
A Unified Optimization Framework of ANN-SNN Conversion: Towards Optimal
Mapping from Activation Values to Firing Rates

Haiyan Jiang 1 Srinivas Anumasa 1 Giulia De Masi 2 3 Huan Xiong 1 4 Bin Gu 1

Abstract
Spiking Neural Networks (SNNs) have gained
significant attention for their energy-efficient and
fast-inference capabilities, but training SNNs
from scratch can be challenging due to the discrete
nature of spikes. One alternative method is to con-
vert an Artificial Neural Network (ANN) into an
SNN, known as ANN-SNN conversion. Currently,
existing ANN-SNN conversion methods often in-
volve redesigning the ANN with a new activa-
tion function, rather than utilizing the traditional
ReLU, and converting it to an SNN. However,
these methods do not take into account the poten-
tial performance loss between the regular ANN
with ReLU and the tailored ANN. In this work,
we propose a unified optimization framework for
ANN-SNN conversion that considers both per-
formance loss and conversion error. To achieve
this, we introduce the SlipReLU activation func-
tion, which is a weighted sum of the threshold-
ReLU and the step function. Theoretical anal-
ysis demonstrates that conversion error can be
zero on a range of shift values δ ∈ [−0.5, 0.5]
rather than a fixed shift term 0.5. We evaluate
our SlipReLU method on CIFAR datasets, which
shows that SlipReLU outperforms current ANN-
SNN conversion methods and supervised training
methods in terms of accuracy and latency. To
the best of our knowledge, this is the first ANN-
SNN conversion method that enables SNN infer-
ence using only 1 time step. Code is available
at https://github.com/HaiyanJiang/
SNN_Conversion_unified.
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1. Introduction
Spiking neural networks (SNNs) are biologically-inspired
neural networks based on biologically plausible spiking neu-
ron models to process real-time signals (Hodgkin & Huxley,
1952; Izhikevich, 2003). Due to the significant advantages
of low power consumption and fast inference on neuromor-
phic hardware (Roy et al., 2019), SNNs are becoming a
primary candidate to run large-scale deep artificial neural
networks (ANNs) in real-time. The most commonly used
neuron model in SNNs is the Integrate-and-Fire (IF) neuron
model (Liu & Wang, 2001). In this model, each neuron in
the SNN emits a spike only when its accumulated membrane
potential exceeds the threshold voltage. Otherwise, it stays
inactive in the current time step. This setting makes SNNs
more similar to biological neural networks. Compared to
ANNs, event-driven SNNs have binarized/spiking activation
values, which results in low energy consumption when im-
plemented on specialized neuromorphic hardware. Another
significant property of SNNs is the pseudo-simultaneity of
their inputs and outputs for making inferences in a spatial-
temporal paradigm. Compared to conventional ANNs that
present a whole input vector at once and process layer-by-
layer to produce one output value, the forwarding pass in
SNN can efficiently process streaming time-varying inputs.

Generally, there are two main methods for obtaining an
SNN: (1) training an SNN from scratch (Wu et al., 2018;
Neftci et al., 2019; Zenke & Vogels, 2021), and (2) ANN-
SNN conversion (Cao et al., 2015; Diehl et al., 2015; Deng
& Gu, 2021), i.e., converting an ANN to an SNN. Training
from scratch uses a gradient-based supervised optimization
method, such as back-propagation, treating SNNs as special-
ized ANNs. Due to the non-differentiability of the binary
activation function in SNNs, surrogate gradients are usually
used (Neftci et al., 2019). However, this method can only
train SNNs on small to moderate-size datasets (Li et al.,
2021). On the other hand, ANN-SNN conversion is an ef-
fective method for obtaining deep SNNs with comparable
performance to ANNs on large-scale datasets. There are
two main types of ANN-SNN conversion mechanisms: (1)
one-step conversion, which converts the pre-trained ANN to
an SNN without changing the architecture of the pre-trained
ANN, for example Diehl et al. (2015); Li et al. (2021), and
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(2) two-step conversion, which involves redesigning the
ANN, training it and converting it to an SNN, for exam-
ple Cao et al. (2015); Deng & Gu (2021); Bu et al. (2021).

In this work, we investigate a two-step method for ANN-
SNN conversion. This method involves redesigning the
ANN by replacing the regular ReLU activation function
with a new activation function, training the tailored ANN,
and subsequently converting it to an SNN. A tailored ANN
that deviates too much from the regular ANN will degrade
its performance, resulting in a performance loss that will be
inherited by the converted SNN. However, the performance
degradation between the regular ANN and the tailored ANN
has never been considered in the existing ANN-SNN con-
version research. To achieve high-accuracy and low-latency
SNNs (e.g., 1 or 2 time-steps), we are the first to consider
the performance loss between the regular ANN with ReLU
and the tailored ANN, as well as the conversion error, si-
multaneously. Our main contributions are summarized as
follows:
(1) We formulate the ANN-SNN conversion as a unified
optimization problem that considers both the ANN perfor-
mance loss and the conversion error simultaneously.
(2) We propose using the SlipReLU activation function in
the tailored ANN to minimize the layer-wise conversion er-
ror while maintaining the performance of the tailored ANN
as close as possible to that of the regular ANN.
(3) The SlipReLU method covers a family of activation func-
tions that map activation values in source ANNs to firing
rates in target SNNs. Many state-of-the-art optimal ANN-
SNN conversion methods can be viewed as special cases of
our proposed SlipReLU method.
(4) Through two theorems, we demonstrate that the expected
ANN-SNN conversion error can theoretically be zero within
a range of shift values δ ∈ [−0.5, 0.5], rather than a fixed
shift term 0.5. Experimental results further validate the
effectiveness of the proposed SlipReLU method.

2. Preliminaries
In this study, we investigate a classification problem on an
image dataset denoted as (x,y) ∈ D, where each image x
is associated with a ground-truth class label y. Our goal
is to train a neural network f : x → f(x), which can
take the form of an ANN or an SNN, by optimizing the
standard cross-entropy (CE) loss. The CE loss is defined as
LCE(y,p) = −

∑C
i=1 yi log(pi), where yi is the ground-

truth label and pi is the network prediction pi = f(xi). For
consistency, we use the notation f to represent the same
shared infrastructures of the source ANN and the target
SNN. Moreover, we use FANN and FSNN to denote the
activation functions employed in the ANN and SNN models,
respectively. For the notations, refer to Table S5.

ANN Neuron Model. In a traditional ANN, the entire input

vector is fed into the network at once, and it undergoes layer-
by-layer processing through continuous activation functions
to generate a single output value. The forward pass of analog
neurons in ANNs can be formulated as

a(ℓ) = FANN(z
(ℓ)) = FANN(W

(ℓ)a(ℓ−1)) , (1)

where z(ℓ) and a(ℓ) are the pre-activation and post-activation
vectors of the ℓ-th layer, W(ℓ) is the weight matrix, and
FANN(·) is the activation function of the ANN.

SNN Neuron Model. In contrast to ANNs, SNNs employ
binary activations (i.e. spikes) in each layer. To compen-
sate for the limited representation capacity of the binary
activation, the time dimension, or latency, is introduced in
SNNs. Inputs for the forward pass in SNNs are presented
as streams of events and the forward pass is repeated for T
time-steps in order to produce the final result.

In this study, we consider the Integrate-and-Fire (IF) neuron
model (Cao et al., 2015; Bu et al., 2021; Deng & Gu, 2021)
for SNNs. The forward propagation of PSP (postsynaptic
potential) through layers in the target SNN is equivalent to
the forward computation of the analog neurons in the source
ANN. We then derive the forward propagation of PSP. At
time-step t, the IF neuron in ℓ-th layer receives its binary
input x(ℓ−1)(t) from the previous layer, and temporarily
updates its membrane potential according to the equation

u(ℓ)(t) = v(ℓ)(t− 1) +W(ℓ)x(ℓ−1)(t) , (2)

where v(ℓ)(t) is the membrane potential at time step t,
u(ℓ)(t) is the temporary intermediate variable used to deter-
mine the update from v(ℓ)(t − 1) to v(ℓ)(t). If the tempo-
rary intermediate potential u(ℓ)

i (t) exceeds the membrane
threshold V

(ℓ)
th , it will produce a spike output s(ℓ)i (t) = 1.

Otherwise, it will release no spikes s(ℓ)i (t) = 0.

s
(ℓ)
i (t) = H(u

(ℓ)
i (t)− V

(ℓ)
th ) =

{
1, if u(ℓ)

i (t) ⩾ V
(ℓ)
th ,

0, otherwise.
(3)

The vector s(ℓ)(t) = {s(ℓ)i (t)} collects spikes of all neurons
of ℓ-th layer at time t. Note that V (ℓ)

th can be different
in different layers. The membrane potential is updated
by the reset-by-subtraction mechanism (Rueckauer et al.,
2017; Han et al., 2020), that is, the temporary membrane
potential u(ℓ)

i (t) is subtracted by the threshold value V
(ℓ)
th if

the neuron fires s(ℓ)i (t) = 1,

v(ℓ)(t) = u(ℓ)(t)− s(ℓ)(t)V
(ℓ)
th . (4)

If the neuron in the current ℓ-th layer generates a spike,
it will transmit an unweighted PSP x(ℓ)(t) as input to the
succeeding layer, which is similar to Deng & Gu (2021),

x(ℓ)(t) = s(ℓ)(t)V
(ℓ)
th .
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As for the input to the first layer and the output of the last
layer of the SNN, we do not employ any spiking mecha-
nism as in Li et al. (2021). We directly encode the static
image to temporal dynamic spikes as input to the first layer,
which can prevent undesired information loss introduced
by the Poisson encoding. For the last layer output, we only
integrate the pre-synaptic input and do not fire any spikes.

3. Unified Optimization Framework of
ANN-SNN Conversion

In this section, we propose a unified optimization framework
for ANN-SNN conversion, together with the conversion er-
ror analysis. Our unified framework addresses the trade-off
between the performance of the converted SNN and the devi-
ation introduced by the tailored ANN with a new activation
function and the regular ANN with ReLU activation.

The performance of the converted SNN is determined by
both the source ANN performance and the conversion error.
Previous methods for ANN-SNN conversion have focused
solely on minimizing the conversion error without consider-
ing the performance of the tailored ANN (Cao et al., 2015;
Diehl et al., 2015; Deng & Gu, 2021). Our approach, how-
ever, takes into account the performance of the tailored
ANN, as well as the conversion error, in a two-step process.
First, we design a new activation function for the source
ANN to create a tailored ANN. Then, we train the tailored
ANN and convert it to an SNN. By considering the perfor-
mance loss between the tailored ANN and the regular ANN,
our framework ensures that the new activation function does
not deviate too far from the regular ReLU.

3.1. ANN-SNN Conversion in a Unified Framework

We define a unified optimization framework for the conver-
sion of ANNs to SNNs.

Definition 1 (Unified Optimization Framework of AN-
N-SNN Conversion). The framework is formulated as an
optimization problem with an implicit variable T ,

min
F,T
{wEz (|FReLU(z;W)−FANN(z;W)|) (5)

+ (1− w)Ez (|FANN(z;W)−FSNN(z;W, T )|)} .

where w ∈ [0, 1]. Specifically, when the ANN FANN is de-
signed with consideration of the deviation from the regular
ReLU, the layer-wise conversion error E(|Err(ℓ)|) becomes

E
(∣∣∣FANN(a

(ℓ−1);W(ℓ))−FSNN(x̄
(ℓ−1);W(ℓ), T )

∣∣∣) . (6)

The same neural network infrastructure is used for both the
source ANN and the target SNN, as described in Sect. 2.
The notation are as follows: FReLU(·) denotes the regular
ANN with ReLU activation, FANN(·) is the tailored ANN
with a new activation function, FSNN(·) is the converted

SNN, z is the input to the neural network, W = {W(ℓ)}
are the weight matrices trained from the tailored ANN and
copied to the target SNN, F = FANN ∪ FSNN is the space
of activation functions of the tailored ANNs and the target
SNNs, and the latency T (or time-steps) is seen as an im-
plicit variable inherently inherited from the target SNNs.
Additionally, T allows for flexibility in balancing the la-
tency and the accuracy of the converted SNN for different
applications.

