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Abstract

Spiking Neural Networks (SNNs) have gained
significant attention for their energy-efficient and
fast-inference capabilities, but training SNNs
from scratch can be challenging due to the discrete
nature of spikes. One alternative method is to con-
vert an Artificial Neural Network (ANN) into an
SNN, known as ANN-SNN conversion. Currently,
existing ANN-SNN conversion methods often in-
volve redesigning the ANN with a new activa-
tion function, rather than utilizing the traditional
ReLU, and converting it to an SNN. However,
these methods do not take into account the poten-
tial performance loss between the regular ANN
with ReLLU and the tailored ANN. In this work,
we propose a unified optimization framework for
ANN-SNN conversion that considers both per-
formance loss and conversion error. To achieve
this, we introduce the SlipReLU activation func-
tion, which is a weighted sum of the threshold-
ReLU and the step function. Theoretical anal-
ysis demonstrates that conversion error can be
zero on a range of shift values 6 € [—0.5,0.5]
rather than a fixed shift term 0.5. We evaluate
our SlipReLU method on CIFAR datasets, which
shows that SlipReLU outperforms current ANN-
SNN conversion methods and supervised training
methods in terms of accuracy and latency. To
the best of our knowledge, this is the first ANN-
SNN conversion method that enables SNN infer-
ence using only 1 time step. Code is available
at https://github.com/Haiyandiang/
SNN_Conversion_unified.
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1. Introduction

Spiking neural networks (SNNSs) are biologically-inspired
neural networks based on biologically plausible spiking neu-
ron models to process real-time signals ( ,

; , ). Due to the significant advantages
of low power consumption and fast inference on neuromor-
phic hardware ( s ), SNNs are becoming a
primary candidate to run large-scale deep artificial neural
networks (ANNs) in real-time. The most commonly used
neuron model in SNNs is the Integrate-and-Fire (IF) neuron
model ( s ). In this model, each neuron in
the SNN emits a spike only when its accumulated membrane
potential exceeds the threshold voltage. Otherwise, it stays
inactive in the current time step. This setting makes SNN's
more similar to biological neural networks. Compared to
ANNS, event-driven SNNs have binarized/spiking activation
values, which results in low energy consumption when im-
plemented on specialized neuromorphic hardware. Another
significant property of SNNss is the pseudo-simultaneity of
their inputs and outputs for making inferences in a spatial-
temporal paradigm. Compared to conventional ANNs that
present a whole input vector at once and process layer-by-
layer to produce one output value, the forwarding pass in
SNN can efficiently process streaming time-varying inputs.

Generally, there are two main methods for obtaining an
SNN: (1) training an SNN from scratch ( , ;
, ; s ), and (2) ANN-

SNN conversion ( s ; s ;
s ), i.e., converting an ANN to an SNN. Training

from scratch uses a gradient-based supervised optimization
method, such as back-propagation, treating SNNs as special-
ized ANNs. Due to the non-differentiability of the binary
activation function in SNNs, surrogate gradients are usually
used ( R ). However, this method can only
train SNNs on small to moderate-size datasets ( s
). On the other hand, ANN-SNN conversion is an ef-
fective method for obtaining deep SNNs with comparable
performance to ANNs on large-scale datasets. There are
two main types of ANN-SNN conversion mechanisms: (1)
one-step conversion, which converts the pre-trained ANN to
an SNN without changing the architecture of the pre-trained
ANN, for example ( ); ( ), and
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(2) two-step conversion, which involves redesigning the
ANN, training it and converting it to an SNN, for exam-

ple (2015); (2021); (2021).

In this work, we investigate a two-step method for ANN-
SNN conversion. This method involves redesigning the
ANN by replacing the regular ReLU activation function
with a new activation function, training the tailored ANN,
and subsequently converting it to an SNN. A tailored ANN
that deviates too much from the regular ANN will degrade
its performance, resulting in a performance loss that will be
inherited by the converted SNN. However, the performance
degradation between the regular ANN and the tailored ANN
has never been considered in the existing ANN-SNN con-
version research. To achieve high-accuracy and low-latency
SNNs (e.g., 1 or 2 time-steps), we are the first to consider
the performance loss between the regular ANN with ReLU
and the tailored ANN, as well as the conversion error, si-
multaneously. Our main contributions are summarized as
follows:

(1) We formulate the ANN-SNN conversion as a unified
optimization problem that considers both the ANN perfor-
mance loss and the conversion error simultaneously.

(2) We propose using the SlipReLU activation function in
the tailored ANN to minimize the layer-wise conversion er-
ror while maintaining the performance of the tailored ANN
as close as possible to that of the regular ANN.

(3) The SlipReLU method covers a family of activation func-
tions that map activation values in source ANNs to firing
rates in target SNNs. Many state-of-the-art optimal ANN-
SNN conversion methods can be viewed as special cases of
our proposed SlipReLU method.

(4) Through two theorems, we demonstrate that the expected
ANN-SNN conversion error can theoretically be zero within
a range of shift values 6 € [—0.5,0.5], rather than a fixed
shift term 0.5. Experimental results further validate the
effectiveness of the proposed SlipReLLU method.

2. Preliminaries

In this study, we investigate a classification problem on an
image dataset denoted as (x,y) € D, where each image x
is associated with a ground-truth class label y. Our goal
is to train a neural network f : @ — f(x), which can
take the form of an ANN or an SNN, by optimizing the
standard cross—entrogy (CE) loss. The CE loss is defined as
Ler(y,p) = — >, yilog(p;), where y; is the ground-
truth label and p; is the network prediction p; = f(a;). For
consistency, we use the notation f to represent the same
shared infrastructures of the source ANN and the target
SNN. Moreover, we use Fann and Fgnn to denote the
activation functions employed in the ANN and SNN models,
respectively. For the notations, refer to Table S5.

ANN Neuron Model. In a traditional ANN, the entire input

vector is fed into the network at once, and it undergoes layer-
by-layer processing through continuous activation functions
to generate a single output value. The forward pass of analog
neurons in ANNs can be formulated as

a = Fann(2") = Fasn(WWa ") ()

where z(©) and a(*) are the pre-activation and post-activation
vectors of the /-th layer, WO is the weight matrix, and
Fann(+) is the activation function of the ANN.

SNN Neuron Model. In contrast to ANNs, SNNs employ
binary activations (i.e. spikes) in each layer. To compen-
sate for the limited representation capacity of the binary
activation, the time dimension, or latency, is introduced in
SNNs. Inputs for the forward pass in SNNs are presented
as streams of events and the forward pass is repeated for T’
time-steps in order to produce the final result.

In this study, we consider the Integrate-and-Fire (IF) neuron
model ( s ; , ; , )
for SNNs. The forward propagation of PSP (postsynaptic
potential) through layers in the target SNN is equivalent to
the forward computation of the analog neurons in the source
ANN. We then derive the forward propagation of PSP. At
time-step ¢, the IF neuron in ¢-th layer receives its binary
input x(z’l)(t) from the previous layer, and temporarily
updates its membrane potential according to the equation

u(t) =vO(t — 1)+ WO (¢) 2)

where v(“)(t) is the membrane potential at time step ¢,
u¥(t) is the temporary intermediate variable used to deter-
mine the update from v(© (¢ — 1) to v(©)(¢). If the tempo-
rary intermediate potential ul(-z) (t) exceeds the membrane
threshold Vt(hé), it will produce a spike output sgl) (t) = 1.
Otherwise, it will release no spikes sgl)(t) =0.

Lo ifu (1) > Vi,

stV (t) = Hu{" (t) - V)) = { 3)

0, otherwise.

The vector s\ (t) = {sz(-e) (t)} collects spikes of all neurons

of ¢-th layer at time ¢. Note that Vt(hz) can be different
in different layers. The membrane potential is updated
by the reset-by-subtraction mechanism ( ,

; s ), that is, the temporary membrane
potential ul(-e) (t) is subtracted by the threshold value th) if

the neuron fires sf.“ (t) =1,
vO () =u®(t) —sO )V . 4)

If the neuron in the current /-th layer generates a spike,
it will transmit an unweighted PSP x(¥) (¢) as input to the
succeeding layer, which is similar to ( ),

xO(t) = s OBV
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As for the input to the first layer and the output of the last
layer of the SNN, we do not employ any spiking mecha-
nism as in ( ). We directly encode the static
image to temporal dynamic spikes as input to the first layer,
which can prevent undesired information loss introduced
by the Poisson encoding. For the last layer output, we only
integrate the pre-synaptic input and do not fire any spikes.

3. Unified Optimization Framework of
ANN-SNN Conversion

In this section, we propose a unified optimization framework
for ANN-SNN conversion, together with the conversion er-
ror analysis. Our unified framework addresses the trade-off
between the performance of the converted SNN and the devi-
ation introduced by the tailored ANN with a new activation
function and the regular ANN with ReLU activation.

The performance of the converted SNN is determined by
both the source ANN performance and the conversion error.
Previous methods for ANN-SNN conversion have focused
solely on minimizing the conversion error without consider-
ing the performance of the tailored ANN ( s ;

s ; s ). Our approach, how-
ever, takes into account the performance of the tailored
ANN, as well as the conversion error, in a two-step process.
First, we design a new activation function for the source
ANN to create a tailored ANN. Then, we train the tailored
ANN and convert it to an SNN. By considering the perfor-
mance loss between the tailored ANN and the regular ANN,
our framework ensures that the new activation function does
not deviate too far from the regular ReLU.

3.1. ANN-SNN Conversion in a Unified Framework

We define a unified optimization framework for the conver-
sion of ANNs to SNNs.

Definition 1 (Unified Optimization Framework of AN-
N-SNN Conversion). The framework is formulated as an
optimization problem with an implicit variable T,

— Fann(z; W))) ©)
— Fsnn(z W, T)))} .

I]I__ll%l {wE, (|Freru(z; W)
+(1-w)E

where w € [0, 1]. Specifically, when the ANN Fann is de-
signed with consideration of the deviation from the regular
ReLU, the layer-wise conversion error E(|Err)|) becomes

2z (| Fann(z; W)

E (’fANN(a“*l);W([)) *fSNN(i(“l);W“),T)D . (6)

The same neural network infrastructure is used for both the
source ANN and the target SNN, as described in Sect. 2.
The notation are as follows: Freru(-) denotes the regular
ANN with ReLU activation, Fann(+) is the tailored ANN
with a new activation function, Fsyn () is the converted

SNN, z is the input to the neural network, W = {W ()}
are the weight matrices trained from the tailored ANN and
copied to the target SNN, F = Fann U Fgnn is the space
of activation functions of the tailored ANNs and the target
SNNs, and the latency T (or time-steps) is seen as an im-
plicit variable inherently inherited from the target SNNs.
Additionally, T allows for flexibility in balancing the la-
tency and the accuracy of the converted SNN for different
applications.

Before proceeding, it is important to note that the unified
framework defined in Definition 1 provides guidance for
researchers to propose new solutions for optimal ANN-SNN
conversion. Specifically, the following Remark 1 highlights
several key points to consider.

Remark 1. (A) the tailored ANN'’s activation function,
FANN, should be designed to address the potential per-
formance loss caused by the deviation from the ANN with
regular ReLU activation. (B) When Fann is designed by
considering the deviation from the regular ReLU, the layer-
wise error in Eq. (6) may arise from any mismatch of the
following three parts: (1) different activation values from
source ANNs and target SNNs, i.e. a9 and fc(g), (2) dif-
ferent activation functions, i.e. Fann(-) and Fsnn(+), and
(3) the latency variable T which implicitly affects both the
activation values and activation functions. (C) An “optimal”
ANN-SNN conversion is achieved when the conversion er-
ror, Ez(|Err(Z) ), reaches its minimum. For example,

( ) has achieved an optimal minimum error of

, while (

optlmal minimum error of 0.

