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Abstract
Deep neural networks (DNNs), despite their im-
pressive ability to generalize over-capacity net-
works, often rely heavily on malignant bias as
shortcuts instead of task-related information for
discriminative tasks. To address this problem, re-
cent studies utilize auxiliary information related
to the bias, which is rarely obtainable in practice,
or sift through a handful of bias-free samples for
debiasing. However, the success of these methods
is not always guaranteed due to the unfulfilled
presumptions. In this paper, we propose a novel
method, Contrastive Debiasing via Generative
Bias-transformation (CDvG), which works with-
out explicit bias labels or bias-free samples. Mo-
tivated by our observation that not only discrim-
inative models but also image translation mod-
els tend to focus on the malignant bias, CDvG
employs an image translation model to trans-
form one bias mode into another while preserv-
ing the task-relevant information. Additionally,
the bias-transformed views are set against each
other through contrastive learning to learn bias-
invariant representations. Our method demon-
strates superior performance compared to prior
approaches, especially when bias-free samples are
scarce or absent. Furthermore, CDvG can be in-
tegrated with the methods that focus on bias-free
samples in a plug-and-play manner for additional
enhancements, as demonstrated by diverse experi-
mental results.

1. Introduction
Recent advances in deep learning have showcased that
DNNs are capable of reaching state-of-the-art performance
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in various fields of machine learning, such as computer vi-
sion (He et al., 2016), natural language processing (Brown
et al., 2020), reinforcement learning (Mnih et al., 2016) and
more. However, it is also known that the over-parameterized
nature of DNNs not only exposes them to general overfit-
ting but also renders them susceptible to biases present in
collected datasets (Torralba & Efros, 2011), which are detri-
mental to the generalizability. In supervised learning, neural
networks tend to prefer shortcut solutions based on biases
rather than real signals (Zhu et al., 2017b; Li et al., 2018).
These spurious correlations do not provide task-related in-
formation, and DNNs that use these malignant biases, which
are easier to perceive compared to the signal, will ultimately
fail on future data. For instance, a classifier trained to iden-
tify car racing images using a dataset dominated by the
track will exploit the track road information. However, the
classifier will fail to perform well on images of off-road ral-
lies. To this end, debiasing is imperative in utilizing DNNs
for real-world applications.

A tautological solution to the bias problem is to construct a
bias-free dataset from the start. However, curating a dataset
devoid of all bias is extremely costly at best and generally
infeasible. A more practical attempt at neutralizing dataset
bias is to fortify a dataset with explicit supervision with
regard to the bias (Kim et al., 2019; Sagawa* et al., 2020).
However, additional expenditure of human labor in procur-
ing such information cannot be avoided, which renders the
option less appealing.

In most cases where such explicit supervision for bias is ab-
sent, the following two lines of work are recently proposed.
One line of work mitigates the influence of bias by leverag-
ing the bias type (e.g. texture) (Bahng et al., 2020; Geirhos
et al., 2019; Wang et al., 2019; Hong & Yang, 2021) to
design bias-oriented auxiliary models or to augment texture-
perturbed samples. However, such prior knowledge of bias
is by no means guaranteed, and even with such informa-
tion, designing bias-oriented architectures is not always
straightforward. The other line of work focuses on bias-free
samples by leveraging the knowledge that malignant biases
are learned faster than task-relevant features (Nam et al.,
2020; Lee et al., 2021; Kim et al., 2021). However, these
methods tend to break down in regimes where bias-free
samples are scarce or absent (See Section 3.1).
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(a) Colored MNIST (b) Corrupted CIFAR-10

(c) BAR (d) BFFHQ

Figure 1: Bias-transformed images on synthetic and real-world biased datasets. The leftmost column contains the original
images and each of remaining columns is the bias-transformed image of each target domain. The resulting images show the
translated bias attributes such as color (Colored MNIST), texture (Corrupted CIFAR-10), background (BAR), and gender
(BFFHQ), respectively. (For details about the datasets, we refer the reader to Appendix A.)

To tackle these shortcomings, we propose a general debi-
asing method, Contrastive Debiasing via Generative Bias-
transformation (CDvG), that can operate even in regimes
devoid of bias-free data. CDvG contrasts the bias modes
within the dataset against each other to attenuate the in-
fluence of bias while effectively learning the task-relevant
information contained in all samples.

Through preliminary experiments, we find that image-to-
image translation models based on Generative Adversarial
Networks (GANs) favor learning malignant biases over task-
relevant signals, as discriminative models are known to
do so (See Section 2.2). Motivated by the observation, we
train a biased image translation model without bias labels
that learns the bias distribution over the signal, allowing
us to transform the bias feature of a given input to another
bias. Using the trained bias-translation model, we synthesize
novel views with altered bias features.

Fighting fire with fire, we pit one bias type against another
via contrastive learning. By maximizing agreement between
the views with different biases, the model is encouraged to
learn bias-invariant representations. Unlike existing meth-
ods, CDvG does not require explicit supervision, domain
knowledge, or other meta-knowledge, such as the existence
of bias-free samples.

