
far off a is from f(x). Specifically, when Y = Rk,

ERRf (x, a) = ‖f(x)− a‖∞. (1)

Later (in (2)), we define a different notion of error for the
optimization problem SumSelect. The error for an opti-
mization problem corresponds to the deficit in the objective
function.

Definition 2.1 (Accuracy of a Mechanism). In the con-
tinual release model with nonadaptively chosen inputs, a
mechanism M is (α, T)-accurate for f if, for all fixed
input streams x = (x1, . . . , xT), the maximum error
ERRf (x[t], at) over the outputs a1, . . . , aT of mechanism
M is bounded by α with high probability, that is,

Pr
coins ofM

[
max
t∈[T]

ERRf (x[t], at) ≤ α
]
≥ 2

3
.

Privacy Finally, we define privacy in the continual re-
lease model with nonadaptively chosen inputs.

Definition 2.2 (Privacy of a Mechanism). Given a mecha-
nismM, define AM to be the batch model algorithm that
receives an input dataset x, runsM on stream x, and re-
turns the output stream a of M. The mechanism M is
(ε, δ)-differentially private (DP) in the continual release
model with nonadaptively chosen inputs if AM is (ε, δ)-
DP in the batch model.

Definition 2.2 refers to event-level privacy, where each
user’s data appears in a single record, as opposed to user-

5

The Price of Differential Privacy under Continual Observation

level privacy, where a user’s data could be distributed over
multiple records.

2.2. Problem Definitions

We consider two functions on datasets, where each
record consists of d binary attributes. The first function,
MaxSumd, returns the maximum attribute sum for the in-
put records. The second function, SumSelectd, returns the
index of such a maximum sum.

Definition 2.3. Let d ∈ N and X = {0, 1}d. For a dataset
x ∈ X ∗ and j ∈ [d], the jth attribute of record xi is its jth

coordinate, denoted xi[j]. Let t ∈ N and x[t] ∈ X t. The
function MaxSumd : X ∗ → N is

MaxSumd(x[t])
def
= max

j∈[d]

(∑
i∈[t]

xi[j]
)
.

The function SumSelectd : X ∗ → [d] is

SumSelectd(x[t])
def
= arg max

j∈[d]

(∑
i∈[t]

xi[j]
)
.

If multiple indices j attain the maximum sum, the function
value is defined to be the smallest such index.

We study the accuracy of differentially private algorithms
for computing these two functions. Our accuracy goal,
stated in Definition 2.1, uses the notion ERRf . We de-
fine the error ERRMaxSum as in (1). For SumSelect, it is
defined by:

ERRSumSelect(x[t], at) = MaxSumd(x[t])−
∑
i∈[t]

xi[at].

(2)

3. Lower Bounds for MaxSum

In this section, we prove Theorem 3.1 that provides strong
lower bounds on the accuracy parameter α for any accurate
mechanism for MaxSumd in the continual release model
with nonadaptively chosen inputs. Our lower bounds match
the upper bounds from Section 5 for MaxSumd in the con-
tinual release model with adaptively chosen inputs up to
logarithmic factors in the time horizon T and the number
of coordinates d.

Theorem 3.1. For all ε ∈ (0, 1], δ ∈ [0, 1), α ≥ 0, d ∈
N, sufficiently large T ∈ N, and mechanisms M in the
continual release model with nonadaptively chosen inputs
that are (ε, δ)-differentially private and (α, T)-accurate
for MaxSumd, the following statements hold.

1. If δ > 0 and δ = o(ε/T), then

α = Ω
(

min
{

T 1/3

ε2/3 log2/3(εT)
,
√
d

ε log d , T
})

.

2. If δ = 0, then α = Ω
(

min
{√

T
ε ,

d
ε , T

})
.

MaxSumd can be released in the batch model with α =
O(1/ε) via the Laplace mechanism (Dwork et al., 2006b).
Hence, Theorem 3.1 shows a strong separation between the
batch model of differential privacy and continual release.

3.1. 1-way Marginal Queries in Batch Model

To prove our lower bounds for MaxSum, we reduce from
the problem of approximating 1-way marginals in the batch
model. The function Marginalsd : X ∗ → [0, 1]d maps
a dataset y of any size n to a vector (q1(y), . . . , qd(y)),
where qj , called the jth marginal, is defined as qj(y) =
1
n

∑n
i=1 yi[j]. The error ERRMarginals is defined as in (1).

Next, we define accuracy for batch algorithms.

Definition 3.2 (Accuracy of Batch Algorithms). Let γ ∈
[0, 1], n, d ∈ N, and X = {0, 1}d. Let f : Xn → Rd be a
function on datasets. Batch algorithm A is (γ, n)-accurate
for f if for all datasets y ∈ Xn,

Pr
coins ofA

[ERRf (y,A(y)) ≤ γ] ≥ 2

3
.

We use the lower bounds from Bun et al. (2018); Hardt
& Talwar (2010) for the problem of estimating Marginalsd
in the batch model. They are stated in Items 1 and 2 of
Lemma 3.3 for approximate differential privacy and pure
differential privacy, respectively. Item 2 in Lemma 3.3 is a
slight modification of the lower bound from Hardt & Tal-
war (2010) and follows from a simple packing argument.

Lemma 3.3. For all ε ∈ (0, 1], δ ∈ [0, 1], γ ∈ (0, 1),
d, n ∈ N, and algorithms A that are (ε, δ)-differentially
private and (γ, n)-accurate for Marginalsd, the following
statements hold.

1. Bun et al. (2018): If δ > 0 and δ = o(1/n), then

n = Ω
(√

d
γε log d

)
.

2. Hardt & Talwar (2010): If δ = 0, then n = Ω
(
d
γε

)
.

3.2. Proof Sketch of Theorem 3.1

We give a proof sketch of Theorem 3.1; formal details
can be found in Appendix C. Let M be an (ε, δ)-DP and
(α, T)-accurate mechanism for MaxSumd in the contin-
ual release model with nonadaptively chosen inputs. We
useM to construct an (ε, δ)-DP batch algorithm A that is
(αn , n)-accurate for Marginalsd. The main idea in the con-
struction, (presented in Algorithm 2 in Appendix C) , is to
forceM to output an estimate of the sum for one attribute
at a time by making the sum in that attribute the largest.
First, A sends its own dataset y to M. Then it sends n

6

The Price of Differential Privacy under Continual Observation

additional records with 1 in the first attribute and 0 every-
where else. After this, the first attribute sum is the largest,
and the answer produced byM at this point can be used to
estimate the first marginal. Then A equalizes the number
of extraneous 1’s for each attribute by sending n additional
records with 0 in the first attribute and 1 everywhere else. It
repeats this for each attribute, collecting the answers from
M, and then outputs its estimates for the marginals.

This gives an accurate algorithm for the marginals problem,
which is captured in the following lemma.

Lemma 3.4 (Informal). Let A be the algorithm informally
described in the previous paragraph. For all ε > 0, δ ≥
0, α ∈ R+ and d, n, T ∈ N, where T ≥ 2dn, if mechanism
M is (ε, δ)-DP and (α, T)-accurate for MaxSumd in the
continual release model with nonadaptively chosen inputs,
then batch algorithm A is (ε, δ)-DP and (αn , n)-accurate
for Marginalsd.

Observe that both lower bounds on α stated in Theorem 3.1
are the minimum of three terms. To prove them, it suffices
to show that, for all ranges of parameters, one of the terms
is a lower bound on α.

The rest of the proof of Theorem 3.1 follows by a case anal-
ysis: (1) For ε ≤ 2

T , we use a group privacy argument to
show that α > T/9 (for both pure and approximate dif-
ferential privacy). (2) For ε > 2

T , we use Lemma 3.4 and
Lemma 3.3 to lower bound α. The details of the proof can
be found in Appendix C.

4. Lower Bounds for SumSelect

In this section, we prove Theorem 4.1 that provides strong
lower bounds on the accuracy parameter α of any (α, T)-
accurate algorithm M for SumSelectd in the continual
release model with nonadaptively chosen inputs. Our
lower bounds match the upper bounds from Section 5 for
SumSelectd in the continual release model with adaptively
chosen inputs up to logarithmic factors in the time horizon
T and the number of coordinates d. We give the formal
details of the proof in Appendix D.

Theorem 4.1. For all ε ∈ (0, 1], δ ∈ [0, 1), α > 0, suf-
ficiently large d,T ∈ N, and mechanisms M in the con-
tinual release model with nonadaptively chosen inputs that
are (ε, δ)-DP and (α, T)-accurate for SumSelectd, the fol-
lowing statements hold.

1. If 0 < δ = o(ε/T 2) , then

α = Ω̃
(

min
{
T 1/3 log2/3 d

ε2/3
,
√
d
ε , T

})
.

2. If δ = 0, then

α = Ω
(

min

{√
T
ε log

(
2 + d√

εT

)
, dε , T

})

= Ω̃
(

min

{√
T log(d)

ε , dε , T

})
.

4.1. Proof sketch of Theorem 4.1

To prove our lower bounds for SumSelect in the contin-
ual release model with nonadaptively chosen inputs, we
first reduce from a problem called k-IndSelect in the batch
model. In the batch model, k-IndSelectd solves the prob-
lem of selecting the index of the largest coordinate sum
in each of k disjoint subsets (which have d coordinates
each). We reduce the problem of solving k-IndSelectd in
the batch model to solving SumSelectdk in the continual
release model.

We then prove new lower bounds for k-IndSelect in the
batch model: (1) In the case of approximate differential pri-
vacy ((ε, δ)-DP), we obtain a lower bound for k-IndSelect
by reducing to a related problem and invoking a result
of Steinke & Ullman (2017). (2) In the case of pure dif-
ferential privacy ((ε, 0)-DP), we prove a lower bound by
using a standard packing argument.

Finally, we use the new lower bounds for k-IndSelect in
conjunction with our reduction and careful case analysis to
obtain our lower bounds in the continual release model.

5. Continual Release with Adaptively Chosen
Inputs

In this section, we provide an explicit game-based formu-
lation of the continual release model with adaptively cho-
sen inputs. Here, the inputs to the mechanism can be cho-
sen online by an adversary that observes the outputs of the
mechanism on prior stream elements. Unlike the setting
considered in the prior sections, the input data at time t in
this setting can depend on the values returned by the al-
gorithm at prior steps. Because of this, both privacy and
accuracy are harder to attain in this model in general.

Later in the section we describe differentially private mech-
anisms for two types of problems: SumSelectd and approx-
imating functions with bounded sensitivity (`2 sensitivity
in the case of approximate differential privacy and `1 sen-
sitivity in the case of pure DP).3 For these problems we
show that there is no overhead in terms of accuracy when
the input stream is selected adaptively, that is, our lower
bounds (that hold even when the input stream is selected
obliviously) are matched by algorithms that work even with
adaptively selected streams. We achieve this by analyz-
ing variants of classical continual release algorithms in the
new model. Since a proof of privacy in the model with
adaptively chosen inputs cannot be generally reduced to a

3The latter class of problems captures MaxSum, which has
sensitivity 1.

7

The Price of Differential Privacy under Continual Observation

proof in the nonadaptive model 4, our analysis adapts tech-
niques from simulation-based cryptography to argue in-
distinguishability of the relevant distributions directly.The
main challenge in analyzing privacy is that input streams
in ‘neighboring’ interactions with the private mechanism
may differ in many records, which necessitates using dif-
ferent techniques than privacy proofs in prior work, which
analyze privacy with respect to input streams that differ in
a single record.

Our mechanisms are (α, T)-accurate, where the upper
bounds for α match the lower bounds obtained in previous
sections in the continual release model with nonadaptively
chosen inputs up to logarithmic factors in the time horizon
T , the number of coordinates d, and the inverse of the pri-
vacy parameter 1

δ .

5.1. Model Definition

In the continual release model with adaptively chosen in-
puts, a mechanism M interacts with a randomized adver-
sarial process Adv that runs for T timesteps; at timestep
t ∈ [T], the process Adv receives at fromM, updates its
internal state, and produces input record xt+1 that is sent
toM at timestep t + 1. The adversarial process Adv can
choose xt+1 based on the previous input records x[t] and
M’s previous outputs a[t]. We make no assumptions on
Adv regarding running time or complexity; its only limita-
tion is that it does not see the internal coins ofM.

