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Abstract
We propose ϵ-Exploring Thompson Sampling (ϵ-
TS), a modified version of the Thompson Sam-
pling (TS) algorithm (Agrawal & Goyal, 2017)
for multi-armed bandits. In ϵ-TS, arms are se-
lected greedily based on empirical mean rewards
with probability 1 − ϵ, and based on posterior
samples obtained from TS with probability ϵ.
Here, ϵ ∈ (0, 1) is a user-defined constant. By
reducing exploration, ϵ-TS improves computa-
tional efficiency compared to TS while achiev-
ing better regret bounds. We establish that ϵ-TS is
both minimax optimal and asymptotically optimal
for various popular reward distributions, includ-
ing Gaussian, Bernoulli, Poisson, and Gamma.
A key technical advancement in our analysis is
the relaxation of the requirement for a stringent
anti-concentration bound of the posterior distribu-
tion, which was necessary in recent analyses that
achieved similar bounds (Jin et al., 2021b; 2022).
As a result, ϵ-TS maintains the posterior update
structure of TS while minimizing alterations, such
as clipping the sampling distribution or solving
the inverse of the Kullback-Leibler (KL) diver-
gence between reward distributions, as done in
previous work. Furthermore, our algorithm is
as easy to implement as TS, but operates signifi-
cantly faster due to reduced exploration. Empir-
ical evaluations confirm the efficiency and opti-
mality of ϵ-TS.

1. Introduction
Multi-Armed Bandit (MAB) is an elementary model to
trade off exploration and exploitation in sequential decision-
making problems. In such problems, an agent has a set
[K] = {1, 2, · · · ,K} of K arms to play with, where each
arm i ∈ [K] is associated with a reward distribution with an
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unknown mean value µi. The agent will pull arms sequen-
tially for T time steps. At each time t ∈ [T ], the agent first
chooses an arm At ∈ [K] to play based on its past observa-
tions and then receives a reward rt, which is independently
sampled from the reward distribution of arm At. The goal
is to maximize the cumulative reward over T times, which
is equivalent to minimizing the regret, Rµ(T ), defined as
follows.

Rµ(T ) := T · max
i∈[K]

µi −
T∑

t=1

µAt . (1.1)

We assume without loss of generality in this paper that
arm 1 is the optimal arm with the largest mean reward,
i.e., µ1 = maxi∈[K] µi. For a fixed bandit instance (namely,
µ1, . . . , µK are fixed but unknown), when T goes to infinity,
Lai & Robbins (1985) show that the regret of any algorithm
is at least C(µ) log(T )(1− o(1)), where

C(µ) =
∑
i>1

∆i

kl(µi, µ1)
, (1.2)

∆i = µ1−µi, and kl(µi, µ1) is the KL-divergence between
two reward distributions with mean µi and µ1 respectively.
A bandit algorithm is said to be asymptotically optimal if
its regret can be upper bounded by C(µ) log(T )(1− o(1))
for some constant C(µ). Well-known algorithms such as
Thompson Sampling (Agrawal & Goyal, 2017; Kaufmann
et al., 2012; Korda et al., 2013), KL-UCB (Garivier &
Cappé, 2011; Ménard & Garivier, 2017), and Bayes-UCB
(Kaufmann, 2016) are all shown to be asymptotically opti-
mal. When the time horizon T is fixed, Auer et al. (2002)
show that no algorithm can achieve a worst-case regret
lower than C

√
KT for some universal constant C. Here

the worst-case regret is defined as the maximum regret of
the algorithm on any possible bandit instance. A bandit
algorithm that achieves the worst-case regret O(

√
KT ) is

said to be minimax optimal.

In this paper, we focus on the setting where reward distribu-
tions are from the one-parameter family distributions (Korda
et al., 2013; Garivier et al., 2016). In this setting, a bandit
instance can be parameterized by {θ1, · · · , θK}, and arm
i ∈ [K] has reward distribution p(·|θi) and mean reward
µi = µ(θi). This family contains most common distribu-
tions such as Bernoulli, Gaussian, Poisson, and Gamma,
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as listed in Table 1, where the function map from the pa-
rameter θ to the mean reward µ(·) is also instantiated. To
minimize the regret defined in (1.1), we need to estimate
the parameter θi and choose the arm that could give us the
highest mean reward to play. We study the Thompson Sam-
pling (TS for short) strategy (Thompson, 1933), which is
one of the most widely used bandit algorithms due to its
simplicity in implementation and superior performance in
practice (Chapelle & Li, 2011). Thompson sampling starts
with a prior distribution and a posterior distribution of θi
for each arm i ∈ [K]. At time step t = 1, 2, . . . of the
bandit problem, TS samples θi(t) for all i ∈ [K] from the
corresponding posterior distributions and chooses the arm
At = argmaxi µ(θi(t)) to play. After observing the reward
for arm At, TS will update the posterior distribution based
on all the observations collected for each arm.

Theoretical Analyses of Thompson Sampling. The regret
analysis of Thompson Sampling has been the subject of ex-
tensive research. Agrawal & Goyal (2012) provided the first
finite-time instance-dependent regret bound for Thompson
Sampling with [0, 1] bounded rewards, albeit with a constant
slightly larger than the one in (1.2). Kaufmann et al. (2012)
improved upon this result and established the asymptotic
optimality of Thompson Sampling. In particular, they de-
rived the following regret bound for Thompson Sampling
with Beta posterior (TS-Beta): for any constant δ > 0,

Rµ(T ) ≤ (1 + δ)
∑
i>1

∆i(log T + log log T )

kl(µi, µ1)
+ C(δ,P),

(1.3)

where C(δ,P) is a quantity dependent on δ and the bandit
instance P = {µ1, · · · , µn}. While this regret bound is
asymptotically optimal due to matching the coefficient in
(1.2) for the first term, the second term C(δ,P) can be
large for worst-case instances, leading to suboptimal worst-
case regret bounds. For one-parameter exponential family
reward distributions, Korda et al. (2013) demonstrated the
asymptotic optimality of Thompson Sampling with Jeffery’s
prior. However, their regret analysis, similar to (1.3), does
not provide a closed-form solution for the term related to
C(δ,P), thus failing to offer a worst-case guarantee on the
regret.

Agrawal & Goyal (2017) established a worst-case regret
bound of O(

√
KT log T ) for TS-Beta with Bernoulli re-

wards, making it the first near-minimax optimal regret
bound for Thompson Sampling. They also provided a lower
bound showing that Thompson Sampling with Gaussian
posterior (TS-Gaussian) has a worst-case regret of at least
Ω(

√
KT logK) for Bernoulli rewards. More recently, Jin

et al. (2022) extended these results and proved worst-case re-
gret bounds of O(

√
KT logK) for TS-Beta with Bernoulli

rewards and TS-Gaussian with Gaussian rewards. They also

demonstrated the asymptotic optimality of TS-Beta and TS-
Gaussian while achieving the aforementioned worst-case
regret bounds simultaneously. However, none of these analy-
ses establishes the exact minimax and asymptotic optimality
of Thompson Sampling.

As observed by Agrawal & Goyal (2012); Kaufmann et al.
(2012), the main hardness in the regret analysis of Thomp-
son sampling is caused by the underestimation of the optimal
arm. In particular, the underestimation error of the optimal
arm can be measured by the following term∑

s≥1

E
[

1

G1s(δ)
− 1

]
, (1.4)

where G1s(δ) = P(µ(θ1(t)) ≥ µ1 − δ) is the probability
that the estimation of µ1, i.e., µ(θ1(t)), is larger than µ1−δ.
This term represents the expected number of pulls of sub-
optimal arms between two consecutive pulls of the optimal
arm 1, effectively indicating the time distance between these
pulls. Apparently, if the underestimation error in (1.4) is
smaller, then the algorithm pulls the optimal arm more fre-
quently, which leads to a smaller regret. Thus, finding a
tight upper bound for (1.4) is crucial for deriving a more
precise worst-case regret bound for Thompson Sampling.

In previous works (Agrawal & Goyal, 2017; Jin et al., 2021b;
2022), the focus has been on finding a lower bound for
G1s(δ), typically derived from the anti-concentration bound
of the posterior distribution. For instance, Jin et al. (2021b)
introduced MOTS-J , which uses a Rayleigh posterior dis-
tribution and clips the samples using the MOSS index (Au-
dibert & Bubeck, 2009). MOTS-J achieves minimax and
asymptotic optimality for Gaussian rewards. However, this
clipping method is difficult to extend to more general re-
ward distributions, as it relies on a tight anti-concentration
bound that may not be available in the general case. More
recently, Jin et al. (2022) proposed ExpTS+, which employs
an artificially designed sampling distribution instead of the
posterior distribution used in TS. ExpTS+ achieves minimax
and asymptotic optimality for a broad class of one-parameter
exponential family reward distributions. However, ExpTS+

loses the posterior update structure of TS and requires solv-
ing the inverse of the KL divergence between two reward
distributions, which can be infeasible. In practice, solving
this inverse KL divergence problem, even approximately,
can lead to a significant computational burden1, as demon-
strated in our experiments.

Our Approach. In this paper, we propose ϵ-Exploring

1Assume we use Newton’s method to solve the KL equation.
The number of iterations needed to find a solution with a precision
of τ will be O(

√
log(1/τ)). Note that at iteration k, the Newton

method updates with xk+1 = xk − f(xk)/f
′(xk). Therefore, the

total time complexity of finding the solution will be c
√

log(1/τ),
where c is the cost of calculating f(x)/f ′(x) with precision τ .
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Thompson Sampling (ϵ-TS ), a modified version of the
Thompson Sampling algorithm. With ϵ-TS , exploration
using samples from TS is performed only with probability ϵ,
while the arm to play is greedily selected based on empirical
mean rewards with probability 1− ϵ. Here, ϵ ∈ (0, 1) is a
user-defined parameter.

Our contributions can be summarized as follows:

• We introduce new proof techniques to address the under-
estimation of the optimal arm, which has been identified
as a key challenge in regret analysis of TS (Agrawal &
Goyal, 2012; Kaufmann et al., 2012). Our proof frame-
work delves into the relationship between the reward dis-
tribution and the posterior distribution, without requiring
the anti-concentration bound of the posterior distribution.
We demonstrate the applicability of our approach to var-
ious popular reward distributions, including Gaussian,
Bernoulli, Poisson, and Gamma.

• When ϵ = 1, ϵ-TS recovers the original Thompson Sam-
pling algorithm. We prove that TS with corresponding pri-
ors (TS-Beta, TS-Gaussian, TS-Poisson, and TS-Gamma)
achieve minimax optimality up to a factor of

√
logK

for Bernoulli, Gaussian, Poisson, and Gamma rewards.
Our analysis also establishes their asymptotic optimality.
Notably, this represents the first worst-case regret bound
of posterior-based TS for Poisson and Gamma reward
distributions.