Before proceeding, it is important to note that the unified
framework defined in Definition 1 provides guidance for
researchers to propose new solutions for optimal ANN-SNN
conversion. Specifically, the following Remark 1 highlights
several key points to consider.
Remark 1. (A) the tailored ANN’s activation function,
FANN, should be designed to address the potential per-
formance loss caused by the deviation from the ANN with
regular ReLU activation. (B) When FANN is designed by
considering the deviation from the regular ReLU, the layer-
wise error in Eq. (6) may arise from any mismatch of the
following three parts: (1) different activation values from
source ANNs and target SNNs, i.e. a(ℓ) and x̄(ℓ), (2) dif-
ferent activation functions, i.e. FANN(·) and FSNN(·), and
(3) the latency variable T which implicitly affects both the
activation values and activation functions. (C) An “optimal”
ANN-SNN conversion is achieved when the conversion er-
ror, Ez(|Err(ℓ)|), reaches its minimum. For example, Deng
& Gu (2021) has achieved an optimal minimum error of
(V

(ℓ)
th )2

4T , while Bu et al. (2021) has theoretically achieved an
optimal minimum error of 0.

3.2. ANN-SNN Conversion Error Analysis

In the following, we will address the three potential errors
that can occur during the conversion of an ANN to an SNN.

Firing Rates in SNNs and Activation Values in ANNs.
One such error relates to the difference between firing rates
in SNNs and activation values in ANNs. In SNNs, the acti-
vation value of an IF neuron is defined as the average post-
synaptic potential (i.e. average PSP), denoted as x̄(ℓ). The
firing rate is represented by the average number of spikes
over a given time period (latency) T , denoted as s̄(ℓ). The
firing rate and average PSP may be used interchangeably in
SNNs, but in this paper, they are defined differently,

x̄(ℓ) =
1

T

T∑
t=1

x(ℓ)(t) =
1

T

T∑
t=1

s(ℓ)(t)V
(ℓ)
th = V

(ℓ)
th s̄(ℓ) .

To minimize the layer-wise error during conversion, it is
ideal for the converted SNN to have activation values that
are similar to those of the source ANN for each layer. This
can be represented mathematically as

a(ℓ) ≈ x̄(ℓ),
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where a(ℓ) is the activation value of the ANN and x̄(ℓ) is the
activation value of the SNN. The term x̄(ℓ) represents the
average PSP released by the ℓ-th layer, which serves as the
input to the succeeding layer. The threshold V

(ℓ)
th in SNN

can differ across layers. Therefore, we treat it as a trainable
parameter that can be learned in the source ANN and copied
to the target SNN. Any mismatch between the activation
values a(ℓ) and x̄(ℓ) can lead to conversion errors.

Activation Function in SNNs. In terms of the activation
function in SNNs, it defines the relationship between ac-
tivation values, x̄(ℓ−1) and x̄(ℓ), of successive layers. We
utilize the derivation presented in previous studies (Deng
& Gu, 2021; Li et al., 2021), to deduce the SNN activation
function, FSNN. By combining Eq. (2) and Eq. (4), and
summing over the time-step from 1 to T , then we get

v(ℓ)(T )−v(ℓ)(0) = W(ℓ)
T∑

t=1

x(ℓ−1)(t)−
T∑

t=1

s(ℓ)(t)V
(ℓ)
th .

Due to the spike-in-spike-out property of the IF neurons
in SNN, the output spikes at each time-step can be either
0 or 1. The accumulated spikes are represented by m =∑T

t=1 s
(ℓ)(t) = {mi}, where each mi ∈ {0, 1, 2, · · · , T}

denotes the total number of spikes of neuron i. Further we
assume the terminal membrane potential v(ℓ)(T ) should be
within the range [0,V

(ℓ)
th ). Therefore, with a shift value δ,

we have

TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th

V
(ℓ)
th

+ δ < m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ .

In order to determine m, we use the clip and floor functions,

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, T

)
.

The clip (x, a, b) function sets the lower bound a and upper
bound b, while the floor function ⌊x⌋ gives the greatest inte-
ger that is less than or equal to x. With x̄(ℓ) = V

(ℓ)
th s̄(ℓ) =

mV
(ℓ)
th /T , the SNN activation function gives the relation-

ship between activation values x̄(ℓ−1) and x̄(ℓ) as follows,

x̄(ℓ) = FSNN

(
W(ℓ)x̄(ℓ−1)

)
= V

(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
. (7)

The activation function FSNN(·) in SNNs is a step function

defined within the interval [0, V (ℓ)
th ] with a step size of V

(ℓ)
th

T
(i.e. the green curve in Fig. 1). Since the SNN output is
discrete while the ANN output is continuous, there is an
intrinsic difference between a(ℓ) and x̄(ℓ), as illustrated
in Fig. 1. A comprehensive analysis of the SNN activation
function is provided in Appendix A.

4. Proposed SlipReLU
Through the above analysis, the performance of the con-
verted SNN is usually determined by the source ANN per-
formance and the conversion error. From Remark 1, the
layer-wise conversion error in Eq. (6) can be affected by the
difference between activation values from source ANNs and
target SNNs, the difference between activation functions,
and the latency T (i.e., time-step). The goal of ANN-SNN
conversion is to minimize the conversion error with low
latency T while maintaining the performance of the tailored
ANN. Recently, many research works try to minimize the
gap between activation functions. For example, Deng &
Gu (2021) uses the shift-threshold-ReLU as the activation
function in the source ANN, and Bu et al. (2021) employes
the quantization clip-floor-shift (QCFS) activation in source
ANN instead of regular ReLU activation.

4.1. The SlipReLU Activation Function

In this section, by following our unified optimization frame-
work, we will exploit the two-step conversion mechanism.
The process involves redesigning the ANN with a new acti-
vation function to get a tailored ANN, training the tailored
ANN, and then converting it to an SNN by copying the
weights from the tailored ANN to the target SNN.

However, a performance loss will occur if the new activation
function of the tailored ANN deviates too much from the
regular ReLU activation function. Therefore, it is crucial to
minimize the conversion error while keeping the deviation
from the regular ReLU activation function minimal. To
achieve this, we propose the SlipReLU activation function,
which is a weighted sum of the threshold-ReLU and the step
function (i.e., SNN activataion function). This allows for
a balance between the regular ReLU and the step function.
We assume that both the ANN and the SNN receive the
same input from the previous layer,

a(ℓ−1) = x̄(ℓ−1), z(ℓ) = W(ℓ)a(ℓ−1) = W(ℓ)x̄(ℓ−1) .

Proposed SlipReLU Activation Function. Following the
unified optimization framework outlined in Sect. 3.1, our
proposed SlipReLU activation function aims to minimize
the mismatch between the tailored ANN and the target SNN,
while also minimizing deviation from the regular ReLU,

SlipReLU(z(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

(8)

The SlipReLU activation function is a weighted sum of
the threshold-ReLU and the step function, with the slope
0 ⩽ c ⩽ 1 balancing the weight between the two. This is
illustrated in the red curves of (C1)-(C3) in Fig. 1.
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Figure 1. The activation functions of source ANNs and the activation function of target SNNs. The figure shows three different types of
activation functions for source ANNs: (A) shift-threshold-ReLU (blue curve) from Deng & Gu (2021), (B) quantization clip-floor-shift
(QCFS) activation (orange curve) from Bu et al. (2021), and (C1)-(C3) the proposed SlipReLU activation (red curve). The activation
function of SNNs is the step function represented by a green curve. The error between the activation function of ANNs and the step
function of SNNs is the sum of all the shaded area together, which is referred to as the ANN-SNN conversion error.

The SlipReLU activation function utilizes parameters N
and θ(ℓ), whereas in contrast, the SNN activation function
employs T and V

(ℓ)
th (T ↔ N , V (ℓ)

th ↔ θ(ℓ)). Instead
of using the inherent property of the SNN, the latency T ,
we use the quasi-time-step (quasi-latency) N in the ANN.
Additionally, the threshold value V (ℓ)

th in the SNN is replaced
by the trainable value θ(ℓ) in the ANN, which can be learned
and copied to the target SNN.

To gain some insights into the proposed SlipReLU, we set
δ1 = δ = 0 for simplicity. With some linear algebra,
the SlipReLU can be reformulated as a piece-wise linear
function with a constant slope c,

SlipReLU(z(ℓ)) = cz(ℓ)+(1−c)kθ
(ℓ)

N
, k = 0, 1, · · · , N−1.

Here kθ(ℓ)

N ⩽ z(ℓ) < (k+1)θ(ℓ)

N , and c (0 ⩽ c ⩽ 1) is
the constant slope of the piece-wise linear function. The
constant slope c effectively balances the contributions of
the threshold-ReLU and the step function, resulting in a
function that resembles a slippery step function with a slope,
hence the name “SlipReLU”, as illustrated in (C1)-(C3)
in Fig. 1. A detailed derivation can be found in Appendix B.

Special Cases of SlipReLU. The proposed SlipReLU ac-
tivation function encompasses several special cases that fit
within the unified optimization framework.

(1) When c = 0, δ = [ 12 ], the proposed SlipRLU becomes
the quantization-clip-floor-shift (QCFS) in Bu et al. (2021).
This case only focuses on being close to the step function
of the target SNN, but neglects the deviation from the reg-
ular ReLU. (2) When c = 1, δ1 = [− 1

2N ], the proposed
SlipRLU becomes the shift-threshold ReLU in Deng & Gu
(2021). While this case accounts for the deviation from the
regular ReLU, it overlooks the proximity to the step func-
tion of the target SNN. In contrast, our proposed SlipReLU
balances the trade-off between the regular ReLU and the
step function of the target SNN. For further details, refer
to Appendix B.

4.2. Theorems on the Conversion Error

The following two theorems give the conversion error of the
proposed unified method.

Theorem 1. Consider an ANN trained with SlipReLU
activation function as defined in Eq. (8), and its conver-
sion to an SNN with the same weights. Let V (ℓ)

th = θ(ℓ),
v(ℓ)(0) = V

(ℓ)
th δ, and c = 0. Then, for any arbitrary values

of T and N , the expected conversion error of the proposed
unified method reaches 0, i.e.,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

= 0 , (9)

provided that the shift term δ satisfies δ ∈ [− 1
2 ,

1
2 ] .

Theorem 1 indicates that when c = 0, the expectation of the
conversion error reaches zero, even though N ̸= T , as long
as the shift term δ satisfies δ ∈ [− 1

2 ,
1
2 ]. The proof can be

found in Appendix C.

Theorem 2. Consider an ANN trained with SlipReLU
activation function as defined in Eq. (8), and its conver-
sion to an SNN with the same weights. Let V (ℓ)

th = θ(ℓ),
v(ℓ)(0) = V

(ℓ)
th δ, and δ1 = [ δ−1/2

T ]. Then, for arbitrary
values of T and N , and arbitrary c ∈ [0, 1], the expecta-
tion of the conversion error of the proposed unified method

reaches the optimal c(V
(ℓ)
th )2

4T , i.e.,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

=
c(V

(ℓ)
th )2

4T
, (10)

as long as the shift term δ satisfies δ ∈ [− 1
2 ,

1
2 ] .

Theorem 2 indicates that for any ∀ c ∈ [0, 1], the expectation

of the conversion error can reach the minimum c(V
(ℓ)
th )2

4T , and
δ is any shift term that falls within the range of [− 1

2 ,
1
2 ], and

δ1 = δ−1/2
T . The proof can be found in Appendix C. These

results indicate we can achieve high-performance converted
SNN at ultra-low time steps.
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4.3. Algorithm for Training ANN with SlipReLU

Training ANNs with SlipReLU activation function through
backpropagation can be a challenging task. Despite the
SlipReLU having a constant slope as its derivative, as shown
in Eq. (8), small slope values c ∈ [0, 1] can result in the
gradient vanishing problem. To overcome this, we draw
inspiration from the works of Bu et al. (2021); Bengio et al.
(2013), and utilize the surrogate gradient as the derivative
of the floor function, with d⌊x⌋

x = 1. The overall rule for

derivation is as follows, dFANN(z(ℓ))

dz(ℓ)i

= 1 if z(ℓ)i ∈ D1 ∪
D2 and 0 otherwise, where D1 = [−δ1θ, θ − δ1θ], D2 =

[−δθ, θ − δθ], and z(ℓ)i is the i-th element of z(ℓ). Then
we can train the ANN with SlipReLU activation using the
Stochastic Gradient Descent algorithm, and convert it to an
SNN. Please refer to Appendix D for our proposed ANN-
SNN conversion algorithm.

4.4. Criterion to Choose Best Hyper-parameters (N, c)

In accordance with the criterion of the unified optimization
framework of ANN-SNN conversion outlined in Eq. (5), we
determine the optimal hyper-parameters (N, c) by minimiz-
ing the following criterion measure,

Crit. =
1

2
|AccReLU −AccANN|+

1

2
|AccANN −AccSNN| .