Definition 5.1. A mechanism M is (α,T)-accurate for a
function f in the continual release model with adaptively
chosen inputs if for all processesAdv , the error ofM with
respect to Adv is at most α with high probability, that is,

Pr
coins ofM,Adv

[
max
t∈[T]

ERRf (at;x[t]) ≤ α
]
≥ 2

3
.

A similar notion of accuracy was considered in work on
adversarial streaming (Ben-Eliezer et al., 2020; Hassidim
et al., 2022; Kaplan et al., 2021), though those articles do
not directly address privacy.

Next, we define (event-level) privacy in the continual re-
lease model with adaptively chosen inputs which is trick-
ier than in the continual release model with nonadaptively
chosen inputs. One difficulty here is that the definition
of ‘neighboring’ input streams must still allow for adap-
tive online generation of the input streams by an adver-
sarial process Adv . This concept is implicit in the work
of Thakurta & Smith (2013), but to our knowledge has
not been previously defined. Privacy is defined with re-
spect to the game ΠM,Adv , described in Algorithm 1,

4Subsequently to the initial appearance of our work, Denisov
et al. (2022) give an example of a mechanism that is private with
nonadaptively chosen inputs but not with adaptively chosen inputs

between mechanism M and an adversary Adv . In all
timesteps except one, Adv outputs a single input record
which ΠM,Adv simply forwards toM. However, there is
a special challenge timestep t∗ ∈ [T], selected by Adv ,
in which Adv provides two records x(L)

t∗ and x(R)
t∗ . The

game comes in two versions, specified by its input param-
eter side ∈ {L,R} which is not known to Adv orM: in
one version, the record x(L)

t∗ is handed to M at timestep
t∗; in the other, the record x(R)

t∗ is handed to M instead.
The mechanism is private if the distributions on the adver-
sary’s view, which consists of its internal randomness and
the transcript of messages it sends and receives, are close
in the two versions of the game.

If we consider x(L)
t∗ to be the data of person t∗, and x(R)

t∗

to be a dummy value (say, all 0’s) then: (1) The parameter
side then controls whether the data of person t∗ is included
in the computation or not. (2) The privacy requirement is
that an outside attacker cannot tell whether t∗’s data was
used, even if the attacker has full knowledge of the process
generating the data stream.

Algorithm 1 Privacy game ΠM,Adv for the continual re-
lease model with adaptively chosen inputs

1: Input: time horizon T ∈ N, side ∈ {L,R} (not
known to Adv).

2: for t = 1 to T do
3: Adv outputs typet ∈ {challenge, regular}, where

challenge is chosen once during the game.
4: if typet = regular then
5: Adv outputs xt ∈ X which is sent toM.
6: end if
7: if typet = challenge then
8: t∗ ← t.
9: Adv outputs (x

(L)
t , x

(R)
t) ∈ X 2.

10: x
(side)
t is sent toM.

11: end if
12: M outputs at which is given to Adv .
13: end for

Definition 5.2. The view ofAdv in privacy game ΠM,Adv

consists ofAdv ’s internal randomness and the transcript of
messages it sends and receives. Let V (side)

M,Adv denote Adv ’s
view at the end of the game run with input side ∈ {L,R}.

One could also define the adversary’s view as its internal
state at the end of the game. The version we define contains
enough information to compute that internal state, but is
simpler to work with.

In addition to (ε, δ)-DP, we consider a related notion, called
zCDP (Bun & Steinke, 2016). See Section A.1 for back-
ground on zCDP and the notion of ρ-closeness of random
variables ('ρ).

8

The Price of Differential Privacy under Continual Observation

Table 3. Our (asymptotic) upper bounds on the error of continual release mechanisms with adaptively chosen inputs.
ρ-zCDP (ε, 0)-DP

Problem Tree Recomputation Tree Recomputation

MaxSum
√
d log T

√
log(dT)

√
ρ

3

√
T log T
ρ

d(log d) log3 T
ε

√
T log T
ε

SumSelect
√
d log T

√
log(dT)

√
ρ

T 1/3 log2/3(dT)
ρ1/3

d(log d) log3 T
ε

√
T log(dT)

ε

Definition 5.3. A mechanismM is (ε, δ)-DP in the contin-
ual release model with adaptively chosen inputs if, for all
adversaries Adv ,

V
(L)
M,Adv ≈ε,δ V

(R)
M,Adv .

A mechanismM is ρ-zCDP in the continual release model
with adaptively chosen inputs if for all adversaries Adv ,

V
(L)
M,Adv 'ρ V

(R)
M,Adv .

The symbol 'ρ denotes ρ-closeness (Definition A.11).

5.2. Summary of Upper Bounds for Adaptive Inputs

Our upper bounds on the error of differentially private
mechanisms for MaxSumd and SumSelectd in the contin-
ual release model with adaptively chosen inputs are sum-
marized in Table 3. The corresponding theorems are stated
in Appendix E.1. The upper bounds in the table are at-
tained by two simple mechanisms: one uses the binary tree
mechanism and the other recomputes the target function at
regular intervals. The bounds stated for MaxSumd and ob-
tained via recomputing periodically apply more generally:
to all sensitivity-1 functions. Detailed proofs are given in
Appendix E.

Acknowledgments
We are grateful to Kobbi Nissim for being part of the con-
versations that got this work started and for subsequent
helpful comments. We are also grateful to Jon Ullman
and Thomas Steinke for insights into lower bounds for the
top-k selection problem. A.S. and P.J. were supported in
part by NSF awards CCF-1763786 and CNS-2120667 as
well as Faculty Awards from Google and Apple. S.S. was
supported by NSF award CNS-2046425 and Cooperative
Agreement CB20ADR0160001 with the Census Bureau.

References
Agarwal, N. and Singh, K. The price of differential pri-

vacy for online learning. In Precup, D. and Teh, Y. W.
(eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 32–40. PMLR, 06–11 Aug
2017.

Apple. Learning with privacy at scale, 2017.

Bafna, M. and Ullman, J. The price of selection in differen-
tial privacy. In Kale, S. and Shamir, O. (eds.), Proceed-
ings of the 2017 Conference on Learning Theory, vol-
ume 65 of Proceedings of Machine Learning Research,
pp. 151–168. PMLR, 07–10 Jul 2017.

Bassily, R., Smith, A. D., and Thakurta, A. Private em-
pirical risk minimization: Efficient algorithms and tight
error bounds. In 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, October 18-21, 2014, pp. 464–473. IEEE
Computer Society, 2014. doi: 10.1109/FOCS.2014.56.

Beimel, A., Kaplan, H., Mansour, Y., Nissim, K., Saranu-
rak, T., and Stemmer, U. Dynamic algorithms against
an adaptive adversary: generic constructions and lower
bounds. In Leonardi, S. and Gupta, A. (eds.), STOC
’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pp. 1671–
1684. ACM, 2022. doi: 10.1145/3519935.3520064.

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yogev,
E. A framework for adversarially robust streaming al-
gorithms. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS’20, pp. 63–80, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450371087. doi: 10.1145/3375395.3387658.

Ben-Eliezer, O., Eden, T., and Onak, K. Adversarially
robust streaming via dense-sparse trade-offs. In Bring-
mann, K. and Chan, T. (eds.), 5th Symposium on Simplic-
ity in Algorithms, SOSA@SODA 2022, Virtual Confer-
ence, January 10-11, 2022, pp. 214–227. SIAM, 2022a.
doi: 10.1137/1.9781611977066.15.

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yo-
gev, E. A framework for adversarially robust stream-
ing algorithms. J. ACM, 69(2):17:1–17:33, 2022b. doi:
10.1145/3498334.

Bolot, J., Fawaz, N., Muthukrishnan, S., Nikolov, A., and
Taft, N. Private decayed predicate sums on streams.
In Proceedings of the 16th International Conference on
Database Theory, ICDT ’13, pp. 284–295, New York,

9

The Price of Differential Privacy under Continual Observation

NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450315982. doi: 10.1145/2448496.2448530.

Bun, M. and Steinke, T. Concentrated differential pri-
vacy: Simplifications, extensions, and lower bounds.
In Hirt, M. and Smith, A. D. (eds.), Theory of Cryp-
tography - 14th International Conference, TCC 2016-
B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part I, volume 9985 of Lecture Notes in
Computer Science, pp. 635–658, 2016. doi: 10.1007/
978-3-662-53641-4\ 24.

Bun, M., Ullman, J., and Vadhan, S. Fingerprinting codes
and the price of approximate differential privacy. SIAM
Journal on Computing, 47(5):1888–1938, 2018.

Cardoso, A. R. and Rogers, R. Differentially private his-
tograms under continual observation: Streaming selec-
tion into the unknown. In Camps-Valls, G., Ruiz, F. J. R.,
and Valera, I. (eds.), International Conference on Arti-
ficial Intelligence and Statistics, AISTATS 2022, 28-30
March 2022, Virtual Event, volume 151 of Proceedings
of Machine Learning Research, pp. 2397–2419. PMLR,
2022.

Chan, T. H., Shi, E., and Song, D. Private and continual
release of statistics. IACR Cryptol. ePrint Arch., 2010:
76, 2010.

Chan, T. H., Shi, E., and Song, D. Private and continual
release of statistics. ACM Trans. Inf. Syst. Secur., 14(3):
26:1–26:24, 2011. doi: 10.1145/2043621.2043626.

Cheu, A. and Ullman, J. R. The limits of pan privacy and
shuffle privacy for learning and estimation. In Khuller, S.
and Williams, V. V. (eds.), STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pp. 1081–1094. ACM,
2021. doi: 10.1145/3406325.3450995.

Cohen, E., Lyu, X., Nelson, J., Sarlós, T., Shechner, M.,
and Stemmer, U. On the robustness of countsketch to
adaptive inputs. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), Inter-
national Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pp.
4112–4140. PMLR, 2022.

Denisov, S., McMahan, H. B., Rush, J., Smith, A. D., and
Thakurta, A. G. Improved differential privacy for SGD
via optimal private linear operators on adaptive streams.
In NeurIPS, 2022.

Duchi, J., Jordan, M., and Wainwright, M. Local privacy
and statistical minimax rates. In IEEE Symposium on
Foundations of Computer Science, FOCS ’13, pp. 429–
438, Berkeley, CA, USA, 2013.

Durfee, D. and Rogers, R. M. Practical differentially pri-
vate top-k selection with pay-what-you-get composition.
In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 3527–3537, 2019.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In International Conference on the
Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’06, pp. 486–503, St. Petersburg, Russia,
2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A.
Calibrating noise to sensitivity in private data analy-
sis. In Theory of cryptography conference, pp. 265–284.
Springer, 2006b.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Dif-
ferential privacy under continual observation. In Schul-
man, L. J. (ed.), Proceedings of the 42nd ACM Sympo-
sium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pp. 715–724. ACM,
2010a. doi: 10.1145/1806689.1806787.

Dwork, C., Naor, M., Pitassi, T., Rothblum, G. N., and
Yekhanin, S. Pan-private streaming algorithms. In
Yao, A. C. (ed.), Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, January 5-
7, 2010. Proceedings, pp. 66–80. Tsinghua University
Press, 2010b.

Dwork, C., Rothblum, G. N., and Vadhan, S. P. Boosting
and differential privacy. In 51th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pp. 51–
60. IEEE Computer Society, 2010c. doi: 10.1109/FOCS.
2010.12.

Dwork, C., Naor, M., Reingold, O., and Rothblum, G. N.
Pure differential privacy for rectangle queries via pri-
vate partitions. In Iwata, T. and Cheon, J. H. (eds.),
Advances in Cryptology - ASIACRYPT 2015 - 21st In-
ternational Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceed-
ings, Part II, volume 9453 of Lecture Notes in Computer
Science, pp. 735–751. Springer, 2015. doi: 10.1007/
978-3-662-48800-3\ 30.

Edmonds, A., Nikolov, A., and Ullman, J. R. The power of
factorization mechanisms in local and central differential
privacy. In Makarychev, K., Makarychev, Y., Tulsiani,
M., Kamath, G., and Chuzhoy, J. (eds.), Proccedings of

10

The Price of Differential Privacy under Continual Observation

the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pp. 425–438. ACM, 2020. doi: 10.1145/3357713.
3384297.