• When ϵ = 1/K, we demonstrate that ϵ-TS achieves both
minimax and asymptotic optimality for Bernoulli, Gaus-
sian, Poisson, and Gamma rewards. This is in contrast to
existing work (Agrawal & Goyal, 2017; Jin et al., 2021b),
which only achieves near-optimal regret bounds under
different parameter settings.

• Importantly, ϵ-TS also outperforms state-of-the-art meth-
ods, including KL-UCB (Garivier & Cappé, 2011), KL-
UCB++ (Ménard & Garivier, 2017), TS (Thompson,
1933), MOTS (Jin et al., 2021b), ExpTS, and ExpTS+ (Jin
et al., 2022), in terms of empirical performance. By main-
taining the posterior update structure of TS and offering a
simple implementation similar to ϵ-Greedy, ϵ-TS achieves
superior performance while running significantly faster
than TS and other baseline methods due to reduced explo-
ration.

Notations. We denote [n] = {1, 2, · · · , n}. For any arm
i ∈ [K], Ti(t) :=

∑t
s=1 1{As = i} is its number of pulls

at time t, µ̂i(t) :=
∑t

s=1 1{At = i}·rt/Ti(t) is the sample
mean reward at time t, and µ̂is is its sample mean reward
after its s-th pull. kl(µ, µ′) denotes the KL divergence be-
tween two distributions with mean µ and µ′ respectively.

1.1. Additional Related Work

In addition to the algorithms discussed above, we would like
to mention some other relevant work related to our paper.

Existing approaches for regret minimization primarily fo-
cus on achieving minimax and asymptotic optimal regret.
For minimax optimality, MOSS (Audibert & Bubeck, 2009)
was the first algorithm proven to be minimax optimal. De-
genne & Perchet (2016) introduced the anytime version of
MOSS. In terms of asymptotic optimality, KL-UCB (Gariv-
ier & Cappé, 2011; Maillard et al., 2011) was shown to be
asymptotically optimal. Subsequently, Thompson Sampling
(Kaufmann et al., 2012; Korda et al., 2013), Bayes-UCB
(Kaufmann, 2016), Double Explore-then-Commit (Jin et al.,
2021c), and Maillard sampling (Bian & Jun, 2022) were
also proven to be asymptotically optimal. KL-UCB++ was
the first algorithm demonstrated to be simultaneously min-
imax and asymptotically optimal. Additionally, Lattimore
(2018) introduced Ada-UCB, which considers a strong no-
tion of regret called “instance optimality” and is shown to be
near optimal for any bandit instance. For a comprehensive
overview of the literature and techniques related to bandits,
we recommend referring to Lattimore & Szepesvári (2020);
Bubeck et al. (2012).

In the context of Thompson Sampling, apart from the fre-
quentist regret bounds discussed in previous paragraphs,
Russo & Van Roy (2014) analyzed the Bayesian regret of
Thompson Sampling and proved that its Bayesian regret is
no greater than the worst-case regret of any UCB algorithm.
Furthermore, Bubeck & Liu (2013) improved the Bayesian
regret to O(

√
KT ) by incorporating the MOSS idea.

2. ϵ-Exploring Thompson Sampling
2.1. The Proposed Algorithm

Algorithm 1 shows the pseudo code for the proposed algo-
rithm, ϵ-Exploring Thompson Sampling (denoted as ϵ-TS ).
It shares the same updating rule as the conventional TS
algorithm (Agrawal & Goyal, 2017), where an estimated
reward ai(t) for arm i is constructed based on the posterior
distribution at each time step t, and the arm with the highest
estimated reward is selected. However, ϵ-TS introduces a
modification to the estimation process.

In TS, the estimated reward ai(t) is directly set as the sample
drawn from the posterior distribution of arm i. In contrast,
ϵ-TS sets ai(t) as µ̂i(t) with probability 1−ϵ and as the sam-
ple from the posterior distribution with probability ϵ. Here, ϵ
is a parameter that controls the exploration rate. By perform-
ing exploration with a probability of ϵ, ϵ-TS explores less
compared to TS, making it more computationally efficient,
especially when sampling from the posterior distribution is
computationally expensive.
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Table 1. Reward distributions and the corresponding choices of prior and posterior distributions. The posterior distribution after observing
rewards x1, · · · , xs is a function of the number of observations s and the sample mean µ̂s =

∑s
k=1 xk/s, denoted as fpost(s, µ̂s).

REWARD DISTRIBUTION PARAMETER µ(θ) PRIOR POSTERIOR (fPOST(s, µ̂s))

BERNOULLI µx(1− µ)1−xδ0,1 µ θ BETA(1,1) BETA(1 + sµ̂s, 1 + s− sµ̂s)

GAUSSIAN 1√
2πσ2

e−
1
2

(x−µ)2

σ2 µ θ ∝ 1 N (µ̂s, σ
2/s)

POISSON µke−µ

k! (k ∈ N) µ θ ∝ 1 GAMMA
(
1 + sµ̂s, s

)
GAMMA xα−1e−βxβα

Γ(α) 1{x > 0} β α/θ ∝ 1/β2 GAMMA(αs− 1, sµ̂s), s > 1/α.

This modification in ϵ-TS introduces a balance between ex-
ploration and exploitation. With a small exploration proba-
bility, ϵ-TS focuses on exploiting the arm with the highest
empirical mean most of the time, leading to reduced compu-
tational overhead while still allowing for occasional explo-
ration to mitigate the underestimation of the optimal arm.
This design advantage of ϵ-TS enables it to achieve a balance
between computational efficiency and regret performance.

In the following sections, we will demonstrate that ϵ-
TS achieves both minimax and asymptotic optimality, pro-
viding a tighter worst-case regret bound compared to tradi-
tional Thompson Sampling.

Algorithm 1 ϵ-Exploring Thompson Sampling
1: Initialize the prior distributions based on Table 1.
2: For all i ∈ [K], µ̂i(1) = 0 and Ti(1) = 0.
3: for t = 1, 2, · · · , T do
4: For all i ∈ [K], update the posterior according to

Table 1: P i
Posterior(t) = fpost(Ti(t), µ̂i(t)), and obtain

ai(t) =

{
θi(t) ∼ P i

Posterior(t) with prob. ϵ
µ̂i(t) with prob. 1− ϵ

5: Pull the arm At = argmaxi∈[K] ai(t), and observe
the corresponding reward rt;

6: For all i ∈ [K], Ti(t+ 1) = Ti(t) + 1{i = At},
µ̂i(t+ 1) = Ti(t)µ̂i(t)+rt 1{i=At}

Ti(t+1) .
7: end for

2.2. Minimax and Asymptotic Optimality

Recall the definition of regret in Equation (1.1). Algorithm
1 exhibits the following result.

Theorem 2.1. For Gaussian, Bernoulli, Poisson, and
Gamma reward distributions, and ϵ ∈ [1/K, 1], there exists
a universal constant C > 0 such that the regret of ϵ-TS is
bounded as follows:

Rµ(T ) ≤ C
(√

V KT log(eKϵ)
)
+ 2

∑
i>1

∆i,

where V = σ2 for Gaussian, V = 1/4 for Bernoulli, V =
µ1 for Poisson, and V = µ2

1 for Gamma. Moreover,

lim
T→∞

Rµ(T )

log T
=

∑
i>1

∆i

kl(µi, µ1)
.

Remark 2.2 (Regret of ϵ-TS with ϵ = 1). When ϵ is set to
1, ϵ-TS reduces to the original Thompson Sampling (TS)
algorithm (Thompson, 1933; Korda et al., 2013; Agrawal &
Goyal, 2017). For bandit problems with Gaussian, Bernoulli,
Poisson, and Gamma reward distributions, Theorem 2.1
implies that TS with the corresponding prior is minimax
optimal up to a factor of

√
logK and is asymptotically

optimal under the same algorithm setting. Notably, this is
the first worst-case regret bound for the original Thompson
Sampling algorithm for Poisson and Gamma rewards.
Remark 2.3 (Regret of ϵ-TS with ϵ = 1/K). When ϵ is set
to 1/K in Algorithm 1, the results from Theorem 2.1 imply
that 1/K-TS is simultaneously minimax and asymptotically
optimal for a large class of reward distributions, including
Gaussian, Bernoulli, Poisson, and Gamma.

It is worth noting that Jin et al. (2022) recently proposed
the ExpTS+ algorithm, which samples from an artificially
designed distribution P(µ̂i(t), Ti(t)) (see Equation (4.1))
for each arm at time step t. This sampling is achieved by
solving the inverse of kl(µ̂i(t), x) for the variable x, where
kl(µ̂i(t), x) represents the KL divergence between two dis-
tributions with means µ̂i(t) and x, respectively. ExpTS+

makes decisions based on samples from P(µ̂i(t), Ti(t))
with probability 1/K and based on the sample average re-
ward µ̂i(t) with probability 1− 1/K. This reduced explo-
ration also leads to the minimax and asymptotic optimality
of ExpTS+. However, sampling from P becomes infeasi-
ble when the KL divergence is not invertible, such as for
Bernoulli, Poisson, and Gamma distributions. As we will
demonstrate in our experiments, approximately solving this
inversion can be computationally expensive

For Bernoulli and Gaussian rewards, one may replace the
sampling distribution P in ExpTS+ (Jin et al., 2022) with
the posterior presented in Table 1 and thus obtain the ϵ-
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TS algorithm proposed in this paper. However, as pointed
out by Jin et al. (2022), their regret analysis highly relies on
the anti-concentration inequality of P and changing P with
the posterior distributions to Table 1 breaks such property
and thus one cannot derive the same minimax and asymp-
totic regret bound for ϵ-TS as they did for ExpTS+.

3. Proof Sketch for the Regret Bound of ϵ-TS
In this section, we provide the roadmap for proving the
regret bound presented in Theorem 2.1.

Let Sj = {i ∈ [K] | 2−(j+1) ≤ ∆i < 2−j} be the set of
arms whose gaps from the optimal arm lie in the interval
[2−(j+1), 2−j). In what follows, we aim to prove that the re-
gret of any arm i ∈ Sj is smaller than C|Sj | log(Tϵ∆2

i )/∆i,
where C is some constant. Let δ0 = max{log(Kϵ), 1}.
The idea of dividing the arms into groups based on ex-
ponential gaps is inspired by Jin et al. (2022). Define
γ = 1/2 log2(T/(V Kδ0)) − 3. For any arm i with
∆i > 4

√
V Kδ0/T = 2−(γ+1), there exists an index j ≤ γ

such that i ∈ Sj . We decomposed the regret as:

Rµ(T ) =
∑

i:∆i>0

∆i · E[Ti(T )]

≤
∑

i:∆i>4
√

V Kδ0/T

∆i · E[Ti(T )] + max
i:∆i<4

√
V Kδ0/T

∆i · T

(3.1)

<
∑
j≤γ

∑
i∈Sj

2−j · E[Ti(T )] + 4
√
V Kδ0T . (3.2)

Let Ei,δ(t) = {ai(t) ≤ µ1 − δ} be the event that the
estimation of the mean reward of arm i at t-th step is lower
than µ1 − δ. Based on event Ei,δ(t), the expected number
of pulls of arms in Sj can be decomposed as follows.