5. Related Work
The study of ANN-SNN conversion was first proposed
by Cao et al. (2015), which focused on converting ANNs
with the ReLU activation function to SNNs. Subse-
quently, Diehl et al. (2015) proposed data-based and model-
based weight-normalization methods to convert a three-
layer CNN to an SNN. However, due to the error analyzed
in Sect. 3.1, the converted SNN typically requires hundreds
of time-steps to achieve accurate results. To address this
issue, the “reset-by-subtraction” mechanism (Rueckauer
et al., 2017), also known as “soft-reset” mechanism (Han
et al., 2020), was proposed an alternative to the “reset-to-
zero” method. Recently, many methods and algorithms have
been proposed to eliminate conversion errors, such as the
weight-normalization technique proposed by Sengupta et al.
(2019) which takes into account the actual SNN operations
during the conversion process. For direct conversion from
a pre-trained ANN to an SNN, Ding et al. (2021) proposed
Rate Norm Layer to replace the ReLU activation function
in source ANN training, and Li et al. (2021) proposed cali-
bration for weights and biases using fine-tuning to correct
errors layer-by-layer. Our work is similar to that of Deng
& Gu (2021); Bu et al. (2021), which also focus on optimal
conversion. Deng & Gu (2021) minimized the layer-wise
error by a shift-threshold ReLU which only considers the
deviation from the standard ReLU in the unified optimiza-

tion framework in Sect. 3.1. Bu et al. (2021) proposed using
a quantization clip-floor-shift activation function to train
ANNs, which only minimizes the conversion error, but ne-
glects the performance loss of the tailored ANN with new
activation function. They both achieved “optimal” results
with some fixed shift term. In contrast, our proposed unified
framework offers more flexibility for different application
scenarios when converting ANNs to SNNs by using tech-
niques that eliminate the conversion error while preserving
the ANN performance with less deviation from the stan-
dard ANN with regular ReLU. Our SlipReLU is able to
balance the trade-off between the ANN performance and
the conversion error simultaneously.

6. Experiments
In this section, we compare our SlipReLU method with
existing state-of-the-art approaches for image classifica-
tion tasks on CIFAR-10 (LeCun et al., 1998) and CIFAR-
100 (Krizhevsky & Hinton, 2009) datasets. Similar to pre-
vious works, we use the VGG-16, ResNet-18, and ResNet-
20 network structures as the source ANNs. We compare
our method with the state-of-the-art ANN-SNN conver-
sion methods and supervised training methods, including
Hybrid-Conversion (HC) (Rathi et al., 2020), RNL (Ding
et al., 2021), ReLU-Threshold-Shift (RTS) (Deng & Gu,
2021), RMP (Han et al., 2020), TSC (Han & Roy, 2020),
SNN Conversion with Advanced Pipeline (SNNC-AP) (Li
et al., 2021), and the ANN-SNN conversion with Quan-
tization Clip-Floor-Shift activation function (QCFS) (Bu
et al., 2021). Refer to Appendix E for the network structures
and training setups. We use SlipReLU with shift settings
δ1 = 0, δ = 0.5, and refer to Appendix F for ablation
studies of SlipReLU with/without shifts.

6.1. Comparison with SOTA Conversion Methods

Table 1 shows the performance comparison of the proposed
SlipReLU with the state-of-the-art ANN-SNN conversion
methods on CIFAR-10. Notably, the proposed SlipReLU
method is the only existing work that enables SNN in-
ference using only one time-step. Specially, when latency
T = 1, the SlipReLU method is able to achieve an accuracy
of 93.11% for ResNet-18 with settings (N, c) = (1, 0.4),
and an accuracy of 88.17% for VGG-16 with the SlipReLU
activation function. For ultra-low latency inference at
T = 2, the proposed SlipReLU method has the best per-
formance of 93.97% compared to existing state-of-the-art
ANN-SNN conversion methods for ResNet-18, with a sig-
nificant margin compared to the next best baseline QCFS
of 75.44%. The accuracy for VGG-16 is 89.57% with
SlipReLU activation, which is slightly worse than QCFS.
For ResNet-20, an accuracy of 82.25% is achieved with 2
time-steps, which is also the best. In conclusion, the pro-
posed SlipReLU method provides the best SNN accuracy
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Table 1. Comparison between the proposed SlipReLU method and previous works on CIFAR10.
Architecture Method ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T⩾256

VGG-16

RMP (Han et al., 2020) 93.63 - - - - - 60.30 90.35 93.39
RTS (Deng & Gu, 2021) 92.09 - - - - 92.29 92.29 92.22 92.26
RNL (Ding et al., 2021) 92.82 - - - - 57.90 85.40 91.15 92.95
SNNC-AP (Li et al., 2021) 95.72 - - - - - 93.71 95.14 95.79
QCFS (Bu et al., 2021) 95.52 - 91.18 93.96 94.95 95.40 95.54 95.55 95.59
ReLU 95.92 10.00 10.00 11.51 70.97 88.39 93.05 94.76 95.19
SlipReLU (N=2, c=0.2) 93.02 88.17 89.57 91.08 92.26 92.96 93.19 93.25 93.25
SlipReLU (N=4, c=0.9) 95.60 11.37 75.18 88.80 93.54 95.20 95.66 95.65 95.66

ResNet-20

RMP (Han et al., 2020) 91.47 - - - - - - - 91.36
QCFS (Bu et al., 2021) 91.77 - 73.20 83.75 89.55 91.62 92.24 92.35 92.41
ReLU 93.71 11.58 12.54 16.05 36.47 70.84 83.47 85.93 86.46
SlipReLU (N=1, c=0.2) 82.07 80.99 82.25 83.52 84.46 84.70 84.85 84.89 84.69
SlipReLU (N=4, c=0.6) 92.96 45.87 57.82 73.17 86.66 92.13 93.23 93.36 93.29

ResNet-18

RTS (Deng & Gu, 2021) 92.32 - - - - 92.41 93.30 93.55 93.58
SNNC-AP (Li et al., 2021) 95.46 - - - - - 94.78 95.30 95.45
QCFS (Bu et al., 2021) 96.04 - 75.44 90.43 94.82 95.92 96.08 96.06 96.06
ReLU 96.71 11.00 25.07 55.21 73.80 88.44 94.50 96.00 96.50
SlipReLU (N=1, c=0.4) 94.61 93.11 93.97 94.59 94.92 95.18 95.07 94.81 94.67
SlipReLU (N=4, c=0.3) 96.15 86.52 90.78 93.84 95.48 96.10 96.12 96.22 96.15

for ultra-low latency inference, particularly for T = 1.

As there is an intrinsic trade-off between latency and accu-
racy in SNN models, the SlipReLU method, which has high
accuracy at low-latency, may suffer from a performance
degradation when used for inference at larger latency. For
example, as shown in Table 1 and Table 2, a converted SNN
that has the highest accuracy at T = 1 may perform worse
at T = 16 than another converted SNN. This illustrates the
phenomenon that one converted SNN model cannot perform
better than others for both low-latency and long-latency in-
ference. Therefore, we present two converted SNN models,
for low-latency (T⩽8) and long-latency (T⩾16) inference
respectively, corresponding to results in bold and results in
italics in tables. As we focus on ultra-low-latency inference
of SNNs in this paper, results in italics can be considered as
additional information showcasing the performance of the
proposed SlipReLU method for long-latency inference.

We further evaluate the performance of SlipReLU method
on the large-scale CIFAR-100 dataset and present the results
in Table 2. Notably, when T = 1, our SlipReLU method
is able to achieve an accuracy of 71.51% for ResNet-18
and an accuracy of 64.21% for VGG-16, while all the other
methods fail to provide inference accuracy for this latency.
Additionally, when T = 2, our SlipReLU method achieves
an accuracy of 73.91% for VGG16, which is 3.12% higher
than the next best QCFS method. These results demon-
strate that our SlipReLU method outperforms the previous
conversion methods in both accuracy and ultra-low latency.

We also investigate the conversion of ReLU-ANN to SNN
and results are shown in Table 1 and Table 2. From the
results, we can see that the ReLU is better in terms of
the ANN accuracy, but for the SNN accuracy, ReLU com-
pletely fails to deliver satisfactory results for low latency

(e.g., T = 1, 2, 4). Compared with ReLU, our proposed
SlipReLU model shows a slight performance drop in ANN
accuracy, but significantly outperforms ReLU in terms of
SNN accuracy.

6.2. Comparison with Supervised Training Methods

Table 3 reports the results of the proposed SlipReLU method
against the state-of-the-art supervised training methods on
CIFAR10 dataset. These state-of-the-art supervised train-
ing methods include Hybrid-Conversion (HC) (Rathi et al.,
2020), TSSL (Zhang & Li, 2020), tdBN (Zheng et al.,
2021), TET (Deng et al., 2021), NAS (Kim et al., 2022)
and NA (Yang et al., 2021). Our approach for ResNet-18
achieves an accuracy of 93.11% with time-step T = 1. The
CIFARNet achieves an accuracy of 95.31% with time-step
T = 4, which is higher than any other supervised trained
models. The TET and tdBN methods can achieve compa-
rable accuracy, but they use a more complex ResNet-19,
whereas our SlipReLU uses ResNet-18. Notably, our ultra-
low latency performance is comparable to other state-of-the-
art supervised training methods.

6.3. Effect of the Slope c and the Quasi-Latency N

In our SlipReLU method, the slope parameter c balances
the weight of the threshold ReLU and the step function,
which ultimately affects the accuracy of the converted SNN.
To better understand the effect of c on the SNN perfor-
mance and determine the optimal value, we have conducted
experiments on the CIFAR-10 and CIFAR-100 using VGG-
16, ResNet-18 and ResNet-20 networks with quasi-latency
N = 2 and N = 32. The results in Fig. 2 illustrate the
impact of the slope c on the converted SNN accuracy for
different quasi-latency N at different time-step/latency T .
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Table 2. Comparison between the proposed SlipReLU method and previous works on CIFAR-100.
Architecture Method ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T⩾512

VGG-16

TSC (Han & Roy, 2020) 71.22 - - - - - - - 70.97
RMP (Han et al., 2020) 71.22 - - - - - - - 70.93
RTS (Deng & Gu, 2021) 70.62 - - - - 65.94 69.8 70.35 70.55
SNNC-AP (Li et al., 2021) 77.89 - - - - - 73.55 76.64 77.87
QCFS (Bu et al., 2021) 76.28 - 63.79 69.62 73.97 76.24 77.01 77.10 77.08
ReLU 73.39 1.00 1.53 15.55 28.56 46.03 62.42 70.05 72.16
SlipReLU (N=1, c=0.4) 68.46 64.21 66.30 67.97 69.31 70.09 70.19 70.05 69.79
SlipReLU (N=2, c=0.1) 70.03 54.68 58.66 62.56 66.31 69.35 70.65 71.23 71.52

ResNet-20

TSC (Han & Roy, 2020) 68.72 - - - - - - - 68.18
RMP (Han et al., 2020) 68.72 - - - - - 27.64 46.91 67.82
QCFS (Bu et al., 2021) 69.94 - 19.96 34.14 55.37 67.33 69.82 70.49 70.50
ReLU 70.18 1.28 1.16 1.76 2.91 4.03 6.17 8.95 11.66
SlipReLU (N=1, c=0.2) 50.79 48.12 51.35 53.27 54.17 53.91 53.11 51.75 50.89
SlipReLU (N=4, c=0.4) 68.40 16.52 23.79 37.94 57.20 66.61 68.76 69.04 69.09

ResNet-18

RTS (Deng & Gu, 2021) 67.08 - - - - 63.73 68.40 69.27 69.82
SNNC-AP (Li et al., 2021) 77.16 - - - - - 76.32 77.29 77.25
QCFS (Bu et al., 2021) 78.80 - 70.79 75.67 78.48 79.48 79.62 79.54 79.61
ReLU 77.16 1.00 1.64 4.99 11.40 34.08 60.44 71.90 75.63
SlipReLU (N=1, c=0.3) 74.01 71.51 73.91 74.89 75.40 75.41 75.30 74.98 74.90
SlipReLU (N=2, c=0.5) 77.08 51.01 60.03 68.72 74.59 77.29 78.04 77.97 77.99

Table 3. Comparison with state-of-the-art supervised training meth-
ods on CIFAR-10 dataset.

Model Method Arch. SNN T
HC (Rathi et al., 2020) Hybrid VGG-16 91.13 100

TSSL (Zhang & Li, 2020) Backprop CIFARNet 91.41 5
tdBN (Zheng et al., 2021) Backprop ResNet-19 92.34 2
TET (Deng et al., 2021) Backprop ResNet-19 94.16 2
NAS (Kim et al., 2022) Search SNASNet 93.73 5
NA (Yang et al., 2021) Backprop AlexNet 91.76 5

SlipReLU ANN-SNN

AlexNet 94.94 5

(Ours)

VGG-16 91.08 4
VGG-16 88.17 1

ResNet-18 93.11 1
ResNet-18 93.97 2
CIFARNet 95.31 4

It can be observed from Fig. 2 that for small values of quasi-
latency N , the slope c has a significant effect on SNN accu-
racy for ultra-low and low-latency inference. Particularly,
different slope values c can result in varying SNN accuracy
levels when the time-step T is small. However, for larger
values of N , the effect of c on the SNN accuracy is less
pronounced, with all curves appearing similar, regardless of
the value of T . This flexibility allows our SlipReLU method
to be applied to different scenarios, with small values of
N being preferred for ultra-low/low-latency inference and
larger values of N being used when the inference time is
not a concern. Further details can be found in Appendix G.