Fichtenberger, H., Henzinger, M., and Ost, W. Differ-
entially private algorithms for graphs under continual
observation. In Mutzel, P., Pagh, R., and Herman,
G. (eds.), 29th Annual European Symposium on Algo-
rithms, ESA 2021, September 6-8, 2021, Lisbon, Por-
tugal (Virtual Conference), volume 204 of LIPIcs, pp.
42:1–42:16. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2021. doi: 10.4230/LIPIcs.ESA.2021.42.

Ghazi, B., Kumar, R., Nelson, J., and Manurangsi, P. Pri-
vate counting of distinct and k-occurring items in time
windows. In Kalai, Y. T. (ed.), 14th Innovations in
Theoretical Computer Science Conference, ITCS 2023,
January 10-13, 2023, MIT, Cambridge, Massachusetts,
USA, volume 251 of LIPIcs, pp. 55:1–55:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ITCS.2023.55.

Hardt, M. and Talwar, K. On the geometry of differen-
tial privacy. In Proceedings of the 42nd Annual ACM
Symposium on the Theory of Computing, STOC ’10, pp.
705–714, New York, NY, USA, 2010. ACM.

Hardt, M., Ligett, K., and McSherry, F. A simple and prac-
tical algorithm for differentially private data release. In
Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q. (eds.), Advances in Neural In-
formation Processing Systems 25, pp. 2348–2356, 2012.

Hassidim, A., Kaplan, H., Mansour, Y., Matias, Y., and
Stemmer, U. Adversarially robust streaming algorithms
via differential privacy. J. ACM, 69(6):42:1–42:14, 2022.
doi: 10.1145/3556972.

Hay, M., Rastogi, V., Miklau, G., and Suciu, D. Boost-
ing the accuracy of differentially private histograms
through consistency. Proc. VLDB Endow., 3(1):1021–
1032, 2010. doi: 10.14778/1920841.1920970.

Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., and
Zhang, D. Principled evaluation of differentially pri-
vate algorithms using DPBench. In Özcan, F., Koutrika,
G., and Madden, S. (eds.), Proceedings of the 2016 In-
ternational Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pp. 139–154. ACM, 2016. doi:
10.1145/2882903.2882931.

Jain, P., Kothari, P., and Thakurta, A. Differentially pri-
vate online learning. In Mannor, S., Srebro, N., and
Williamson, R. C. (eds.), Proceedings of the 25th Annual

Conference on Learning Theory, volume 23 of Proceed-
ings of Machine Learning Research, pp. 24.1–24.34, Ed-
inburgh, Scotland, 25–27 Jun 2012. JMLR Workshop
and Conference Proceedings.

Kairouz, P., Mcmahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learning
without sampling or shuffling. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 5213–5225. PMLR,
18–24 Jul 2021.

Kaplan, H., Mansour, Y., Nissim, K., and Stemmer, U.
Separating adaptive streaming from oblivious streaming
using the bounded storage model. In Malkin, T. and
Peikert, C. (eds.), Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Confer-
ence, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part III, volume 12827 of Lecture Notes in
Computer Science, pp. 94–121. Springer, 2021.

Kasiviswanathan, S. P. and Smith, A. D. On the ’semantics’
of differential privacy: A Bayesian formulation. J. Priv.
Confidentiality, 6(1), 2014. doi: 10.29012/jpc.v6i1.634.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. D. What can we learn pri-
vately? SIAM J. Comput., 40(3):793–826, 2011. doi:
10.1137/090756090.

McKenna, R. and Sheldon, D. R. Permute-and-Flip: a
new mechanism for differentially private selection. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 193–203. Curran Asso-
ciates, Inc., 2020.

McSherry, F. and Talwar, K. Mechanism design via differ-
ential privacy. In Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science, FOCS
’07, pp. 94–103, USA, 2007. IEEE Computer Society.
ISBN 0769530109. doi: 10.1109/FOCS.2007.41.

Mironov, I., Naor, M., and Segev, G. Sketching in adversar-
ial environments. SIAM J. Comput., 40(6):1845–1870,
2011. doi: 10.1137/080733772.

Perrier, V., Asghar, H. J., and Kaafar, D. Private contin-
ual release of real-valued data streams. In 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-
27, 2019. The Internet Society, 2019.

Qiao, G., Su, W., and Zhang, L. Oneshot differentially pri-
vate top-k selection. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on

11

The Price of Differential Privacy under Continual Observation

Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 8672–8681. PMLR, 18–24
Jul 2021.

Rényi, A. On measures of entropy and information. Pro-
ceedings of the Fourth Berkeley Symposium on Math-
ematical Statistics and Probability, Volume 1: Con-
tributions to the Theory of Statistics, pages 547–561,
Berkeley, Calif., 1961. University of California Press,
abs/2101.10836, 1961.

Song, S., Little, S., Mehta, S., Vinterbo, S. A., and Chaud-
huri, K. Differentially private continual release of graph
statistics. CoRR, abs/1809.02575, 2018.

Steinke, T. and Ullman, J. R. Tight lower bounds for dif-
ferentially private selection. In Umans, C. (ed.), 58th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-
17, 2017, pp. 552–563. IEEE Computer Society, 2017.
doi: 10.1109/FOCS.2017.57.

Talwar, K., Thakurta, A., and Zhang, L. Nearly optimal pri-
vate LASSO. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp.
3025–3033, 2015.

Thakurta, A. G. and Smith, A. (Nearly) optimal algorithms
for private online learning in full-information and bandit
settings. In Burges, C. J. C., Bottou, L., Welling, M.,
Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances
in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

Ullman, J., 2021. Personal communication.

Xiao, X., Wang, G., and Gehrke, J. Differential privacy via
wavelet transforms. IEEE Trans. Knowl. Data Eng., 23
(8):1200–1214, 2011. doi: 10.1109/TKDE.2010.247.

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. Applied federated
learning: Improving google keyboard query suggestions.
CoRR, abs/1812.02903, 2018.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Ka-
math, G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz,
L., Yekhanin, S., and Zhang, H. Differentially private
fine-tuning of language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

12

The Price of Differential Privacy under Continual Observation

A. Differential Privacy
We first introduce the notion of (ε, δ)-indistinguishability.

Definition A.1 ((ε, δ)-Indistinguishability). Random vari-
ablesR1 andR2 over the same outcome spaceY are (ε, δ)-
indistinguishable (denoted R1 ≈ε,δ R2) if for all subsets
S ⊆ Y , the following hold:

Pr[R1 ∈ S] ≤ eε Pr[R2 ∈ S] + δ;

Pr[R2 ∈ S] ≤ eε Pr[R1 ∈ S] + δ.

A dataset x = (x1, . . . , xn) ∈ Xn is a vector of elements,
called records, from a universe X . Two datasets are neigh-
bors if they differ in one record (i.e., one coordinate). In-
formally, differential privacy requires that an algorithm’s
output distributions are similar on all pairs of neighbor-
ing datasets. In the batch model, the algorithm receives
datasets as one batch as opposed to in an online fashion.

Definition A.2 (Differential Privacy in Batch
Model (Dwork et al., 2006b;a)). A randomized algo-
rithm A : Xn → Y is (ε, δ)-differentially private (DP) if
for every pair of neighboring datasets x,x′ ∈ Xn,

A(x) ≈ε,δ A(x′).

The case δ = 0 is referred to as pure differential privacy,
whereas the case δ > 0 is called approximate differential
privacy.

Differential privacy protects groups of individuals.

Lemma A.3 (Group Privacy (Dwork et al., 2006b)). Every
(ε, δ)-DP algorithm A is (`ε, δ′)-DP for groups of size `,
where δ′ = δ e

`ε−1
eε−1 ; that is, for all datasets x,x′ such that

‖x− x′‖0 ≤ `,

A(x) ≈`ε,δ′ A(x′).

Differential privacy is closed under post-processing.

Lemma A.4 (Post-Processing (Dwork et al., 2006b; Bun &
Steinke, 2016)). IfA is an (ε, δ)-DP algorithm with output
space Y and B is a randomized map from Y to Z , then the
algorithm B ◦ A is (ε, δ)-DP.

Definition A.5 (Sensitivity). Let f : Xn → Rm be a func-
tion. Its `1-sensitivity is

max
neighbors x,x′∈Xn

‖f(x)− f(x′)‖1.

To define `2-sensitivity, we replace the `1 norm with the `2
norm.

Our algorithms use the standard Laplace and Exponential
mechanisms to ensure differential privacy.

Definition A.6 (Laplace Distribution). The Laplace distri-
bution with parameter b and mean 0, denoted Lap(b), has
probability density

h(r) =
1

2b
e−
|r|
b for all r ∈ R.

Lemma A.7 (Laplace Mechanism, (Dwork et al., 2006b)).
Let f : Xn → Rm be a function with `1-sensitivity at most
∆1. Then the Laplace mechanism is algorithm

Af (x) = f(x) + (Z1, . . . , Zm),

where Zi ∼ Lap
(

∆1

ε

)
. Algorithm Af is (ε, 0)-DP.

Lemma A.8 (Exponential Mechanism (McSherry & Tal-
war, 2007)). Let L be a set of outputs and g : L×Xn → R
be a function that measures the quality of each output on a
dataset. Assume that for every m ∈ L, the function g(m, .)
has `1-sensitivity at most ∆. Then, for all ε, n > 0 and for
all datasets y ∈ Xn, there exists an (ε, 0)-DP mechanism
that outputs an element m ∈ L such that, for all a > 0, we
have

Pr

[
max
i∈[L]

g(i, y)− g(m, y) ≥ 2∆
(ln |L|+ a)

ε

]
≤ e−a.

Definition A.9 (Gaussian Distribution). The Gaussian dis-
tribution with parameter σ and mean 0, denotedN (0, σ2),
has probability density

h(r) =
1

σ
√

2π
e−

r2

2σ2 for all r ∈ R.

A.1. ρ-zCDP

This section describes “zero-concentrated differential pri-
vacy” (zCDP), a variant of differential privacy that is less
stringent than pure differential privacy, but more strin-
gent than approximate differential privacy. In contrast to
(ε, δ)-differential privacy, zCDP requires output distribu-
tions on all pairs of neighboring datasets to be ρ-close (Def-
inition A.11) instead of (ε, δ)-indistinguishable. In Ap-
pendix E , we show that our algorithms are zCDP and
then use conversion from zCDP to (ε, δ)-differential pri-
vacy (Lemma A.15) to restate our upper bounds in the same
terms as our lower bounds for easy comparison between the
two.
Definition A.10 (Rényi Divergence (Rényi, 1961)). Let Q
and Q′ be distributions on Y . For ξ ∈ (1,∞), the Rényi
divergence of order ξ between Q and Q′(also called the
ξ-Rényi Divergence) is defined as

Dξ(Q‖Q′) =
1

ξ − 1
log

(
E

r∼Q′

[(
Q(r)

Q′(r)

)ξ−1
])

. (3)

Here Q(·) and Q′(·) denote either probability masses (in
the discrete case) or probability densities (when they exist).
More generally, one can replace Q(.)

Q′(.) with the the Radon-
Nikodym derivative of Q with respect to Q′.

13

The Price of Differential Privacy under Continual Observation

Definition A.11 (ρ-Closeness). Random variables R1 and
R2 over the same outcome space Y are ρ-close (denoted
R1 'ρ R2) if for all ξ ∈ (1,∞),

Dξ(R1‖R2) ≤ ξρ and Dξ(R2‖R1) ≤ ξρ,

where Dξ(R1‖R2) is the ξ-Rényi divergence between the
distributions of R1 and R2.

Definition A.12 (zCDP in Batch Model (Bun & Steinke,
2016)). A randomized batch algorithm A : Xn → Y is
ρ-zero-concentrated differentially private (ρ-zCDP), if, for
all neighboring datasets y,y′ ∈ Xn,

A(y) 'ρ A(y′).

One major benefit of using zCDP is that this definition of
privacy admits a clean composition result. We use it when
analysing the privacy of the algorithms in Appendix E .