∑
i∈Sj

E[Ti(T )] =
∑
i∈Sj

E

[
T∑

t=1

1{At = i, Ei,δj (t)}

]
︸ ︷︷ ︸

I1

+
∑
i∈Sj

E

[
T∑

t=1

1{At = i, Ec
i,δj (t)}

]
︸ ︷︷ ︸

I2

, (3.3)

where δj ≥
√
V Kδ0/T and Ec is the complement of an

event E. In what follows, we bound I1 and I2 respectively.

3.1. Bounding term I1

Let ηs be defined in the following way.

ηs = argmax
x>0

{x : such that

kl(µ1 − δj − x, µ1 − δj) ≤ 2 log+(Tϵ/s)/s}, (3.4)

where log+(x) = max{0, log x}. Let aiTi(t) = ai(t) and
Gis(δ) = P(ais ≥ µ1 − δ). We use the following lemma to
bound term I1, which is proved by Jin et al. (2022).

Lemma 3.1 (Lemma E.1 in Jin et al. (2022)). For any
δj ≥

√
V Kδ0/T , it holds that

∑
i∈Sj

E

[
T∑

t=1

1{At = i, Ei,δj (t)}

]

≤
T∑

s=1

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
︸ ︷︷ ︸

J

+ T · P(∃s ∈ [T ] : µ̂1s /∈ Ls), (3.5)

where Ls = {x | x ≥ µ1 − δj − ηs}.

We present two useful lemmas for further bounding the
results in (3.5). The first lemma characterizes the concentra-
tion properties of the optimal arm, which upper bounds the
second term on the right hand side of (3.5).

Lemma 3.2. Let Ls and δj be the same as in Lemma 3.1.
Then we have T · P(∃s ∈ [T ] : µ̂1s /∈ Ls) ≤ 30V/(ϵδ2j ).

If a tight anti-concentration bounds of the posterior distri-
bution is available, following the idea in Agrawal & Goyal
(2017); Jin et al. (2022), we can obtain a tight upper bound
of term J , the first term on the right hand side (R.H.S.)
of (3.5). However, for many posterior distributions other
than Gaussian and Beta, deriving a tight anti-concentration
bound might be infeasible. In this paper, we bound J by
exploring in depth the relationship between the reward dis-
tribution and the posterior distribution and do not require
the anti-concentration bounds. Specifically, the term J is
bounded as in the following lemma, whose proof will be
provided in the last part of this section.
Lemma 3.3. Let δj and Ls be the same as in Lemma 3.1.
For Gaussian, Bernoulli, Poisson, and Gamma reward dis-
tributions, there exists a universal constant C1, such that

J ≤ C1

(
V

ϵδ2j
+min

{
V

ϵδ2j
log

(
Tϵδ2j
V

)
,

√
V 3 log T

ϵδ3j

})
.

Substituting the results in Lemmas 3.2 and 3.3 back into
(3.5) yields

∑
i∈Sj

E
[ T∑

t=1

1{At = i, Ei,δj (t)}
]

≤ C1

(
V

ϵδ2j
+min

{
V

ϵδ2j
log

(
Tϵδ2j
V

)
,

√
V 3 log T

ϵδ3j

})
+

30V

ϵδ2j
.

(3.6)

3.2. Bounding Term I2.

Let us define s0 = log(Tϵδ2j /V )/kl(µi + δj , µ1 − δj). The
following lemma shows the concentration properties of the
suboptimal arms.
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Lemma 3.4. Let δj > 0. Assume s ≥ s0 + 2 + V/δ2j and
µ̂is ≤ µi + δj , then

P(ais ≥ µ1 − δj) ≤
V

Tδ2j
.

Furthermore,

T∑
s=1

1{Gis(ϵ) > V/(Tδ2j )} ≤ 2 + s0 +
3V

δ2j
. (3.7)

Define T = {t ∈ [T ] : GiTi(t)(δj) > V/(Tδ2j )}. Then,
based on whether t ∈ T , we can derive

E

[
T∑

t=1

1{At = i, Ec
i,δj (t)}

]

≤ E
[∑

t∈T

1{At = i}
]
+ E

[∑
t/∈T

1{Ec
i,δj (t)}

]

≤
T∑

s=1

1{Gis(δj) > V/(Tδ2j )}+ E
[∑

t/∈T

V

Tδ2j

]

≤
T∑

s=1

1{Gis(δj) > V/(Tδ2j )}+
V

δ2j
. (3.8)

Applying (3.7) to (3.8), we obtain

E

[
T∑

t=1

1{At = i, Ec
i,δj (t)}

]

≤
log(Tϵδ2j /V )

kl(µi + δj , µ1 − δj)
+

4V

δ2j
+ 2 (3.9)

≤
2V log(Tϵδ2j /V )

(∆i − 2δj)2
+

4V

δ2j
+ 2, (3.10)

where the last inequality is from (B.4).

Proof of the Worst-Case Regret Bound. Choose δj =

2−(j+1)/4 = 2−(j−γ)
√

V Kδ0/T . Substituting (3.10) and
(3.6) into (3.3) and combining the result with (3.2), we
obtain

Rµ(T ) <
∑
j≤γ

∑
i∈Sj

2−j · E[Ti(T )] + 4
√
V Kδ0T

≤
∑
j≤γ

(2C1 + 10)

(
V K log(Tϵδ2j /V )

δj
+

KV

δj

)
+ 4

√
V Kδ0T + 2

∑
i>1

∆i

≤ (2C1 + 20)

(√
V KT

log(Kϵδ0)√
δ0

∑
j:j≥γ

1

2j−γ

+
√
V KT

∑
j:j≥γ

1

2j−γ

)
+ 4

√
V Kδ0T + 2

∑
i>1

∆i

≤ C
√

V KT log(eKϵ) + 2
∑
i>1

∆i,

where C is a universal constant and the third inequality is
because x log(ax2) is monotonically decreasing for x ≥
e/
√
a and δj ≥

√
V Kδ0/T .

Proof of Asymptotic Optimality Substituting (3.9) and
(3.6) into (3.3) and then combining it with (3.1), we have
that there exists a universal constant C0 such that

Rµ(T ) ≤
∑
i>1

∆i log(Tϵδ
2
j /V )

kl(µi + δj , µ1 − δj)
+ max

i:∆i<4

√
V Kδ0

T

∆i · T

+ C0∆i

(√
V 3 log T

ϵδ3j
+

V

ϵδ2j
+ 1

)
.

Let δj = 1/ log log T . We obtain

lim
T→∞

Rµ(T )

log T
≤

∑
i>1

∆i

kl(µi, µ1)
.

3.3. Proof of Lemma 3.3 for Poisson Rewards

As we discussed in the previous subsection, Lemma 3.3 is
the key novelty in our analysis such that we do not require a
tight anti-concentration bound of the posterior distribution
as Agrawal & Goyal (2017); Jin et al. (2022) do. We provide
its proof in this subsection. Due to the space limit, we only
provide the proof of Lemma 3.3 for Poisson Rewards here.
The proofs for other reward distributions are similar and
thus deferred to the appendix.

Let k be the sum of s independent random variables sampled
from the Poisson distribution with parameter µ, and fs,µ(·)
be the probability mass function of k. Then, we have

fs,µ(k) = (sµ)k · e−sµ/k!.

The posterior distribution is Gamma(1 + k, s) with PDF

p(µ) = µksk+1e−sµ/k! = sfs,µ(k).

Let FG
α,β(·) be the CDF of Gamma distribution with pa-

rameter α and β. Let θis be the sample from the posterior
distribution after arm i is pulled s times and G′

is(δj) =
P(µ(θis) ≥ µ1 − δj). We have

G1s(δj) = P(a1s ≥ µ1 − δj)

≥ ϵG′
1s(δj) + (1− ϵ)1{µ̂1s ≥ µ1 − δj}. (3.11)

Therefore,

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤
⌊s(µ1−δj/2)⌋∑

k=⌈s(µ1−δj−ηs)⌉

fs,µ1(k)

ϵ(1− FG
k+1,s(µ1 − δj))︸ ︷︷ ︸

J1

+

∞∑
k=⌈s(µ1−δj/2)⌉

fs,µ1(k)

1− FG
k+1,s(µ1 − δj)

− fs,µ1(k)︸ ︷︷ ︸
J2

.

(3.12)
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For term J1,

fs,µ1(k)

1− FG
k+1,s(µ1 − δj)

≤ fs,µ1(k)∫∞
µ1−δj

sfs,µ(k)dµ

≤ fs,µ1(k)∫ µ1−δj/4

µ1−δj/2
sfs,µ1(k) ·

fs,µ(k)

fs,µ1
(k)

dµ
.

(3.13)

Noting that for Poisson, kl(µ, µ′) = µ log
(

µ
µ′

)
+ µ′ − µ,

we further obtain

eskl(k/s,µ1)−skl(k/s,µ) = ek log(µ/µ1)+sµ1−sµ =
fs,µ(k)

fs,µ1(k)
.

Based on (3.13), we obtain

r.h.s. of (3.13) =
fs,µ1(k)∫ µ1−δj/4

µ1−δj/2
sfs,µ1(k) · eskl(k/s,µ1)−skl(k/s,µ)dµ

≤ 4e−skl(µ1−δj/4,µ1)

sδj

≤ 4e−sδ2j /(32V )

sδj
,

where the first inequality holds because from (B.5),
kl(k/s, µ1) − kl(k/s, µ) ≥ kl(µ, µ1) ≥ kl(µ1 − δj/4, µ1)
for k/s ≤ µ1 − δj/2 and µ ∈ (µ1 − δj/2, µ1 − δj/4), and
the last inequality is due to (B.4). For term J1, we have

⌊s(µ1−δj/2)⌋∑
k=⌈s(µ1−δj−ηs)⌉

fs,µ1(k)

1− Fk+1,s(µ1 − δj)

≤
⌊s(µ1−δj/2)⌋∑

k=⌈s(µ1−δj−ηs)⌉

4e−sδ2j /(32V )

sδj

≤ e−sδ2j /(32V )(2 + 4ηs/δj). (3.14)

For term J2, note that the median denoted as m of
Gamma(1+k, s) satisfies m ≥ (1+k)/s−1/(3s) ≥ µ1−δj
for k ≥ µ1 − δj/2 (Chen & Rubin, 1986). Hence,∑

k:k≥⌈s(µ1−δj/2)⌉

fs,µ1(k)

1− FG
1+k,s(µ1 − δj)

− fs,µ1(k) ≤ 1.