(v“) )? . .
) has theoretically achieved an

3.2. ANN-SNN Conversion Error Analysis

In the following, we will address the three potential errors
that can occur during the conversion of an ANN to an SNN.

Firing Rates in SNNs and Activation Values in ANNSs.
One such error relates to the difference between firing rates
in SNNs and activation values in ANNSs. In SNNs, the acti-
vation value of an IF neuron is defined as the average post-
synaptic potential (i.e. average PSP), denoted as x(©). The
firing rate is represented by the average number of spikes
over a given time period (latency) 7', denoted as §(©). The
firing rate and average PSP may be used interchangeably in
SNNss, but in this paper, they are defined differently,

Iy 04 (o)
= — x S
72X TZ

To minimize the layer-wise error during conversion, it is
ideal for the converted SNN to have activation values that
are similar to those of the source ANN for each layer. This
can be represented mathematically as

a® ~ %,

V(Z) (Z)
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where a(®) is the activation value of the ANN and () is the
activation value of the SNN. The term X©) represents the
average PSP released by the ¢-th layer, which serves as the
input to the succeeding layer. The threshold Vt(he) in SNN
can differ across layers. Therefore, we treat it as a trainable
parameter that can be learned in the source ANN and copied
to the target SNN. Any mismatch between the activation
values a'® and x(¥) can lead to conversion errors.

Activation Function in SNNs. In terms of the activation
function in SNNss, it defines the relationship between ac-
tivation values, x(¢=1) and %9, of successive layers. We
utilize the derivation presented in previous studies (

; s ), to deduce the SNN activation
functlon Fsnn. By combining Eq. (2) and Eq. (4), and
summing over the time-step from 1 to 7', then we get

T
vO(T)—v®(0) = W® Z x(=1) Z sO( Vt(lf)
t=1

Due to the spike-in-spike-out property of the IF neurons
in SNN, the output spikes at each time-step can be either
0 or 1. The accumulated spikes are represented by m =
S sO(t) = {m;}, where each m; € {0,1,2,--- ,T}
denotes the total number of spikes of neuron ¢. Further we
assume the terminal membrane potential v()(T") should be

within the range [0, Véﬁ)). Therefore, with a shift value 9,
we have
TWOx(E-1) _yv© TW O x(E—1)
© th +5<m<W+5
Vin Vin

In order to determine m, we use the clip and floor functions,

TW (O x(—-1)
m = clip <{j +46|,0,7) .
AS
th

The clip (z, a, b) function sets the lower bound a and upper
bound b, while the floor function |z | gives the greatest inte-
ger that is less than or equal to z. With x(©) = V(Z)é(’) =
mV / T, the SNN activation function gives the relation-
sh1p between activation values X/~ and x(©) as follows,

2® = Fonn <W<z>;{<671>)

O 1 | TW®x¢-1)
_‘/th Chp (T \“/;;(h[)—t—(s ,O,l . (7)

The activation function Fgnn(+) in SNNs is a step function

£
defined within the interval [0, Vt(hz)] with a step size of “g‘)
(i.e. the green curve in Fig. 1). Since the SNN output is
discrete while the ANN output is continuous, there is an
intrinsic difference between a(® and %, as illustrated
in Fig. 1. A comprehensive analysis of the SNN activation
function is provided in Appendix A.

4. Proposed SlipReLLU

Through the above analysis, the performance of the con-
verted SNN is usually determined by the source ANN per-
formance and the conversion error. From Remark 1, the
layer-wise conversion error in Eq. (6) can be affected by the
difference between activation values from source ANNs and
target SNNs, the difference between activation functions,
and the latency 7T (i.e., time-step). The goal of ANN-SNN
conversion is to minimize the conversion error with low
latency 7" while maintaining the performance of the tailored
ANN. Recently, many research works try to minimize the
gap between activation functions. For example,

( ) uses the shift-threshold-ReLLU as the activation
function in the source ANN, and ( ) employes
the quantization clip-floor-shift (QCFS) activation in source
ANN instead of regular ReL.U activation.

4.1. The SlipReLU Activation Function

In this section, by following our unified optimization frame-
work, we will exploit the two-step conversion mechanism.
The process involves redesigning the ANN with a new acti-
vation function to get a tailored ANN, training the tailored
ANN, and then converting it to an SNN by copying the
weights from the tailored ANN to the target SNN.

However, a performance loss will occur if the new activation
function of the tailored ANN deviates too much from the
regular ReLU activation function. Therefore, it is crucial to
minimize the conversion error while keeping the deviation
from the regular ReLU activation function minimal. To
achieve this, we propose the SlipReL.U activation function,
which is a weighted sum of the threshold-ReLU and the step
function (i.e., SNN activataion function). This allows for
a balance between the regular ReLU and the step function.
We assume that both the ANN and the SNN receive the
same input from the previous layer,

at=D) — gD 40 Z Wwgt-) _ wOg-1)

Proposed SlipReLLU Activation Function. Following the
unified optimization framework outlined in Sect. 3.1, our
proposed SlipReL.U activation function aims to minimize
the mismatch between the tailored ANN and the target SNN,
while also minimizing deviation from the regular ReL U,

70

1 | Nz®
—V0BOclip [ — | 12—
+ (1 —¢)8Wclip <N { 10 —|—6J ,0,1>.

The SlipReL.U activation function is a weighted sum of
the threshold-ReLLU and the step function, with the slope
0 < ¢ < 1 balancing the weight between the two. This is
illustrated in the red curves of (C1)-(C3) in Fig. 1.

SlipReLU(zY)) = ¢8®clip <
®)
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Figure 1. The activation functions of source ANNSs and the activation function of target SNNs. The figure shows three different types of

activation functions for source ANNSs: (A) shift-threshold-ReLU (blue curve) from (
), and (C1)-(C3) the proposed SlipReLU activation (red curve). The activation

(QCES) activation (orange curve) from (

), (B) quantization clip-floor-shift

function of SNNss is the step function represented by a green curve. The error between the activation function of ANNs and the step
function of SNNss is the sum of all the shaded area together, which is referred to as the ANN-SNN conversion error.

The SlipReLU activation function utilizes parameters /N
and 09, whereas in contrast, the SNN activation function
employs T and Vt(h[) (T < N, Vt(h[) < 0Y). Instead
of using the inherent property of the SNN, the latency 7',
we use the quasi-time-step (quasi-latency) N in the ANN.
Additionally, the threshold value Vt(()) in the SNN is replaced
by the trainable value #() in the ANN, which can be learned
and copied to the target SNN.

To gain some insights into the proposed SlipReL.U, we set
61 = 0 = 0 for simplicity. With some linear algebra,
the SlipReLU can be reformulated as a piece-wise linear
function with a constant slope c,

A

SlipReLU(2Y) = ¢z +(1—¢)

7k:0717"'7

Here ,and ¢ (0 < ¢ < 1) s
the constant slope of the piece-wise linear function. The
constant slope c effectively balances the contributions of
the threshold-ReLLU and the step function, resulting in a
function that resembles a slippery step function with a slope,
hence the name “SlipReLU”, as illustrated in (C1)-(C3)
in Fig. 1. A detailed derivation can be found in Appendix B.

£6©) ) (k+1)0"
M <2 <

Special Cases of SlipReLLU. The proposed SlipReLLU ac-
tivation function encompasses several special cases that fit
within the unified optimization framework.

(1) When ¢ = 0,8 = [1], the proposed SlipRLU becomes
the quantization-clip-floor-shift (QCFS) in ( ).
This case only focuses on being close to the step function
of the target SNN, but neglects the deviation from the reg-
ular ReLU. (2) When ¢ = 1,8; = [—5%], the proposed
SlipRLU becomes the shift-threshold ReLU in

( ). While this case accounts for the deviation from the
regular ReL.U, it overlooks the proximity to the step func-
tion of the target SNN. In contrast, our proposed SlipReLU
balances the trade-off between the regular ReLU and the
step function of the target SNN. For further details, refer
to Appendix B.

N-1.

4.2. Theorems on the Conversion Error

The following two theorems give the conversion error of the
proposed unified method.

Theorem 1. Consider an ANN trained with SlipReLU
activation function as defined in Eq. (8), and its conver-

sion to an SNN with the same weights. Let V = 60,

vid(0) = thf)d, and ¢ = 0. Then, for any arbitrary values
of T and N, the expected conversion error of the proposed
unified method reaches 0, i.e.,

Err® D lge[,

provided that the shift term § satisfies § € [—%,1].

VT, L Ez( ©)

=0,

11
272

Theorem 1 indicates that when ¢ = 0, the expectation of the
conversion error reaches zero, even though N # T, as long
as the shift term ¢ satisfies § € [— The proof can be
found in Appendix C.

Theorem 2. Consider an ANN trained with SlipReLU
activation function as defined in Eq. (8), and its conver-
= 90,

2’2}

sion to an SNN with the same weights. Let V
v©(0) = Vt(hg 8, and &, = [2 711/2]. Then, for arbitrary
values of T and N, and arbitrary ¢ € [0, 1], the expecta-

tion of the conversion error of the proposed unified method
<v<“>2

reaches the opnmal ,Le.,

YA
(V)2

a0

VL B, ([Br®)) [seog.y =

as long as the shift term § satisfies § € [—1, 3] .

Theorem 2 indicates that for any V ¢ € [0, 1], the expectation

(£)\2
of the conversion error can reach the minimum M, and
§ is any shift term that falls within the range of [ 3, 1], and
5 =2 711/ 2 The proof can be found in Appendix C. These
results indicate we can achieve high-performance converted
SNN at ultra-low time steps.
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4.3. Algorithm for Training ANN with SlipReLU

Training ANNs with SlipReLU activation function through
backpropagation can be a challenging task. Despite the
SlipReLU having a constant slope as its derivative, as shown
in Eq. (8), small slope values ¢ € [0, 1] can result in the
gradient vanishing problem. To overcome this, we draw
inspiration from the works of ( );

( ), and utilize the surrogate gradient as the derivative
of the floor function, with % = 1. The overall rule for
derivation is as follows, 7[1;’*5;@(?(“) = 1if de) € DU
D5 and 0 otherwise, where Df = [-010,0 — 5:0], Dy =
[—00,0 — 66], and Zgg) is the i-th element of z(). Then
we can train the ANN with SlipReLU activation using the
Stochastic Gradient Descent algorithm, and convert it to an

SNN. Please refer to Appendix D for our proposed ANN-
SNN conversion algorithm.