Lemma A.13 (Composition (Bun & Steinke, 2016)). Let
A : Xn → Y and A′ : Xn × Y → Z be batch algorithms.
Suppose A is ρ-zCDP and A′ is ρ′-zCDP. Define batch al-
gorithm A′′ : Xn → Y × Z by A′′(y) = A′(y,A(y)).
Then A′′ is (ρ+ ρ′)-zCDP.

The Gaussian mechanism, defined next, is used in Sec-
tion 5. It privately estimates a real-valued function on a
database by adding Gaussian noise to the value of the func-
tion.

Lemma A.14 (Gaussian Mechanism (Bun & Steinke,
2016)). Let f : Xn → R be a function with `2-sensitivity
at most ∆2. Let A be the batch algorithm that, on input y,
releases a sample fromN (f(y), σ2). ThenA is (∆2

2/2σ
2)-

zCDP.

The final lemma in this section relates zero-concentrated
differential privacy to (ε, δ)-differential privacy.

Lemma A.15 (Conversion from zCDP to DP (Bun &
Steinke, 2016)). For all ρ, δ > 0, if batch algorithm A
is ρ-zCDP, then A is (ρ+ 2

√
ρ log(1/δ), δ)-DP.

B. Further Related Work
Event-level privacy For streams with a limited number
of ones, Dwork et al. (2015) give a polynomial improve-
ment on the upper bound for summation from Dwork et al.
(2010a) and Chan et al. (2010). Bolot et al. (2013) and Per-
rier et al. (2019) extended the tree mechanism of Dwork
et al. (2010a) to work for weighted sums with exponentially
decaying coefficients and for sums of bounded real values,
respectively. A line of work has studied applications of the
tree mechanism to answering range queries (see, e.g., Hay
et al. (2010); Xiao et al. (2011); Hay et al. (2016); Dwork
et al. (2010a; 2015); Edmonds et al. (2020)). Song et al.
(2018) generalized the continual release model to graph

data and obtained a mechanism that released graph statis-
tics, such as the degree distribution and subgraph counts,
on bounded degree graphs. Fichtenberger et al. (2021)
studied a variety of other graph problems in the continual
release setting, including minimum cut and densest sub-
graph. DP online learning is investigated in a sequence of
works (Jain et al., 2012; Thakurta & Smith, 2013; Agar-
wal & Singh, 2017) that use the summation primitive de-
veloped by Dwork et al. (2010a) to obtain sublinear regret
guarantees for many hypothesis classes. The adaptive con-
tinual release model arises implicitly in those works, but to
our knowledge, it was not formulated explicitly. Cardoso
& Rogers (2022) study, among other problems, SumSe-
lect (called top-1 selection with unrestricted `0 sensitivity
in their work) in the continual release model. Their focus
is on empirical performance on streams that arise in prac-
tice, in which the index of the largest sum changes seldom.
The recomputation-based algorithm we present for Sum-
Select can be seen as a special case of their KnownBase
algorithm. They evaluate the accuracy of the algorithm em-
pirically whereas our work provides theoretical bounds on
the error. One of the contributions of Cardoso & Rogers
(2022) is making the algorithms work in a more restrictive
computational model, in which the algorithm stores only
the current values of the sums at any given time step and
the seed of a pseudorandom function. The algorithms we
present here can also be implemented in their model using
the techniques in their paper.

User-level differential privacy User-level privacy in the
continual release model was first studied by Dwork et al.
(2010a) and Chan et al. (2011). User-level privacy is more
stringent than event-level privacy, so the lower bounds in
our paper apply directly to that model. Even though, in
general, event-level privacy does not imply user-level pri-
vacy, the recomputation technique used in some of our al-
gorithms gives user-level privacy whenever the mechanism
employed for the recomputations is user-level private.

Pan-Privacy Pan-privacy, defined by Dwork et al.
(2010b), is a model that protects against intrusions into the
memory of the algorithm as it processes a stream. In pan-
privacy, as in continual release, the input is presented as a
stream. However, the requirement of pan-privacy is orthog-
onal to that of continual release; see Dwork et al. (2010b)
for details.

C. Proofs Omitted from Section 3
In this section, we prove Theorem 3.1 by formalizing the
proof sketch from Section 3.2.

For vectors u = (u1, . . . , u`) and v = (v1, . . . , vm), let
u ◦ v = (u1, . . . , u`, v1, . . . , vm). For a vector v, let vn

14

The Price of Differential Privacy under Continual Observation

Algorithm 2 Algorithm A for estimating all 1-way
marginals

1: Input: y = (y1, . . . , yn) ∈ Xn, where X = {0, 1}d,
and black-box access to mechanismM.

2: Output: b = (b1, . . . , bd) ∈ Rd.
3: Let ej be a vector of length d with 1 in coordinate j

and 0 everywhere else; let ej ← (1)d − ej .
4: Construct a stream x ← y ◦ (e1)n ◦ (e1)n ◦ · · · ◦

(ed−1)n ◦ (ed−1)n ◦ (ed)
n with 2dn records.

5: for t ∈ [T] do
6: Send xt toM and get the corresponding output at.
7: end for
8: for j ∈ [d] do
9: bj ← a2jn/n− j.

10: end for
11: Output b← (b1, . . . , bd).

denote the vector v◦v◦· · ·◦v representing n concatenated
copies of v. Algorithm 2 represents the algorithm reducing
the one-way marginals problem to solving MaxSum in the
continual release model. We prove the following lemma
capturing the accuracy guarantees of the reduction.

Lemma C.1. Let A be Algorithm 2. For all ε > 0, δ ≥
0, α ∈ R+ and d, n, T ∈ N, where T ≥ 2dn, if mechanism
M is (ε, δ)-DP and (α, T)-accurate for MaxSumd in the
continual release model with nonadaptively chosen inputs,
then batch algorithm A is (ε, δ)-DP and (αn , n)-accurate
for Marginalsd.

Proof of Lemma C.1. We start by reasoning about privacy.
Fix neighboring datasets y and y′ that are inputs to algo-
rithm A. Let x and x′ be the streams constructed in Step 4
of A when it is run on y and y′, respectively. By con-
struction, x and x′ are neighbors. Since M is (ε, δ)-DP,
and A only post-processes the outputs received from M,
Lemma A.4 implies that A is (ε, δ)-DP.

Now we reason about accuracy. Let x = (x1, . . . , x2dn) be
the input stream provided toM when A is run on dataset
y. By construction of x, the marginals qj(y) for all j ∈ [d]
and MaxSumd are related as follows:

qj(y) =
1

n

∑
i∈[n]

yi[j] =
1

n

(∑
i∈[2jn]

xi[j]− jn
)

=
1

n
·MaxSumd(x[2jn])− j. (4)

The attribute with the largest sum in x[2jn] is j because
(e1)n ◦ (e1)n ◦ · · · ◦ (ej−1)n ◦ (ej−1)n ◦ (ej)

n contributes
jn ones to this attribute and (j− 1)n ones to each attribute
in [n]/{j}, whereas the maximum sum of any attribute in
y is n.

Since the transformation fromM toA is deterministic, the
coins of A are the same as the coins ofM. By (4) and the
computation of the estimates for the Marginalsd in Step 9
of Algorithm 2,

Pr
coins ofA

[
ERRMarginals(y,A(y)) ≤ α

n

]
= Pr

coins ofA

[
max
j∈[d]
|qj(y)− bj | ≤

α

n

]
= Pr

coins ofM

[
max

t∈{2n,...,2dn}

∣∣MaxSumd(x[t])− at
∣∣ ≤ α]

≥ Pr
coins ofM

[
max
t∈[T]

∣∣MaxSumd(x[t])− at
∣∣ ≤ α]

= Pr
coins ofM

[
max
t∈[T]

ERRMaxSum(x[t], at) ≤ α
]
≥ 2

3
,

where we used that M is (α, T)-accurate for MaxSumd.
Thus, A is (αn , n)-accurate for Marginalsd.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The accuracy parameter α is non-
decreasing as a function of d since any mechanismM for
MaxSumd can be used to approximate MaxSumd′ for all
d′ < d with the same accuracy and privacy guarantees (by
padding each length-d′ input record with d− d′ zeroes).

Recall that both lower bounds on α stated in Theorem 3.1
are the minimum of three terms. To prove them, it suffices
to show that, for all ranges of parameters, one of the terms
is a lower bound on α.

First, consider the case when ε ≤ 2
T . We will show that

in this case (for both pure and approximate differential pri-
vacy), α > T/9. Since α is a nondecreasing function of
d, it is sufficient to show this for d = 1. Suppose for
the sake of contradiction that α ≤ T/9. Let x = (0)T

and x′ = (0)3T/4(1)T/4 be datastreams that differ on T/4
records. Let aT and a′T be the final outputs ofM on input
streams x and x′, respectively. By accuracy ofM, we have
Pr[aT ≤ T/9] ≥ 2/3. Applying Lemma A.3 on group pri-
vacy with ε ≤ 2/T and ` = T/4, we get Pr[a′T > T/9] ≤√
e · Pr[at > T/9] + 2δ

ε < 2/3 for sufficiently large T ,
since δ = o(ε/T). But MaxSumd(x

′) = T/4, soM is not
(T/9, T)-accurate, a contradiction. Hence, α = Ω(T).

Now assume ε > 2
T , i.e., εT > 2. We start by prov-

ing Item 1 (when δ = o(ε/T)). Let A be the algo-
rithm for Marginalsd with black-box access to M, as de-
fined in Algorithm 2. If T ≥ 2dn and α

n < 1, then by
Lemma C.1, algorithmA is (ε, δ)-differentially private and
(αn , n)-accurate for Marginalsd. (We require α

n < 1 for the
accuracy guarantee on A to be meaningful.) We can then
use Lemma 3.3 to lower bound α.

15

The Price of Differential Privacy under Continual Observation

Case 1: d ≤ (εT log(εT))2/3. If there exists a
dataset size n ∈ (α, T2d], then by Item 1 of Lemma 3.3,
n = Ω

(
n
√
d

α·ε log d

)
, and hence α = Ω

(√
d

ε log d

)
. If no

such n exists, then α + 1 ≥ T
2d , and hence α =

Ω(Td) = Ω
(

T 1/3

ε2/3 log2/3(εT)

)
. Combining the expres-

sions for the two parameter ranges, we get that α =

Ω
(

min
{

T 1/3

ε2/3 log2/3(εT)
,
√
d

ε log d

})
.

Case 2: d > (εT log(εT))2/3. Set d′ =
b(εT log(εT))2/3c. Observe that d ≥ 1 because εT >
2. By our previous padding argument, a mechanism for
MaxSumd can be used to approximate MaxSumd′ for
d′ = (εT)2/3 with the same accuracy and privacy guaran-
tees. Therefore, α = Ω

(
min

{
T 1/3

ε2/3 log2/3(εT)
,
√
d′

ε log d′

})
=

Ω
(

T 1/3

ε2/3 log2/3(εT)

)
.

This completes the proof of Item 1.

The proof of Item 2 (with δ = 0) proceeds along the same
lines, except that we consider the cases d ≤

√
εT and d >√

εT and use Item 2 from Lemma 3.3 instead of Item 1. If
a dataset size n ∈ (α, T2d] exists, by Item 2 of Lemma 3.3,
we get n = Ω

(
nd
αε

)
, and hence α = Ω

(
d
ε

)
. If no such

n exists, then α + 1 ≥ T
2d , and hence α = Ω(T/d) =

Ω(
√
T/ε). If d >

√
εT , a padding argument gives that

α = Ω(
√
T/ε).

D. Proofs Omitted from Section 4
To prove our lower bounds for SumSelect in the continual
release model with nonadaptively chosen inputs, we reduce
from a problem called k-IndSelect that solves k disjoint
instances of the problem of selecting the index of the largest
marginal in the batch model.

To define the function k-IndSelect, let n, d, k ∈ N, and
X = {0, 1}kd. Let y[i : j] denote the dataset y ∈ Xn
with each record restricted to the coordinates between (and
including) i and j. The function k-IndSelectd : Xn → [d]k

corresponds to dividing the dataset into k blocks y[1 :
d],y[d + 1 : 2d], . . . ,y[(k − 1)d + 1 : kd], with n
records each, and applying SumSelectd independently on
each block. It maps a dataset y of size n to a vector
(h1(y), . . . , hk(y)),where hr is defined as the SumSelectd
function applied to block r:

hr(y) = SumSelectd
(
y [(r − 1)d+ 1 : rd]

)
.