As the proposed SlipReLU method has two hyper-
parameters, the slope c and the quasi-latency N , we use
the criterion measure in Sect. 4.4 to select the optimal val-
ues. For instance, based on the criterion measure in Sect. 4.4,
the optimal hyper-parameter combination for VGG-16 on
CIFAR-10 is (N, c) = (2, 0.2). We then convert this opti-

mal single ANN to an SNN and obtain the SNN accuracy
at different time-steps T. Refer to Appendix H for more
detailed results of selecting the optimal hyper-parameters.

We also test our proposed method on the large-scale Im-
ageNet dataset, and results are reported in Table 4 with
one specified setting (N, c). As it is more challenging and
expensive to conduct experiments on large-scale dataset
such as ImageNet, we did not fine-tune the model with the
best chosen hyper-parameters for ImageNet. We use the
specified setting (N, c) = (8, 0.2) for ResNet-34, the pro-
posed SlipReLU method is only better than other conversion
method when T ⩾ 64 with this specific setting. For VGG-
16 model, we employ the specified setting (N, c) = (8, 0.1),
and we can achieve an accuracy of 51.54% when the time-
step is 16. Our proposed method does not always perform
well with specified (N, c) settings, which shows the impor-
tance of the selection of slope c and quasi-latency N .

6.4. Future Work

For future work, we propose to explore the learning of the
slope c and the quasi-latency N during ANN training, rather
than treating them as hyper-tuning parameters. By doing
so, we aim to identify the optimal combination of (N, c)
without the need for repetitive training, thereby enhancing
the efficiency of the proposed method.

7. Discussion and Conclusion
In this work, we propose a unified framework for convert-
ing ANNs to SNNs that addresses a limitation of existing
methods. Specifically, we take into account the performance
loss that occurs when replacing the regular ReLU activation
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Figure 2. Effect of different slopes c with different quasi-latency N on CIFAR-10 and CIFAR-100.

Table 4. Comparison between our proposed SlipReLU method and other conversion methods on ImageNet dataset.
Architecture Method ANN T=16 T=32 T=64 T=128

ResNet-34
SNNC-AP (Li et al., 2021) 75.66 - 64.54 71.12 73.45

QCFS (Bu et al., 2021) 74.32 59.35 69.37 72.35 73.15
SlipReLU (N=8, c=0.2) 75.08 43.76 66.61 72.71 74.01

VGG-16
RTS (Deng & Gu, 2021) - 39.42 69.11 70.21 70.45

SNNC-AP (Li et al., 2021) 75.36 - 63.64 70.69 73.32
QCFS (Bu et al., 2021) 74.29 50.97 68.47 72.85 73.97
SlipReLU (N=8, c=0.1) 71.99 51.54 67.48 71.25 72.02

function in an ANN with a new activation function. This
performance loss is then inherited by the resulting SNN.
To address this issue, we formulate the ANN-SNN conver-
sion as a unified optimization problem that considers both
the performance loss and the conversion error. To this end,
we introduce the SlipReLU activation function, which is a
weighted combination of the threshold-ReLU and the step
function, and improves the performance of either function
alone. This allows for more accurate conversion of ANNs
to SNNs.

The SlipReLU method covers a family of activation func-
tions that map from activation values in source ANNs to
firing rates in target SNNs. Most existing state-of-the-art
optimal ANN-SNN conversion methods are special cases of
our proposed SlipReLU method. We demonstrate through
two theorems that the expected conversion error between
SNNs and ANNs can theoretically be zero on a range of
shift values δ ∈ [− 1

2 ,
1
2 ], rather than a fixed shift term 1

2 ,

allowing for converted SNNs with high accuracy and ultra-
low latency. We have evaluated our proposed SlipReLU
method on the CIFAR-10/100 datasets, and the results show
that our proposed SlipReLU method outperforms the state-
of-the-art ANN-SNN conversion methods and supervised
training methods in terms of accuracy and latency. To the
best of our knowledge, this is the first ANN-SNN conver-
sion method that enables SNN inference using only one
time-step with an accuracy of 93.11% on CIFAR-10 and
71.51% on CIFAR-100.
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Notations in the Paper
Throughout the paper and this Appendix, we use the following notations in Table S5. Bold-face lower-case letters refer
to vectors, and normal-face letters refer to scalars. Note V

(ℓ)
th and θ(ℓ) are vectors whose dimensions match the number

of neurons in the layer of interest, and denote V
(ℓ)
th = [V

(ℓ)
th ] and θ(ℓ) = [θ(ℓ)] respectively. Namely, vector V(ℓ)

th = [V
(ℓ)
th ]

means that each element is the same V
(ℓ)
th . Denote δ = [δ].

Table S5. Summary of notations in this paper.

Symbol Definition Symbol Definition
N Quasi-time-steps of ANNs FANN(·) ANN activation function
T Total time-steps of SNNs FSNN(·) SNN activation function
a(ℓ) Activation values of ANNs s(ℓ)(t) Spike outputs of SNN
x̄(ℓ) Average PSP of SNNs x(ℓ)(t) PSP released by l-th layer
θ(ℓ) Trainable threshold in ANNs v(ℓ)(t) Membrane potential after firing
V

(ℓ)
th Firing threshold in SNNs W(ℓ) Weight matrix

A. Analysis of Activation Function in SNNs
We will derive the activation function of SNN, FSNN(·) in this section.

The activation function of SNN gives the relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of
SNN, which defines input-output function mapping for adjacent layers.

Specifically, we can get the potential update equation by combining Eq. (2) and Eq. (4),

v(ℓ)(t) = v(ℓ)(t− 1) +W(ℓ)x(ℓ−1)(t)− s(ℓ)(t)V
(ℓ)
th . (A.1)

By summing the time-step from time 1 to T , then we get

v(ℓ)(T )− v(ℓ)(0) = W(ℓ)
T∑

t=1

x(ℓ−1)(t)−
T∑

t=1

s(ℓ)(t)V
(ℓ)
th . (A.2)

Due to the spike-in-spike-out property of the IF neurons in SNN, the output at each time step can be either 0 or 1. For
each neuron i, let mi =

∑T
t=1 s

(ℓ)
i (t), and each mi ∈ {0, 1, 2, · · · , T} denotes the total number of spikes of each neuron i.

Then m = {mi} is the vector collecting all the number of spikes of all neurons in the ℓ-th layer. The accumulated spikes
m =

∑T
t=1 s

(ℓ)(t) denotes the total number of spikes. According to the above equations, we have

v(ℓ)(T )− v(ℓ)(0) = W(ℓ)T · x̄(ℓ−1) −mV
(ℓ)
th . (A.3)

Then we get

mV
(ℓ)
th = TW(ℓ)x̄(ℓ−1) − (v(ℓ)(T )− v(ℓ)(0)) . (A.4)

A.1. Element-wise Version Derivation

Denote
z(ℓ) = W(ℓ)x̄(ℓ−1) .

We use z(ℓ)i , v(ℓ)i (T ), v(ℓ)i (0), and mi to denote the i-th element in vector z(ℓ), v(ℓ)(T ), v(ℓ)(0), and m respectively. That is,
z(ℓ) = {z(ℓ)i }, v(ℓ)(T ) = {v(ℓ)i (T )}, v(ℓ)(0) = {v(ℓ)i (0)}, and m = {mi}.
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Then we have

mV
(ℓ)
th = Tz(ℓ) − (v(ℓ)(T )− v(ℓ)(0))

⇐⇒ miV
(ℓ)
th = T z(ℓ)i − (v(ℓ)

i (T )− v(ℓ)
i (0)) (For each neuron i with m = {mi}, z(ℓ) = {z(ℓ)i }) .

Note that we assume the terminal membrane potential v(ℓ)i (T ) lies within the range [0, V (ℓ)
th ), by further assuming v(ℓ)i (0) = 0,

we get

0 ⩽ v(ℓ)i (T ) < V
(ℓ)
th

⇐⇒ − V
(ℓ)
th < −v(ℓ)i (T ) ⩽ 0 (adding T z(ℓ)i to each term)

⇐⇒ T z(ℓ)i − V
(ℓ)
th < T z(ℓ)i − v(ℓ)

i (T ) ⩽ T z(ℓ)i (mi = T z(ℓ)i − v(ℓ)
i (T ))

⇐⇒ T z(ℓ)i − V
(ℓ)
th < miV

(ℓ)
th ⩽ T z(ℓ)i

⇐⇒
T z(ℓ)i − V

(ℓ)
th

V
(ℓ)
th

< mi ⩽
T z(ℓ)i

V
(ℓ)
th

.

Then we use floor operation and clip operation to determine the total number of spikes, mi,

mi = clip

(⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, T

)
( and mi = T s̄(ℓ)i )

s̄(ℓ)i = clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, 1

)
( and x̄(ℓ)i = V

(ℓ)
th s̄(ℓ)i )

x̄(ℓ)i = V
(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

⌋
, 0, 1

)
.

The assumption v(ℓ)i (0) = 0 may be too strong, without it, we will get

⇐⇒ T z(ℓ)i − V
(ℓ)
th + v(ℓ)i (0) < miV

(ℓ)
th ⩽ T z(ℓ)i + v(ℓ)i (0)

⇐⇒
T z(ℓ)i − V

(ℓ)
th + v(ℓ)i (0)

V
(ℓ)
th

< mi ⩽
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⇐⇒
T z(ℓ)i − V

(ℓ)
th

V
(ℓ)
th

+ δ < mi ⩽
T z(ℓ)i

V
(ℓ)
th

+ δ with δ =
v(ℓ)
i (0)

V
(ℓ)
th

.

Denote δ =
v(ℓ)i (0)

V
(ℓ)
th

. Then we have

mi = clip

(⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, T

)
( and mi = T s̄(ℓ)i )

s̄(ℓ)i = clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
( and x̄(ℓ)i = V

(ℓ)
th s̄(ℓ)i )

x̄(ℓ)
i = V

(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

The relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of SNN can be formulated as

x̄(ℓ)i = V
(ℓ)
th clip

(
1

T

⌊
T z(ℓ)i

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.
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A.2. Vector Version Derivation

The accumulated spikes m =
∑T

t=1 s
(ℓ)(t) denotes the total number of spikes, and m = {mi} is the vector collecting all

the number of spikes of all neurons in the ℓ-th layer. Each mi ∈ {0, 1, 2, · · · , T} denotes the total number of spikes of each
neuron i. According to the above equations, we have

v(ℓ)(T )− v(ℓ)(0) = W(ℓ)T · x̄(ℓ−1) −mV
(ℓ)
th . (A.5)

Then we get
mV

(ℓ)
th = TW(ℓ)x̄(ℓ−1) − (v(ℓ)(T )− v(ℓ)(0)) . (A.6)

Note that we assume the terminal membrane potential v(ℓ)(T ) lies within the range [0,V
(ℓ)
th ), by further assuming

v(ℓ)(0) = 0, we get

0 ⩽ v(ℓ)(T ) < V
(ℓ)
th

⇐⇒ −V
(ℓ)
th < −v(ℓ)(T ) ⩽ 0

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th < TW(ℓ)x̄(ℓ−1) − v(ℓ)(T ) ⩽ TW(ℓ)x̄(ℓ−1)

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th < mV

(ℓ)
th ⩽ TW(ℓ)x̄(ℓ−1)

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th

V
(ℓ)
th

< m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

.

Then we use floor operation and clip operation to determine the totoal number of spikes, m,

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, T

)
( and m = T s̄(ℓ))

s̄(ℓ) = clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, 1

)
( and x̄(ℓ) = V

(ℓ)
th s̄(ℓ))

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

⌋
, 0, 1

)
.

The assumption v(ℓ)(0) = 0 may be too strong, without it, we will get

⇐⇒ TW(ℓ)x̄(ℓ−1) −V
(ℓ)
th + v(ℓ)(0) < mV

(ℓ)
th ⩽ TW(ℓ)x̄(ℓ−1) + v(ℓ)(0)

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th + v(ℓ)(0)

V
(ℓ)
th

< m ⩽
TW(ℓ)x̄(ℓ−1) + v(ℓ)(0)

V
(ℓ)
th

⇐⇒
TW(ℓ)x̄(ℓ−1) −V

(ℓ)
th

V
(ℓ)
th

+ δ < m ⩽
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ with δ =
v(ℓ)(0)

V
(ℓ)
th

.