4.4. Criterion to Choose Best Hyper-parameters (N, ¢)

In accordance with the criterion of the unified optimization
framework of ANN-SNN conversion outlined in Eq. (5), we
determine the optimal hyper-parameters (N, ¢) by minimiz-
ing the following criterion measure,

. 1 1
Crit. = 3 |AccrerLu — ACCANN|+§ |Accann — Accsnn| -

5. Related Work

The study of ANN-SNN conversion was first proposed
by ( ), which focused on converting ANNs
with the ReLU activation function to SNNs. Subse-
quently, ( ) proposed data-based and model-
based weight-normalization methods to convert a three-
layer CNN to an SNN. However, due to the error analyzed
in Sect. 3.1, the converted SNN typically requires hundreds
of time-steps to achieve accurate results. To address this
issue, the “reset-by-subtraction” mechanism (

s ), also known as “soft-reset” mechanism (

, ), was proposed an alternative to the “reset-to-
zero” method. Recently, many methods and algorithms have
been proposed to eliminate conversion errors, such as the
weight-normalization technique proposed by
( ) which takes into account the actual SNN operations
during the conversion process. For direct conversion from
a pre-trained ANN to an SNN, ( ) proposed
Rate Norm Layer to replace the ReLU activation function
in source ANN training, and ( ) proposed cali-
bration for weights and biases using fine-tuning to correct
errors layer-by-layer. Our work is similar to that of

( ); ( ), which also focus on optimal
conversion. ( ) minimized the layer-wise
error by a shift-threshold ReLU which only considers the
deviation from the standard ReL.U in the unified optimiza-

tion framework in Sect. 3.1. ( ) proposed using
a quantization clip-floor-shift activation function to train
ANNSs, which only minimizes the conversion error, but ne-
glects the performance loss of the tailored ANN with new
activation function. They both achieved “optimal” results
with some fixed shift term. In contrast, our proposed unified
framework offers more flexibility for different application
scenarios when converting ANNs to SNNs by using tech-
niques that eliminate the conversion error while preserving
the ANN performance with less deviation from the stan-
dard ANN with regular ReL.U. Our SlipReLU is able to
balance the trade-off between the ANN performance and
the conversion error simultaneously.

6. Experiments

In this section, we compare our SlipReLU method with
existing state-of-the-art approaches for image classifica-
tion tasks on CIFAR-10 ( , ) and CIFAR-
100 ( s ) datasets. Similar to pre-
vious works, we use the VGG-16, ResNet-18, and ResNet-
20 network structures as the source ANNs. We compare
our method with the state-of-the-art ANN-SNN conver-
sion methods and supervised training methods, including
Hybrid-Conversion (HC) ( , ), RNL (

, ), ReLU-Threshold-Shift (RTS) ( ,

), RMP ( ; ), TSC ( , ),
SNN Conversion with Advanced Pipeline (SNNC-AP) (

, ), and the ANN-SNN conversion with Quan-
tization Clip-Floor-Shift activation function (QCFS) (

, ). Refer to Appendix E for the network structures
and training setups. We use SlipReLU with shift settings
01 = 0,0 = 0.5, and refer to Appendix F for ablation
studies of SlipReLLU with/without shifts.

6.1. Comparison with SOTA Conversion Methods

Table 1 shows the performance comparison of the proposed
SlipReLU with the state-of-the-art ANN-SNN conversion
methods on CIFAR-10. Notably, the proposed SlipReL.U
method is the only existing work that enables SNN in-
ference using only one time-step. Specially, when latency
T =1, the SlipReLU method is able to achieve an accuracy
of 93.11% for ResNet-18 with settings (N,¢) = (1,0.4),
and an accuracy of 88.17% for VGG-16 with the SlipReLU
activation function. For ultra-low latency inference at
T = 2, the proposed SlipReL.U method has the best per-
formance of 93.97% compared to existing state-of-the-art
ANN-SNN conversion methods for ResNet-18, with a sig-
nificant margin compared to the next best baseline QCFS
of 75.44%. The accuracy for VGG-16 is 89.57% with
SlipReLU activation, which is slightly worse than QCFS.
For ResNet-20, an accuracy of 82.25% is achieved with 2
time-steps, which is also the best. In conclusion, the pro-
posed SlipReLLU method provides the best SNN accuracy



Unified Optimization Framework of ANN-SNN Conversion

Table 1. Comparison between the proposed SlipReLLU method and previous works on CIFAR10.

Architecture  Method ANN Acc. T=1 T=2 T=4 T=8 [ T=16 T=32 T=64 T>256
RMP ( , ) 93.63 - - - - - 60.30 90.35 93.39
RTS ( s ) 92.09 - - - - 9229 9229 9222 9226
RNL ( s ) 92.82 - - - - 5790 8540 91.15 9295
VGG-16 SNNC-AP ( R ) 95.72 - - - - - 9371 95.14 95.79
QCEFS ( ) 95.52 - 91.18 9396 9495 | 9540 9554 9555 95.59
RelLU 95.92 10.00 10.00 11.51 70.97 | 88.39 93.05 9476 95.19
SlipReL.U (N=2, ¢=0.2) 93.02 88.17 89.57 91.08 92.26 | 9296 93.19 93.25 93.25
SlipReLU (N=4, ¢=0.9) 95.60 11.37 7518 88.80 9354 | 9520 95.66 9565 95.66
RMP ( , ) 91.47 - - - - - - - 91.36
QCFS ( , ) 91.77 - 7320 83.775 89.55 | 91.62 9224 9235 9241
ResNet-20 ReLU 93.71 11.58 12.54 16.05 3647 | 70.84 8347 8593 86.46
SlipReLLU (N=1, ¢=0.2) 82.07 80.99 8225 83.52 84.46 | 84.70 84.85 84.89 84.69
SlipReLU (N=4, ¢=0.6) 92.96 4587 57.82 73.17 86.66 | 92.13 9323 93.36 93.29
RTS ( s ) 92.32 - - - - 9241 9330 93.55 93.58
SNNC-AP ( , ) 9546 - - - - - 9478 9530 95.45
ResNet-18 QCEFS ( , ) 96.04 - 7544 9043 9482 | 9592 96.08 96.06 96.06
ReLU 96.71 11.00 25.07 5521 73.80 | 88.44 9450 96.00 96.50
SlipReLLU (N=1, c¢=0.4) 94.61 93.11 9397 9459 9492 | 95.18 95.07 9481 94.67
SlipReLU (N=4, ¢=0.3) 96.15 86.52  90.78 93.84 9548 | 96.10 96.12 96.22 96.15

for ultra-low latency inference, particularly for 7' = 1.

As there is an intrinsic trade-off between latency and accu-
racy in SNN models, the SlipReLU method, which has high
accuracy at low-latency, may suffer from a performance
degradation when used for inference at larger latency. For
example, as shown in Table 1 and Table 2, a converted SNN
that has the highest accuracy at T' = 1 may perform worse
at 7' = 16 than another converted SNN. This illustrates the
phenomenon that one converted SNN model cannot perform
better than others for both low-latency and long-latency in-
ference. Therefore, we present two converted SNN models,
for low-latency (T'<8) and long-latency (T>16) inference
respectively, corresponding to results in bold and results in
italics in tables. As we focus on ultra-low-latency inference
of SNNs in this paper, results in italics can be considered as
additional information showcasing the performance of the
proposed SlipReLU method for long-latency inference.

We further evaluate the performance of SlipReLU method
on the large-scale CIFAR-100 dataset and present the results
in Table 2. Notably, when T" = 1, our SlipReLU method
is able to achieve an accuracy of 71.51% for ResNet-18
and an accuracy of 64.21% for VGG-16, while all the other
methods fail to provide inference accuracy for this latency.
Additionally, when T' = 2, our SlipReLU method achieves
an accuracy of 73.91% for VGG16, which is 3.12% higher
than the next best QCFS method. These results demon-
strate that our SlipReLU method outperforms the previous
conversion methods in both accuracy and ultra-low latency.

We also investigate the conversion of ReLU-ANN to SNN
and results are shown in Table 1 and Table 2. From the
results, we can see that the ReLLU is better in terms of
the ANN accuracy, but for the SNN accuracy, ReLU com-
pletely fails to deliver satisfactory results for low latency

(e.g., T = 1,2,4). Compared with ReL.U, our proposed
SlipReLU model shows a slight performance drop in ANN
accuracy, but significantly outperforms ReLU in terms of
SNN accuracy.

6.2. Comparison with Supervised Training Methods

Table 3 reports the results of the proposed SlipReLU method
against the state-of-the-art supervised training methods on
CIFAR10 dataset. These state-of-the-art supervised train-
ing methods include Hybrid-Conversion (HC) ( s

), TSSL ( ; ), tdBN ( ,
), TET ( , ), NAS ( ) )
and NA ( , ). Our approach for ResNet-18

achieves an accuracy of 93.11% with time-step 7' = 1. The
CIFARNEet achieves an accuracy of 95.31% with time-step
T = 4, which is higher than any other supervised trained
models. The TET and tdBN methods can achieve compa-
rable accuracy, but they use a more complex ResNet-19,
whereas our SlipReLU uses ResNet-18. Notably, our ultra-
low latency performance is comparable to other state-of-the-
art supervised training methods.

6.3. Effect of the Slope c and the Quasi-Latency N

In our SlipReLU method, the slope parameter ¢ balances
the weight of the threshold ReLLU and the step function,
which ultimately affects the accuracy of the converted SNN.
To better understand the effect of ¢ on the SNN perfor-
mance and determine the optimal value, we have conducted
experiments on the CIFAR-10 and CIFAR-100 using VGG-
16, ResNet-18 and ResNet-20 networks with quasi-latency
N = 2 and N = 32. The results in Fig. 2 illustrate the
impact of the slope c on the converted SNN accuracy for
different quasi-latency NV at different time-step/latency 7.
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Table 2. Comparison between the proposed SlipReLLU method and previous works on CIFAR-100.

Architecture  Method ANN Acc. T=1 T=2 T=4 T=8 [ T=16 T=32 T=64 T>512
TSC ( , ) 71.22 - - - - - - - 70.97
RMP ( s ) 71.22 - - - - - - - 70.93
RTS ( , ) 70.62 - - - - 65.94 69.8 70.35 70.55
VGG-16 SNNC-AP ( s )  77.89 - - - - - 73.55 76.64 77.87
QCFS ( , ) 76.28 - 63.79 69.62 7397 | 76.24 77.01 77.10 77.08
ReLLU 73.39 1.00 1.53 1555 28.56 | 46.03 6242 70.05 72.16
SlipReLLU (N=1, c¢=0.4) 68.46 6421 6630 67.97 69.31 | 70.09 70.19 70.05 69.79
SlipReLU (N=2, ¢=0.1) 70.03 54.68 58.66 62.56 66.31 | 69.35 70.65 7123 71.52
TSC ( , ) 68.72 - - - - - - - 68.18
RMP ( s ) 68.72 - - - - - 27.64 4691 67.82
ResNet-20 QCFS ( , ) 69.94 - 1996 34.14 5537 | 67.33 69.82 70.49 70.50
ReLLU 70.18 1.28 1.16 1.76 291 4.03 6.17 8.95 11.66
SlipReLLU (N=1, ¢=0.2) 50.79 48.12 51.35 53.27 54.17 | 5391 5311 51.75 50.89
SlipReLU (N=4, ¢=0.4) 68.40 16.52 2379 37.94 57.20 | 66.61 68.76 69.04 69.09
RTS ( , ) 67.08 - - - - 63.73 6840 69.27 69.82
SNNC-AP ( , ) 77.16 - - - - - 76.32 7729 7725
ResNet-18 QCFS ( , ) 78.80 - 70.79 75.67 7848 | 79.48 79.62 79.54 79.61
ReLU 77.16 1.00 1.64 4.99 11.40 | 34.08 6044 7190 75.63
SlipReLU (N=1, ¢=0.3) 74.01 71.51 7391 74.89 7540 | 7541 75.30 74.98 74.90
SlipReLU (N=2, ¢=0.5) 77.08 51.01 60.03 68.72 74.59 | 77.29 78.04 77.97 77.99

mal single ANN to an SNN and obtain the SNN accuracy

Table 3. C i ith state-of-the-art ised traini th- . . .
able J. -ompanison With state-oT-He-arl supervisec trainimg me at different time-steps T. Refer to Appendix H for more

ods on CIFAR-10 dataset.

detailed results of selecting the optimal hyper-parameters.