The accuracy for k-IndSelect is defined as in Definition 3.2.
To apply it, we define the error ERRk-IndSelect . Note that the
error is scaled differently than for SumSelect because the
goal is to select the index of the largest marginal in each
block, not of the largest sum. For b = (b1, . . . , bk) ∈ [d]k,

define ERRk-IndSelect(y,b)

= max
r∈[k]

(
1

n
· ERRSumSelect(y[r(d− 1) + 1 : rd], br)

)
.

Next, we give lower bounds for (ε, δ)-differentially private
approximation of k-IndSelect in the batch model.
Lemma D.1. For all ε, δ ∈ (0, 1], γ ∈ [0, 1

20], sufficiently
large d, k, n ∈ N, and batch algorithms A that are (ε, δ)-
differentially private and (γ, n)-accurate for k-IndSelectd,
the following statements hold.

1. If δ ∈ (0, 1
n2], then n = Ω(

√
k· ln(1/δ)·log d

εγ)

2. If δ = 0, then n = Ω
(
k·log d
εγ

)
.

Proof Sketch of Item 1 in Lemma D.1. We are aware of
two approaches to proving this result, both of which were
communicated to us by Jonathan Ullman (Ullman, 2021).
The first uses the top-k selection lower bound of Steinke
& Ullman (2017). In that problem, there is a single collec-
tion of d coordinates and the goal is to return the indices of
k < d coordinates whose sums are roughly largest.

If one divides the coordinates into 10k equal groups, there
is a constant probability that the collection of coordinates
with the largest sum in each group is a good approximate
solution for the top-k selection problem. An algorithm for
k-IndSelectd can thus be used to solve the top-k selection
(out of dk coordinates) problem for such instances with
roughly the same error and privacy parameter. The lower
bound of Steinke & Ullman (2017) on n then applies. The
statement we give here relies on a strengthening of the main
result in Steinke & Ullman (2017) that incorporates δ, com-
municated to us by Thomas Steinke.

Another approach is to use the composition framework
of Bun et al. (2018). One can use a folklore result that
selection among d > 2m coordinates can be used to
mount a reconstruction attack on an appropriate dataset
of size m. Composed with the lower bound for 1-way
marginals in Bun et al. (2018), one obtains a lower bound
for k-IndSelectd.

Proof of Item 2 in Lemma D.1. The proof proceeds via a
standard packing argument. For u ∈ [d]k, define y∗u ∈
{0, 1}dk to be the record where each block r ∈ [k] of d co-
ordinates has a 1 in coordinate ur and all zeros everywhere
else. Let yu be the dataset that consists of 2γn copies of y∗u
and (1 − 2γ)n copies of the all-zero record (assuming,
for simplicity, that 2γn is an integer). Since A is (γ, n)-
accurate, Prcoins ofA [ERRk-IndSelect(yu,A(yu)) ≤ γ] ≥ 2

3
for all u ∈ [d]k. This means that for all u ∈ [d]k,

Pr
coins ofA

[A(yu) = u] ≥ 2

3
.

16

The Price of Differential Privacy under Continual Observation

For all u,u′ ∈ [d], by group privacy, A(yu) ≈(γεn,0)

A(yu′), which implies that

Pr [A(yu) = u′] ≥ e−γεn Pr [A(yu′) = u′] ≥ 2

3
e−γεn.

(5)

Since the probability of any event is at most 1,

1 ≥ Pr
coins ofA

[A(yu) 6= u] =∑
u′ 6=u

Pr [A(yu) = u′] ≥ 2

3
e−γεn(dk − 1),

where the last inequality holds by (5). We get that eγεn ≥
dk−1

2 · 2
3 , and thus n = Ω

(
k log d
γε

)
.

D.1. Proof of Theorem 4.1

LetM be an (ε, δ)-DP and (α, T)-accurate mechanism for
SumSelect in the continual release model with nonadap-
tively chosen inputs. We use M to construct an (ε, δ)-
DP algorithm A that is (αn , n)-accurate for k-IndSelectd
in the batch model. We motivate our approach by first dis-
cussing an idea that doesn’t quite work. LetM be an ac-
curate mechanism for SumSelectd in the continual release
model with nonadaptively chosen inputs and y be a dataset
with n records from {0, 1}dk. A naive approach to solving
k-IndSelectd in the batch model is to run k instantiations
of M for n time steps each, one on each block of d co-
ordinates, to select the coordinate with the maximum sum
in that block. However, running k instantiations ofM, as
described, would result in a significant degradation of pri-
vacy, because every datapoint is used k times, once for each
instantiation ofM. We instead reduce to SumSelectdk and
run a single instantiation of M for about nk time steps,
where each datapoint in y is sent to M only once. This
approach doesn’t suffer from privacy degradation.

Algorithm A proceeds in k stages; the rth stage is dedi-
cated to selecting the coordinate with the maximum sum
in the rth block. In the first stage, A streams y to M.
In order to select the coordinate with the maximum sum
from the first block, A then sends 2n records of the form
(1d0d . . . 0d) to M. Then the sums of the coordinates in
the first block of y become much larger than the sums in
the other blocks. This ensures that at the end of the first
stage,M selects the coordinate with the maximum sum in
the first block. In the second stage, A sends 2n records
of the form (0d1d . . . 1d) toM in order to balance out the
number of extraneous 1’s for each coordinate. In order to
select the coordinate with the maximum sum from the sec-
ond block, A sends 2n records of the form (0d1d0d . . . 0d)
toM. At the end of the second stage,M selects the coor-
dinate with the maximum sum in the second block. Algo-
rithm A proceeds similarly for every block.

The details of the algorithm appear in Algorithm 3. For
ease of indexing, A sends all-zero records in time steps
n + 1 to 2n in Step 4 of Algorithm 3, to ensure that all
stages have 4n time steps.

Algorithm 3 Batch algorithm A for k-IndSelect
1: Input: k, y = (y1, . . . , yn) ∈ Xn, where X =

{0, 1}dk, and black-box access to mechanism
M.

2: Output: b = (b1, . . . , bk) ∈ [d]k.
3: Let vj be a vector of length dk with d ones in co-

ordinates [dj] \ [d(j − 1)] and 0 everywhere else; let
vj ← 1dk − vj .

4: Construct a stream x← y ◦ (0dk)n ◦ (v1)2n ◦ (v1)2n ◦
· · · ◦ (vk−1)2n ◦ (vk−1)2n ◦ (vk)2n with 4kn records.

5: for t ∈ [T] do
6: Send the record xt toM and get the corresponding

output at.
7: end for
8: for r ∈ [k] do
9: br ← a4rn − d(r − 1). If br 6∈ [d], then br ← 1.

10: end for
11: Output b← (b1, . . . , bk).

Lemma D.2. Let A be Algorithm 3. For all ε > 0, δ ≥ 0,
α ∈ R+, and T, d, k, n ∈ N, where T ≥ 4kn, if mecha-
nismM is (ε, δ)-differentially private and (α, T)-accurate
for SumSelectdk in the continual release model with non-
adaptively chosen inputs, then batch algorithm A is (ε, δ)-
differentially private and (αn , n)-accurate for k-IndSelectd.

Proof. We start by reasoning about privacy. Fix neighbor-
ing datasets y and y′ that are inputs to algorithm A. Let x
and x′ be the streams constructed in Step 4 of A when it
is run on y and y′, respectively. By construction, x and x′

are neighboring streams. SinceM is (ε, δ)-DP, andA only
post-processes the outputs received from M, Lemma A.4
implies that A is (ε, δ)-DP.

Next, we reason about accuracy. Fix a dataset y and the
corresponding data stream x sent toM. Consider a setting
τ of the random coins of A. Since the transformation from
M to A is deterministic, they correspond to coins used by
M when A runs it as a subroutine. Let ατ be the realized
error ofM with coins τ , that is,

ατ = max
t∈[4kn]

(
ERRSumSelectdk(x[t], at)

)
,

where at are the answers with coins τ . Similarly, let γτ be
the realized error of A with coins τ , that is,

γτ = ERRk-IndSelectdk(y,b)

=
1

n
·max
r∈[k]

(ERRSumSelectd(y[(r − 1)d+ 1 : rd], br)) ,

17

The Price of Differential Privacy under Continual Observation

where b = (b1, . . . , bk) is the output ofA run with coins τ .

The main observation in the accuracy analysis is that if ατ
is small, so is γτ . Note that if α ≥ n, the accuracy guaran-
tee for A is vacuous. Now assume α < n. For all blocks
r ∈ [k], the sums in x[4rn] = y◦ (0dk)n ◦ (v1)2n ◦ (v1)2n ◦
· · · ◦ (vr−1)2n ◦ (vr−1)2n ◦ (vr)

2n of all coordinates not in
block r are smaller than the sums of coordinates in block
r by at least n. Consider coins τ with ατ ≤ α. Since
ατ < n, the index a4rn returned byM is in block r for all
r ∈ [k]. Moreover, the error for each block is at most ατn .
Therefore, γτ ≤ ατ

n ≤
α
n . Considering the probability of

this event over all coins τ, we get

Pr
coins τ ofA

[
γτ ≤

α

n

]
≥ Pr

coins τ ofM
[γτ ≤ α] ≥ 2

3
,

where the last inequality holds because M is (α, T)-
accurate. We conclude that A is (αn , n)-accurate.

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. This proof’s structure resembles
that of Theorem 3.1. First, for the case of ε ≤ 2

T , we
prove that α = Ω(T). Let ej be a record of length d
with 1 in coordinate j and 0 everywhere else. Let x =
(e1)T/4 ◦ (0d)3T/4 and x′ = (e2)T/4 ◦ (0d)3T/4. Proceed-
ing as in the proof of Theorem 3.1 (using group privacy and
the error associated with selection) yields α = Ω(T).

For all other values of ε, we reduce from k-IndSelect, rely-
ing on the lower bounds for k-IndSelect from Lemma D.1.
Fix T, d, ε. Given an integer k, the reduction of Lemma D.2
maps a batch instance of k-IndSelectd′ of size n to an in-
stance of SumSelectd with d = d′k and T = 4nk. The re-
duction applies as long as d′ = d

k ≥ 2 and n = T
4k ≥ 1 are

integers. We will ignore the integrality requirement (which
can be addressed by appropriate padding) and allow any k
between 1 and min(d2 ,

T
4).

When δ = o(ε
T 2), we get δ = o(1

n2) (since ε < 1
and T > n), since our reduction in Lemma D.2 pre-
serves δ, we are in the range of δ where Lemma D.1 Part
1 applies. This gives us a lower bound on the error of
min

(
Ω
(√

k log d′

ε

)
, n
)

when k and d′ are sufficiently large
constants. In our setting, this translates to a lower bound
of Ω(αk) for αk = min

(√k log(2+d/k)
ε , Tk

)
. (We add 2 in-

side the logarithms to avoid 0 or subconstant log terms; this
does not change the asymptotics.) For simplicity, we omit
the dependency on log(1/δ) in the lower bounds.

Our goal is to select the value of k ∈ [1,min(d2 ,
T
4)] that

maximizes αk. For fixed T, d, ε, let k∗ = k∗(T, d, ε) =
max(1, k′) where k′ denotes the largest value of k where
the two terms defining αk equalize (that is, k′ satisfies
k′
√
k′ log(2 + d/k′) = εT). We use two basic facts about

αk: first, for d ≥ 1, the function αk is increasing on [1, k∗)
and decreasing on (k∗,∞).

Second, its maximum value αk∗ is Ω̃(T
1/3 log2/3 d
ε2/3

). To see

why this is, note that k′ = (εT/ log(2 + d′))
2/3, and so

αk′ =
√
k′ log(2+d′)

ε = T 1/3 log2/3(2+d′)
ε2/3

. Consider two
cases: if k′ ≤

√
d, then d′ ≥

√
d and so log(2 + d′) =

Θ(log d). On the other hand, if k′ ≥
√
d, then αk′ , which

is always at least
√
k′, is bounded below by d1/4. Therefore

the factor of log(d) is polynomial in log(αk′) and absorbed
by the Ω̃ notation.

We consider four regimes for the triple (T, d, ε). Let C
denote a constant such that Lemma D.1 applies for d′ ≥ C.