Denote δ = v(ℓ)(0)

V
(ℓ)
th

. Note δ is a vector whose dimension matches the number of neurons in that layer. Then we have

m = clip

(⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, T

)
( and m = T s̄(ℓ))

s̄(ℓ) = clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
( and x̄(ℓ) = V

(ℓ)
th s̄(ℓ))

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.
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The relationship between activation values x̄(ℓ−1) and x̄(ℓ) of successive layers of SNN can be formulated as

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
TW(ℓ)x̄(ℓ−1)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

Note V(ℓ)
th is a vector whose dimension matches the number of neurons in that layer, and V

(ℓ)
th = [V

(ℓ)
th ] means each element

is the same V
(ℓ)
th .

Denote
z(ℓ) = W(ℓ)x̄(ℓ−1) .

Then

x̄(ℓ) = V
(ℓ)
th clip

(
1

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋
, 0, 1

)
.

B. Derivation of SlipReLU Activation Function
In this section, we will give detailed derivation of the proposed SlipReLU activation function in Eq. (8) without and with
different shift modes. In ANNs, denote

z(ℓ) = W(ℓ)x(ℓ−1) .

Then the forward propagation of activation values through layers in the ANN is

a(ℓ) = FANN(z
(ℓ)) = FANN(W

(ℓ)x(ℓ−1)) .

B.1. Derivation of SlipReLU Activation Function

We start with the SlipReLU activation function in Eq. (8) without shift, then proceed with SlipReLU activation function
in Eq. (8) with different shifts.

Derivation of SlipReLU activation function in Eq. (8) without shifts. We start with the initial definition of the SlipReLU
function in Eq. (B.1),

SlipReLU(z(ℓ)) =


0 if z(ℓ) < 0

cz(ℓ) + (1− c)kθ
(ℓ)

N if kθ(ℓ)

N ⩽ z(ℓ) < (k+1)θ(ℓ)

N

θ(ℓ) if z(ℓ) ⩾ θ(ℓ)

. (B.1)

Here k = 0, 1, · · · , N − 1. Note θ(ℓ) should be a vector whose dimension matches the number of neurons in that layer,
θ(ℓ) = [θ(ℓ)].

Then we can rewrite it to

SlipReLU(z(ℓ)) = ytemp + c · (ztemp − ytemp) = cztemp + (1− c)ytemp

where ztemp = θ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
, and ytemp =

θ(ℓ)

N

⌊
N · ztemp

θ(ℓ)

⌋
.

Here

ytemp =
θ(ℓ)

N

⌊
Nztemp

θ(ℓ)

⌋
⇐⇒ ytemp =

θ(ℓ)

N

⌊
N · clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)⌋
⇐⇒ ytemp = θ(ℓ)clip

(
1

N

⌊
N · z

(ℓ)

θ(ℓ)

⌋
, 0, 1

)
⇐⇒ ytemp = θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.
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Then Eq. (B.1) can be written as follows,

a(ℓ) = FANN(z
(ℓ)) = SlipReLU(z(ℓ))

= cztemp + (1− c)ytemp

= cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

That is the SlipReLU activation function in Eq. (8),

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

B.2. SlipReLU Activation Function with Different Shift Modes

Derivation of SlipReLU in Eq. (8) with shifts. As mentioned in Sect. 4, the SlipReLU activation function in Eq. (8) in
a weighted combination of the threshold-ReLU (first part) and the step function (second part), with the slope 0 ⩽ c ⩽ 1
balancing the weight, then any shift to these two parts will lead to shifting in the SlipReLU activation function. The
SlipReLU extension with in Eq. (8) can be formulated as follows,

a(ℓ) = FANN(z
(ℓ)) = SlipReLU(z(ℓ))

= cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

The shift term δ1 ∈ [−N, 0] and δ ∈ [− 1
2 ,

1
2 ] for the source ANNs. And δ1 = [δ1], δ = [δ].

Here we list several examples of the proposed SlipReLU with different shift modes.

1. Mode 0: We set δ1 = δ = 0, then

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)

⌋
, 0, 1

)
.

2. Mode 1: We set δ1 = 0, δ = 1
2 , then

a(ℓ) = FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ [

1

2
]

⌋
, 0, 1

)
.

B.3. Special Cases of the SlipReLU Activation Function

Here we list four different special cases of the proposed SlipReLU.

Threshold-ReLU When c = 1 and δ1 = 0, the SlipReLU becomes the threshold ReLU activation function which is
studied in Deng & Gu (2021).

Shift-threshold-ReLU When c = 1 and δ1 = −1/(2N), the SlipReLU becomes the shift-threshold ReLU activation
function which is studied in Deng & Gu (2021).

Quantization clip-floor (QCF) When c = 0 and δ = 0, the SlipReLU becomes the quantization clip-floor (QCF)
activation function which is studied in Bu et al. (2021).

Quantization clip-floor-shift (QCFS) When c = 0 and δ = 1/2, the SlipReLU becomes the quantization clip-floor-shift
(QCFS) activation function which is studied in Bu et al. (2021).
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C. Proof of Theorems
Before we proof Theorem 1 and Theorem 2, we first introduce an important Lemma.

Lemma 3. If a random variable x ∈ [0, θ] is uniformly distributed in every small interval (mt,mt+1) with pt (t =

0, 1, · · · , T ), where m0 = 0,mT+1 = θ,mt =
(2t−1)θ

2T for t = 1, 2, · · · , T , p0 = pT . For any value δ ∈ [− 1
2 ,

1
2 ], then we

can conclude that

Ex

(∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣) = 0 . (C.1)

Proof. We consider x in different small intervals (mt,mt+1).

(1) For x ∈
(
0, θ

2T

)
,

0 < x <
θ

2T
⇐⇒ δ <

Tx

θ
+ δ <

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= 0 .

(2) For x ∈
(

(2t−1)θ
2T , (2t+1)θ

2T

)
, and t = 1, 2, · · · , T − 1

(2t− 1)θ

2T
< x <

(2t+ 1)θ

2T
⇐⇒ t− 1

2
+ δ <

Tx

θ
+ δ < t+

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= t .

(3) For x ∈
(

(2T−1)θ
2T , θ

)
,

(2T − 1)θ

2T
< x < θ ⇐⇒ T − 1

2
+ δ <

Tx

θ
+ δ < T +

1

2
+ δ ⇐⇒

⌊
Tx

θ
+ δ

⌋
= T .

Then we have

Ex

(∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣)
=

∫ θ/2T

0

p0

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx
+

∫ θ

(2T−1)θ/2T

pT

∣∣∣∣x− θ

T

⌊
Tx

θ
+ δ

⌋∣∣∣∣ dx
=p0

∫ θ/2T

0

|x| dx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

∣∣∣∣x− tθ

T

∣∣∣∣ dx+ pT

∫ θ

(2T−1)θ/2T

|x− θ| dx

=p0

∫ θ/2T

0

xdx+

T−1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

(
x− tθ

T

)
dx+ pT

∫ θ

(2T−1)θ/2T

(x− θ) dx

=p0
θ2

8T 2
+ 0− pT

θ2

8T 2
= 0 .

Lemma 4. Let P be a probability distribution on R. If a random variable z ∈ Rm and z ∼ P, a function g : z→ g(z) ∈ Rn

and g(z) ⩾ 0 almost surely for ∀ z ∈ D, and
Ez |g(z)| = 0 ,

then we have
Ez ∥g(z)∥2 = 0 .

Proof. By the definition of L2-norm, we have

∥g(z)∥2 =
√
g21(z) + g22(z) + · · ·+ g2n(z) ⩽ |g1(z)|+ |g2(z)|+ · · ·+ |gn(z)| .
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Then, we can get

Ez ∥g(z)∥2 ⩽ Ez |g1(z)|+ Ez |g2(z)|+ · · ·+ Ez |gn(z)|
= Ezg1(z) + Ezg2(z) + · · ·+ Ezgn(z) = 0 .

Then
Ez ∥g(z)∥2 = 0 .

C.1. Proof of Theorem 1

For Theorem 1, we need to prove
∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

= 0 .

Proof. The activation function of the SNN is

FSNN(z
(ℓ)) = V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)
.

For c = 0, the SlipReLU activation function used in the source ANN then becomes

FANN(z
(ℓ)) = θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

With V
(ℓ)
th = θ(ℓ), then the error becomes

Err(ℓ) = FSNN(z
(ℓ))−FANN(z

(ℓ)) =
θ(ℓ)

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
.

Then

Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

=Ez

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

⩽ Ez

(∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
− z(ℓ)

∣∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

+ Ez

(∣∣∣∣∣z(ℓ) − V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

.

Denote v(ℓ)i (0) and zi the i-th element of vector v(ℓ)(0) and z. Denote δ = [δ]. Then we need to consider every element of
vector z.

Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)

i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

⩽ Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
− z(ℓ)i

∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2 ]

+ Ezi

(∣∣∣∣∣z(ℓ)i −
V

(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
)

. (C.2)

Then according to Lemma Theorem 3, we have

Ezi

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)i

θ(ℓ)
+ δ

⌋
− z(ℓ)i

∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2 ]

= 0

Ezi

(∣∣∣∣∣z(ℓ)i −
V

(ℓ)
th

T

⌊
T z(ℓ)i + v(ℓ)i (0)

V
(ℓ)
th

⌋∣∣∣∣∣
) ∣∣∣v(ℓ)i (0)=δV

(ℓ)
th

= 0 .
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This holds for any shift value δ in the ANNs when − 1
2 ⩽ δ ⩽ 1

2 , which gives the conclusion of the Theorem 1.

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

= 0 .

C.2. Proof of Theorem 2

For Theorem 2, we need to prove,

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

=
c(V

(ℓ)
th )2

4T
, (C.3)

Proof. The activation function of the SNN is

FSNN(z
(ℓ)) = V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)
.

For arbitrary c ∈ [0, 1], the SlipReLU activation function used in the source ANN then becomes

FANN(z
(ℓ)) = cθ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
+ (1− c)θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
.

With V
(ℓ)
th = θ(ℓ), then the error becomes,

Err(ℓ) = FANN(z
(ℓ))−FSNN(z

(ℓ))

= c

{
θ(ℓ)clip

(
z(ℓ)

θ(ℓ)
+ δ1, 0, 1

)
− V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)}

+ (1− c)

{
θ(ℓ)clip

(
1

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
, 0, 1

)
− V

(ℓ)
th clip

(
1

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋
, 0, 1

)}

= c

{
z(ℓ) + δ1θ

(ℓ) −
V

(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}
(with v(ℓ)(0) = V

(ℓ)
th δ, V

(ℓ)
th = θ(ℓ))

+ (1− c)

{
θ(ℓ)

N

⌊
Nz(ℓ) + v(ℓ)(0)

θ(ℓ)

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}

= c

{
z(ℓ) + V

(ℓ)
th δ1 −

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋}
∆
= c · Err1 (C.4)

+ (1− c)

{
θ(ℓ)

N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋}
∆
= (1− c) · Err2 (C.5)

Then

Err(ℓ)
∆
= c · Err1 + (1− c) · Err2

=⇒
∣∣∣Err(ℓ)∣∣∣ = |c · Err1 + (1− c) · Err2| ⩽ c · |Err1|+ (1− c) · |Err2| .

So we can minimize the whole error by minimizing each of the two terms.

Let δ1 = ϕ+δ
T . For Eq. (C.4), we have

|Err1|
∆
=

∣∣∣∣∣z(ℓ) + V
(ℓ)
th

T
(ϕ+ δ)−

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

+ δ

⌋∣∣∣∣∣
=

∣∣∣∣∣z(ℓ) + V
(ℓ)
th

T
ϕ−

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

⌋∣∣∣∣∣ . (C.6)
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Here

z(ℓ) +
V

(ℓ)
th

T
ϕ is the activation function of ANN

V
(ℓ)
th

T

⌊
Tz(ℓ)

V
(ℓ)
th

⌋
is the step activation function of SNN .

This Eq. (C.6) recovers the loss of the shift-threshold ReLU (with a shift value ϕ) and the step function, which is the same
as Deng & Gu (2021). And as shown in (A) of Fig. 1, the conversion error is the shaded area. The error between the
activation function (of ANNs) and the step function (of SNNs) is obtained by summing up of all the shaded area together,
which is the ANN-SNN conversion error.

Then the objective becomes minimize

min
ϕ
{Ez |Err1|} = min

ϕ

T

2

(V
(ℓ)
th

T
+

V
(ℓ)
th

T
ϕ

)2

+

(
V

(ℓ)
th

T
ϕ

)2
 =

(V
(ℓ)
th )2

4T
=⇒ ϕ = −1

2
.