(3.15)

Besides, let F Poi
µ (·) be the CDF of the Poisson with param-

eter µ. Note that FG
1+k,s(x) = 1− F Poi

sx (k). From Lemma
B.1, for k ≥ s(µ1 − δj/2),

1− FG
k+1,s(µ1 − δj) = F Poi

s(µ1−ϵ)(k)

≥ 1− e−skl(k/s,µ1−δj)

≥ 1− e−sδ2j/(8V ),

where the second inequality is due to Lemma B.1 and the
fact that F Poi

s(µ1−δj)
(k) is probability that the sum of s in-

dependent random variables from Poisson with parameter
µ1 − δj is lower than k. Note that for any c > 0,we have∑

s=1

e−sδ2j /(cV ) ≤ 1

eδ
2
j /(cV ) − 1

≤ cV

δ2j
. (3.16)

Here the last inequality is due to ex ≥ x+ 1 for any x > 0.
Therefore, for s ≥ 8V/δ2j ,

∑
k:k≥⌈s(µ1−δj/2)⌉

fs,µ1(k)

1− FG
1+k,s(µ1 − δj)

− fs,µ1(k)

≤ 1

1− e−sδ2j /(8V )
− 1

≤ 2e−sδ2j /(8V ), (3.17)

where the last inequality is from (3.16). By substituting
(3.14), (3.15), and (3.17) to (3.12), we obtain that there
exists a universal constant C1 such that

T∑
s=1

E
[(

1

G′
1s(δj)

− 1

)
· 1{µ̂1s ∈ Ls}

]

≤ (1/ϵ)

T∑
s=1

e−sδ2j /(32V )

(
2 +

4ηs
δj

)
+

∑
s≤8V/δ2j

1

+ 2

T∑
s=⌈8V/δ2j ⌉

e−sδ2j /(8V )

≤ C1

(
V

ϵδ2j
+min

(
V

ϵδ2j
log

(
Tϵδ2j
V

)
,

√
V 3 log T

ϵδ3j

))
,

(3.18)

where (3.18) is due to (3.16) and Lemma 3.5 presented in
the following.
Lemma 3.5. Let ηs be the same as defined in (3.4). Then,
for any c ≥ 1,

T∑
s=1

e−sδ2j /(cV ) ηs
δj

≤ min

{√
4cV

δ2j

(
log

(
Tϵδ2j
V

)
+ 5

)
,

√
4cV 3

δ3j

√
log T

}
.

4. Experiments
In this section, we conduct experiments to show that the
proposed algorithm ϵ-TS achieves comparable or better
performance than state-of-the-art MAB algorithms. All
experiments were conducted on a Linux machine equipped
with 72 threads, powered by two 18-core Intel Xeon(R) Gold
6240 CPUs @ 2.60GHz and 376GB RAM. We implemented
all methods in Python.

4.1. Performance of ϵ-TS on Various Reward
Distributions

Baselines In particular, we compare our algorithm with
KL-UCB (Garivier & Cappé, 2011), KL-UCB++ (Ménard
& Garivier, 2017), TS (Agrawal & Goyal, 2017), MOTS (Jin
et al., 2021b), ExpTS and ExpTS+ (Jin et al., 2022), which
all achieve optimal or nearly optimal worst-case regret in
multi-armed bandits. All the above strategies select arms at
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Figure 1. Comparison of different algorithms with K = 10 and K = 50 arms under different reward distributions.

round t according to At = argmaxi∈[K] ai(t), where the
reward estimation ai(t) is defined as follows for different
methods respectively.

• KL-UCB (Garivier & Cappé, 2011):

ai(t) = sup{µ : Ti(t)kl(µ̂i(t), µ) ≤ log t+ 3 log log t}.

• KL-UCB++ (Ménard & Garivier, 2017):

ai(t) = sup

{
µ : Ti(t)kl(µ̂i(t), µ)

≤ log+

(
T

KTi(t)

(
log2+

(
T

KTi(t)

)
+ 1

))}
.

• TS (Agrawal & Goyal, 2017): ai(t) = µ(θi(t)) and
θi(t) ∼ Pi(t), where µ(·) is a function that maps the
posterior sample to the mean estimation and Pi(t) is the
posterior distribution. Both could be found in Table 1. In
particular, µ(θi(t)) = θi(t) for Gaussian rewards.

• MOTS (Jin et al., 2021b):

ai(t) = min

{
µ, µ̂i(t) +

√
4σ2

Ti(t)
log+

(
T

KTi(t)

)}
,

where µ ∼ N (µ̂i(t), σ
2/(ρTi(t))).

• ExpTS (Jin et al., 2022): ai(t) ∼ P (µ̂i(t), Ti(t)), where
P (µ, n) is a distribution with its CDF defined as

F (x) =

{
1− 1/2e−(n−1)·kl(µ,x) x ≥ µ,

1/2e−(n−1)·kl(µ,x) x ≤ µ.
(4.1)

• ExpTS+ (Jin et al., 2022): ai(t) ∼ P (µ̂i(t), Ti(t)) with
probability 1/K and ai(t) = µ̂i(t) with probability 1−
1/K, where P (µ, n) is the same as in ExpTS.

Implementation To evaluate all the methods, we generate
datasets under 4 reward distributions presented in Table 1
and 2 choices of K (K = 10 and 50 respectively). The
mean rewards are generated as follows.

• Bernoulli: if K = 10, we set µ1 = 0.9 and µi = 0.8
for i ∈ {2, 3, · · · , 10}; if K = 50, we generate the first
10 arms the same way as just described, and we sample
µi ∼ Unif [0.5, 0.7] for i ∈ [K] \ [10].

• Gaussian: similarly, we set µ1 = 1, µi = 0.7 for i ∈
{2, 3, · · · , 10}, and µi ∼ Unif [0.3, 0.5] for i ∈ [K]\[10].

• Poisson: we set µ1 = 1, µi = 0.7 for i ∈ {2, 3, · · · , 10},
and µi ∼ Unif [0.3, 0.5] for i ∈ [K] \ [10].

• Gamma: we set µ1 = 1, µi = 0.8 for i ∈ {2, 3, · · · , 10},
and µi ∼ Unif [0.3, 0.5] for i ∈ [K] \ [10].

For Gaussian rewards, the variance is set to be 1, and for
Gamma rewards, the shape parameter is chosen as α = 1.

Since MOTS is only designed for subGaussian, we test it
for Gaussian and Bernoulli rewards. Note that KL-UCB
needs to solve the inverse of KL divergence for all arms
at each time step t. To speed up KL-UCB, we only solve
the inequalities involving the inverse of KL divergence at
time steps t = 2, 22, 23, · · · . The KL equations were solved
using the scipy.optimize.newton function. We set ϵ = 1/K
for ϵ-TS throughout our experiments. For all algorithms, the
experimental results are averaged over 1000 repetitions.

Results Figure 1 presents the cumulative regrets of differ-
ent algorithms for both the K = 10 and K = 50 settings.
The purple line represents the asymptotic lower bound,∑

i>1 ∆i · log t/kl(µi, µ1), up to some constants.

For the K = 10 setting, the results are shown in Figures
1(a), 1(b), 1(c), and 1(d) for Bernoulli, Gaussian, Poisson,
and Gamma rewards, respectively. It is evident that ϵ-TS and
ExpTS+ consistently outperform the other baseline algo-
rithms. The regret of ϵ-TS is comparable to that of ExpTS+

for Bernoulli and Gamma rewards, and performs better for
Gaussian and Poisson rewards.

For the K = 50 setting, the results are displayed in Figures

8
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Table 2. Average running time of different algorithms on various reward distributions (in seconds).

REWARD DISTRIBUTION # OF ARMS TS ϵ-TS MOTS EXPTS EXPTS+ KL-UCB KL-UCB++

BERNOULLI
K = 10 0.25 0.11 0.49 441 43 134 134
K = 50 0.98 0.27 1.20 1654 38 127 126

GAUSSIAN
K = 10 0.25 0.11 0.33 0.27 0.15 0.32 0.36
K = 50 1.05 0.28 1.20 1.13 0.35 1.25 1.18

POISSON
K = 10 0.23 0.13 – 349 36 108 102
K = 50 0.92 0.30 – 1266 33 107 92

GAMMA
K = 10 0.22 0.10 – 394 43 117 134
K = 50 0.96 0.27 – 1238 38 112 126

1(e), 1(f), 1(g), and 1(h) for Bernoulli, Gaussian, Poisson,
and Gamma rewards, respectively. The regret of ϵ-TS is
comparable to that of ExpTS+ for Gaussian and Gamma
rewards, and is smaller for Bernoulli and Poisson rewards.
Notably, ϵ-TS consistently outperforms TS, MOTS, ExpTS,
and KL-UCB across all settings.

4.2. Computational Efficiency of ϵ-TS

We conducted a comparison of the computational efficiency
of all the methods by recording the CPU time required to
run each algorithm for T = 10000 steps. The results are
summarized in Table 2. In our experiments, we utilized
parallelization for multiple repetitions of the algorithms,
taking advantage of the 72 available threads on our server.
The reported time of 1654 seconds for ExpTS represents
the total running time divided by the number of repeated
experiments and then multiplied by 72.

From Table 2, we observe that ϵ-TS is significantly more
efficient than all the other baselines. This efficiency stems
from the simple structure of our algorithm, where we only
need to update the posterior distribution, similar to TS. In
contrast, ExpTS, ExpTS+, KL-UCB, and KL-UCB++ all
require solving the inverse of the KL divergence between
two reward distributions, which becomes computationally
expensive when a closed-form solution is not available. For
example, compared to ExpTS+, our algorithm is more than
390× faster for K = 10 and 140× faster for K = 50 when
the reward distribution is Bernoulli. One exception is for
Gaussian rewards, where the KL divergence between two
reward distributions has a closed-form inverse.

It is worth noting that ϵ-TS is also significantly faster than
TS and MOTS, which do not require solving the inverse
KL divergence. This is because in ϵ-TS , we only sample
from the posterior distribution with a small probability, and
most of the time, the algorithm only needs to calculate the
empirical mean reward.

Due to the space limit, we defer more comprehensive exper-
imental results to Appendix C.