(a) k∗(T, d, ε) = 1: In this case, αk is maximized at k =
1. Since setting k to be a sufficiently large constant
does not change the asymptotics of the lower bound,
we can set k sufficiently large for Lemma D.1 to apply,
and obtain a lower bound of Ω(T/k) = Ω(T).

(b) k∗(T, d, ε) > min(dC ,
T
4) and Cd ≤ T : In this case,

we set k = d/C. We get a lower bound of αk =√
k log(2+d/k)

ε (since k ≤ k∗), which is Ω(
√
d
ε).

(c) k∗(T, d, ε) > min(dC ,
T
4) and Cd > T : This case is

not possible for large T . For it to occur, we must have
k∗ > T/4, which implies that αk∗ < 4. Since αk∗ =

Ω̃(T
1/3 log2/3 d
ε2/3

), we get that ε > 1 (for sufficiently
large T), contradicting our assumptions.

(d) k∗(T, d, ε) ∈ [1,min(dC ,
T
4)]: In this case, we set k =

k∗ and obtain a lower bound of αk∗ = Ω̃(T
1/3 log2/3 d
ε2/3

)
(Note that if k∗ is too small, we can set k = ck∗

for a sufficiently large constant cwithout changing the
asymptotics, as in part a).

Thus, for all possible relationships between T, d and ε, we
obtain a lower bound that is one of three terms in the theo-
rem statement.

The setting in which δ = 0 is similar. For a given
k ∈ [1,min(d2 ,

T
4)], we obtain a lower bound of Ω(αk)

for αk = min
(k log(2+ d

k)
ε , Tk

)
. The remaining calcu-

lations parallel the case where δ > 0, except that now

αk∗ = Ω̃
(√

T log d
ε

)
.

E. Details Omitted from Section 5
E.1. Formal Statements

In this subsection, we state theorems that summarize the
performance guarantees of our mechanisms for MaxSumd

and SumSelectd. We prove these theorems in the follow-
ing subsections. The theorems provide a stronger privacy

18

The Price of Differential Privacy under Continual Observation

guarantee than (ε, δ)-DP, specifically, concentrated differ-
ential privacy. We state implications for (ε, δ)-DP in Corol-
lary E.3. The upper bounds in our theorems are attained by
two simple mechanisms: one uses the binary tree mecha-
nism and the other recomputes the target function at reg-
ular intervals. Prior to our work, it was not known that
these mechanisms are private in the setting with adaptively
chosen inputs. As mentioned in Section 1.1, a proof of
privacy with adaptively chosen inputs cannot be generally
reduced to a proof in the nonadaptive model. Instead, we
build on techniques from simulation-based proofs in cryp-
tography to argue the indistinguishability of input-output
distributions directly.
Theorem E.1 (zCDP, Binary-Tree-Based Mechanisms).
For all ρ ∈ (0, 1], d ∈ N, and sufficiently large
T > 0, there exist ρ-zCDP mechanisms M and M′
in the continual release model with adaptively chosen
inputs such that M is (α, T)-accurate for MaxSumd

and M′ is (α, T)-accurate for SumSelectd, where α =

O

(√
d log T

√
log(dT)

√
ρ

)
.

The next theorem uses the idea of recomputing at regular
intervals, which applies quite generally. Item 1 of Theo-
rem E.2 applies for general sensitivity-1 functions (which
include MaxSumd); a similar result holds for bounded-
sensitivity functions with output space Rd.
Theorem E.2 (zCDP, Mechanisms via Recomputing at
Regular Intervals). For all ρ ∈ (0, 1], d ∈ N, sufficiently
large T > 0, and all functions f : X ∗ → R with `2-
sensitivity at most 1, there exist ρ-zCDP mechanisms M
andM′ in the continual release model with adaptively cho-
sen inputs such that

1. Mechanism M is (α, T)-accurate for f for α =

O
(

min
{

3

√
T log T
ρ , T

})
;

2. MechanismM′ is (α, T)-accurate for SumSelectd for

α = O
(

min
{
T 1/3 log2/3(dT)

ρ1/3
, T
})

.

We combine Theorems E.1–E.2, use the conversion from
zCDP to (ε, δ)-DP from Lemma A.15, and substitute ρ =

ε2

16 log(1/δ) to get the following corollary.

Corollary E.3. For all ε ∈ (0, 1], δ ∈ (0, 1
2], d ∈ N, and

sufficiently large T > 0, there exist (ε, δ)-DP mechanisms
M andM′ in the continual release model with adaptively
chosen inputs such that
1. M is (α, T)-accurate for MaxSumd for α =

O

(
min

{
3
√
T log(1/δ) log T

ε2/3
,

√
d log(dT) log(1/δ) log T

ε , T

})
;

2. M′ is (α, T)-accurate for SumSelectd for α =

O

(
min

{
3
√
T log2(dT) log(1/δ)

ε2/3
,

√
d log(dT) log(1/δ) log T

ε , T

})
.

Simple variants of our mechanisms can be used to get the
following theorems for (ε, 0)-differential privacy.

Theorem E.4 (Pure DP, Binary-Tree-Based Mechanisms).
For all ε ∈ (0, 1], d ∈ N, and sufficiently large T > 0, there
exist (ε, 0)-DP mechanisms M and M′ in the continual
release model with adaptively chosen inputs such thatM is
(α, T)-accurate for MaxSumd andM′ is (α, T)-accurate

for SumSelectd for α = O
(
d(log d) log3 T

ε

)
.

Theorem E.5 (Pure DP, Mechanisms via Recomputing at
Regular Intervals). For all ε ∈ (0, 1], d ∈ N, sufficiently
large T > 0, and all functions f : X ∗ → R with `1-
sensitivity at most 1, there exist (ε, 0)-DP mechanismsM
andM′ in the continual release model with adaptively cho-
sen inputs such that

1. Mechanism M is (α, T)-accurate for f for α =

O

(
min

{√
T log T
ε , T

})
;

2. MechanismM′ is (α, T)-accurate for SumSelectd for

α = O

(
min

{√
T log(dT)

ε , T

})
.

Theorems E.4–E.5 yield the following corollary.

Corollary E.6. For all ε ∈ (0, 1], d ∈ N, and sufficiently
large T > 0, there exist (ε, 0)-DP mechanisms M and
M′ in the continual release model with adaptively chosen
inputs such that

1. M is (α, T)-accurate for MaxSumd for

α = O

(
min

{√
T log T
ε , T, d(log d) log3 T

ε

})
;

2. MechanismM′ is (α, T)-accurate for SumSelectd for

α = O

(
min

{√
T log(dT)

ε , T, d(log d) log3 T
ε

})
.

E.2. Algorithms based on the Binary Tree Mechanism

In this section, we prove Theorem E.1 for SumSelectd.
Theorem E.1 for MaxSumd follows from the same analysis
by considering the binary tree mechanism that outputs the
highest noisy sum instead of the coordinate that achieves it.

In order to approximate SumSelectd on a dataset with d
attributes, we use the binary tree mechanism from Chan
et al. (2011); Dwork et al. (2010a) to privately sum each of
the attributes of the records x[t] received so far, and then
choose the attribute with the highest sum. For simplicity
of exposition, in this section, we assume that T is a power
of 2. In general, we can work with the smallest power of
2 greater than T . Throughout this section, [i : j], where
i, j ∈ N, denotes the set of natural numbers {i, . . . , j}.

19

The Price of Differential Privacy under Continual Observation

Algorithm 4 Mechanism M for SumSelectd in continual
release model with adaptively chosen inputs

1: Input: time horizon T ∈ N, privacy parameter ρ,
stream x = (x1, . . . , xT) ∈ X T , where
X = {0, 1}d.

2: Output: stream (a1, . . . , aT) ∈ [d]T .
3: Init: Construct a complete binary tree with T leaves

labeled v[1:1], . . . , v[T :T]. Label every internal
node v[`:r] if the subtree rooted at that node
has leaves v[`:`], . . . , v[r:r]. Initialize the partial
sum s[`:r] ← 0d for each node v[`:r] in the tree.

4: for t = 1 to T do
5: Get record xt from Adv .

. Compute noisy sums for nodes completed at time t
6: for each node v[`:t] do
7: Draw noise Z ∼ N (0, σ2Id×d), where σ =√

d(log T+1)
2ρ , and set s[`:t] ←

∑r
i=` xi + Z.

8: end for
. Output Steps:

9: It ← collection of at most log t + 1 intervals that
partition [1 : t], where each interval labels a
node in the binary tree. (See Remark E.2.)

10: sumt ←
∑

[`:r]∈It s[`:r].
11: Output at ← arg maxj∈[d] sumt[j].
12: end for

At the high level, the binary tree mechanism constructs
a complete binary tree with T leaves. The leaves corre-
spond to the input records x[t], where each record xi ∈
{0, 1}d. Each internal node in the tree corresponds to
the sum of all the leaves in its subtree. Each node stores
the noisy version of the corresponding sum computed
by adding a noise vector drawn from N (0, σ2Id×d) with

σ =
√

d(log T+1)
2ρ . The algorithm that releases the noisy

sum is ρ
log T+1 -zCDP. Since each xt participates in only

log2 T + 1 sums in the tree, by adaptive composition of
zCDP (Lemma A.13), the complete mechanism is ρ-zCDP
(Theorem E.1). The sum of all the attributes at any timestep
can be calculated by adding at most log T of the sums
stored in the tree, one at each level. The algorithm that
adds the corresponding noisy sums is (α, T)-accurate for
α ≈ O

(√
d log T log(Td)√

ρ

)
. The formal description of the

algorithm appears in Algorithm 4. The algorithm uses a
dyadic decomposition (described in Remark E.2) to decide
which nodes of the tree it accesses to compute any particu-
lar output.

Remark (Dyadic Decomposition). For any natural num-
ber t > 1, the interval [1 : t] can be expressed as a union
of at most log t + 1 disjoint intervals as follows. Consider
the binary expansion of t (which has at most log t+ 1 bits),
and express t as a sum of distinct powers of 2 ordered from

higher to lower powers. Then, the first interval [1 : r]
will have size equal to the largest power of 2 in the sum.
The second interval will start at r + 1 and its size will be
equal to the second largest power of 2 in the sum. Sim-
ilarly, the remaining intervals are defined until all terms
in the summation have been exhausted. For example, for
t = 7 = 4 + 2 + 1, the intervals are [1 : 4], [5 : 6] and {7}.

We present the privacy and accuracy analysis for Algo-
rithm 4 in Lemmas E.7 and E.8, respectively, which to-
gether prove Theorem E.1 for SumSelect.

Lemma E.7. For all ρ ∈ R+, d, T ∈ N, mechanism M
described in Algorithm 4 is ρ-zCDP in the continual release
model with adaptively chosen inputs.

Proof. Consider an adversaryAdv interacting with the pri-
vacy game ΠM,Adv . We want to argue that the adversary’s
view is ρ-close in the two versions of the privacy game (for
the two possible values of side ∈ {L,R}.) We will achieve
this by introducing a ρ-zCDP mechanismMgauss with in-
put side and reducing our goal to the privacy ofMgauss.

For this, we use a simulation argument similar to those used
in cryptography. Specifically, our proof defines two algo-
rithms: (a) a ρ-zCDP mechanism Mgauss that gets input
side ∈ {L,R} and (b) a simulator Sim with query access
toMgauss that does not know the value of side. The simu-
lator Sim interacts with adversary Adv and satisfies a key
guarantee:

The view of the adversary Adv in its interac-
tion with Sim is identically distributed to its view
in the privacy game ΠM,Adv , defined in Algo-
rithm 1. (Figure 1 illustrates the structure of these
two kinds of interaction.)

Since the simulator’s outputs to Adv are a post-processing
of the query responses fromMgauss, we can argue that the
adversary’s view is ρ-close in the two versions of the pri-
vacy game ΠM,Adv .

To see why this is helpful, recall that we want to show that
the probability ofAdv guessing the value of side in the pri-
vacy game is small. If the probability of Adv guessing the
value of side is the same in the privacy game as in its inter-
action with Sim, then—since the simulator doesn’t know
the value of side—Adv can only learn as much about side
from its interaction with Sim as one can learn by querying
Mgauss. Intuitively, ifMgauss does not reveal much about
the value of side then neither does M. We now describe
Mgauss and the simulator, and formalize the argument.