Then

δ1 =
−1/2 + δ

T
. (C.7)

And the minimum L2-norm of the first error becomes

Ez (|Err1|) =
(V

(ℓ)
th )2

4T
.

For Eq. (C.5), with v(ℓ)(0) = V
(ℓ)
th δ, V

(ℓ)
th = θ(ℓ), we have

|Err2|
∆
=

∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
From Lemma Theorem 3 and Theorem 1, we have

Ez (|Err2|) = Ez

(∣∣∣∣∣θ(ℓ)N

⌊
Nz(ℓ)

θ(ℓ)
+ δ

⌋
−

V
(ℓ)
th

T

⌊
Tz(ℓ) + v(ℓ)(0)

V
(ℓ)
th

⌋∣∣∣∣∣
) ∣∣∣δ∈[− 1

2 ,
1
2 ]

= 0 .

Then

Ez

(∣∣∣Err(ℓ)∣∣∣) = Ez

(∣∣∣FANN(z
(ℓ))−FSNN(z

(ℓ))
∣∣∣) = Ez (|c · Err1 + (1− c) · Err2|)

⩽ c · Ez (|Err1|) + (1− c) · Ez (|Err2|)

= c ·
(V

(ℓ)
th )2

4T
+ (1− c) · 0

=
c(V

(ℓ)
th )2

4T
.

This concludes the Theorem 2.

∀ T, L Ez

(∣∣∣Err(ℓ)∣∣∣) ∣∣∣δ∈[− 1
2 ,

1
2 ]

=
c(V

(ℓ)
th )2

4T
.

D. Pseudo-code for the Unified ANN-SNN Conversion Algorithm
Here is the pseudo-code for our proposed unified ANN-SNN conversion algorithm.
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Algorithm 1 Algorithm for ANN-SNN conversion.

1: Input: ANN model structure fANN(x;W) with initial weights W = {W(ℓ)}; Quasi-latency N ; Shift value δ from the
interval δ ∈ [− 1

2 ,
1
2 ]; Initial dynamic threshold θ = {θ(ℓ)}; Learning rate ϵ

2: Output: SNN model fSNN(x;W)
3: Dataset D
4: for ℓ = 1 to fANN.layers do
5: if is ReLU activation then
6: Replace ReLU(x) by SlipReLU(x;N, θ(ℓ))
7: else if is MaxPooling layer then
8: Replace MaxPooling layer by AvgPooling layer
9: end if

10: end for
11: for e = 1 to epochs do
12: for length of Dataset D do
13: Sample minibatch {(x(0),y)} from D
14: for ℓ = 1 to fANN.layers do
15: x(ℓ) = SlipReLU(W(ℓ)x(ℓ−1);N, θ(ℓ))
16: end for
17: end for
18: Loss = CrossEntropy(x(ℓ),y)
19: for ℓ = 1 to fANN.layers do
20: W(ℓ) ←W(ℓ) − ϵ ∂Loss

∂W(ℓ)

21: θ(ℓ) ← θ(ℓ) − ϵ∂Loss
∂θ(ℓ)

22: end for
23: end for
24: for ℓ = 1 to fANN.layers do
25: fSNN.W

(ℓ) ← fANN.W
(ℓ)

26: fSNN.V
(ℓ)
th ← fANN.θ

(ℓ)

27: fSNN.v
(ℓ)(0)← fSNN.V

(ℓ)
th × δ

28: end for
29: Return fSNN

E. Experiments Details
E.1. Network Structure and Training Setups

There are three steps in our proposed ANN-SNN conversion,
Step 1: Tailor the ANN;
Step 2: Train the tailored ANN;
Step 3: Convert the trained ANN to an SNN.

In the first step, we first replace max-pooling with average-pooling and then replace the ReLU activation with the proposed
SlipReLU activation function. The tailored ANN is also called the source ANN. In the second step, we train the tailored
ANN. After training the tailored ANN, we copy all weights from the trained-tailored source ANN to the converted SNN, and
set the threshold V

(ℓ)
th in each layer of the converted SNN equal to the threshold value θ(ℓ) of the source ANN in the same

layer. Besides, we set the initial membrane potential v(ℓ)(0) in converted SNN as V (ℓ)
th δ to match the optimal shift δ of the

SlipReLU activation in the tailored source ANN, where the optimal shift δ can be any value in the interval δ ∈ [− 1
2 ,

1
2 ].

Common data normalization and some data pre-processing techniques are used in the experiments. For example, we
resize the images in the CIFAR-10/CIFAR-100 datasets into 32× 32. Besides, random cropping images, Cutout (DeVries
& Taylor, 2017) and AutoAugment (Cubuk et al., 2019) are used for all datasets. The Stochastic Gradient Descent
(SGD) optimizer (Bottou, 2012) is used in the experiments with a momentum parameter of 0.9. We use a cosine decay
scheduler (Loshchilov & Hutter, 2017) to adjust the learning rate with a weight decay 5× 10−4 for CIFAR-10/CIFAR-100
datasets. All models are trained for 300 epochs. We set the initial learning rate to ϵ = 0.1 for CIFAR-10 and CIFAR-100.

21



Unified Optimization Framework of ANN-SNN Conversion

When considering small quasi-latency N = 1 and N = 2 for CIFAR-10/CIFAR-100, we first try to train the model with
learning rate ϵ = 0.1, for models that can not be trained properly with learning rate ϵ = 0.1, we set the initial learning
rate to 0.05. We set δ1 = 0, δ = 1

2 for the SlipReLU activation for all the models and all the datasets. For the ablation
study, we train all the networks on CIFAR-10/CIFAR-100 dataset with quasi-latencies N = 1, 2, 4, 8, 16, 32, 64 and slopes
c = 0.1, · · · , 0.9.

As for the input to the first layer and the output of the last layer of the SNN, we do not employ any spiking mechanism as
in Li et al. (2021). We directly encode the static image to temporal dynamic spikes as input to the first layer, which can
prevent the undesired information loss introduced by the Poisson encoding. For the last layer output, we only integrate the
pre-synaptic input and do not fire any spikes. We use constant input when evaluating the converted SNNs.

E.2. Introduction of Datasets

CIFAR-10: The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 60, 000 32× 32 color images in 10 classes of
objects such as airplanes, cars, and birds, with 6, 000 images per class. There are 50, 000 samples in the training set and
10, 000 samples in the test set.

CIFAR-100: The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) consists of 60, 000 32× 32 color images in 100 classes
with 6, 000 images per class. There are 50, 000 samples in the training set and 10, 000 samples in the test set.

ImageNet: In the ImageNet dataset (Russakovsky et al., 2015), the training set is composed of 1, 281, 167 images with 1000
object classes, the validation set is composed of 50, 000 images with 1000 object classes, and the testing set is composed of
100, 000 images with 1000 object classes. We use the ImageNet dataset validation set as the test set. The images vary in
dimensions and resolution. Many applications resize/crop all the images to 256× 256 pixels.

F. Comparison of SlipReLU and SlipReLU-Shift Activation
Here we further conduct ablation studies on SlipReLU and SlipReLU-shift, by comparing the performance of SNNs
converted from ANNs with SlipReLU activation and ANN with SlipReLU-shift activation. In Sect. 4, we prove that for
arbitrary T and N , the expectation of the conversion error reaches 0 with the SlipReLU-shift activation function when
c = 0. We also prove that for arbitrary T and N and arbitrary c ∈ [0, 1], the expectation of the conversion error of the
proposed unified method reaches the optimal c(V (ℓ)

th )2/(4T ). To verify these, we set N = 1, 2, 4, 8, 16, 32 and train ANNs
with SlipReLU activation and SlipReLU-shift activation, respectively.

Fig. S3 shows how the accuracy of converted SNNs changes with respect to the time-step T under different quasi-latency
N settings. The accuracy of the converted SNN from ANN with SlipReLU activation (in the first and third columns)
first increases or stays flat for time-step T ⩽ 4, and then decreases rapidly with the increase of time-steps, because we
cannot guarantee that the conversion error is zero when c ̸= 0. The best performance is still lower than the SlipReLU-shift
activation. The non-shifted SlipReLU activation shows no advantage for ultra-low latency inference when T ⩽ 4. In
contrast, the accuracy of the converted SNN from ANN with SlipReLU-shift activation (in the second and fourth columns)
increases with the increase of time-step T . It converges to the same accuracy when the time step is larger than 16. The
SlipReLU-shift activation shows advantages for ultra-low latency inference when T ⩽ 4.

G. Effect of the Slope c and the Quasi-Latency N

In our SlipReLU method, the slope c balances the weight of the threshold ReLU and the step function, which affects the
accuracy of the converted SNN. To analyze the effect of c and better determine the optimal value, we train VGG-16/ResNet-
20 networks with quasi-latency N = 1, 2, 4, 8, 16, 32, and then converted the trained networks to SNNs. The experimental
results on CIFAR-10/100 dataset are shown in Fig. S4, where each of the colored curves shows the effect of the slope
c on the SNN accuracy over different time-step/latency T , under different quasi-latency settings. Table S6, Table S7
and Table S8 are the detailed data used to plot the curves.

H. Selecting the Best Hyper-parameters including the Slope c and the Quasi-Latency N

As there are two hyper-parameters in the proposed SlipReLU method, i.e., the slope c and the quasi-latency N , it is better
to choose hyper-parameters based on some criterion rather than a rule-of-thumb. Therefore, we use the criterion measure
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in Sect. 4.4 to select the best hyper-parameters, and we rewrite it here,

Criterion =
1

2
|AccReLU −AccANN|+

1

2
|AccANN −AccSNN| .

Here we take VGG-16 on CIFAR-10 as an example, and the best hyper-parameters are (N, c) = (2, 0.2). Then we convert
this best single model to SNN and obtain SNN accuracy under different time-steps T. The detailed results of how to choose
the best hyper-parameter over quasi-latency N and slope c with VGG-16 on CIFAR-10 are shown in Table S9 and Table S10.

I. Future Study
Remark 2. Our unified conversion framework exploits both the one-step conversion mechanism and the two-step conversion
mechanism. The one-step conversion method uses a pre-trained source ANN, such as Li et al. (2021), however, the two-step
conversion method needs to redesign the activation function of the ANN to get a tailored source ANN, train it and convert it
to SNN, such as Deng & Gu (2021); Bu et al. (2021).

Remark 3. Usually, implicit variables of an optimization problem are variables which do not need to be optimized but are
used to model feasibility conditions (Mehlitz & Benko, 2021), and they are often interpreted as explicit ones (Mehlitz &
Benko, 2021), by using the union of image sets associated with given set-valued mappings to make the implicit variables as
explicit variables, which can be an interesting future work but not what we are interested in this paper.

As mentioned in Sect. 3.1, the multi-step spike-output nature of SNN implies that higher-latency output depends on the
outputs of all previous time-steps, which can be explored through multi-task learning. Therefore, it is reasonable to use
multi-task learning for ANN-SNN conversion where the different time-steps can be seen as different but related tasks.