Model Method Arch. SNN T

HC ( , ) Hybrid VGG-16  91.13 100 We also test our proposed method on the large-scale Im-
TSSL ( , ) Backprop  CIFARNet 9141 5 ageNet dataset, and results are reported in Table 4 with
tdBN ( ’ ) Backprop  ResNet-19 9234 = 2 16 pecified setting (IV, ¢). As it is more challenging and

TET ( s ) Backprop  ResNet-19  94.16 2 . .
NAS ( , ) Search SNASNet 9373 5 expensive to conduct experiments on large-scale dataset
NA ( , ) Backprop AlexNet 9176 5 such as ImageNet, we did not fine-tune the model with the
AlexNet 9494 5 best chosen hyper-parameters for ImageNet. We use the
VGG-16 91.08 4 specified setting (N, c) = (8,0.2) for ResNet-34, the pro-
SlipReLU ANN.SNN VGG-16  88.17 1 posed SlipReLU method is only better than other conversion
(Ours) ResNet-18  93.11 1 method when T' > 64 with this specific setting. For VGG-
gfliile{tl-\llei gggz i 16 model, we employ the specified setting (N, ¢) = (8,0.1),

and we can achieve an accuracy of 51.54% when the time-
step is 16. Our proposed method does not always perform
well with specified (N, ¢) settings, which shows the impor-
tance of the selection of slope ¢ and quasi-latency V.

It can be observed from Fig. 2 that for small values of quasi-
latency N, the slope c has a significant effect on SNN accu-
racy for ultra-low and low-latency inference. Particularly,
different slope values c can result in varying SNN accuracy
levels when the time-step 7" is small. However, for larger 6.4 Future Work
values of N, the effect of ¢ on the SNN accuracy is less
pronounced, with all curves appearing similar, regardless of
the value of T'. This flexibility allows our SlipReLU method
to be applied to different scenarios, with small values of
N being preferred for ultra-low/low-latency inference and
larger values of IV being used when the inference time is
not a concern. Further details can be found in Appendix G.

For future work, we propose to explore the learning of the
slope c and the quasi-latency N during ANN training, rather
than treating them as hyper-tuning parameters. By doing
s0, we aim to identify the optimal combination of (NN, ¢)
without the need for repetitive training, thereby enhancing
the efficiency of the proposed method.

As the proposed SlipReLU method has two hyper- 7, Discussion and Conclusion
parameters, the slope ¢ and the quasi-latency N, we use

the criterion measure in Sect. 4.4 to select the optimal val-  In this work, we propose a unified framework for convert-
ues. For instance, based on the criterion measure in Sect. 4.4,  ing ANNs to SNNs that addresses a limitation of existing
the optimal hyper-parameter combination for VGG-16 on methods. Specifically, we take into account the performance
CIFAR-10 is (N, ¢) = (2,0.2). We then convert this opti- loss that occurs when replacing the regular ReLU activation
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Figure 2. Effect of different slopes ¢ with different quasi-latency N on CIFAR-10 and CIFAR-100.

Table 4. Comparison between our proposed SlipReL.U method and other conversion methods on ImageNet dataset.

Architecture Method ANN T=16 T=32 T=64 T=128
SNNC-AP ( s ) 75.66 - 64.54 71.12  73.45

ResNet-34 QCEFS ( , ) 7432 5935 6937 7235 73.15
SlipReL.U (N=8, c=0.2) 75.08 43.76 66.61 7271 74.01

RTS ( R ) - 3942  69.11 7021 7045

VGG-16 SNNC-AP ( , ) 75.36 - 63.64 70.69 73.32
QCEFS ( R ) 7429 5097 6847 72.85 73.97

SlipReLL.U (N=8, c=0.1) 7199 5154 6748 7125 72.02

function in an ANN with a new activation function. This
performance loss is then inherited by the resulting SNN.
To address this issue, we formulate the ANN-SNN conver-
sion as a unified optimization problem that considers both
the performance loss and the conversion error. To this end,
we introduce the SlipReLU activation function, which is a
weighted combination of the threshold-ReLU and the step
function, and improves the performance of either function
alone. This allows for more accurate conversion of ANNs
to SNNGs.

The SlipReLU method covers a family of activation func-
tions that map from activation values in source ANNs to
firing rates in target SNNs. Most existing state-of-the-art
optimal ANN-SNN conversion methods are special cases of
our proposed SlipReLU method. We demonstrate through
two theorems that the expected conversion error between
SNNs and ANNSs can theoretically be zero on a range of

shift values § € [—%, 7], rather than a fixed shift term 3,

allowing for converted SNNs with high accuracy and ultra-
low latency. We have evaluated our proposed SlipReLU
method on the CIFAR-10/100 datasets, and the results show
that our proposed SlipReLU method outperforms the state-
of-the-art ANN-SNN conversion methods and supervised
training methods in terms of accuracy and latency. To the
best of our knowledge, this is the first ANN-SNN conver-
sion method that enables SNN inference using only one
time-step with an accuracy of 93.11% on CIFAR-10 and
71.51% on CIFAR-100.
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Notations in the Paper

Throughout the paper and this Appendix, we use the following notations in Table S5. Bold-face lower-case letters refer

to vectors, and normal-face letters refer to scalars. Note ngl)

and 0(¥) are vectors whose dimensions match the number
of neurons in the layer of interest, and denote V( ) = [Vt(}f)] and 8) = [9(V)] respectively. Namely, vector VE? = [Vt(hz)]

means that each element is the same Vt(h) Denote § = [0].

Table S5. Summary of notations in this paper.

Symbol Definition \ Symbol  Definition
N Quasi-time-steps of ANNs Fann(-)  ANN activation function
T Total time-steps of SNN's Fsnn(-)  SNN activation function
a®  Activation values of ANNs | s(9)(¢) Spike outputs of SNN
%) Average PSP of SNNs x((¢) PSP released by [-th layer
6 Trainable threshold in ANNs | v(©)(¢) Membrane potential after firing
V)" Firing threshold in SNNs w® Weight matrix

A. Analysis of Activation Function in SNNs
We will derive the activation function of SNN, Fgnn(+) in this section.

The activation function of SNN gives the relationship between activation values (=) and X(©) of successive layers of
SNN, which defines input-output function mapping for adjacent layers.

Specifically, we can get the potential update equation by combining Eq. (2) and Eq. (4),
vO ) =vO(t — 1) + WOxED (1) —sO )y l0 (A.1)

By summing the time-step from time 1 to 7, then we get

T T
vO(T) = v (0) = WO S xED () - 3 sO v (A2)

t=1

Due to the spike-in-spike-out property of the IF neurons in SNN, the output at each time step can be either 0 or 1. For

each neuron 4, let m; = Zthl sge) (t), and each m; € {0,1,2,--- ,T} denotes the total number of spikes of each neuron .
Then m = {m;} is the vector collecting all the number of spikes of all neurons in the ¢-th layer. The accumulated spikes
m = Zthl s (t) denotes the total number of spikes. According to the above equations, we have

vO(T) —=v O (0) = WOT . =D —my Y (A3)

Then we get
th(hZ) =TWOxE=D — (v (1) — v (0)) . (A4

A.1. Element-wise Version Derivation

Denote
0 — WOg-1
We use 2\, v\?(T), v{ (0), and m; to denote the i-th element in vector z(©), v(9(T'), v()(0), and m respectively. That is,
2 = () VO() = (O(T)} VO 0) = 1v7(0)), and m = {mi).

12
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Then we have
mViy) =720 — (vO(T) ~v19(0)
= ml-Vt(hz) = nge) - (VEZ)(T) - vgé)(())) (For each neuron i with m = {m,}, z(¥) = {ZEZ)}) .

Note that we assume the terminal membrane potential vl(-z) (T') lies within the range [0, Vt(lf) ), by further assuming VZ(Z) (0) =0,
we get
0<v(1) <V
= - Vt(}f) - @( T) <0 (adding TZZ@) to each term)
= T2 = Vi <) V(1) < T4 (i = T2 —VO(1)
£ [ [
= 1" -V <mv D <Y
79 _ O Tz (fz)

(£) v (/)
Vi Vin

Then we use floor operation and clip operation to determine the total number of spikes, m;,

(5)
Tz
m; = clip (ﬁ) ,0,7 ) (and m; = Ts(é))
Vi

(0)

(0 _ (1|17 O _ (00

S; —chp<T\‘V(}@J,O,1>(andx =V,'s;")
th

The assumption VE )(O) = 0 may be too strong, without it, we will get

— Tz(e) V(@ + v@)(()) < min(hé) < TZZ(»Z) + VEZ)(O)

(15) (£) (€) (&) (£)
<:> Vth(z)Jrv (0) <m, < Tz, +(2;1- (0)
Vin Vin
(£) (£) (f) e
Tz, —V, Tz 0
@7% @ th 1§ <m; < ( +6 with 6= ’(g))
th Vin Vin
(Z)( 0)
Denote § = - @~ Then we have
Vin
(f)
m; = clip (13) +4 (andmL—Ts())
th
729 _
st = clip (T { &) + 5J ,0, 1) (and %9 = Vt(hz)s(e))
th
72"
x(¥ V(Z)Chp — ZZZ +41,0,1
Tlvy

The relationship between activation values (=) and x(*) of successive layers of SNN can be formulated as

L 7,0
9 = velip <{ “ +6J > :
T v
th

13
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A.2. Vector Version Derivation

The accumulated spikes m = 23:1 s()(t) denotes the total number of spikes, and m = {m;} is the vector collecting all
the number of spikes of all neurons in the ¢-th layer. Each m; € {0,1,2,--- , T} denotes the total number of spikes of each
neuron ¢. According to the above equations, we have

vO(T) = v (0) = WOT . D —my (D (A.5)

Then we get
m‘/t(hf) =TWOD _ (v (1) —vO(0)) . (A.6)

Note that we assume the terminal membrane potential v(*)(T') lies within the range [0, Véﬁ)), by further assuming
v(®(0) = 0, we get

0<vO(T) <V
= -Vl <« vOT <o
= TWOxED v « WO _yO(7) < TWOR D
s TW®Ox(E-1) _ Véﬁ) < th(hf) < TWO (D

TWOS) V] WO

~

(£) (€)
Vvth ‘/;h

Then we use floor operation and clip operation to determine the totoal number of spikes, m,

TWOx(-1)
m = clip rx ,0,T (andm = Té(é))
VO

th

1| TW®Ox(E1)
s =clip [ = | ——=——1,0,1] (andx® =VP5®)
Loy

1 | TW®x(-1)
< (7P 0]
Vin

The assumption v(¥)(0) = 0 may be too strong, without it, we will get

= TWOxED v L vO0) < mV? < TWOED 4 vO(0)
TWOg(D — v 4 00 TWOx(E=D 4 v(O(0)
Vi Vi
TWOx(E=1) _ VE}‘? TW O x(E—1) v(®(0)

+d0<m<g +d6 with 6= ——7"F~
4 4 4
v Vi vy

<m

N

® . . . .
Denote § = VVU(f ). Note & is a vector whose dimension matches the number of neurons in that layer. Then we have
th

TW©O 1)
m:clip(\‘vvx—l—é ,0,T (and m = T5")

7
Vi
1 | TW®x(-1)
s = clip <T {()Z) +4/,0,1 (and 9 = Vtg)é(@)
Vin
(£)x(£=1)
x\" =V, clip (T {V(O +46],0,1] .
th

14
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(=1 and () of successive layers of SNN can be formulated as

1 | TWW®Wx(-1)

th

The relationship between activation values x

Note V(h) is a vector whose dimension matches the number of neurons in that layer, and Vgh) = [V(h )] means each element

is the same Vt(h)

Denote

Then

B. Derivation of SlipReLLU Activation Function

In this section, we will give detailed derivation of the proposed SlipReLU activation function in Eq. (8) without and with

different shift modes. In ANNSs, denote
7z — WO x(-1)

Then the forward propagation of activation values through layers in the ANN is

al¥ = -FANN(Z(Z)) = ]:ANN(W(Z)X(Z_D) .