The mechanism Mgauss (described in Algorithm 6) gets
an input side ∈ {L,R}. It receives at most log T + 1

20

The Price of Differential Privacy under Continual Observation

Adv

ΠM,Adv M

side ∈ {L,R}

Adv

Sim Mgauss

side ∈ {L,R}

≈

Figure 1. An illustration of the simulation argument from the proof of Lemma E.7. The left-hand side shows the game used to define
privacy with adaptively selected inputs. The right-hand side shows the simulation structure described in the proof. For each value of
side, the adversary’s view is identical in these two settings.

queries of the form v(L), v(R) from Sim to which it re-
sponds with p = v(side) + Z where the noise Z is drawn

from N (0, σ2Id×d) for σ =
√

d(log T+1)
2ρ . Observe that if

Mgauss has only a single interaction with Sim and outputs
a single noised value, then by the privacy guarantee of the
Gaussian mechanism (Lemma A.14), Mgauss is ρ

log T+1 -
zCDP. This can be seen by imagining thatMgauss is com-
puting a function f(side) = xsidei and observing that the
`2-sensitivity of f is

√
d. Since there are log T + 1 in-

teractions between Mgauss and Sim, Mgauss is an adap-
tive composition of log T + 1 algorithms, each of which is

ρ
log T+1 -zCDP. By Lemma A.13 on composition,Mgauss is
ρ-zCDP.

The simulator Sim (described in Algorithm 5) interacts
with the adversary without knowing the input side ∈
{L,R} that is given toMgauss. It queriesMgauss exactly
log T+1 times and uses the query responses to provide out-
puts to the adversary. The aim of the simulator is to mimic
the behaviour of ΠM,Adv even though it doesn’t know side.
The simulator constructs a binary tree as described in Al-
gorithm 4. For all nodes in the binary tree except for those
whose interval contains the challenge timestep t∗, the com-
putation of the noisy subtree sums can be done by Sim
without any help from Mgauss. For the nodes whose in-
terval does contain t∗, the simulator sends (x

(L)
t∗ , x

(R)
t∗) to

Mgauss and gets a noisy value of xsidet∗ . It can then compute
the corresponding subtree sum by adding the input records
corresponding to the remaining leaves. Notice that the sim-
ulator can produce these outputs online—at the same time
that ΠM,Adv would.

The crucial point to note is that the view of the adversary
Adv in the privacy game ΠM,Adv is identically distributed
to its view in the interaction withMgauss and Sim. Further-
more, the view of the adversaryAdv when interacting with

Sim andMgauss is simply a post-processing of the outputs
provided to it by Sim, which are a post-processing of the
outputs provided to Sim byMgauss. Hence,

Mgauss is ρ-zCDP =⇒ V
(L)
M,Adv 'ρ V

(R)
M,Adv .

It remains to argue that exactly log T + 1 nodes have a
subtree sum that depends on the inputs from the challenge
timestep t∗. Each node v[`,r] whose subtree sum depends
on the inputs from timestep t∗ satisfies t∗ ∈ [` : r]. This
holds only for one node at each level of the binary tree cre-
ated by Sim (because the intervals represented by the nodes
at a particular level are disjoint.) Since the binary tree has
depth log T + 1, exactly log T + 1 nodes have a subtree
sum that depends on the inputs from the challenge timestep
t∗.

Lemma E.8. For all ρ > 0 and sufficiently large T ∈
N, mechanismM is (α, T)-accurate for SumSelect in the
continual release model with adaptively chosen inputs for

α = O

(√
d log T

√
log(Td)

√
ρ

)
.

Proof. Consider any adversarial process Adv interacting
with M. We first argue that, at every timestep t, the ran-
dom variable ERRSumSelectd(x[t], at) corresponding to the
error at any timestep t can be upper bounded by a random
variable that is the sum of at most 2 log t independent Gaus-
sian random variables. We then use tail bounds for Gaus-
sian random variables, along with a union bound, to ar-
gue that, with high probability, the maximum value of this
random variable is not too large. Finally, we take a union
bound over timesteps to argue that, with high probability,
maxt∈[T] ERRSumSelectd(x[t], at) is not too large.

First, at any timestep t, let sumt represent the vector of
noisy sums defined in Step 10 of Algorithm 4. Therefore,

21

The Price of Differential Privacy under Continual Observation

Algorithm 5 Simulator Sim for the proof of Lemma E.7
1: Input: time horizon T ∈ N, privacy parameter ρ ∈

R+, black-box access to an adversary Adv and
a mechanismMgauss.

2: Output: stream (a1, . . . , aT) ∈ [d]T .
3: Adv : At each timestep t ∈ [T] \ {t∗}, Adv provides

Sim with record xt ∈ X , where X = {0, 1}d.
At the challenge timestep t∗ (chosen by Adv),
it provides records x(L)

t∗ , x
(R)
t∗ ∈ X . At each

timestep t ∈ [T], Sim provides Adv with out-
put at ∈ [d].

4: Mgauss: Sim exchanges log2 T + 1 messages with
Mgauss.

5: Init: Perform Step 1 (the initialization phase) of Algo-
rithm 4.

6: j ← 1.
7: for t ∈ [T] do
8: if t = t∗ then
9: Get input (x

(L)
t∗ , x

(R)
t∗) from Adv .

10: for i ∈ [log T + 1] do
11: Send (x

(L)
t∗ , x

(R)
t∗) toMgauss, and get back a re-

sponse pi.
12: end for
13: else
14: Get record xt from Adv .
15: end if
16: for each node v[`,t] do
17: if t∗ 6∈ [` : t] where [` : t] denotes the integers

{`, ..., t} then
18: Draw noise Z ∼ N (0, σ2Id×d), where σ =√

d(log T+1)
2ρ .

19: s[`:t] ← Z +
∑r
i=` xi

20: else
21: v[`:t] ←

∑
i∈[`:t]\{t∗} xi + pj .

22: j ← j + 1.
23: end if
24: end for
25: Output Steps: Perform Steps 9-11 (the output steps)

of Algorithm 4.
26: end for

Algorithm 6 MechanismMgauss

1: Input: side ∈ {L,R} (not known to Sim).
2: Output: A natural number.
3: for i = 1 to log T + 1 do
4: Get records v(L)

i , v(R)
i ∈ {0, 1}d from Sim.

5: Draw noise from a multivariate Gaussian distribu-
tion Z ∼ N (0, σ2Id×d), where σ =

√
d(log T+1)

2ρ .

6: Output v(side)
i + Z

7: end for

each coordinate of this sum, sumt[j] =
∑
i∈[t] xt[j] +∑

i∈[|It|] Zi is the sum of at most log t + 1 noisy interval
sums. Here, Zi is a Gaussian random variable with mean
0 and standard deviation σ =

√
d(log T+1)

2ρ , and all Zis
are mutually independent. Hence, by the linearity of ex-
pectation, and by the linearity of the variance of indepen-
dent random variables, we get that

∑
i∈[|It|] Zi is a Gaus-

sian random variable with mean 0 and standard deviation√
d(log T+1)|It|

2ρ ≤
√

d(log T+1)(log t+1)
2ρ . Consider the vec-

tor N consisting of the absolute values of d random vari-
ables independently drawn from the distribution N (0, σ2)

where σ =
√

d|It|(log T+1)
2ρ . The distribution ofN is identi-

cal to the component-wise absolute values of the Gaussian
noise vector sumt −

∑
i∈[t] xi. Then,∑

i∈[t]

xi[at] + max
j∈[d]

N [j] ≥ MaxSumd(x[t])−max
j∈[d]

N [j],

since if at is selected at timestep t, the noisy sum of coor-
dinate at at timestep t is larger than the noisy sums of all
other coordinates at timestep t (see Step 11 in Algorithm 4).
Thus,

ERRSumSelectd(x[t], at)

= MaxSumd(x[t])−
∑
i∈[t]

xi[at] ≤ 2 max
j∈[d]

N [j].

Next, we reason about maxj∈[d]N [j] using standard prob-

ability tools. Set ` =
√

10d(log T+1)(log t+1) log(dT)
2ρ . By

Lemma F.2 on concentration of the maximum of the abso-
lute values of Gaussian random variables, and since σ ≤√

d(log T+1)(log t+1)
2ρ , we get that

Pr

[
max
j∈[d]

N [j] > `

]
≤ 2de−

`2

2σ2 ≤ 2de−5 log(dT) ≤ 2

T 5
.

Then, with probability at most 2
T 5 (over the coins of the

algorithm A and the adversarial process Adv),

ERR(x[t], at) > 20

√
d(log T + 1)(log t+ 1) log(dT)

2ρ

≥ 20

√
d(log T + 1)2 log(dT)

2ρ
,

since t ≤ T . By a union bound over all t ∈
[T], we get that maxt∈[T] ERRSumSelectd(x[t], at) >

20
√

d(log T+1)2 log(dT)
2ρ with probability at most 2

T 4 ≤ 1
3

for sufficiently large T . This proves the lemma.

Proof Sketch of Theorem E.4. The proof of Theorem E.4
for SumSelectd closely follows the exposition above. The

22

The Price of Differential Privacy under Continual Observation

mechanism used is the same as Algorithm 4, except that
in Step 7 , Z is drawn from Lap(d(log T+1)

ε) instead of a
Gaussian distribution. The privacy proof is exactly as in
Lemma E.7, except that we use that the composition of
log T + 1 mechanisms that are

(
ε

log T+1 , 0
)
-DP is (ε, 0)-

DP instead a composition theorem for ρ-zCDP. The accu-
racy proof closely follows that of Lemma E.8, with the
main difference being that the the vector N is defined
as the component-wise absolute value of d random vari-
ables independently drawn from the distribution of the
sum of |It| independent random variables distributed as
Lap

(
d(log(T)+1)

ε

)
. We then use the concentration inequal-

ity for the maximum of the absolute values of indepen-
dent Laplace random variables over d|It| random variables
in Lemma F.3 with a = 2 log T to argue that the ab-
solute value of each Laplace random variable is smaller
than d(log T+1)

ε (log(d|It|) + 10 log T) with probability at
least 1

T 10 . This implies that maxj∈[d]N [j] is smaller

than d(log T+1)2

ε (log(d(log T + 1)) + 10 log T) with prob-
ability at least 1

T 10 , upper bounding |It| by log T + 1.
Taking a union bound over T and using the fact that
log(d(log T + 1)) ≤ log d(log T + 1) for sufficiently large
T completes the proof.

Theorems E.1 and E.4 for MaxSumd are proved anal-
ogously. The main difference is that we output
maxj∈[d] sumt[j] instead of arg maxj∈[d] sumt[j] in
Step 11 of Algorithm 4.

E.3. Algorithms that Recompute at Regular Intervals

In this section, we prove Item 1 of Theorem E.2 for
sensitivity-1 functions. The proof of Item 2 of Theorem E.2
builds on the same idea of recomputing SumSelectd every
T/m timesteps, but it uses the report noisy max (with ex-
ponential noise) algorithm for SumSelectd (McKenna &
Sheldon, 2020) instead of adding Gaussian noise to the
function. We omit the details, since the argument is es-
sentially the same as in the rest of this section.

The mechanism recomputes the function every r timesteps.
Between recomputations, it outputs the most recently com-
puted value. We select r to balance the privacy cost of com-
position with the error due to returning stale values between
recomputations.

Algorithm 7 MechanismM for sensitivity-1 functions in
continual release model with adaptively chosen inputs

1: Input: time horizon T , privacy parameter ρ > 0,
recompute period r ∈ [T − 1], function f ,
stream x = (x1, . . . , xT) ∈ Xn where X =
{0, 1}d.

2: Output: stream (a1, . . . , aT) ∈ RT .
3: m← bT−1

r c.
4: for k = 1 to m do
5: Get input record x(k−1)r+1.

6: Draw Zk ∼ N (0, σ2), where σ =
√

m
2ρ .

7: Output a(k−1)r+1 ← f(x[(k−1)r+1]) + Zk.
8: for t = (k − 1)r + 2 to kr do
9: Get input record xt.