As mentioned in Sect. 6.4, another aspect of the future work is that we consider learning the slope c and the quasi-latency
N during ANN training, rather than using them as hyper-tuning parameters, so that the best combination of (N, c) can be
found without repeating the training, thus improving the efficiency of the proposed method.
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(a) Compare SlipReLU activation with/without shift when the quasi-latency N = 1
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(b) Compare SlipReLU activation with/without shift when the quasi-latency N = 2
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(c) Compare SlipReLU activation with/without shift when the quasi-latency N = 4
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(d) Compare SlipReLU activation with/without shift when the quasi-latency N = 8

1 2 4 8 16 64 256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N 

ac
cu

ra
cy

vgg16 without shift

1 2 4 8 16 64 256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N 

ac
cu

ra
cy

vgg16 with shift

1 2 4 8 16 64 256
Time-step T

0.2

0.4

0.6

0.8

1.0

SN
N 

ac
cu

ra
cy

resnet18 without shift

1 2 4 8 16 64 256
Time-step T

0.4

0.6

0.8

1.0

SN
N 

ac
cu

ra
cy

resnet18 with shift

1 2 4 8 16 64 256
Time-step T

0.2

0.4

0.6

0.8

SN
N 

ac
cu

ra
cy

resnet20 without shift

1 2 4 8 16 64 256
Time-step T

0.2

0.4

0.6

0.8

SN
N 

ac
cu

ra
cy

resnet20 with shift

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

(e) Compare SlipReLU activation with/without shift when the quasi-latency N = 16
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(f) Compare SlipReLU activation with/without shift when the quasi-latency N = 32

Figure S3. Ablation studies on SlipReLU activation with/without shift under different slopes c with different quasi-latency N .
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(a) Influence of different slopes with the quasi-latency N = 1 on CIFAR-10 and CIFAR-100
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(b) Influence of different slopes with the quasi-latency N = 2 on CIFAR-10 and CIFAR-100
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(c) Influence of different slopes with the quasi-latency N = 4 on CIFAR-10 and CIFAR-100
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(d) Influence of different slopes with the quasi-latency N = 8 on CIFAR-10 and CIFAR-100
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(e) Influence of different slopes with the quasi-latency N = 16 on CIFAR-10 and CIFAR-100
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(f) Influence of different slopes with the quasi-latency N = 32 on CIFAR-10 and CIFAR-100

Figure S4. Effect of different slopes c with different quasi-latency N on CIFAR-10 and CIFAR-100.
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Table S6. Influence of different slope c with the quasi-latency N = 1.
Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256

VGG-16 on CIFAR-10
c=0.1 90.93 10.00 10.00 10.00 10.00 10.05 22.78 69.91 87.55 87.72
c=0.2 88.68 10.00 10.00 10.00 10.00 10.00 16.25 34.22 48.16 68.69
c=0.3 86.73 10.00 9.74 13.37 22.29 43.48 68.81 81.81 85.71 86.35
c=0.4 91.90 10.00 10.00 10.00 10.77 32.66 68.87 88.74 90.77 90.55
c=0.5 90.86 85.40 86.59 88.27 89.67 90.67 90.93 90.91 90.81 90.59
c=0.6 90.97 81.35 85.18 87.21 89.32 90.32 90.79 90.70 90.52 90.42
c=0.7 92.15 75.68 82.96 86.52 89.64 91.68 92.05 92.10 91.94 91.90
c=0.8 93.51 10.00 10.19 15.76 59.78 91.17 93.11 93.40 93.45 93.35
c=0.9 94.93 10.00 10.00 8.95 20.52 80.80 92.47 94.24 94.76 94.90

ResNet-18 on CIFAR-10
c=0.1 89.27 10.00 10.00 10.66 26.07 75.84 89.25 89.92 89.75 89.60
c=0.2 93.36 92.47 92.68 93.17 93.74 93.86 93.82 93.82 93.81 93.73
c=0.3 94.09 92.86 93.35 94.06 94.37 94.47 94.48 94.42 94.29 94.27
c=0.4 94.61 93.11 93.97 94.59 94.92 95.18 95.07 94.81 94.71 94.67
c=0.5 94.79 68.75 10.48 10.14 47.34 89.64 93.96 94.67 94.55 94.49
c=0.6 94.99 87.49 88.80 89.29 90.87 92.91 94.37 94.83 94.73 94.71
c=0.7 95.39 45.02 50.13 60.06 80.77 91.06 94.72 95.24 95.27 95.17
c=0.8 95.92 10.00 10.00 10.00 41.71 92.91 94.93 95.54 95.70 95.71
c=0.9 96.28 9.99 10.02 19.72 59.28 78.32 90.47 94.63 95.80 95.98

ResNet-20 on CIFAR-10
c=0.1 81.53 80.65 81.87 83.06 83.68 84.11 84.14 83.88 83.78 83.75
c=0.2 82.07 80.99 82.25 83.52 84.46 84.70 84.85 84.89 84.80 84.69
c=0.3 83.46 80.03 82.17 83.81 84.84 85.32 85.26 85.22 85.01 84.95
c=0.4 84.97 80.30 82.80 84.69 86.12 86.81 86.79 86.79 86.75 86.71
c=0.5 86.49 79.06 82.53 85.36 87.06 87.93 88.13 88.02 87.87 87.77
c=0.6 88.48 76.21 81.74 85.86 88.30 89.19 89.11 88.99 88.93 88.85
c=0.7 89.70 16.04 13.97 24.14 64.91 84.75 87.43 87.86 88.06 88.08
c=0.8 91.07 40.97 44.14 43.90 55.70 73.42 84.29 88.08 89.52 89.93
c=0.9 92.98 33.81 43.71 59.40 78.30 88.60 91.09 91.66 91.78 91.83

VGG-16 on CIFAR-100
c=0.2 65.04 1.00 1.00 1.01 1.53 4.57 30.82 58.80 65.33 65.13
c=0.3 66.05 1.00 1.00 1.00 1.00 2.15 18.58 54.26 64.34 65.96
c=0.4 68.46 64.21 66.30 67.97 69.31 70.09 70.19 70.05 69.79 69.62
c=0.5 69.30 61.99 64.31 66.71 68.91 70.42 70.50 70.18 70.03 69.85
c=0.6 69.49 49.34 53.22 57.83 62.58 66.67 69.11 70.07 69.63 68.96
c=0.7 70.97 30.19 34.77 41.37 50.01 59.17 66.61 70.07 70.85 70.45
c=0.8 72.13 12.81 15.68 22.37 32.70 47.78 62.35 69.54 71.31 71.11
c=0.9 74.76 1.00 1.00 1.03 2.02 9.97 32.00 55.97 67.82 71.85

ResNet-18 on CIFAR-100
c=0.1 71.84 71.11 72.51 73.32 73.41 73.38 72.63 72.19 72.06 71.88
c=0.2 72.32 34.00 39.42 48.16 59.34 67.41 70.63 70.14 67.63 64.74
c=0.3 74.01 71.51 73.91 74.89 75.40 75.41 75.30 74.98 74.90 74.71
c=0.4 73.90 51.56 55.56 60.20 64.74 69.16 71.99 72.89 72.76 71.94
c=0.5 74.88 53.01 55.92 57.37 60.59 67.62 73.15 74.53 73.70 72.81
c=0.6 75.93 4.45 1.01 1.01 2.05 4.33 44.28 69.24 72.85 71.71
c=0.7 76.44 1.13 1.00 1.00 1.00 1.66 34.47 66.96 72.57 73.35
c=0.8 78.41 1.00 1.00 1.00 1.00 2.31 37.50 62.62 71.34 73.83
c=0.9 78.18 1.00 1.00 1.04 30.44 66.73 73.81 77.04 77.52 77.66

ResNet-20 on CIFAR-100
c=0.1 48.62 46.80 49.85 51.61 52.19 51.95 51.23 50.31 49.56 49.12
c=0.2 50.79 48.12 51.35 53.27 54.17 53.91 53.11 51.75 50.89 50.35
c=0.3 52.84 47.08 51.34 54.51 56.00 56.31 55.46 54.46 53.82 53.42
c=0.4 55.18 45.58 50.63 54.72 57.44 57.67 56.69 55.38 54.54 53.97
c=0.5 57.51 40.65 47.14 54.15 58.37 59.59 58.47 57.33 56.41 55.88
c=0.6 59.98 25.56 34.28 47.01 56.64 59.60 59.16 57.74 56.73 56.35
c=0.7 64.71 18.87 25.93 37.26 46.92 51.28 51.68 51.52 51.12 50.84
c=0.8 66.96 9.73 12.76 21.48 39.48 46.84 48.91 49.90 50.01 50.18
c=0.9 69.36 5.82 7.25 11.01 22.58 47.32 61.57 65.26 65.96 66.32
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Table S7. Influence of different slope c with the quasi-latency N = 2.
Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256

VGG-16 on CIFAR-10
c=0.1 92.73 87.94 89.45 90.91 92.06 92.72 93.06 93.00 93.01 93.02
c=0.2 93.02 88.17 89.57 91.08 92.26 92.96 93.19 93.25 93.24 93.25
c=0.3 93.11 86.81 88.60 90.19 91.83 92.96 93.25 93.41 93.40 93.40
c=0.4 93.10 83.57 86.65 89.47 91.48 92.81 93.08 93.18 93.18 93.12
c=0.5 92.84 75.46 81.96 86.56 90.51 92.19 92.53 92.62 92.56 92.48
c=0.6 93.44 73.83 83.96 88.69 91.73 92.79 93.39 93.36 93.42 93.41
c=0.7 94.31 72.17 80.16 86.63 91.38 93.52 94.11 94.41 94.47 94.54
c=0.8 94.93 61.41 81.37 89.14 92.70 94.32 94.80 94.95 94.91 94.93
c=0.9 95.47 59.55 80.19 89.92 93.77 95.13 95.42 95.39 95.44 95.42

ResNet-18 on CIFAR-10
c=0.1 94.20 89.30 91.26 92.61 93.76 94.19 94.42 94.42 94.43 94.50
c=0.2 95.16 90.79 92.68 94.11 95.08 95.28 95.41 95.37 95.39 95.35
c=0.3 95.42 89.97 92.13 93.90 95.14 95.68 95.82 95.70 95.74 95.69
c=0.4 95.56 90.37 92.32 93.85 94.96 95.62 95.68 95.71 95.75 95.78
c=0.5 95.97 90.63 92.77 94.36 95.44 96.07 96.14 96.15 96.11 96.10
c=0.6 95.98 86.23 90.08 93.02 94.96 95.81 96.10 96.14 96.12 96.15
c=0.7 96.06 85.96 89.72 92.81 94.81 95.60 95.93 95.95 96.10 96.14
c=0.8 96.46 82.69 88.09 92.04 94.81 95.99 96.29 96.39 96.31 96.29
c=0.9 96.48 68.90 77.39 86.43 92.76 95.38 96.15 96.36 96.45 96.48

ResNet-20 on CIFAR-10
c=0.1 87.91 75.92 80.90 85.29 88.14 89.10 89.35 89.19 89.01 88.95
c=0.2 88.66 75.06 80.65 86.17 88.65 89.51 89.90 89.83 89.69 89.61
c=0.3 89.53 71.77 78.42 84.76 88.82 90.24 90.45 90.37 90.20 90.15
c=0.4 89.73 68.57 76.85 84.33 88.71 90.05 90.14 90.20 90.25 90.20
c=0.5 90.72 66.82 76.31 84.58 89.57 91.13 91.46 91.45 91.35 91.32
c=0.6 91.48 56.46 67.99 80.94 88.52 90.99 91.77 91.89 91.84 91.88
c=0.7 92.17 60.32 70.93 81.52 88.88 91.72 92.26 92.26 92.25 92.27
c=0.8 92.91 50.95 60.84 74.04 86.55 91.83 93.14 93.40 93.35 93.26
c=0.9 93.11 35.47 46.10 62.81 82.57 90.93 92.71 93.14 93.21 93.18

VGG-16 on CIFAR-100
c=0.1 70.03 54.68 58.66 62.56 66.31 69.35 70.65 71.23 71.52 71.47
c=0.2 70.73 48.02 52.87 58.53 64.34 68.35 70.66 71.52 71.79 71.76
c=0.3 71.16 48.14 53.15 58.71 64.57 68.66 70.93 71.83 72.00 71.98
c=0.4 71.43 42.45 48.41 55.32 62.68 68.34 70.84 71.88 72.17 72.07
c=0.5 72.66 36.01 43.11 51.25 59.92 67.10 70.95 72.48 72.91 73.15
c=0.6 72.73 27.72 33.97 42.64 53.60 63.91 70.07 72.61 73.26 73.35
c=0.7 73.47 19.30 25.04 33.69 46.26 60.29 69.07 72.51 73.46 73.46
c=0.8 74.12 13.40 17.44 25.41 39.23 56.54 68.80 73.11 74.18 74.41
c=0.9 75.18 22.41 28.52 38.27 51.58 64.70 71.73 74.32 75.14 75.25

ResNet-18 on CIFAR-100
c=0.1 75.38 61.23 67.17 71.52 74.64 76.20 76.50 76.46 76.29 76.30
c=0.2 76.15 61.14 67.49 72.24 75.16 76.66 77.04 76.96 76.95 76.94
c=0.3 76.60 58.29 65.68 71.51 75.28 76.96 77.07 76.99 77.00 76.99
c=0.4 77.32 55.72 62.98 70.09 74.72 77.02 77.99 77.98 77.82 77.79
c=0.5 77.08 51.01 60.03 68.72 74.59 77.29 78.04 77.97 77.99 77.91
c=0.6 77.42 41.69 53.51 64.96 73.17 76.90 77.57 77.68 77.85 77.80
c=0.7 77.93 33.40 45.77 58.96 70.54 76.15 77.53 78.02 78.02 78.08
c=0.8 78.22 1.00 18.51 2.38 6.82 43.49 74.16 78.05 78.59 78.64
c=0.9 78.22 1.00 19.97 1.71 17.25 65.52 76.47 78.10 78.26 78.23