B.1. Derivation of SlipReLLU Activation Function

We start with the SlipReL.U activation function in Eq. (8) without shift, then proceed with SlipReL.U activation function
in Eq. (8) with different shifts.

Derivation of SlipReLU activation function in Eq. (8) without shifts. We start with the initial definition of the SlipReL.U
function in Eq. (B.1),

0 ifz) <0
SlipReLU(2)) = { cz(® + (1 — ¢) %“ if k0 w(“ <z® < % . (B.1)
Here k = 0,1,--- , N — 1. Note 8(“) should be a vector whose dimension matches the number of neurons in that layer,

00 — [9(5)].
Then we can rewrite it to

ShpReLU(Z(D) = Ytemp +c- (Ztemp - ytemp) = CZtemp + (1 - C)ytemp

0(8) \‘N ztempJ

70
where  Ziemp = o chp (6“) ,0, 1) ,and Yiemp = N 0

Here

Nztemp
Ytemp =

(/109

— Ytemp = LN Chp (9([) ’ >J

<= Yiemp = S )chp (N {N H(Z)J 0, 1>

1 | Nz®
<:>ytemp:9( )chp< L 00 J,O, 1) .

15



Unified Optimization Framework of ANN-SNN Conversion

Then Eq. (B.1) can be written as follows,

a) = Fann(z®) = SlipReLU(z")

= CZtemp + (1 - p)ytemp
1 | Nz®
(4 _ Oatin [ — | 222~
= ¢f'clip (W),o 1) + (1 —¢)0%clip (N { 1G] J 70,1) .

That is the SlipReLU activation function in Eq. (8),

0 1 | Nz®
al® — = Fann(z (Z)) — cg(f)chp (6( 7 ,0, 1) +(1- c)ﬁ(z)c]ip (N \‘;)J ,071> .

B.2. SlipReLU Activation Function with Different Shift Modes

Derivation of SlipReLU in Eq. (8) with shifts. As mentioned in Sect. 4, the SlipReLU activation function in Eq. (8) in
a weighted combination of the threshold-ReLLU (first part) and the step function (second part), with the slope 0 < ¢ < 1
balancing the weight, then any shift to these two parts will lead to shifting in the SlipReLU activation function. The
SlipReLU extension with in Eq. (8) can be formulated as follows,

a® = Fann(z) = SlipReLU(z®)

o) 1 | Nz®
= c0Wclip (W + 61,0, 1) + (1= ¢)0Welip ( { G + 6J ,0, 1) .

The shift term §; € [N, 0] and 6 € [—2, 1] for the source ANNs. And &1 = [6:], § = [¢].

Here we list several examples of the proposed SlipReL.U with different shift modes.

1. Mode 0: We set §; = § = 0, then
20 1 | Nz®
0 _ 0y _ e [
a® = Fann(2®) = c0Oclip (0(4),071> + (1 — )6 )Chp< { o0 J70,1> )
2. Mode 1: Wesetd; = 0,6 = 3, then

_(2Y /1| Nz® 1
a(f) = -FANN(Z(Z)) = CQ(Z)Chp <9(£), O, 1) + (1 — C)G(E)Chp <N \‘9(6) + [2]J ,0, 1> .

B.3. Special Cases of the SlipReLLU Activation Function

Here we list four different special cases of the proposed SlipReLU.

Threshold-ReLU When ¢ = 1 and §; = 0, the SlipReLLU becomes the threshold Rel.U activation function which is
studied in ( ).

Shift-threshold-ReLU When ¢ = 1 and §; = —1/(2N), the SlipReLU becomes the shift-threshold ReLU activation
function which is studied in ( ).

Quantization clip-floor (QCF) When ¢ = 0 and 6 = 0, the SlipReLU becomes the quantization clip-floor (QCF)
activation function which is studied in ( ).

Quantization clip-floor-shift (QCFS) When ¢ = 0 and § = 1/2, the SlipReLU becomes the quantization clip-floor-shift
(QCFS) activation function which is studied in ( ).
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C. Proof of Theorems

Before we proof Theorem 1 and Theorem 2, we first introduce an important Lemma.

Lemma 3. If a random variable x € [0, 0] is uniformly distributed in every small interval (myg, myi1) with py (t =

0,1,---,T), where mg = 0,mpy1 = 0,m; = %fort =1,2,---,T, pg = pr. For any value § € [—%, %], then we
can conclude that 01T
T

E, (|lz——|-2+6||)=0. ok

Proof. We consider z in different small intervals (1, m441).

(1) Forz € (0,%),
0 Tx 1 Tx
0<x<ﬁ<:>6<7+6<5+6<:> {QJHSJ_O.

@) Forz e (200 LU andt = 1,2, T~ 1

(2t —1)0 (2t +1)0 1 Tx 1 Tx B
5T <z < o —t 2+6<9+6<t+2+6<:> 94—6 =t.

(3)Forz € ( @718 9) ,

(2T —-1)0 1 Tz 1 Tz B
5T <r<l<=T 2+5< 7 +5<T+2+5<=> 7 +6|=T.

Then we have

x — LA +6
T\ 6
6/2T 0| Tz T-1 (2t+1)6/2T 0| Tz
= Do |T — = +(5J dzr + p/ x—{—kéJ dz
/0 T { ¢ ; ! (2t-1)6/2T T10
0
0 |T
+/ pr {er(SJ dx
(27—1)8/2T TLo
0/2T T-1 (2t+1)6/2T 10 0
o [ leldzt S p | o 7| dupr [ & — 6] do
0 — Jet-neser T (2T—1)0/2T

0/2T T-1 (2t+1)0/2T 10 0
ZPO/ mdx—l—Zpt/ <x—T>dx+pT/ (x—0)dx
0 (

P (2t—1)0/2T 2T—1)0/2T
62 62
“Poge PO Prgm =0

O

Lemma 4. Let P be a probability distribution on R. If a random variable z € R™ and z ~ P, a functiong : z — g(z) € R"
and g(z) > 0 almost surely forV z € D, and
E.lg(z)| =0,

then we have
E.|lg(z)|, =0.

Proof. By the definition of Ly-norm, we have

lg(2)ll, = \/g%’(Z) +3(2) -+ 02 (2) <o) +1g2(2)[ + -+ + lgn(2)] -

17



Unified Optimization Framework of ANN-SNN Conversion

Then, we can get

E,[lg(2)lly < Ezlg1(2)] + Ez [g2(2)[ + -+ + Eq |gn(2)]
= Ezgl(z) + Ezg2(z) +eee Ezgn(z) =0.

Then
E. llg(z)[, =0.
O
C.1. Proof of Theorem 1
For Theorem 1, we need to prove
VI,L B, ([Bn®)) |5y =0.

Proof. The activation function of the SNN is

(0) ©
O _ O g 1 | T2 4+ v(0)
.FSNN(Z( ) = Vi, clip (T {V(he) ,0,1 ) .
t

For ¢ = 0, the SlipReLU activation function used in the source ANN then becomes

. 1 | Nz®
./—'.ANN(Z(Z)) = G(Z)Chp (N LM -+ 6J ,0, 1> .

With Vt(hz) = 0 then the error becomes

EI‘I"(E) = ]:SNN(Z(Z)) — .FANN(Z(Z)) = N

00 | N2l v | 720 +v(O(0)
60 T v ®
th

Then
B (B 1) set-1.

. ( (0 {Nz“) +5J AR {Tz(z) +v<f)(0)J |>

7 7
N | 6© T Vt(h)
00 | Nz® V9 | 720 4 v (0)
o7 | Nz _® L © _ Vi
gEZ( N { 10) +5J z D ’66[—5,51 +tEa |2 T v :
th
©

Denote v ’(0) and z; the i-th element of vector v(¥)(0) and z. Denote § = [§]. Then we need to consider every element of

vector z.
E §0) NZz('E) 5| Vt(}f) TZEK) +V§e) (0)
vy

N | 0® T
00 | vz, (0 ©_ Vi | T2 +vi?(0)
< Elz‘ ( W W + (5 — Zi ‘66[*%,%] + ]Ezi Zlv — T ‘/t(hz) . (C2)

Then according to Lemma Theorem 3, we have

(©) ()
K, ( 0 {N +5J 0

N | 60 ) ‘56[*%’%1 =0

o Vi {Té-“ + vE”(O)J D
i [
T Vtil )

VW= =0
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This holds for any shift value ¢ in the ANNs when f% <9I < % which gives the conclusion of the Theorem 1.
VT, L Ez(Err D’ 11 =0.
O
C.2. Proof of Theorem 2
For Theorem 2, we need to prove,
(€)y2
0) _ V)
VIL K, ([Bn®)) sy g = SR (C3)
Proof. The activation function of the SNN is
1 | Tz® ()
]:SNN(Z(Z)) = V(E)chp %Z(O) ,0,10 .
T Vi
For arbitrary ¢ € [0, 1], the SlipReLU activation function used in the source ANN then becomes
() 1 | Nz®
) — c0Oclip [ Z— —9Oclip [ = | 22—
Fann(z') = ¢ clip (6(4) + 41,0, 1) + (1 —¢)8%clip (N { 0] —|—5J ,0, 1) .
With V = 0¥, then the error becomes,
EI‘I‘(E) = ‘FANN (Z(z)) - ]:SNN (Z(Z))
2® 1| T2z® +v©(0)
— (0 —vOalip [ =
0{9 clip (9“) + 41,0, 1) Vi, clip (T \‘ 0 ,0,1
th
1 | Nz® 1| Tz 4 v (0)
() —vOalip | =
+(1- ){9 chp( { 10 +5J ,0, 1> Vi, clip <T -y ,0,1
th
AR O v (0) . ‘ ‘
=c {Z(Z) +8,09 — tjlj 0 (with v(9(0) = Vt(h)é, Vt(h) =0
th
(€)
L1 0 | N2 +vO(0) | V' | T2Y +v9(0)
N 00 T AR
th
0, y0s Vi |T29 A
=c z()+Vth' 5 — +6| p =c-Emy (C.4)
T V(z)
th
90 | Nz® v | 720 4+ vO0) | ] a
th
Then
Err® 2 ¢ Em; + (1—2¢)-Erry
= ‘Err“)‘ =[c-Err; + (1 —¢) - Errg| < ¢ - |Errg| + (1 —¢) - |[Erra| .
So we can minimize the whole error by minimizing each of the two terms.
Let§; = ‘%5. For Eq. (C.4), we have
V(/) V( () Tz®)
|Erry| £ |20 + (@ +8) - = 40
T AS
th
V([) V(e) Tz
— 70 4 th & — Z(e) (C.6)
V.
th
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Here
AL
2z + t—z}jd) is the activation function of ANN
v | g
tTh Z( ) is the step activation function of SNN .
Vvth

This Eq. (C.6) recovers the loss of the shift-threshold ReL.U (with a shift value ¢) and the step function, which is the same
as ( ). And as shown in (A) of Fig. 1, the conversion error is the shaded area. The error between the
activation function (of ANNSs) and the step function (of SNNs) is obtained by summing up of all the shaded area together,
which is the ANN-SNN conversion error.