5. Conclusion
In this paper, we investigated the performance of Thompson
Sampling (TS) for popular reward distributions, including
Gaussian, Bernoulli, Poisson, and Gamma. We proposed
the ϵ-TS algorithm, which only performs TS exploration
with probability ϵ and performs greedily otherwise. When
ϵ = 1, ϵ-TS is equivalent to the original TS algorithm. We
provided both worst-case regret bounds and asymptotic re-
gret bounds for ϵ-TS. When ϵ = 1, our results demonstrate
that TS is minimax optimal up to a factor of

√
logK and is

asymptotically optimal. Notably, this study provides the first
worst-case regret bound for TS with Poisson and Gamma
reward distributions. When ϵ = 1/K, our results show
that ϵ-TS achieves simultaneous minimax and asymptotic
optimality. Our experiments confirm the superior perfor-
mance of ϵ-TS compared to state-of-the-art methods. Impor-
tantly, our proposed algorithm, ϵ-TS , exhibits significantly
improved computational efficiency compared to existing
multi-armed bandit algorithms, such as ExpTS+ and KL-
UCB++, while achieving the same minimax and asymptotic
optimality properties.
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A. Proof of Supporting Lemmas
A.1. Proof of Lemma 3.2

Let kl+(x, y) = kl(x, y)1(x ≤ y). From (B.5) and (B.4),

kl+(µ̂1s, µ1 − δj) ≤ kl+(µ̂1s, µ1)− kl(µ1 − δj , µ1) ≤ kl+(µ̂1s, µ1)−
δ2j
2V

. (A.1)

Similar to the proof of Lemma 9.3 in Lattimore & Szepesvári (2020), we have

P
(
∃s ≥ 1 : kl+(µ̂1s, µ1 − δj) ≥ 2 log+(Tϵ/s)/s

)
≤ P

(
∃s > 1 : kl+(µ̂1s, µ1)−

δ2j
2V

≥ 2 log+(Tϵ/s)/s

)
≤

∞∑
n=0

P
(
∃s ∈ [2n, 2n+1] : kl+(µ̂1s, µ1)−

δ2j
2V

≥ 2 log+(Tϵ/s)/s

)

≤
∞∑

n=0

P
(
∃s ∈ [2n, 2n+1] : kl+(µ̂1s, µ1)−

δ2j
2V

≥
2 log+(Tϵ/2

n+1)

2n+1

)

≤
∞∑

n=0

exp

(
− 2n ·

2 log+(Tϵ/2
n+1)

2n+1
− 2n ·

δ2j
2V

)
, (A.2)

where the first inequality is due to (A.1) and the last inequality is due to Lemma B.1. The rest part is purely algebraic:

r.h.s of (A.2) ≤ 1/(Tϵ)

∞∑
n=0

2n+1 · exp
(
−

δ2j
2V

· 2j−2

)
≤ 16V

eTϵδ2j
+ 1/(Tϵ)

∫ ∞

0

2s+1 exp
(
− δ2j /(2V ) · 2s−2

)
ds

≤ 30V

Tϵδ2j
,

The third inequality is due to the fact that the integrand is unimodal and has a maximum value 16V
eTϵδ2j

. For such function f ,

we have
∑b

s=a f(s) ≤
∫ b

a
f(s)ds+maxs∈[a,b] f(s). This completes the proof.

A.2. Proof of Lemma 3.3 for Bernoulli, Gaussian, and Gamma Reward Distributions

Bernoulli Rewards: Let fn,µ(·) (Fn,µ(·)) be the PMF (CDF) of binomial distribution with parameter n and µ and f beta
α,β (·)

(F beta
α,β (·)) be the PDF (CDF) of Beta distribution with parameter α and β. For Bernoulli reward distribution with parameter

µ, after s number of pulls, we let α be the number of successes (the reward is 1) and β be the number of failures (the reward
is 0). The posterior distribution is

p(µ) = f beta
α+1,β+1(µ) = (s+ 1)fs,µ(α).

From (3.11),

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤
⌊s(µ1−δj/2)⌋∑

α=⌈s(µ1−δj−ηs)⌉

fs,µ1
(α)

ϵ(1− F beta
α+1,s−α+1(µ1 − δj))︸ ︷︷ ︸

J1

+

s∑
α=⌈s(µ1−δj/2)⌉

fs,µ1
(α)

1− F beta
α+1,s−α+1(µ1 − δj)

− fs,µ1
(α)

︸ ︷︷ ︸
J2

. (A.3)

11
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For term J1, we bound 1− F beta
α+1,s−α+1(µ1 − δj) as follows.

1− F beta
α+1,s−α+1(µ1 − δj) =

∫ 1

µ1−δj

f beta
α+1,s−α+1(x)dx

≥
∫ µ1−δj/4

µ1−δj/2

f beta
α+1,s−α+1(x)dx

=

∫ µ1−δj/4

µ1−δj/2

xα(1− x)s−α

µα
1 (1− µ1)s−α

· (s+ 1)fs,µ1
(α)dx. (A.4)

Note that for Bernoulli, kl(µ, µ′) = µ log
(

µ
µ′

)
+ (1 − µ) log

(
1−µ
1−µ′

)
. Therefore, eskl(α/s,µ1) =

(α/s
µ1

)α( 1−α/s
1−µ1

)s−α
and

eskl(α/s,x) =
(α/s

x

)α( 1−α/s
1−x

)s−α
. We further obtain that for α/s < x < µ1 − δj/4,

xα(1− x)s−α

µα
1 (1− µ1)s−α

= eskl(α/s,µ1)−skl(α/s,x)

≥ eskl(x,µ1)

≥ eskl(µ1−δj/4,µ1)

≥ esδ
2
j/(32V ),

where the first and second inequalities are due to (B.5) and the third inequality is due to (B.4). Based on (A.4), we obtain

r.h.s. of (A.4) ≥
∫ µ1−δj/4

µ1−δj/2

(s+ 1)esδ
2
j/(32V )fs,µ1

(α)dx

= esδ
2
j/(32V )δj(s+ 1)fs,µ1

(α)/4.

Therefore,

⌊s(µ1−δj/2)⌋∑
α=⌈s(µ1−δj−ηs)⌉

fs,µ1
(α)

1− F beta
α+1,s−α+1(µ1 − δj)

≤ e−sδ2j/(32V )

⌊s(µ1−δj/2)⌋∑
α=⌈s(µ1−δj−ηs)⌉

4fs,µ1
(α)

δj(s+ 1)fs,µ1(α)

≤ e−sδ2j/(32V )

(
2 +

4ηs
δj

)
. (A.5)

Now, we bound term J2. A nice property of Beta distribution is 1 − F beta
α+1,s−α+1(µ1 − δj) = Fs+1,µ1−δj (α) for any

α ∈ N+. For s < 2/δj and α ≥ ⌈s(µ1 − δj/2)⌉, we obtain

1− F beta
j+1,s−j+1(µ1 − δj) = Fs+1,µ1−δj (α)

≥ (1− (µ1 − δj)) · Fs,µ1−δj (α)

≥ (1− (µ1 − δj))/2

≥ δj/2 (A.6)

where the second inequality is because α ≥ ⌈s(µ1 − δj)⌉ and the median of the binomial distribution with parameters s and
µ1 − δj is lower than ⌈s(µ1 − δj)⌉.
For 2/δj < s ≤ ⌊8V/δ2j ⌋ and α ≥ ⌈s(µ1 − δj/2)⌉, the median of binomial distribution with parameter s+ 1 and µ1 − δj
is lower than ⌈s(µ1 − δj)⌉. We obtain

Fs+1,µ1−δj (α) ≥
1

2
,

and thus
s∑

α=⌈s(µ1−δj/2)⌉

fs,µ1(α)

1− F beta
α+1,s−α+1(µ1 − δj)

− fs,µ1(α) ≤ 1 (A.7)

12
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Furthermore, for s > ⌈8V/δ2j ⌉ and α ≥ ⌈s(µ1 − δj/2)⌉, we have

1− F beta
α+1,s−α+1(µ1 − δj) = Fs+1,µ1−δj (α)

≥ 1− e−(s+1)kl(µ1−δj/2,µ1−δj)

≥ 1− e−sδ2j/(8V ), (A.8)

where the first inequality is due to Lemma B.1 and the fact that Fs+1,µ1−δj (α) is the probability that the sum of s + 1
Bernoulli random variables with parameter µ1 − δj is lower than α, the second inequality is due to (B.5). Therefore, for
s > ⌈8V/δ2j ⌉,

s∑
α=⌈s(µ1−δj/2)⌉

fs,µ1(α)

1− F beta
α+1,s−α+1(µ1 − δj)

− fs,µ1(α) ≤
1

1− e−sδ2j/(8V )
− 1

≤ 2e−sδ2j/(8V ). (A.9)

Putting everything together, we obtain that there exists a universal constant C1 > 0 such that

T∑
s=1

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤(1/ϵ) ·
T∑

s=1

e−sδ2j/(32V )

(
2 +

4ηs
δj

)
+

∑
s<2/δj

2

δj
+

∑
s≤8V/δ2j

1 + 2

T∑
s=⌈8V/δ2j ⌉

e−sδ2j/(8V )

≤C1

(
V

ϵδ2j
+

V

ϵδ2j
log

(
Tϵδ2j
V

))
, (A.10)

where the first inequality follows by substituting (A.5), (A.6), (A.7), and (A.9) to (A.3), the second inequality is due to
Lemma 3.5 and (3.16)

Gaussian Rewards: The posterior distribution of arm 1 after n-th pull is

p(µ) =

√
n

2σ2π
exp

(
− n(µ− µ̂1n)

2

2σ2

)
.

Also, note that the PDF of the random variable µ̂n is

fn,µ1(µ) =

√
n

2σ2π
exp

(
− n(µ− µ1)

2

2σ2

)
.