Our contributions are three-fold:

• We experimentally observe that image-to-image trans-

lation models that utilize a domain classifier also favor
malignant biases as discriminative models do (Sec. 2).

• We propose a novel approach for addressing the highly
biased issue without the need for bias labels, bias type
information, or even the existence of bias-free sam-
ples by employing an image translation model and
contrastive learning (Sec. 3).

• Our method can be integrated with the methods that
focus on bias-free samples in a plug-and-play man-
ner for further enhancement. Extensive experiments on
diverse datasets empirically demonstrate the effective-
ness of our method, especially when bias-free samples
are extremely scarce or absent (Sec. 4).

2. Image Translation Models for Generating
Bias-Free Samples

Previous approaches to addressing the bias problem are to
either deploy manpower or algorithms to salvage a sufficient
amount of bias-free samples from the contaminated dataset.
However, under circumstances where bias-free samples are
almost nonexistent, there are not enough bias-free samples
to begin with. Instead of salvaging, we first opt to synthesize
bias-free samples using image translation models. In other
words, we aim to translate samples aligned with the bias to
bias-free samples by changing a given bias factor to another.
In this section, we first define our setup in Section 2.1 and
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Figure 2: Unbiased accuracy during StarGAN training.
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Figure 3: CE loss during StarGAN training.

describe our observations of how translation models behave
on biased datasets, which is a key part of our algorithm, in
Section 2.2.

2.1. Setup

To formally define our target task, we introduce the fol-
lowing random variables: input image X , target label Y ,
signal S, bias B and other attributes O comprising input
X = (S,B,O). Here, B is a feature unrelated to Y , that
is, Y and B are independent given S. We further define the
random variable for bias label YB which is hidden.

Ideally, the image classification model parameterized by
θ predicts the label based on the signal as Pθ(Y |X) =
Pθ(Y |B,S) = Pθ(Y |S). However, when the training data
consists of highly but spuriously correlated bias and target,
i.e., Pθ(Y

train|Btrain) ≈ 1, predicting Y based on B is
also one of the possible solutions that can be deemed effec-
tive in the training phase. In this paper, when the sample
x = (s, b, o) consists of a correlated signal and a bias (i.e.
high Pθ(b|s)), x is called bias-aligned and the opposite case
is called bias-free. We tackle the case where B is easier to
perceive than S so that the spurious correlation between B
and Y is malignant in that the model preferentially takes
B as a clue to predict Y over S (Nam et al., 2020). This is
obviously an unintended consequence and impairs general-
izability due to the discrepancy of the bias-target correlation
Y |B between the training and test phases.

2.2. Behavior of Image Translation Models Under Bias

We first examine whether GAN-based image translation
models (Isola et al., 2017; Zhu et al., 2017a; Choi et al.,
2018; 2020), which render an image x from a source do-
main y to a target domain y′, are capable of generating
bias-free samples. Ideally, they find out the representative
characteristics of the target domain y′ and combine them
with the input image.

Given that discriminative models have been shown to be sus-
ceptible to bias, it is not far-fetched to first enquire whether
generative models also carry the same frailty. Specifically, it
is intuitive to suspect that the family of GANs may be prone
to bias due to the presence of a discriminator component,
which is known to be bias-pregnable.

In addition, Zhu et al. (2017a), a representative milestone
of image translation, presented a number of typical failure
modes that when the source domain is an apple and the target
domain is an orange, a transformed image is not the orange
counterpart of the input, but an apple with the color and
texture of an orange. This implies that the image translation
model perceives color and texture rather than shape as the
representative traits for the target domain, even without
using a highly biased dataset. With this in consideration,
it is plausible to speculate that this phenomenon would be
exacerbated when handling highly biased datasets.

To verify the impact of bias on image translation models,
we examine the behavior of StarGAN (Choi et al., 2018) on
biased datasets. We observe that the translation model inter-
acting with the biased domain discriminator is also prone to
translate biases rather than task-related domain features to
satisfy the domain classifier (See Figure 1). The selection
of StarGAN is driven by its cost-effectiveness relative to re-
cent models and its status as a well-established, extensively
studied in the field. StarGAN’s overall size is comparable
to that of auxiliary models, such as ResNet18 (He et al.,
2016), commonly used in recent debiasing approaches. This
makes it a cost-effective alternative to existing baseline
models. Furthermore, we found that recent image transla-
tion models, which use a multi-task discriminator, are also
inherently prone to malignant bias when using a domain
classifier. In Appendix E, we empirically show that replac-
ing the multi-task discriminator with a domain classifier in
StarGANv2 (Choi et al., 2020) leads to a pronounced focus
on malignant bias, suggesting that this finding may extend
to other recent models.

Discriminators of translation models are also prone to
be biased. StarGAN introduces an auxiliary domain clas-
sifier Dcls on top of discriminator D to enable transla-
tion between multiple domains. The domain classifier Dcls,
trained on the real image with domain labels, learns to clas-
sify images with representative traits of the domains by
optimizing the domain classification loss of real images
Lr
cls = E(x,y)∼D[− logDcls(y|x)].