Then the objective becomes minimize

@) o \? 0 \? (032
T V [/ V V 1
rrgn {E, |Err|} = qun 3 ( th o “th ¢> + ( th (;5) _ 0 ) > = ¢ = —3-

T 4T
Then 1246
~1/2+
01 = — (C.7
And the minimum Ls-norm of the first error becomes
(Vii,)?
E, (|E =
(| rr1|) AT
For Eq. (C.5), with v (0) = Vt(h[)S, Vt(hé) = 0, we have
Bxng| 2 A 60 | N2 VY | T2 4 vO(0)
MA=IN | Te® T v
th
From Lemma Theorem 3 and Theorem 1, we have
90 | Nz v | 72 +v(©(0)
Es ([Erral) = E, ( N {9(@ + 5J T V@ ’56[—%,%]
th
=0.

Then

E, ( Errt* D =E, (‘}“ANN(Z(Z)) — ]:SNN(Z(E))D =E, (Jc- Err; + (1 — ¢) - Erry])

< ¢ By ([Err]) + (1 —¢) - E, (|Erra)

(Vi )’
— . th /7 1—¢)-
N T (1—¢)-0
_ V)
AT
This concludes the Theorem 2. ®
2
(0) _ (V')
vI,L E, ([BrO]) gy = R
O

D. Pseudo-code for the Unified ANN-SNN Conversion Algorithm

Here is the pseudo-code for our proposed unified ANN-SNN conversion algorithm.
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Algorithm 1 Algorithm for ANN-SNN conversion.

1: Input: ANN model structure faxn (x; W) with initial weights W = {W(9)}; Quasi-latency N; Shift value § from the
interval § € [—3, 1]; Initial dynamic threshold 8 = {6(")}; Learning rate ¢

2: Output: SNN 1?10?16] fonn(x; W)
3: Dataset D
4: for { = 1to fann.layers do
5. ifis ReLU activation then
6: Replace ReLU(x) by SlipReLU(x; N, ()
7:  else if is MaxPooling layer then
8: Replace MaxPooling layer by AvgPooling layer
9: endif
10: end for
11: for e = 1 to epochs do
12:  for length of Dataset D do
13: Sample minibatch {(x(?),y)} from D
14: for { = 1to fann.layers do
15: x(©) = SlipReLU(W©O)x (=1 N 9()
16: end for
17:  end for
18:  Loss = CrossEntropy(x®), y)
19: for /= 1to fann-layers do
20: W - WO — ZLoss
21: 00 0 — eSLoss
22:  end for
23: end for
24: for { = 1to fann-layers do
250 fonn- WO « fann. WO
26: fSNN-Vt(}f) — fann.0¥
27: fSNN.V(E) (0) — fSNN-‘/t(hZ) X 0
28: end for
29: Return fsnn

E. Experiments Details
E.1. Network Structure and Training Setups

There are three steps in our proposed ANN-SNN conversion,
Step 1: Tailor the ANN;

Step 2: Train the tailored ANN;

Step 3: Convert the trained ANN to an SNN.

In the first step, we first replace max-pooling with average-pooling and then replace the ReLU activation with the proposed
SlipReLU activation function. The tailored ANN is also called the source ANN. In the second step, we train the tailored
ANN. After training the tailored ANN, we copy all weights from the trained-tailored source ANN to the converted SNN, and

set the threshold Vt(}f) in each layer of the converted SNN equal to the threshold value (©) of the source ANN in the same

layer. Besides, we set the initial membrane potential v(*)(0) in converted SNN as Vt(}f)é to match the optimal shift ¢ of the
11

SlipReLU activation in the tailored source ANN, where the optimal shift § can be any value in the interval § € [—3, 3].

Common data normalization and some data pre-processing techniques are used in the experiments. For example, we
resize the images in the CIFAR-10/CIFAR-100 datasets into 32 x 32. Besides, random cropping images, Cutout (

R ) and AutoAugment ( , ) are used for all datasets. The Stochastic Gradient Descent
(SGD) optimizer ( , ) is used in the experiments with a momentum parameter of 0.9. We use a cosine decay
scheduler ( , ) to adjust the learning rate with a weight decay 5 x 10~* for CIFAR-10/CIFAR-100

datasets. All models are trained for 300 epochs. We set the initial learning rate to e = 0.1 for CIFAR-10 and CIFAR-100.
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When considering small quasi-latency N = 1 and N = 2 for CIFAR-10/CIFAR-100, we first try to train the model with
learning rate e = 0.1, for models that can not be trained properly with learning rate e = 0.1, we set the initial learning
rate to 0.05. Weset 6; = 0,6 = % for the SlipReLU activation for all the models and all the datasets. For the ablation
study, we train all the networks on CIFAR-10/CIFAR-100 dataset with quasi-latencies N = 1,2, 4, 8, 16, 32, 64 and slopes
c=0.1,---,0.9.

As for the input to the first layer and the output of the last layer of the SNN, we do not employ any spiking mechanism as
in ( ). We directly encode the static image to temporal dynamic spikes as input to the first layer, which can
prevent the undesired information loss introduced by the Poisson encoding. For the last layer output, we only integrate the
pre-synaptic input and do not fire any spikes. We use constant input when evaluating the converted SNNs.

E.2. Introduction of Datasets

CIFAR-10: The CIFAR-10 dataset ( , ) consists of 60,000 32 x 32 color images in 10 classes of
objects such as airplanes, cars, and birds, with 6,000 images per class. There are 50, 000 samples in the training set and
10, 000 samples in the test set.

CIFAR-100: The CIFAR-100 dataset ( , ) consists of 60,000 32 x 32 color images in 100 classes
with 6, 000 images per class. There are 50, 000 samples in the training set and 10, 000 samples in the test set.

ImageNet: In the ImageNet dataset ( , ), the training set is composed of 1, 281, 167 images with 1000
object classes, the validation set is composed of 50, 000 images with 1000 object classes, and the testing set is composed of
100, 000 images with 1000 object classes. We use the ImageNet dataset validation set as the test set. The images vary in
dimensions and resolution. Many applications resize/crop all the images to 256 x 256 pixels.

F. Comparison of SlipReLLU and SlipReL.U-Shift Activation

Here we further conduct ablation studies on SlipReLU and SlipReLU-shift, by comparing the performance of SNNs
converted from ANNs with SlipReLU activation and ANN with SlipReLU-shift activation. In Sect. 4, we prove that for
arbitrary 7" and NV, the expectation of the conversion error reaches 0 with the SlipReLLU-shift activation function when
¢ = 0. We also prove that for arbitrary T and N and arbitrary ¢ € [0, 1], the expectation of the conversion error of the
proposed unified method reaches the optimal (:(Vt(}f))2 /(4T). To verify these, we set N = 1,2,4, 8,16, 32 and train ANNs
with SlipReL.U activation and SlipReLU-shift activation, respectively.

Fig. S3 shows how the accuracy of converted SNNs changes with respect to the time-step 7" under different quasi-latency
N settings. The accuracy of the converted SNN from ANN with SlipReL.U activation (in the first and third columns)
first increases or stays flat for time-step T < 4, and then decreases rapidly with the increase of time-steps, because we
cannot guarantee that the conversion error is zero when ¢ # 0. The best performance is still lower than the SlipReLU-shift
activation. The non-shifted SlipReL.U activation shows no advantage for ultra-low latency inference when 7" < 4. In
contrast, the accuracy of the converted SNN from ANN with SlipReL.U-shift activation (in the second and fourth columns)
increases with the increase of time-step 7'. It converges to the same accuracy when the time step is larger than 16. The
SlipReLU-shift activation shows advantages for ultra-low latency inference when 7' < 4.

G. Effect of the Slope c and the Quasi-Latency N

In our SlipReLU method, the slope c balances the weight of the threshold ReL U and the step function, which affects the
accuracy of the converted SNN. To analyze the effect of ¢ and better determine the optimal value, we train VGG-16/ResNet-
20 networks with quasi-latency N = 1, 2,4, 8,16, 32, and then converted the trained networks to SNNs. The experimental
results on CIFAR-10/100 dataset are shown in Fig. S4, where each of the colored curves shows the effect of the slope
c on the SNN accuracy over different time-step/latency 7', under different quasi-latency settings. Table S6, Table S7
and Table S8 are the detailed data used to plot the curves.

H. Selecting the Best Hyper-parameters including the Slope c and the Quasi-Latency N

As there are two hyper-parameters in the proposed SlipReLU method, i.e., the slope c and the quasi-latency [V, it is better
to choose hyper-parameters based on some criterion rather than a rule-of-thumb. Therefore, we use the criterion measure
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in Sect. 4.4 to select the best hyper-parameters, and we rewrite it here,
. 1 1
Criterion = 3 |AccreLu — Aceann| + 3 |Accann — Accsnn| -

Here we take VGG-16 on CIFAR-10 as an example, and the best hyper-parameters are (N, ¢) = (2,0.2). Then we convert
this best single model to SNN and obtain SNN accuracy under different time-steps T. The detailed results of how to choose
the best hyper-parameter over quasi-latency N and slope ¢ with VGG-16 on CIFAR-10 are shown in Table S9 and Table S10.

I. Future Study

Remark 2. Our unified conversion framework exploits both the one-step conversion mechanism and the two-step conversion
mechanism. The one-step conversion method uses a pre-trained source ANN, such as ( ), however, the two-step
conversion method needs to redesign the activation function of the ANN to get a tailored source ANN, train it and convert it
to SNN, such as ( ); ( ).

Remark 3. Usually, implicit variables of an optimization problem are variables which do not need to be optimized but are
used to model feasibility conditions ( , ), and they are often interpreted as explicit ones (

, ), by using the union of image sets associated with given set-valued mappings to make the implicit variables as
explicit variables, which can be an interesting future work but not what we are interested in this paper.

As mentioned in Sect. 3.1, the multi-step spike-output nature of SNN implies that higher-latency output depends on the
outputs of all previous time-steps, which can be explored through multi-task learning. Therefore, it is reasonable to use
multi-task learning for ANN-SNN conversion where the different time-steps can be seen as different but related tasks.

As mentioned in Sect. 6.4, another aspect of the future work is that we consider learning the slope c and the quasi-latency
N during ANN training, rather than using them as hyper-tuning parameters, so that the best combination of (N, ¢) can be
found without repeating the training, thus improving the efficiency of the proposed method.
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Figure S3. Ablation studies on SlipReLU activation with/without shift under different slopes ¢ with different quasi-latency V.
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(b) Influence of different slopes with the quasi-latency N = 2 on CIFAR-10 and CIFAR-100
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(c) Influence of different slopes with the quasi-latency N = 4 on CIFAR-10 and CIFAR-100
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(d) Influence of different slopes with the quasi-latency N = 8 on CIFAR-10 and CIFAR-100
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(f) Influence of different slopes with the quasi-latency N = 32 on CIFAR-10 and CIFAR-100
Figure S4. Effect of different slopes ¢ with different quasi-latency N on CIFAR-10 and CIFAR-100.
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Table S6. Influence of different slope c with the quasi-latency N = 1.