Therefore, p(µ) = fn,µ̂1n
(µ). Let Fn,µ1

(·) be the CDF of µ̂n. From (3.11), we have

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤

∫ µ1−δj/2

µ1−δj−ηs

fs,µ1
(x)

ϵ(1− Fs,x(µ1 − ϵ))
dx︸ ︷︷ ︸

J1

+

∫ ∞

µ1−δj/2

fs,µ1
(x)

1− Fs,x(µ1 − ϵ)
− fs,µ1(x)dx︸ ︷︷ ︸

J2

. (A.11)

For term J1, we have∫ µ1−δj/2

µ1−δj−ηs

fs,µ1
(x)

1− Fs,x(µ1 − ϵ)
dx ≤

∫ µ1−δj/2

µ1−δj−ηs

fs,µ1
(x)∫ µ1−δj/4

µ1−δj/2
fs,x(t)dt

dx

=

∫ µ1−δj/2

µ1−δj−ηs

fs,µ1
(x)∫ µ1−δj/4

µ1−δj/2
fs,µ1(x)e

− s(t−x)2

2σ2 +
s(x−µ1)2

2V dt
dx

13
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≤
∫ µ1−δj/2

µ1−δj−ηs

fs,µ1(x)∫ µ1−δj/4

µ1−δj/2
fs,µ1

(x)e
s(µ1−t)2

2V dt
dx

= e−sδ2j/(32V )

(
2 +

4ηs
δj

)
. (A.12)

For term J2, we have ∫ ∞

µ1−δj

fn,µ1(x)

1− Fs,x(µ1 − ϵ)
− fs,µ1

(x)dx ≤
∫ ∞

µ1−δj

fs,µ1
(x)dx

≤ 1, (A.13)

where the first inequality is due to 1−Fs,x(µ1 − δj) ≥ 1
2 for x ≥ µ1 − δj . Moreover, for s ≥ ⌈8V/ϵ2⌉ and x ≥ µ1 − δj/2,

1− Fs,x(µ1 − δj) ≥ 1− e−s(x−(µ1−δj))
2/(2V )

≥ 1− e−sδ2j/(8V ),

where the first inequality is due to Lemma B.1 and the fact that 1 − Fs,x(µ1 − δj) is the probability that the mean of s
independent random variables from N (x, σ2) is larger than µ1 − δj . Therefore, for s > ⌈8V/δ2j ⌉,∫ ∞

µ1−δj

fn,µ1(x)

1− Fs,x(µ1 − ϵ)
− fs,µ1(x)dx ≤ 1

1− e−sδ2j/(8V )
− 1

≤ 2e−sδ2j/(8V ), (A.14)

where the last inequality is from (3.16). Similar to (A.10), by substituting (A.12), (A.13), and (A.14) to (A.11), we obtain
that exists a universal constant C1 such that

T∑
s=1

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤(1/ϵ)

T∑
s=1

e−sδ2j/(32V )

(
2 +

4ηs
δj

)
+

∑
s≤8V/δ2j

1 + 2

T∑
s=⌈8V/δ2j ⌉

e−sδ2j/(8V )

≤C1

(
V

ϵδ2j
+

V

ϵδ2j
log

(
Tϵδ2j
V

))
, (A.15)

where the last inequality is due to Lemma 3.5 and (3.16).

Gamma Rewards: Let fn,α,β(·) be the PDF of the sum of n gamma distribution with parameter β, α and fG
α,β(·) (FG

α,β(·))
be the PDF (CDF) of Gamma distribution with parameter α and β respectively. Let z1 be the random variable of the sum of
the reward after s-th pull of the arm. Then, z1 ∼ Gamma(sα, β1)

fs,α,β1
(z1) =

zsα−1
1 e−β1z1βsα

1

Γ(sα)
,

where β1 = α/µ1. For s ≤ 1/α, we have

p(β) ∝ e−βz1βsα−2.

Noting that ∫ β1

0

e−βz1βsα−2dβ ≥
∫ β1

0

e−βz1β−1dβ ≥ e−β1z1 ·
∫ β1

0

β−1dβ = ∞.

and ∫ ∞

β1

e−βz1βsα−2dβ ≤
∫ ∞

β1

e−βz1β−1dβ < ∞.

14
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Therefore,
∫ β1

0
p(β)dβ = 1. From (3.11), we obtain that for s ≤ 1/α,

E
[(

1

G1s(δj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
= 1/ϵ.

(A.16)

For s > 1/α, the posterior distribution is the Gamma distribution with parameters sα− 1 and z1, i.e.,

p(β; sα− 1, z1) =
βsα−2zsα−1

1 e−βz1

Γ(sα− 1)
=

fs,α,β(z1) · Γ(sα)
β2 · Γ(sα− 1)

=
fs,α,β(z1) · (sα− 1)

β2·
.

From (3.11), we have

E
[(

1

G′
1s(δj)

− 1

)
· 1{µ̂1s ∈ Ls}

]
≤

∫ s(µ1−δj)

s(µ1−δj−ηs)

fs,α,β1(z1)

ϵ · FG
αs−1,z1

(α/(µ1 − δj))
dz1︸ ︷︷ ︸

J1

+

∫ ∞

s(µ1−δj)

fs,α,β1(z1)

FG
αs−1,z1

(α/(µ1 − δj))
dz1︸ ︷︷ ︸

J2

. (A.17)

For term J1, we have∫ s(µ1−δj/2)

s(µ1−δj−ηs)

fs,α,β1
(z1)

FG
sα−1,z1

(α/(µ1 − δj))
dz1 =

∫ s(µ1−δj/2)

s(µ1−δj−ηs)

fs,α,β1
(z1)∫ α

µ1−δj

0 fs,α,β(z1) · (sα− 1)/β2 dβ
dz1

≤
∫ s(µ1−δj/2)

s(µ1−δj−ηs)

fs,α,β1
(z1)∫ α

µ1−δj/4

α
µ1−δj/2

fs,α,β1(z1) ·
fs,α,β(z1)
fs,α,β1

(z1)
· (sα− 1)/β2 dβ

dz1.

(A.18)

Note that kl(µ, µ′) = α ln(µ′/µ) + αµ/µ′ − α, we obtain

eskl(z1/s,α/β1)−skl(z1/s,α/β) = eαs ln(β/β1)+z1(β1−β)

=

(
β

β1

)αs
e−z1β

e−z1β1

=
fs,α,β(z1)

fs,α,β1
(z1)

.

Recall that α/β1 = µ1. Besides, from (B.5), we have skl(z1/s, α/β1) − skl(z1/s, α/β) ≥ skl(α/β, α/β1) ≥ skl(µ1 −
δj/4, µ1) for α/β ∈ (µ1 − δj/2, µ1 − δj/4) and z1/s ≤ µ1 − δj/2. Based on (A.18),

r.h.s. of (A.18) ≤ α2

(sα− 1)(µ1 − δj/2)2

∫ s(µ1−δj/2)

s(µ1−δj−ηs)

fs,α,β1
(z1)∫ α

µ1−δj/2

α
µ1−δj/4

fs,α,β1
(z1) · fs,α,β(z1)

fs,α,β1
(z1)

dβ
dz1

≤ α2 · e−skl(µ1−δj/4,µ1)

(sα− 1)(µ1 − δj/2)2

∫ s(µ1−δj/2)

s(µ1−δj−ηs)

(µ1 − δj/4)(µ1 − δj/2)

αδj/4
dz1

≤ e−skl(µ1−δj/4,µ1) ·
(
4δj + 8ηs

)
≤ e−sδ2j/(32V ) ·

(
4δj + 8ηs

)
, (A.19)

where the third inequality is due to that for δj ≤ µ1, µ1 − δj/4/(µ1 − δj/2) ≤ 2 and the last inequality is due to (B.4).
For term J2, note that the median denoted as m of Gamma(αs − 1, z1) satisfies m ≤ (αs − 1)/z1. Therefore, for
z1 ≥ s(µ1 − δj/2), m ≤ (αs− 1)/z1 ≤ α

µ1−δj/2
(Chen & Rubin, 1986). Hence,∫ ∞

s(µ1−δj/2)

fs,α,β1(z1)

FG
sα−1,z1

(α/(µ1 − δj))
− fs,α,β1

(z1)dz1 ≤
∫ ∞

s(µ1−δj/2)

fs,α,β1
(z1)dz1 ≤ 1. (A.20)
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Besides, for x ≥ α/(µ1 − δj), z1 ≥ s(µ1 − δj/2), and sα ≥ α1 ≥ α2,

fG
α1,z1(x)

fG
α2,z1(x)

= zα1−α2
1 xα1−α2 · Γ(α2)

Γ(α1)
≥ (sα)α1−α2

Γ(α2)

Γ(α1)
≥ 1. (A.21)

Therefore, for z1 ≥ s(µ1 − δj/2),

FG
sα−1,z1

(
α

µ1 − δj

)
= 1−

∫ ∞

α/(µ1−δj)

fG
sα−1,z1(x)dx

≥ 1−
∫ ∞

α/(µ1−δj)

fG
αs,z1(x)dx

= FG
αs,z1

(
α

µ1 − δj

)
. (A.22)

Gamma(αs, z1) is the empirical mean of s random variables i.i.d. according to Gamma
(
α, z1/s

)
. From Lemma B.1, for

z1 ≥ s(µ1 − δj/2),

FG
αs,z1

(
α

µ1 − δj

)
≥ 1− e

−skl
(

α
µ1−δj

,αs
z1

)
≥ 1− e

−skl
(

α
µ1−δj

, α
µ1−δj/2

)
= 1− e−skl

(
µ1−δj/2,µ1−δj

)
≥ 1− e−sδ2j/(8V ), (A.23)

where the equality is due to kl(µ, µ′) = α ln(µ′/µ) + αµ/µ′ − α and the last inequality is due to (B.5). Therefore, for
s ≥ 8V/δ2j∫ ∞

s(µ1−δj/2)

fs,α,β1
(z1)

FG
sα−1,z1

(α/(µ1 − δj))
− fs,α,β1(z1)dz1 ≤ 1

1− e−sδ2j/(8V )
− 1 ≤ 2e−(s−1)δ2j/(8V ). (A.24)

Substituting (A.19),(A.20), and (A.24) into (A.17) and then combine it with (A.16), we obtain that exists a universal constant
C1 such that

T∑
s=1

E
[(

1

G′
1s(δj)

− 1

)
· 1{µ̂1s ∈ Ls}

]

≤ ϵ

T∑
s=1

e−sδ2j/(32V )

(
4 +

8ηs
δj

)
+

∑
s≤8V/δ2j+1/α

1 + 2

T∑
s=⌈8V/δ2j ⌉+⌈1/α⌉

e−(s−1)δ2j/(8V )

≤ (C1 − 1)

(
V

ϵδ2j
+

V

ϵδ2j
log

(
Tϵδ2j
V

)
+ 1/α

)
≤ C1

(
V

ϵδ2j
+

V

ϵδ2j
log

(
Tϵδ2j
V

))
, (A.25)

where the second inequality is due to Lemma 3.5 and (3.16) and the last inequality is due to the fact

V

δ2j
≥ V

µ2
1

=
α

β2
1

· β
1
1

α2
=

1

α
. (A.26)

A.3. Proof of Lemma 3.5

Proof. From the definition of ηs, we have

2 log+(Tϵ/s)

s
≥ kl(µ1 − ϵ− ηs, µ1 − δj) ≥

η2s
2V

,
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where the last inequality is due to (B.4). Therefore,

ηs ≤
√

4V log+(Tϵ/s)

s
≤ log+(Tϵ/s) ·

√
4V

s
. (A.27)

Let d = min{⌊cV/δ2j ⌋, ⌊Tϵ⌋}. We have

d∑
s=1

log+
(
Tϵ/s

)
√
s

=

d∑
s=1

log
(
Tϵ

)
√
s

−
d∑

s=1

log s√
s

≤
∫ d

1

log(Tϵ)√
x

dx+ log(Tϵ)−
∫ d

1

log x√
x

dx+
1√
e

≤
√
d log

(
Tϵ

)
−

∫ log d

0

tet/2 dt+ 1

=
√
d log

(
Tϵ

)
−

(
2tet/2 − 4et/2

)∣∣∣∣log d

0

+ 1

≤
√
d log

(
Tϵ

)
− 2 log d

√
d+ 4

√
d

≤
√
d ·

(
log+

(
Tϵδ2j
cV

)
+ 4

)
, (A.28)

where the first equality is due to the fact d ≤ Tϵ and thus log+(Tϵ/s) ≥ 0,the first inequality is because for monotone
function f ,

∑b
i=a f(i) ≤

∫ b

a
f(x)dx+maxi∈[a,b] f(x), and the second inequality follows by noting that the integrand is

unimodal and has a maximum value of 1√
e

and for such function
∑b

i=a f(i) ≤
∫ b

a
f(x)dx+maxi∈[a,b] f(x).