ResNet-20 on CIFAR-100
c=0.1 59.83 32.76 42.03 52.20 59.45 62.15 62.47 62.81 62.65 62.40
c=0.2 61.36 31.66 40.76 52.05 60.08 63.17 63.63 63.42 63.07 62.90
c=0.3 62.96 23.91 32.65 45.70 58.25 63.62 64.90 64.92 64.80 64.59
c=0.4 64.32 24.88 34.52 48.19 60.47 65.14 66.55 66.72 66.46 66.41
c=0.5 65.85 18.07 25.30 39.24 56.10 64.30 66.50 67.12 67.15 67.21
c=0.6 66.75 16.58 23.81 37.84 56.00 64.97 67.53 68.09 67.85 67.71
c=0.7 68.49 10.58 15.74 28.33 49.67 63.67 67.64 68.77 68.98 69.03
c=0.8 69.03 13.51 20.17 33.17 53.63 65.21 68.59 69.32 69.51 69.45
c=0.9 69.70 7.92 11.19 18.76 36.40 59.36 67.75 69.62 69.89 70.02
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Table S8. Influence of different slope c with the quasi-latency N = 4.
Slope c ANN Acc. T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=256

VGG-16 on CIFAR-10
c=0.1 93.24 68.87 83.64 89.31 92.14 93.03 93.32 93.41 93.47 93.47
c=0.2 92.68 60.15 80.03 86.37 90.43 92.17 92.62 92.71 92.75 92.71
c=0.3 93.55 47.52 83.30 88.85 92.07 93.18 93.54 93.65 93.68 93.67
c=0.4 93.94 51.52 80.67 88.13 91.89 93.20 93.81 93.98 94.03 94.01
c=0.5 94.54 65.47 83.46 90.13 93.09 94.25 94.61 94.62 94.63 94.58
c=0.6 94.95 50.73 83.07 90.25 93.37 94.61 94.91 95.06 95.05 95.02
c=0.7 95.02 32.67 79.63 89.69 93.55 94.84 95.14 95.04 95.02 95.05
c=0.8 95.52 21.08 76.27 89.69 93.73 94.98 95.47 95.53 95.61 95.60
c=0.9 95.60 11.37 75.18 88.80 93.54 95.20 95.66 95.65 95.66 95.67

ResNet-18 on CIFAR-10
c=0.1 96.01 88.01 90.96 93.34 95.12 95.86 96.02 96.13 96.16 96.16
c=0.2 96.31 86.16 89.82 93.00 95.02 95.90 96.27 96.43 96.44 96.45
c=0.3 96.15 86.52 90.78 93.84 95.48 96.10 96.12 96.22 96.15 96.19
c=0.4 96.27 87.18 90.76 93.66 95.29 95.90 96.13 96.25 96.21 96.25
c=0.5 96.38 84.76 89.29 92.89 94.99 95.82 96.27 96.33 96.36 96.36
c=0.6 96.29 79.25 85.25 90.26 94.05 95.68 96.30 96.39 96.42 96.41
c=0.7 96.68 74.78 82.30 89.16 93.86 95.89 96.46 96.60 96.66 96.69
c=0.8 96.53 73.43 80.72 88.15 93.28 95.70 96.23 96.45 96.55 96.58
c=0.9 96.67 56.79 68.00 81.08 90.61 95.08 96.31 96.53 96.52 96.59

ResNet-20 on CIFAR-10
c=0.1 91.42 66.51 75.99 84.62 89.58 91.24 91.80 91.89 91.97 92.01
c=0.2 91.82 60.30 71.25 82.44 89.05 91.79 92.27 92.36 92.35 92.28
c=0.3 91.81 60.66 72.13 82.62 89.40 91.74 92.36 92.46 92.53 92.51
c=0.4 92.07 61.96 72.57 82.27 88.68 91.45 92.38 92.46 92.55 92.55
c=0.5 92.91 44.08 54.50 71.27 86.16 91.66 93.14 93.24 93.32 93.21
c=0.6 92.96 45.87 57.82 73.17 86.66 92.13 93.23 93.36 93.29 93.19
c=0.7 93.30 41.65 54.13 70.79 85.97 91.79 93.28 93.61 93.55 93.46
c=0.8 93.33 29.14 39.35 59.35 80.90 90.65 92.76 93.14 93.26 93.24
c=0.9 93.37 15.29 21.55 41.27 75.60 90.45 92.95 93.49 93.52 93.52

VGG-16 on CIFAR-100
c=0.1 71.78 22.27 28.83 38.88 51.68 63.38 69.68 71.64 72.04 71.92
c=0.2 72.16 20.01 26.24 35.41 47.79 60.82 68.78 71.67 72.47 72.59
c=0.3 73.40 26.37 33.29 42.97 55.27 65.80 71.30 73.26 73.55 73.69
c=0.4 73.18 18.13 24.70 34.32 47.98 61.11 69.59 72.83 73.65 73.51
c=0.5 73.25 15.29 20.91 30.29 43.65 58.57 68.41 72.33 73.28 73.53
c=0.6 74.26 18.37 24.09 32.89 46.76 61.41 70.50 73.83 74.42 74.50
c=0.7 74.94 19.95 26.09 35.86 49.68 63.12 71.18 74.05 74.91 75.03
c=0.8 74.50 9.07 13.70 22.44 37.92 57.41 69.20 73.02 74.33 74.69
c=0.9 75.25 13.62 21.23 32.24 47.76 63.32 71.84 74.61 75.13 75.15

ResNet-18 on CIFAR-100
c=0.1 76.71 46.54 56.14 66.28 73.07 75.93 76.72 77.11 77.20 77.15
c=0.2 77.82 45.71 55.72 66.18 74.02 77.19 77.96 78.15 78.21 78.25
c=0.3 77.85 42.74 53.62 64.77 73.37 76.95 78.06 78.26 78.26 78.26
c=0.4 78.28 44.72 55.01 65.50 73.58 77.36 78.61 78.54 78.76 78.78
c=0.5 77.69 38.73 50.81 63.20 72.84 76.69 77.95 77.94 77.77 77.74
c=0.6 78.30 29.83 40.41 55.37 69.27 76.07 77.94 78.66 78.61 78.59
c=0.7 78.56 25.33 35.45 51.41 68.22 75.46 77.79 78.24 78.55 78.75
c=0.8 77.96 21.54 30.90 45.51 64.42 73.94 77.14 78.16 78.34 78.33
c=0.9 78.00 13.54 20.76 33.67 57.43 72.09 76.43 77.60 77.98 78.14

ResNet-20 on CIFAR-100
c=0.1 66.37 15.69 23.85 40.99 58.23 65.42 67.39 67.68 67.51 67.33
c=0.2 66.91 19.33 27.89 43.62 59.79 66.51 68.16 68.40 68.42 68.45
c=0.3 67.39 15.92 22.44 38.25 57.74 66.47 68.29 68.70 68.59 68.45
c=0.4 68.40 16.52 23.79 37.94 57.20 66.61 68.76 69.04 69.09 68.96
c=0.5 68.86 11.14 15.27 26.79 49.58 64.77 68.70 69.63 69.75 69.69
c=0.6 68.83 9.15 12.99 23.57 45.74 63.08 68.25 69.08 69.24 69.32
c=0.7 69.45 6.90 10.56 19.27 40.90 62.26 68.71 70.06 70.29 70.13
c=0.8 69.59 7.09 9.00 14.88 32.93 59.35 68.05 69.61 70.08 69.94
c=0.9 70.18 4.79 7.11 12.04 25.98 53.20 66.77 69.95 70.54 70.46
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Table S9. Choosing the best hyper-parameter over quasi-latency N and slope c with VGG-16 on CIFAR-10.
Quasi-latency N Slope c AccReLU AccANN AccSNN |AccReLU −AccANN| |AccANN −AccSNN| Criterion

N = 1

0.10 95.92 90.93 10.00 4.99 80.93 85.92
0.20 95.92 88.68 10.00 7.24 78.68 85.92
0.30 95.92 86.73 10.00 9.19 76.73 85.92
0.40 95.92 91.90 10.00 4.02 81.90 85.92
0.50 95.92 90.86 85.40 5.06 5.46 10.52
0.60 95.92 90.97 81.35 4.95 9.62 14.57
0.70 95.92 92.15 75.68 3.77 16.47 20.24
0.80 95.92 93.51 10.00 2.41 83.51 85.92
0.90 95.92 94.93 10.00 0.99 84.93 85.92

N = 2

0.10 95.92 92.73 87.94 3.19 4.79 7.98
0.20 95.92 93.02 88.17 2.90 4.85 7.75
0.30 95.92 93.11 86.81 2.81 6.30 9.11
0.40 95.92 93.10 83.57 2.82 9.53 12.35
0.50 95.92 92.84 75.46 3.08 17.38 20.46
0.60 95.92 93.44 73.83 2.48 19.61 22.09
0.70 95.92 94.31 72.17 1.61 22.14 23.75
0.80 95.92 94.93 61.41 0.99 33.52 34.51
0.90 95.92 95.47 59.55 0.45 35.92 36.37

N = 4

0.10 95.92 93.24 68.87 2.68 24.37 27.05
0.20 95.92 92.68 60.15 3.24 32.53 35.77
0.30 95.92 93.55 47.52 2.37 46.03 48.40
0.40 95.92 93.94 51.52 1.98 42.42 44.40
0.50 95.92 94.54 65.47 1.38 29.07 30.45
0.60 95.92 94.95 50.73 0.97 44.22 45.19
0.70 95.92 95.02 32.67 0.90 62.35 63.25
0.80 95.92 95.52 21.08 0.40 74.44 74.84
0.90 95.92 95.60 11.37 0.32 84.23 84.55

N = 8

0.10 95.92 94.21 38.54 1.71 55.67 57.38
0.20 95.92 94.65 50.20 1.27 44.45 45.72
0.30 95.92 94.84 50.11 1.08 44.73 45.81
0.40 95.92 95.01 39.63 0.91 55.38 56.29
0.50 95.92 95.25 27.98 0.67 67.27 67.94
0.60 95.92 95.41 20.70 0.51 74.71 75.22
0.70 95.92 95.58 18.26 0.34 77.32 77.66
0.80 95.92 95.64 15.30 0.28 80.34 80.62
0.90 95.92 95.60 10.56 0.32 85.04 85.36
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Table S10. Choosing the best hyper-parameter over quasi-latency N and slope c with VGG-16 on CIFAR-10.
Quasi-latency N Slope c AccReLU AccANN AccSNN |AccReLU −AccANN| |AccANN −AccSNN| Criterion

N = 16

0.10 95.92 95.28 17.71 0.64 77.57 78.21
0.20 95.92 95.44 17.80 0.48 77.64 78.12
0.30 95.92 95.33 14.61 0.59 80.72 81.31
0.40 95.92 95.56 17.49 0.36 78.07 78.43
0.50 95.92 95.47 14.33 0.45 81.14 81.59
0.60 95.92 95.37 11.17 0.55 84.20 84.75
0.70 95.92 95.60 10.08 0.32 85.52 85.84
0.80 95.92 95.44 10.03 0.48 85.41 85.89
0.90 95.92 95.77 10.03 0.15 85.74 85.89

N = 32

0.10 95.92 95.49 12.78 0.43 82.71 83.14
0.20 95.92 95.53 13.98 0.39 81.55 81.94
0.30 95.92 95.54 12.72 0.38 82.82 83.20
0.40 95.92 95.69 10.01 0.23 85.68 85.91
0.50 95.92 95.50 10.00 0.42 85.50 85.92
0.60 95.92 95.49 10.03 0.43 85.46 85.89
0.70 95.92 95.64 10.51 0.28 85.13 85.41
0.80 95.92 95.55 10.07 0.37 85.48 85.85
0.90 95.92 95.60 10.18 0.32 85.42 85.74

N = 64

0.10 95.92 95.39 10.00 0.53 85.39 85.92
0.20 95.92 95.55 10.05 0.37 85.50 85.87
0.30 95.92 95.77 10.02 0.15 85.75 85.90
0.40 95.92 95.71 10.07 0.21 85.64 85.85
0.50 95.92 95.55 10.01 0.37 85.54 85.91
0.60 95.92 95.53 10.08 0.39 85.45 85.84
0.70 95.92 95.66 10.03 0.26 85.63 85.89
0.80 95.92 95.64 10.10 0.28 85.54 85.82
0.90 95.92 95.61 10.06 0.31 85.55 85.86

N = 128

0.10 95.92 95.58 10.04 0.34 85.54 85.88
0.20 95.92 95.65 10.03 0.27 85.62 85.89
0.30 95.92 95.51 10.09 0.41 85.42 85.83
0.40 95.92 95.71 10.16 0.21 85.55 85.76
0.50 95.92 95.53 10.04 0.39 85.49 85.88
0.60 95.92 95.36 10.16 0.56 85.20 85.76
0.70 95.92 95.76 10.05 0.16 85.71 85.87
0.90 95.92 95.70 10.08 0.22 85.62 85.84
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