Slopec  ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256

VGG-16 on CIFAR-10

c=0.1 90.93 10.00 10.00 10.00 10.00 10.05 2278 6991 87.55 87.72
c=0.2 88.68 10.00 10.00 10.00 10.00 10.00 16.25 3422 48.16 68.69
c=0.3 86.73 10.00 9.74 13.37 2229 4348 68.81 81.81 85.71 86.35
c=0.4 91.90 10.00 10.00 10.00 10.77 32.66 68.87 8874 90.77 90.55
c=0.5 90.86 85.40 86.59 8827 89.67 90.67 90.93 9091 90.81 90.59
c=0.6 90.97 81.35 85.18 87.21 89.32 90.32 90.79 90.70 90.52 90.42
c=0.7 92.15 75.68 8296 86.52 89.64 91.68 9205 92.10 91.94 91.90
c=0.8 93.51 10.00 10.19 1576 59.78 91.17 93.11 93.40 93.45 93.35
c=0.9 94.93 10.00 10.00 8.95 20.52 80.80 9247 9424 94.76 94.90
ResNet-18 on CIFAR-10
c=0.1 89.27 10.00 10.00 10.66 26.07 75.84 89.25 89.92 89.75 89.60
c=0.2 93.36 9247 92,68 93.17 9374 9386 93.82 93.82 93.81 93.73
c=0.3 94.09 92.86 9335 94.06 9437 9447 9448 9442 94.29 94.27
c=0.4 94.61 93.11 9397 9459 9492 9518 95.07 9481 94.71 94.67
c=0.5 94.79 68.75 1048 10.14 4734 89.64 93.96 94.67 94.55 94.49
c=0.6 94.99 87.49 88.80 89.29 90.87 9291 9437 94.83 94.73 94.71
c=0.7 95.39 45.02 50.13 60.06 80.77 91.06 9472 9524 95.27 95.17
c=0.8 95.92 10.00 10.00 10.00 41.71 9291 9493 9554 95.70 95.71
c=0.9 96.28 9.99 10.02 19.72 59.28 78.32 90.47 94.63 95.80 95.98
ResNet-20 on CIFAR-10
c=0.1 81.53 80.65 81.87 83.06 83.68 84.11 84.14 83.88 83.78 83.75
c=0.2 82.07 80.99 8225 8352 8446 84770 8485 84.89 84.80 84.69
c=0.3 83.46 80.03 82.17 83.81 84.84 8532 8526 8522 85.01 84.95
c=0.4 84.97 80.30 82.80 84.69 86.12 86.81 86.79 86.79 86.75 86.71
c=0.5 86.49 79.06 82.53 8536 87.06 8793 88.13 88.02 87.87 87.77
c=0.6 88.48 7621 81.74 85.86 88.30 89.19 89.11 88.99 88.93 88.85
c=0.7 89.70 16.04 1397 24.14 6491 8475 8743 87.86 88.06 88.08
c=0.8 91.07 4097 44.14 4390 5570 7342 8429 88.08 89.52 89.93
c=0.9 92.98 33.81 4371 5940 78.30 88.60 91.09 91.66 91.78 91.83
VGG-16 on CIFAR-100
c=0.2 65.04 1.00 1.00 1.01 1.53 4.57 30.82 58.80 65.33 65.13
c=0.3 66.05 1.00 1.00 1.00 1.00 2.15 18.58 5426 64.34 65.96
c=0.4 68.46 6421 6630 6797 69.31 70.09 70.19 70.05 69.79 69.62
c=0.5 69.30 6199 6431 6671 6891 7042 70.50 70.18 70.03 69.85
c=0.6 69.49 4934 5322 57.83 6258 6667 69.11 70.07 69.63 68.96
c=0.7 70.97 30.19 34.77 41.37 50.01 59.17 66.61 70.07 70.85 70.45
c=0.8 72.13 12.81 15.68 2237 3270 4778 6235 69.54 71.31 71.11
c=0.9 74.76 1.00 1.00 1.03 2.02 9.97 32.00 5597 67.82 71.85
ResNet-18 on CIFAR-100
c=0.1 71.84 71.11 7251 7332 7341 7338 7263 72.19 72.06 71.88
c=0.2 72.32 34.00 3942 48.16 59.34 6741 70.63 70.14 67.63 64.74
c=0.3 74.01 7151 7391 7489 7540 7541 7530 7498 74.90 74.71
c=0.4 73.90 51.56 5556 6020 6474 69.16 7199 7289 72.76 71.94
c=0.5 74.88 53.01 5592 5737 60.59 67.62 73.15 7453 73.70 72.81
c=0.6 75.93 4.45 1.01 1.01 2.05 4.33 4428 69.24 72.85 71.71
c=0.7 76.44 1.13 1.00 1.00 1.00 1.66 3447 6696 7257 73.35
c=0.8 78.41 1.00 1.00 1.00 1.00 2.31 3750 62.62 71.34 73.83
c=0.9 78.18 1.00 1.00 1.04 3044 66.73 73.81 77.04 77.52 77.66
ResNet-20 on CIFAR-100
c=0.1 48.62 46.80 49.85 51.61 52.19 5195 5123 50.31 49.56 49.12
c=0.2 50.79 48.12 51.35 5327 5417 5391 53.11 51.75 50.89 50.35
c=0.3 52.84 47.08 51.34 5451 56.00 5631 5546 5446 53.82 53.42
c=0.4 55.18 4558 50.63 5472 5744 57.67 56.69 5538 54.54 53.97
c=0.5 57.51 40.65 47.14 54.15 5837 5959 5847 5733 5641 55.88
c=0.6 59.98 2556 3428 47.01 56.64 59.60 59.16 57.74 56.73 56.35
c=0.7 64.71 18.87 2593 3726 4692 5128 51.68 5152 51.12 50.84
c=0.8 66.96 9.73 1276 2148 3948 46.84 4891 4990 50.01 50.18
c=0.9 69.36 5.82 7.25 11.01 2258 47.32 61.57 6526 6596 66.32
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Table S7. Influence of different slope ¢ with the quasi-latency N = 2.

Slope ¢ ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256
VGG-16 on CIFAR-10
c=0.1 92.73 87.94 89.45 9091 92.06 9272 93.06 93.00 93.01 93.02
c=0.2 93.02 88.17 89.57 91.08 9226 9296 93.19 9325 9324 93.25
c=0.3 93.11 86.81 88.60 90.19 91.83 9296 9325 9341 9340 93.40
c=0.4 93.10 83.57 86.65 8947 9148 92.81 93.08 93.18 93.18 93.12
c=0.5 92.84 7546 8196 86.56 90.51 92.19 9253 92.62 92.56 92.48
c=0.6 93.44 73.83 8396 88.69 91.73 9279 9339 9336 9342 93.41
c=0.7 94.31 72.17 80.16 86.63 9138 9352 94.11 9441 9447 94.54
c=0.8 94.93 61.41 8137 89.14 9270 9432 9480 9495 9491 94.93
c=0.9 95.47 59.55 80.19 89.92 9377 95.13 9542 9539 9544 95.42
ResNet-18 on CIFAR-10
c=0.1 94.20 89.30 91.26 92.61 9376 94.19 9442 9442 9443 94.50
c=0.2 95.16 90.79 92.68 94.11 95.08 9528 9541 9537 95.39 95.35
c=0.3 95.42 89.97 92.13 9390 95.14 9568 9582 9570 95.74 95.69
c=0.4 95.56 90.37 9232 9385 9496 9562 9568 9571 95.75 95.78
c=0.5 95.97 90.63 9277 9436 9544 96.07 96.14 96.15 96.11 96.10
c=0.6 95.98 86.23 90.08 93.02 9496 9581 96.10 96.14 96.12 96.15
c=0.7 96.06 8596 89.72 9281 9481 9560 9593 9595 96.10 96.14
c=0.8 96.46 82.69 88.09 92.04 9481 9599 96.29 9639 96.31 96.29
c=0.9 96.48 6890 7739 8643 9276 9538 96.15 9636 96.45 96.48
ResNet-20 on CIFAR-10
c=0.1 87.91 7592 8090 85.29 88.14 89.10 89.35 89.19 89.01 88.95
c=0.2 88.66 75.06 80.65 86.17 88.65 89.51 8990 89.83 89.69 89.61
c=0.3 89.53 7177 7842 8476 88.82 90.24 90.45 90.37 90.20 90.15
c=0.4 89.73 68.57 76.85 84.33 88.71 90.05 90.14 90.20 90.25 90.20
c=0.5 90.72 66.82 7631 84.58 89.57 91.13 9146 9145 91.35 91.32
c=0.6 91.48 56.46 6799 8094 88.52 90.99 91.77 91.89 91.84 91.88
c=0.7 92.17 60.32 7093 81.52 88.88 91.72 9226 9226 9225 92.27
c=0.8 92.91 5095 60.84 74.04 86.55 91.83 93.14 9340 93.35 93.26
c=0.9 93.11 3547 46.10 62.81 82.57 9093 9271 93.14 93.21 93.18
VGG-16 on CIFAR-100
c=0.1 70.03 54.68 58.66 6256 6631 69.35 70.65 7123 71.52 71.47
c=0.2 70.73 48.02 52.87 58.53 6434 6835 7066 71.52 71.79 71.76
c=0.3 71.16 48.14 53.15 58.71 6457 68.66 7093 71.83 72.00 71.98
c=0.4 71.43 4245 4841 5532 62.68 6834 70.84 71.88 72.17 72.07
c=0.5 72.66 36.01 43.11 5125 59.92 67.10 7095 7248 7291 73.15
¢=0.6 72.73 2772 3397 4264 53.60 6391 70.07 7261 7326 73.35
c=0.7 73.47 1930 25.04 33.69 4626 60.29 69.07 7251 7346 73.46
c=0.8 74.12 13.40 17.44 2541 3923 5654 6880 73.11 74.18 74.41
c=0.9 75.18 2241 2852 3827 5158 64770 7173 7432 75.14 75.25
ResNet-18 on CIFAR-100
c=0.1 75.38 61.23 67.17 7152 74.64 7620 7650 7646 76.29 76.30
c=0.2 76.15 61.14 6749 7224 7516 76.66 77.04 7696 7695 76.94
c=0.3 76.60 5829 6568 71.51 7528 7696 77.07 7699 77.00 76.99
c=0.4 77.32 5572 6298 70.09 7472 77.02 7799 7798 77.82 77.79
c=0.5 77.08 51.01 60.03 6872 7459 7729 78.04 7797 77.99 7791
c=0.6 77.42 41.69 5351 6496 73.17 7690 7757 77.68 77.85 77.80
c=0.7 77.93 33.40 4577 5896 70.54 76.15 77.53 78.02 78.02 78.08
c=0.8 78.22 1.00 18.51 2.38 6.82 4349 7416 78.05 78.59 78.64
c=0.9 78.22 1.00 1997 1.71 1725 6552 7647 78.10 78.26 78.23
ResNet-20 on CIFAR-100
c=0.1 59.83 32776 42.03 5220 5945 62.15 6247 6281 62.65 62.40
c=0.2 61.36 31.66 40.76 52.05 60.08 63.17 63.63 6342 63.07 62.90
c=0.3 62.96 2391 3265 4570 58.25 63.62 6490 6492 64.80 64.59
c=0.4 64.32 24.88 34.52 48.19 60.47 65.14 6655 6672 66.46 66.41
c=0.5 65.85 18.07 2530 3924 56.10 6430 6650 67.12 67.15 67.21
c=0.6 66.75 16.58 23.81 37.84 56.00 6497 6753 68.09 67.85 67.71
c=0.7 68.49 10.58 15.74 2833 49.67 63.67 67.64 6877 6898 69.03
c=0.8 69.03 13.51 20.17 33.17 53.63 6521 6859 69.32 69.51 69.45
¢=0.9 69.70 7.92 11.19 18.76 3640 5936 67.75 69.62 69.89 70.02
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Table S8. Influence of different slope ¢ with the quasi-latency N = 4.