For s ≥ d, we have

T∑
s=d+1

e−sδ2j/(cV ) log+
(
Tϵ/s

)
√
s

≤ δj√
cV

T∑
s=d+1

e−sδ2j/(cV )

≤
√
cV

δj
, (A.29)

where the last inequality follows by the reason as shown in (3.16). Therefore,

e−sδ2j/(cV )
T∑

s=1

ηs
δj

≤
√
4V

δj

d∑
s=1

log+
(
Tϵ/s

)
√
s

+

√
4V

δj

T∑
s=d+1

e−sδ2j/(cV ) log+
(
Tϵ/s

)
√
s

≤
√
4cV

δ2j

(
log+

(
Tϵδ2j
cV

)
+ 5

)
,

where the first inequality is due to (A.27) and the last inequality is due to (A.28), (A.29), and the fact d ≤ cV/δ2j .
We also have

e−sδ2j/(cV )
∞∑
s=1

ηs
δj

≤
√
4V

δj

√
log T ·

∞∑
s=1

e−sδ2j/(cV ) ≤
√
4cV 3

δ3j
·
√

log T ,

where the first inequality is due to (A.27) and the last inequality is due to (A.29).

A.4. Proof of Lemma 3.4

Proof. Recall that θis is the sample from the posterior distribution after arm i is pulled s times and G′
is(δj) = P(µ(θis) ≥

µ1 − δj). Since µ̂is ≤ µ1 − δj , Gis(δj) = ϵG′
is(δj)

Bernoulli rewards. Since µ̂is ≤ µi + δi. α ≤ s(µi + δi).

Gis(δj) = ϵG′
is(δj)
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= ϵ(1− F beta
α+1,s−α+1(µ1 − δj))

= ϵFs+1,µ1−δj (α)

≤ ϵe−(s+1)kl(α/s,µ1−δj)

≤ V

Tδ2j
, (A.30)

where the inequality is due to Lemma B.1 and the fact that Fs+1,µ1−δj (α) is the probability that the sum of s+ 1 Bernoulli

random variables with parameter µ1 − δj is lower than α, and last inequality is due to s ≥ s0 =
log(Tϵδ2j/V )

kl(µi+δj ,µ1−δj)
.

Gaussian rewards.

Gis(δj) = ϵG′
is(δj)

= ϵ(1− Fs,µ̂is
(µ1 − δj))

≤ ϵe−skl(µ1−ϵj ,µ̂is)

= ϵe−skl(µ̂is,µ1−ϵj)

≤ V

Tδ2j
,

where the inequality is due to Lemma B.1 and the fact that 1−Fs,x(µ1−δj) is the probability that the mean of s independent
random variables from N (x, σ2) is larger than µ1 − δj .
Poisson rewards. We have k = sµ̂is.

Gis(δj) = ϵG′
is(δj)

= ϵ
(
1− FG

k+1,s

(
µ1 − δj

))
= ϵF Poi

s(µ1−δj)
(k)

≤ ϵe−skl(µ̂is,µ1−δj)

≤ V

Tδ2j
,

where the inequality is due to Lemma B.1 and the fact that F Poi
s(µ1−δj)

(k) is the probability that the sum of s independent
random variables from Poisson with parameter µ1 − δj is lower than k.
Gamma rewards.

Gis(δj) = ϵG′
is(δj) = ϵFG

αs−1,zi

(
α

µ1 − δj

)
,

where zi is the sum of rewards of arm i after its s-th pull. Let s′ = s− ⌈1/α⌉. For x ≤ α/(µ1 − δj), zi ≤ s(µi + δj), and
sα ≥ α1 ≥ α2,

fG
α1,zi(x)

fG
α2,zi(x)

= zα1−α2
i xα1−α2 · Γ(α2)

Γ(α1)
≤ (sα)α1−α2

Γ(α2)

Γ(α1)
≤ 1. (A.31)

Therefore, for zi ≤ s(µ1 + δj),

FG
sα−1,zi

(
α

µ1 − δj

)
≤ FG

αs′,zi

(
α

µ1 − δj

)
. (A.32)

Gamma(αs′, zi) is the empirical mean of s′ random variables i.i.d. according to Gamma
(
α, zi/s

′). From Lemma B.1, for
zi ≤ s(µ1 + δj),

FG
αs′,zi

(
α

µ1 − δj

)
≤ e−s′kl

(
µi+δj ,µ1−δj

)
≤ V

Tϵδ2j
, (A.33)
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where the last inequality is because that from (A.26), s ≥ log(Tϵδ2j/V )

kl(µi+δj ,µ1−δj)
+1+V/δ2j ≥ log(Tϵδ2j/V )

kl(µi+δj ,µ1−δj)
+⌈1/α⌉. Therefore,

Gis(δj) ≤ V/(Tδ2j ). Now, we prove the second statement. From Lemma 3.4,

T∑
s=1

1{Gis(ϵ) > V/(Tδ2j )} ≤
∑

s:s≥s0

1{Gis(ϵ) > V/(Tδ2j ), µ̂is ≤ µi + δj}

+
∑

s:s≥s0

{µ̂is > µi + δj}+ 2 + s0 +
V

δ2j

≤ 2 + s0 +
V

δ2j
+

∑
s:s≥1

{µ̂is > µi + δj}

≤ 2 + s0 +
V

δ2j
+

∑
s:s≥1

exp(−sδ2j /(2V ))

≤ 2 + s0 +
V

δ2j
+

1

eδ
2
j/(2V ) − 1

≤ 2 + s0 +
3V

δ2j
, (A.34)

where the second inequality is from Lemma 3.4, the third inequality is from Lemma B.1, and the last inequality is due to the
fact ex ≥ x+ 1 for any x.

B. Some Useful Inequalities
Lemma B.1 (Maximal Inequality (Ménard & Garivier, 2017)). Let N and M be two real numbers in R+ × R+, let γ > 0,
and µ̂n be the empirical mean of n random variables i.i.d. according to some distribution in exponential family with mean µ.
Let V be the maximum variance of the distribution with mean µ ∈ [x, µ]. Then, for x ≤ µ,

P(∃N ≤ n ≤ M, µ̂n ≤ x) ≤ e−N ·kl(x,µ),

P(∃N ≤ n ≤ M, µ̂n ≤ x) ≤ e−N(x−µ)2/(2V ).
(B.1)

Meanwhile, for every x ≥ µ,

P(∃N ≤ n ≤ M, µ̂n ≥ x) ≤ e−N ·kl(x,µ), (B.2)

P(∃N ≤ n ≤ M, µ̂n ≥ x) ≤ e−N(x−µ)2/(2V ). (B.3)

Lemma B.2 (Jin et al. (2021a)). For any µ1 ≤ µ2 (or µ1 ≥ µ2),

kl(µ1, µ2) ≥ (µ1 − µ2)
2/(2V ), (B.4)

where V is the maximum variance for the reward distribution with mean µ ∈ [µ1, µ2] (or µ ∈ [µ2, µ1]). In addition, for
ϵ > 0 and µ1 ≤ µ2 − ϵ, we have

kl(µ1, µ2)− kl(µ1, µ2 − ϵ) ≥ kl(µ2 − ϵ, µ2),

kl(µ1, µ2 + ϵ) ≥ kl(µ1, µ2) ≥ kl(µ1, µ2 − ϵ),

and kl(µ1 + ϵ, µ2) ≤ kl(µ1, µ2) ≤ kl(µ1 − ϵ, µ2). (B.5)

C. Additional Experimental Results
In this section, we provide more comprehensive experimental results on the proposed ϵ-TS algorithm.

C.1. Hard Bandit Instances

We conducted experiments on two challenging bandit instances: (1) Gaussian rewards with unit variance, and (2) Bernoulli
rewards. The mean rewards were set as (µ1, µ2, · · · , µK) = (0, 3, 0.2, · · · , 0.2) for K = 10 and T = 1000. In these
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instances, we have ∆i = 0.1 =
√
K/T , which is similar to the instance used in the proof of the minimax lower bound for

multi-armed bandits (Lattimore & Szepesvári, 2020). This particular instance is designed to test the worst-case performance
of bandit algorithms and represents a challenging scenario in practice. The experimental results are averaged over 1000
repetitions for all algorithms.

In Figure 2(a) and 2(b), we provide the average regret of each algorithm. In Table 3 and 4, we report the 95% confidence
intervals for these algorithms. It can be seen that, the regret of ϵ-TS with Gaussian rewards at time 200 is 16.0 with a
confidence interval (6.4, 19.0), which means that the average regret at time 200 is 16.0, with at most 5% of experiments
exhibiting a regret lower than 6.4 and at most 5% of experiments showing a regret greater than 19. These additional
experiments reveal that the confidence interval of ϵ-TS is slightly larger than that of other algorithms. The regret of ϵ-TS
consistently outperforms those of other algorithms.
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Figure 2. Comparison of different algorithms for hard bandit instances under Gaussian and Bernoulli reward distributions.

Table 3. Confidence intervals of different algorithms for hard bandit instances with Gaussian rewards.