10: Output at ← a(k−1)r+1.
11: end for
12: end for

Claim E.9. For all ρ, T > 0, r ∈ [T − 1], mechanismM
defined in Algorithm 7 is ρ-zCDP in the continual release
model with adaptively chosen inputs.

Proof. Consider an adversary Adv interacting with M.
We define a mechanism Mcomp, similar to Algorithm 6,
and a simulator Sim that interacts with the adversary Adv
such that the view of adversaryAdv in the interaction with
Mcomp and Sim is identically distributed to its view in the
privacy game ΠM,Adv , defined in Algorithm 1.

Algorithm 8 MechanismMcomp

1: Input: side ∈ {L,R} (not known to Sim)
2: Output: A natural number.
3: Get neighboring datasets y(L), y(R) ∈ {0, 1}d and a

function f with `2 sensitivity at most 1 from Sim.
4: Draw noise Z ∼ N (0, σ2), where σ =

√
m
2ρ .

5: Output f
(
y(side)

)
+ Z

The mechanism Mcomp is defined in Algorithm 8. Since
the function f has `2 sensitivity at most 1, then by the pri-
vacy of the Gaussian mechanism, and since the variance of
the noise added is m

2ρ),Mcomp is ρ
m -zCDP with respect to

the dataset consisting of side ∈ {L,R}.

The simulator Sim (described in Algorithm 9) gets inputs
from Adv , but it does not know the input side ∈ {L,R}
that is given to Mcomp. It interacts with Mcomp to pro-
vide outputs to the adversary Adv . The aim of the Sim-
ulator is to mimic the behaviour of ΠM,Adv even though
it doesn’t know side. For all timesteps t < t∗ before the
challenge timestep, the simulator behaves exactly likeM.
Starting at the challenge timestep, for every t ∈ [t∗ : T]
where M would recompute the noised value of the sum,

23

The Price of Differential Privacy under Continual Observation

Algorithm 9 Simulator Sim for the proof of Claim E.9
1: Input: time horizon T , privacy parameter ρ > 0, re-

compute period r ∈ [T − 1], function f . Sim
also has black-box access to an adversary Adv
and a processMcomp.

2: Output: stream (a1, . . . , aT) ∈ RT
3: Adv : At each timestep t ∈ [T] \ {t∗}, Adv pro-

vides Sim with record xt ∈ X . At the chal-
lenge timestep t∗ (chosen by Adv), it provides
two records x(L)

t∗ , x
(R)
t∗ ∈ X . At every timestep

t ∈ [T], Sim provides Adv with output at ∈ R.
4: Mcomp: Sim exchanges T/r messages withMcomp.
5: Initialization: m← dTr e, j ← 1.
6: For timesteps t < t∗, run mechanism M in Algo-

rithm 7 with inputs fromAdv , with the same T, ρ, r, f .
Let at beM’s output at timestep t.

7: for t ≥ t∗ do
8: if t = t∗ then
9: Get input (x

(L)
t∗ , x

(R)
t∗) from Adv .

10: end if
11: if t 6= t∗ then
12: Get record xt from Adv .
13: end if
14: if t mod r = 1 then
15: For each side ∈ {L,R}, let

y
(side)
t = {x1, . . . , xt∗−1, x

(side)
t∗ , xt∗+1, . . . , xt};

16: at ←Mcomp

(
f,y

(L)
t ,y

(R)
t

)
.

17: else
18: q ← b tr c; output at ← aq+1.
19: end if
20: end for

Sim sends Mcomp the function f as well as neighboring
datasets y(L)

t ,y
(R)
t defined by

y
(side)
t = {x1, . . . , xt∗−1, x

(side)
t∗ , xt∗+1, . . . , xt}.

Since Sim queries Mcomp at most m times, by adaptive
composition, the output transcript of Mcomp is ρ-zCDP
with respect to the dataset consisting of side.

The view of the adversary Adv in the real privacy game
ΠM,Adv is identically distributed to its view in the inter-
action withMcomp and Sim. Furthermore, the view of the
adversary Adv when interacting with Sim and Mcomp is
simply a post-processing of the outputs provided to it by
Sim, which are a post-processing of the outputs provided to
Sim byMcomp. As argued previously, the output ofMcomp

when side = L is ρ-close to its output transcript when
side = R. Hence we have that V (L)

M,Adv 'ρ V
(R)
M,Adv .

Claim E.10. Fix ρ > 0, sufficiently large T > 0, and 2 ≤
m ≤ T . Let f : X ∗ → Z be a function with `2-sensitivity

at most 1. Then mechanismM, defined in Algorithm 7 is
(α, T)-accurate for f in the continual release model with

adaptively chosen inputs where α = T
m +

√
10m logm

ρ .

Proof. Consider any adversarial process Adv interacting
with M. Fix a timestep t ∈ [T]. Consider time horizon
T divided into m stages, where the stage k ∈ [m] is from
timestep (k − 1)r + 1 to kr. Let timestep t be in stage k.
Intuitively, sinceM, defined in Algorithm 7, corresponds
to recomputing the noisy sum every r timesteps (and using
each recomputed value for the next r timesteps), the error
can be decomposed into two parts: one caused by the drift
in the true value of the function since the last recomputation
and the other caused by noise addition. By the triangle
inequality,

ERRf (x[t], at) =
∣∣at − f(x[t])

∣∣
≤
∣∣f(x[t])− f(x[(k−1)r+1]

∣∣) +
∣∣at − f(x[(k−1)r+1]

∣∣)
≤ T/m+

∣∣a(k−1)r+1 − f(x[(k−1)r+1])
∣∣ ≤ T

m
+ |Zk|.

The second inequality above holds because the `2-
sensitivity of f is at most 1, and since we recompute every
r = T/m timesteps, the maximum change in the function
f since the last recomputation is T/m. The third inequality
follows from Steps 7 and 10 in Algorithm 7. Finally, ob-
serve that Zk for k ∈ [m] are mutually independent Gaus-
sian random variables with mean 0 and standard deviation√

m
2ρ . Hence, applying Lemma F.2 on the concentration of

the maximum of the absolute values of Gaussian random
variables (setting ` =

√
10m logm

ρ), and using the fact that
m ≥ 2,

Pr
A,Adv

(
max
t∈[T]

ERRf (x[t], at) ≥
T

m
+

√
10m logm

ρ

)

= Pr
A,Adv

(
max
k∈[m]

|Zk| ≥

√
10m logm

ρ

)
≤ 2

m9
≤ 1

3
.

Proof of Item 1 in Theorem E.2. By Claim E.9, the mech-
anism M is ρ-zCDP in the continual release model with
adaptively chosen inputs.

For ρ ≤ log T
T 2 , consider the mechanism that doesn’t touch

the data and always outputs 0. Clearly it is 0-zCDP. Addi-
tionally, for this mechanism, α = O(T). For ρ > log T

T 2 ,
by Claim E.10, mechanismM is (α, T)-accurate for f in
the continual release model with adaptively chosen inputs,

where α = T/m + 10
√

m logm
ρ . Setting m = bρ

1/3T 2/3

log1/3 T
c

gives α = O
(

min
{
T, 3

√
T log T
ρ

})
, where the min comes

from the option of using the trivial mechanism.

24

The Price of Differential Privacy under Continual Observation

Proof Sketch of Item 1 in Theorem E.5. The mechanism
M used is a variant of Algorithm 7. The only difference
is that in Step 6 , instead of the random variable Zk being
distributed as a Gaussian, it is distributed as Lap(mε).
The privacy proof follows a structure similar to that of
Claim E.9, with the main difference being that instead of
using a composition theorem for ρ-zCDP, we instead use
that the composition of m mechanisms that are (εm , 0)-DP
is (ε, 0)-DP.

For accuracy, we can prove a claim phrased exactly as
Claim E.10, with α = T

m + m
ε [logm + 2 log T] instead

of α = T
m +

√
10m logm

ρ . The proof is similar, with the
only difference being that instead of using Lemma F.2 on
the maximum of i.i.d. Gaussian random variables, we in-
stead use Lemma F.3 on the maximum of i.i.d. Laplace
random variables, with t = 2 log T .

Finally, we prove the theorem as follows: for ε > log T
T ,

setting m = b
√

εT
log T c in the accuracy claim gives α =

O(
√

T
ε log T). For ε ≤ log T

T , we can consider the mech-
anism that always outputs 0 at every timestep. This mech-
anism is (0, 0)-DP and (α, T)-accurate for f in the con-
tinual release model with adaptively chosen inputs with
α = O(T). This completes the proof.

Proof Sketch of Item 2 in Theorems E.2 and E.5. We
sketch the proof of Item 2 of Theorem E.2. The proof of
Item 2 of Theorem E.5 is essentially the same. The upper
bound mechanism M used for this proof is a variant of
Algorithm 7 where we recompute SumSelectd using the
exponential mechanism (McSherry & Talwar, 2007) with

ε′ =
√

2ρ
m (for Item 2 of Theorem E.5 on pure DP, we use

ε′ = ε
m). The quality function of an attribute and dataset

pair is defined to be the sum of that attribute over all entries
in the dataset. The exponential mechanism instantiated as
described above is used to privately compute SumSelectd
every T/m timesteps. Between recomputations, the
attribute index produced at the last recomputation is used
as the output.

The privacy proof follows a structure similar to that of
Claim E.9. The main difference for this proof is that the
simulator will now interact with an ideal mechanism that
takes as input a differentially private algorithm as well as
neighboring datasets to run the algorithm on. In particu-
lar, the neighboring datasets will be the inputs x(L)

t∗ and
x

(R)
t∗ from the challenge timestep, and the algorithm will

be the exponential mechanism hardcoded with all the in-
puts of the adversary so far (except for the inputs from the
challenge timestep.) The ideal mechanism will run the al-
gorithm with challenge input x(side)

t∗ and output the result.
The adversary’s view in the privacy game is clearly iden-

tical to its view when interacting with the simulator. Fi-
nally, the closeness of the adversary’s view in the simu-
lated world when side = L and when side = R follows di-
rectly from the privacy of the exponential mechanism and
adaptive composition (Dwork et al., 2010c; Bun & Steinke,
2016).

For accuracy, we prove a claim akin to Claim E.10, with
α = T

m + 2
√

m
2ρ [log d + 5 logm]. The proof is similar

to that of Claim E.10; here, we define |Zk| as the error
incurred by the kth instantiation of the exponential mech-
anism, and use Lemma A.8 on the accuracy of the expo-
nential mechanism (setting a = 5 logm) and take a union
bound over the m recomputations to argue that the maxi-
mum error is greater than α = T

m + 2
√

m
2ρ [log d+ 5 logm]

with probability at most 1
m4 .

For ρ > (log(dT)
T)2, by the accuracy claim, mecha-

nism M is (α, T)-accurate for f in the continual release
model with adaptively chosen inputs, where α = T

m +

2
√

m
2ρ [log d + 2 logm]. Setting m = b ρ1/3T 2/3

(log(dT)2/3
c yields

α = O
(
T 1/3 log(dT)2/3

ρ1/3

)
. Finally, for ρ ≤ (log(dT)

T)2, con-
sider the mechanism that doesn’t touch the data and always
outputs 0. It is clearly 0-zCDP, and has α = O(T).

F. Useful Concentration Inequalities
Lemma F.1. For all random variables R ∼ N (0, σ2),

Pr[|R| > `] ≤ 2e−
`2

2σ2 .

Lemma F.2. Consider m random variables
R1, . . . , Rm ∼ N (0, σ2). Then

Pr

[
max
j∈[m]

|Rj | > `

]
≤ 2me−

`2

2σ2 .

Proof. By a union bound and Lemma F.1,

Pr

[
max
i∈[m]

|Ri| > `

]
= Pr(∃i ∈ [m] such that |Ri| > `)

≤
m∑
i=1

Pr(|Ri| > `) ≤
m∑
i=1

2e−
`2

2σ2 = 2me−
`2

2σ2 .

A similar union bound argument yields the following con-
centration inequality on the maximum of the absolute val-
ues of i.i.d. Laplace random variables.
Lemma F.3. Fix m ∈ N, λ > 0. Consider m random
variables R1, . . . , Rm ∼ Lap(λ). Then for all a > 0,

Pr

(
max
i∈[m]

|Ri| > λ(logm+ log a)

)
≤ e−a.

25