Slope ¢ ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256
VGG-16 on CIFAR-10
c=0.1 93.24 68.87 83.64 89.31 92.14 93.03 9332 9341 9347 93.47
c=0.2 92.68 60.15 80.03 86.37 9043 92.17 92.62 9271 92.75 92.71
c=0.3 93.55 4752 8330 88.85 92.07 93.18 93.54 93.65 93.68 93.67
c=0.4 93.94 51.52 80.67 88.13 91.89 9320 93.81 93.98 94.03 94.01
c=0.5 94.54 65.47 83.46 90.13 93.09 9425 9461 94.62 94.63 94.58
c=0.6 94.95 50.73 83.07 90.25 9337 94.61 9491 9506 95.05 95.02
c=0.7 95.02 3267 79.63 89.69 9355 9484 9514 9504 95.02 95.05
c=0.8 95.52 21.08 7627 89.69 9373 9498 9547 9553 95.61 95.60
c=0.9 95.60 11.37 75.18 88.80 93.54 9520 95.66 9565 95.66 95.67
ResNet-18 on CIFAR-10
c=0.1 96.01 88.01 9096 9334 9512 9586 96.02 96.13 96.16 96.16
c=0.2 96.31 86.16 89.82 93.00 95.02 9590 96.27 9643 96.44 96.45
c=0.3 96.15 86.52 90.78 93.84 9548 96.10 96.12 96.22 96.15 96.19
c=0.4 96.27 87.18 90.76 93.66 9529 9590 96.13 96.25 96.21 96.25
c=0.5 96.38 8476 8929 9289 9499 9582 9627 9633 96.36 96.36
c=0.6 96.29 79.25 8525 90.26 94.05 9568 9630 96.39 96.42 96.41
c=0.7 96.68 7478 8230 89.16 93.86 9589 9646 96.60 96.66 96.69
c=0.8 96.53 7343 80.72 88.15 9328 9570 9623 9645 96.55 96.58
c=0.9 96.67 56.79 68.00 81.08 90.61 95.08 9631 96.53 96.52 96.59
ResNet-20 on CIFAR-10
c=0.1 91.42 66.51 7599 84.62 89.58 9124 91.80 91.89 91.97 92.01
c=0.2 91.82 60.30 7125 8244 89.05 91.79 9227 9236 92.35 92.28
c=0.3 91.81 60.66 72.13 82.62 8940 91.74 9236 9246 92.53 92.51
c=0.4 92.07 6196 72.57 8227 88.68 9145 9238 9246 92.55 92.55
c=0.5 9291 44,08 5450 7127 86.16 91.66 93.14 9324 93.32 93.21
c=0.6 92.96 4587 57.82 73.17 86.66 92.13 9323 9336 93.29 93.19
c=0.7 93.30 41.65 54.13 70.79 8597 91.79 9328 93.61 93.55 93.46
c=0.8 93.33 29.14 3935 59.35 80.90 90.65 92.76 93.14 93.26 93.24
c=0.9 93.37 1529 2155 4127 75.60 90.45 9295 9349 9352 93.52
VGG-16 on CIFAR-100
c=0.1 71.78 2227 28.83 38.88 51.68 63.38 69.68 71.64 72.04 71.92
c=0.2 72.16 20.01 2624 3541 4779 60.82 68.78 71.67 7247 72.59
c=0.3 73.40 2637 3329 4297 5527 6580 7130 73.26 73.55 73.69
c=0.4 73.18 18.13 2470 3432 4798 61.11 69.59 7283 73.65 73.51
c=0.5 73.25 1529 2091 3029 43.65 58.57 6841 7233 7328 73.53
¢=0.6 74.26 1837 24.09 32.89 46.76 61.41 7050 73.83 7442 74.50
c=0.7 74.94 1995 26.09 3586 49.68 63.12 71.18 74.05 7491 75.03
c=0.8 74.50 9.07 13.70 2244 3792 5741 6920 73.02 74.33 74.69
c=0.9 75.25 13.62 2123 3224 47776 6332 7184 7461 7513 75.15
ResNet-18 on CIFAR-100
c=0.1 76.71 46.54 56.14 6628 73.07 7593 76.72 77.11 77.20 77.15
c=0.2 77.82 4571 5572 66.18 74.02 77.19 7796 78.15 78.21 78.25
c=0.3 77.85 4274 53.62 6477 7337 7695 78.06 7826 78.26 78.26
c=0.4 78.28 4472 5501 65.50 73.58 7736 78.61 78.54 78.76 78.78
c=0.5 77.69 38.73 50.81 6320 72.84 76.69 7795 7794 77.77 77.74
c=0.6 78.30 29.83 4041 5537 6927 76.07 77.94 78.66 78.61 78.59
c=0.7 78.56 2533 3545 5141 6822 7546 77779 7824 78.55 78.75
c=0.8 77.96 21.54 3090 4551 6442 7394 77.14 78.16 78.34 78.33
c=0.9 78.00 13.54 20.76 33.67 5743 72.09 7643 77.60 77.98 78.14
ResNet-20 on CIFAR-100
c=0.1 66.37 15.69 2385 40.99 5823 6542 6739 67.68 67.51 67.33
c=0.2 66.91 19.33 27.89 43.62 59.79 6651 68.16 6840 6842 68.45
c=0.3 67.39 1592 2244 3825 5774 6647 6829 6870 68.59 68.45
c=0.4 68.40 1652 2379 3794 5720 66.61 68.76 69.04 69.09 68.96
c=0.5 68.86 11.14 1527 26.79 49.58 6477 68.70 69.63 69.75 69.69
c=0.6 68.83 9.15 1299 2357 4574 63.08 68.25 69.08 69.24 69.32
c=0.7 69.45 6.90 10.56  19.27 4090 6226 68.71 70.06 70.29 70.13
c=0.8 69.59 7.09 9.00 1488 3293 59.35 68.05 69.61 70.08 69.94
¢=0.9 70.18 4.79 7.11 12.04 2598 5320 66.77 69.95 70.54 70.46
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Table S9. Choosing the best hyper-parameter over quasi-latency N and slope ¢ with VGG-16 on CIFAR-10.

Quasi-latency N Slope ¢ AccreLu  Accann  Accsnn |Accreru — Accann|  |Accann — Acesnn|  Criterion
0.10 95.92 90.93 10.00 4.99 80.93 85.92
0.20 95.92 88.68 10.00 7.24 78.68 85.92
0.30 95.92 86.73 10.00 9.19 76.73 85.92
0.40 95.92 91.90 10.00 4.02 81.90 85.92
N=1 0.50 95.92 90.86 85.40 5.06 5.46 10.52
0.60 95.92 90.97 81.35 4.95 9.62 14.57
0.70 95.92 92.15 75.68 3.77 16.47 20.24
0.80 95.92 93.51 10.00 2.41 83.51 85.92
0.90 95.92 94.93 10.00 0.99 84.93 85.92
0.10 95.92 92.73 87.94 3.19 4.79 7.98
0.20 95.92 93.02 88.17 2.90 4.85 7.75
0.30 95.92 93.11 86.81 2.81 6.30 9.11
0.40 95.92 93.10 83.57 2.82 9.53 12.35
N =2 0.50 95.92 92.84 75.46 3.08 17.38 20.46
0.60 95.92 93.44 73.83 2.48 19.61 22.09
0.70 95.92 94.31 72.17 1.61 22.14 23.75
0.80 95.92 94.93 61.41 0.99 33.52 34.51
0.90 95.92 95.47 59.55 0.45 35.92 36.37
0.10 95.92 93.24 68.87 2.68 24.37 27.05
0.20 95.92 92.68 60.15 3.24 32.53 35.77
0.30 95.92 93.55 47.52 2.37 46.03 48.40
0.40 95.92 93.94 51.52 1.98 42.42 44.40
N =4 0.50 95.92 94.54 65.47 1.38 29.07 30.45
0.60 95.92 94.95 50.73 0.97 44.22 45.19
0.70 95.92 95.02 32.67 0.90 62.35 63.25
0.80 95.92 95.52 21.08 0.40 74.44 74.84
0.90 95.92 95.60 11.37 0.32 84.23 84.55
0.10 95.92 94.21 38.54 1.71 55.67 57.38
0.20 95.92 94.65 50.20 1.27 44.45 45.72
0.30 95.92 94.84 50.11 1.08 44.73 45.81
0.40 95.92 95.01 39.63 0.91 55.38 56.29
N=28 0.50 95.92 95.25 27.98 0.67 67.27 67.94
0.60 95.92 95.41 20.70 0.51 74.71 75.22
0.70 95.92 95.58 18.26 0.34 77.32 77.66
0.80 95.92 95.64 15.30 0.28 80.34 80.62
0.90 95.92 95.60 10.56 0.32 85.04 85.36
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Table S10. Choosing the best hyper-parameter over quasi-latency N and slope ¢ with VGG-16 on CIFAR-10.

Quasi—latency N Slope ¢ AccreLU Accann Accsnn |ACCReLU — ACCANN| |ACCANN — ACCSNN‘ Criterion
0.10 95.92 95.28 17.71 0.64 77.57 78.21
0.20 95.92 95.44 17.80 0.48 77.64 78.12
0.30 95.92 95.33 14.61 0.59 80.72 81.31
0.40 95.92 95.56 17.49 0.36 78.07 78.43
N =16 0.50 95.92 95.47 14.33 0.45 81.14 81.59
0.60 95.92 95.37 11.17 0.55 84.20 84.75
0.70 95.92 95.60 10.08 0.32 85.52 85.84
0.80 95.92 95.44 10.03 0.48 85.41 85.89
0.90 95.92 95.77 10.03 0.15 85.74 85.89
0.10 95.92 95.49 12.78 0.43 82.71 83.14
0.20 95.92 95.53 13.98 0.39 81.55 81.94
0.30 95.92 95.54 12.72 0.38 82.82 83.20
0.40 95.92 95.69 10.01 0.23 85.68 85.91
N =32 0.50 95.92 95.50 10.00 0.42 85.50 85.92
0.60 95.92 95.49 10.03 0.43 85.46 85.89
0.70 95.92 95.64 10.51 0.28 85.13 85.41
0.80 95.92 95.55 10.07 0.37 85.48 85.85
0.90 95.92 95.60 10.18 0.32 85.42 85.74
0.10 95.92 95.39 10.00 0.53 85.39 85.92
0.20 95.92 95.55 10.05 0.37 85.50 85.87
0.30 95.92 95.77 10.02 0.15 85.75 85.90
0.40 95.92 95.71 10.07 0.21 85.64 85.85
N =64 0.50 95.92 95.55 10.01 0.37 85.54 85.91
0.60 95.92 95.53 10.08 0.39 85.45 85.84
0.70 95.92 95.66 10.03 0.26 85.63 85.89
0.80 95.92 95.64 10.10 0.28 85.54 85.82
0.90 95.92 95.61 10.06 0.31 85.55 85.86
0.10 95.92 95.58 10.04 0.34 85.54 85.88
0.20 95.92 95.65 10.03 0.27 85.62 85.89
0.30 95.92 95.51 10.09 0.41 85.42 85.83
0.40 95.92 95.71 10.16 0.21 85.55 85.76
N =128 0.50 95.92 95.53 10.04 0.39 85.49 85.88
0.60 95.92 95.36 10.16 0.56 85.20 85.76
0.70 95.92 95.76 10.05 0.16 85.71 85.87
0.90 95.92 95.70 10.08 0.22 85.62 85.84
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