ALGORITHMS / TIMES 200 400 600 800 1000
KL-UCB 16.7 (14.9, 18.1) 34.0 (30.5, 37.0) 51.1 (45.9, 55.8) 68.0 (61.2, 74.2) 84.7 (76.1, 92.5)

KL-UCB++ 16.7 (14.6, 18.3) 33.8 (29.6, 37.4) 49.1 (32.4, 56.7) 61.9 (32.4, 76.6) 74.5 (32.4, 96.6)
TS 16.4 (12.9, 18.7) 33.0 (25.7, 38.3) 49.2 (37.5, 57.8) 64.9 (48.9, 77.4) 80.0 (58.5, 96.9)

MOTS 16.6 (13.5, 18.7) 33.3 (26.2, 38.3) 49.6 (38.8, 57.8) 65.4 (50.1, 77.1) 80.7 (60.8, 96.3)
EXPTS 15.8 (13.5, 17.4) 32.9 (27.5, 36.7) 49.4 (41.0, 55.9) 65.7 (54.4, 74.9) 81.7 (67.4, 93.9)

EXPTS+ 15.3 (7.8, 17.8) 31.2 (15.4, 37.6) 46.3 (21.6, 57.3) 60.6 (27.6, 77.0) 74.0 (33.4, 96.7)
ϵ-TS 16.0 (6.4, 19.0) 31.5 (10.9, 38.9) 46.0 (15.6, 58.8) 59.8 (19.6, 78.8) 73.1 (22.9, 98.7)

Table 4. Confidence intervals of different algorithms for hard bandit instances with Bernoulli rewards.

ALGORITHMS / TIMES 200 400 600 800 1000
KL-UCB 16.3 (14.6, 17.8) 32.3 (28.3, 35.9) 47.4 (41.2, 53.3) 62.0 (53.0, 70.1) 75.7 (64.0, 86.5)

KL-UCB++ 16.2 (14.2, 17.8) 31.6 (26.3, 36.4) 44.0 (30.6, 53.9) 50.3 (32.2, 71.6) 53.5 (32.8, 89.6)
TS 15.6 (12.0, 18.3) 30.0 (21.0, 37.1) 42.3 (28.4, 55.8) 52.8 (33.7, 73.6) 61.7 (39.1, 90.0)

MOTS 15.7 (12.3, 18.3) 30.5 (22.9, 37.0) 43.7 (31.4, 55.2) 55.5 (38.7, 73.2) 66.0 (44.7, 90.5)
EXPTS 15.2 (12.8, 17.0) 30.5 (24.4, 35.7) 44.3 (34.4, 53.5) 56.7 (43.2, 70.8) 67.9 (50.4, 86.9)

EXPTS+ 13.9 (7.6, 17.4) 25.6 (12.2, 36.9) 34.4 (15.8, 56.4) 41.4 (18.9, 75.8) 47.1 (21.6, 95.2)
ϵ-TS 13.8 (5.3, 18.7) 24.9 (8.9, 38.4) 33.5 (11.4, 58.1) 40.3 (14.0, 77.8) 45.8 (15.8, 97.6)
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C.2. Ablation Study on the Choice of ϵ

We also conducted a series of ablation studies on the ϵ-TS algorithm, evaluating the influence of different ϵ values on its
performance. The bandit instances used in these experiments are the same as those presented in Section C.1.

Figures 3(a) and 3(b) present the regret associated with different algorithms at each time step. Tables 6 and 5 display
the corresponding confidence intervals for these algorithms. The tables specifically illustrate the average regret for each
algorithm at time steps T = 800, 1200, 1600, 2000. We also present the confidence intervals. For example, the regret for the
ϵ-TS algorithm with ϵ = 0.1 at time step 1000 is 40.3, with a lower bound of 14.0 and an upper bound of 77.8, representing
the range in which 90% of the experimental results fall.

The results reveal that as ϵ decreases from 1.0 to 0.1 (i.e., 1/K), the associated regret diminishes. However, when ϵ values
fall below 0.1, the regret might tend to increase. For instance, when the reward distribution is Bernoulli, the regret associated
with ϵ-TS for ϵ = 0.02 at T = 800 is higher than the regret of ϵ-TS for ϵ = 0.1. This could be attributed to insufficient
exploration when ϵ is too small.
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Figure 3. Ablation study of ϵ-TS under Gaussian and Bernoulli reward distributions.

Table 5. Confidence intervals of ϵ-TS with different ϵ in Bernoulli reward environments.
ϵ-TS / TIMES 200 400 800 1000

ϵ = 1.0 15.7 (12.2, 18.2) 30.1 (21.5, 37.2) 42.7 (28.9, 55.8) 53.5 (35.4, 73.1)
ϵ = 0.8 15.5 (11.5, 18.2) 29.4 (20.4, 37.2) 41.3 (27.0, 55.7) 51.3 (31.6, 73.8)
ϵ = 0.5 15.2 (10.3, 18.3) 28.5 (18.1, 37.6) 39.4 (23.9, 56.4) 48.3 (28.4, 74.4)
ϵ = 0.3 14.9 (8.5, 18.4) 27.1 (14.6, 37.9) 36.8 (19.4, 57.3) 44.7 (23.1, 76.3)
ϵ = 0.2 14.4 (7.4, 18.5) 26.0 (12.5, 38.0) 35.1 (16.7, 57.2) 42.3 (20.2, 76.5)
ϵ = 0.1 13.8 (5.3, 18.7) 24.9 (8.9, 38.4) 33.5 (11.4, 58.1) 40.3 (14.0, 77.8)
ϵ = 0.05 13.2 (3.3, 18.8) 23.6 (5.8, 38.6) 32.0 (8.1, 58.4) 39.0 (10.0, 78.2)
ϵ = 0.02 12.8 (1.7, 19.0) 23.6 (3.2, 38.9) 32.4 (4.3, 58.7) 40.2 (5.4, 78.6)
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Table 6. Confidence intervals of ϵ-TS with different ϵ in Gaussian reward environments.
ε-TS / TIMES 200 400 800 1000

ϵ = 1.0 16.5 (12.9, 18.8) 33.4 (25.3, 38.3) 49.8 (36.9, 58.1) 65.7 (47.9, 77.7)
ϵ = 0.8 16.4 (12.0, 18.8) 33.0 (23.7, 38.4) 49.1 (34.9, 58.2) 64.8 (44.2, 77.8)
ϵ = 0.5 16.4 (11.3, 18.8) 32.7 (21.9, 38.6) 48.2 (30.5, 58.3) 63.0 (38.7, 77.9)
ϵ = 0.3 16.2 (9.9, 18.9) 32.3 (18.8, 38.6) 47.6 (26.5, 58.3) 62.1 (33.4, 78.1)
ϵ = 0.2 16.2 (8.8, 18.9) 32.2 (15.7, 38.8) 47.1 (21.4, 58.7) 61.3 (27.5, 78.5)
ϵ = 0.1 16.0 (6.4, 19.0) 31.5 (10.9, 38.9) 46.0 (15.6, 58.8) 59.8 (19.6, 78.8)
ϵ = 0.05 15.9 (4.6, 19.0) 31.6 (7.6, 39.0) 46.2 (11.5, 58.9) 59.9 (14.0, 78.9)
ϵ = 0.02 16.0 (3.2, 19.0) 32.0 (4.8, 39.0) 47.5 (7.4, 59.0) 62.2 (9.1, 79.0)

C.3. Large Number of Arms

We further test a 500-armed bandit under two settings: (1) Gaussian rewards with a unit variance where the mean rewards
are (2, 0, 0, · · · , 0) , and (2) Bernoulli rewards with mean rewards (0, 75, 0.25, · · · , 0.25). We set T = 2000.
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Figure 4. Comparison of different algorithms for bandit instances with a large number of arms under Gaussian and Bernoulli reward
distributions.

We present the regret of different algorithms at each time step in Figures 4(a) and 4(b) and the confidence interval of
the different algorithms in Tables 7 and 8. In the tables, we present the average regret of each algorithm at time steps
T = 800, 1200, 1600, 2000 respectively. Additionally, we report the confidence intervals for these algorithms. For instance,
the result of ϵ-TS with Gaussian rewards at time T = 2000 in Table 7 is displayed as 364 (146, 1456), which implies
that the average regret at time T = 2000 is 364, with at most 5% of experiments exhibiting a regret lower than 146 and
at most 5% of experiments showing a regret greater than 1456. Due to the fact that ExpTS fails to produce all results for
Bernoulli/Gaussian rewards within a 72-hour timeframe, it is not included in the tables and figures.

The results indicate that for a larger number of arms, specifically K = 500, the regret of ϵ-TS is significantly smaller
compared to the baselines. In particular, for Gaussian rewards, at time T = 2000, the regret of ϵ-TS is approximately 2.5×
smaller than the regret of ExpTS+, about 5.2× smaller than the regret of TS, and roughly 2.7× smaller than the regret of
KL-UCB++. For Bernoulli rewards, at time T = 2000 , the regret of ϵ-TS is approximately 1.7× smaller than the regret of
ExpTS+ and about 2.2× smaller than the other baselines.
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Table 7. Confidence intervals for different algorithms dealing with large arm sets in Gaussian reward environments.
ALGORITHMS / TIMES 800 1200 1600 2000

KL-UCB 594 (590, 598) 1383 (1372, 1394) 2161 (2136, 2184) 2544 (2508, 2574)
KL-UCB++ 525 (254, 598) 764 (254, 1396) 919 (254, 2196) 997 (254, 2596)

TS 583 (558, 598) 1290 (1178, 1387) 1761 (1570, 2012) 1905.5 (1706, 2160)
MOTS 586 (568, 598) 1318 (1226, 1390) 1865 (1688, 2096) 2044 (1846, 2299)

EXPTS+ 337 (222, 600) 610 (458, 1359) 816 (652, 1498) 900 (734, 1558)
ϵ-TS 185 (50, 600) 275 (92, 1398) 337 (130, 1454) 364 (146, 1456)

Table 8. Confidence intervals for different algorithms dealing with large arm sets in Bernoulli reward environments.
ALGORITHMS / TIMES 800 1200 1600 2000

KL-UCB 148.3 (145.0, 149.5) 348.3 (345.0, 349.5) 548.3 (545.0, 549.5) 648.3 (645.0, 649.5)
KL-UCB++ 148.3 (145.0, 149.5) 348.3 (345.0, 349.5) 548.3 (545.0, 549.5) 648.3 (645.0, 649.5)

TS 147.7 (142.5, 150.0) 345.2 (336.5, 350.0) 541.9 (529.0, 549.5) 639.4 (623.4, 649.0)
MOTS 148.8 (147.5, 150.0) 347.7 (345.0, 350.0) 545.4 (540.5, 549.0) 643.9 (637.9, 649.0)

EXPTS+ 148.4 (145.0, 150.0) 303.2 (260.4, 350.0) 426.8 (361.5, 549.0) 484.9 (410.0, 649.0)
ϵ-TS 122.2 (83.0, 150.0) 198.4 (97.5, 350.0) 262.3 (113.0, 550.0) 291.4 (120.5, 650.0)
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