However, on the biased dataset, we observed that Dcls had
absorbed bias attributes as representative traits of the do-
mains during a training phase. To quantitatively evaluate
whether Dcls is biased, we measure the classification loss

3



Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation

Figure 4: Illustration of our Contrastive Debiasing via Generative Bias-transformation (CDvG).

on the unbiased dataset with Dcls while training StarGAN
on the biased dataset Colored MNIST, Corrupted CIFAR10,
and BFFHQ which have color bias, texture bias, and gender
bias, respectively (See Figure 1). Figure 2 shows the clas-
sification losses of bias-aligned and bias-free samples. We
observed that the accuracy of bias-aligned samples increases
to nearly 100%, however, the accuracy of bias-free samples
is low depending on how malignant the bias of each data set
is. Therefore, we conclude that Dcls utilizes the bias rather
than the task-related features, as discriminative models are
known to do so. Please notice that, given the similar archi-
tecture, identical biased trainset, and shared classification
objective of the translation model’s discriminator and the
main task’s discriminative model, it is natural to expect that
both models would learn the same bias.

A biased domain classifier induces a biased translation
generator. By optimizing the domain classification loss
Lf
cls = E(x,y)∼D,y′∼Y [− logDcls(y

′|G(x, y′))] of trans-
lated fake images G(x, y′), biased Dcls induces the genera-
tor G to translate the bias attribute of image x into the other
bias correlated to the randomly sampled target domain y′

rather than the task-relevant signal. As a result, G becomes
a bias-translator. This phenomenon becomes more notice-
able as the bias is malignant for Dcls - that is, the more
scarce the bias-free samples are or the easier the bias is to

perceive. To quantitatively evaluate whether the translation
model truly favors learning biases over task-relevant sig-
nals, we measure the classification loss of translated images
x′ = G(x, y′) with the bias classifier CB and the signal
classifier CS while training StarGAN on the biased dataset
Colored MNIST and BFFHQ. As alternatives of oracles,
the classifiers CB and CS are trained with the bias label
yB and the true class label y, respectively, on the unbi-
ased Colored MNIST and FFHQ. The bias and signal loss
are defined as E(x,y)∼D,y′∼Cat(|Y|)[LCE(CB(x

′), y′)] and
E(x,y)∼D,y′∼Cat(|Y|)[LCE(CS(x

′), y′)], respectively.

As expected, the results depicted in Figure 3 demonstrate
that the bias is more favorable to the translation model. For
Colored MNIST, the bias loss quickly declines to zero, but
the signal loss increases rapidly since G concentrates on
the color biases rather than digits. In the case of BFFHQ,
the bias is less malignant, resulting in a relatively small
gap between signal and bias loss, but still places significant
emphasis on the bias.

We also present the qualitative results in Figure 1. Inter-
estingly, we found that the translated results retain their
contents to some extent and color, texture, background (e.g.
rock wall for climbing, water for fishing), and gender char-
acteristics (e.g. makeup for female, beard for male), which
are the respective bias features of the datasets, are altered.
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Although the generated images of BFFHQ in Figure 1d ap-
pear dissimilar to real images when viewed by humans, the
core contents remain discernible while the gender-specific
features emerge as pink lips and eye makeup in the second
column and thick eyebrows and beard in the third column.
Furthermore, it is notable that the biased classifier judges
that the bias-transformed images are well transformed into
the target label with a high degree of confidence. These
observations verify that there is a chance that image transla-
tion models trained on biased datasets can be employed to
synthesize bias-free samples for debiasing.

3. Method
In this section, we empirically show that the recent debiasing
methods break down when the assumption of the availability
of bias-free samples is not met in Section 3.1. Acknowledg-
ing this limitation, we propose a novel debiasing method,
referred to as CDvG, in Section 3.2 leveraging our empiri-
cal findings (Section 2.2) that image translation models are
prone to be biased.

3.1. Learning without Bias-free Samples

Although recent debiasing methods (Bahng et al., 2020;
Hong & Yang, 2021; Nam et al., 2020; Lee et al., 2021;
Kim et al., 2021) work as intended when they can exploit
the bias-free samples, they neglect the case where such
bias-free samples are extremely scarce or absent. Thus, in
regimes where a presumption that enough bias-free samples
exist does not hold, their behaviors are practically unknown
and are likely to break down. More specifically, in Table 1,
we empirically demonstrate that previous methods fail to
effectively debias the model (showing low performance,
almost comparable to Vanilla) when the proportion of bias-
free samples is 0%.

Furthermore, we investigate the sample reweighting
scheme (Nam et al., 2020; Lee et al., 2021) that aims to
balance bias-free and bias-aligned samples. We observed
that as the proportion of bias-free samples decreases, the
debiasing effect also decreases, due to the inadequate em-
phasis placed on bias-free samples. The detailed descrip-
tions and results are deferred to Section C. Based on these
observations, we consider a more general task of learning-
under-bias that handles the situations where there are no to
only a few bias-free samples as well as the cases where such
samples are sufficiently provided.

3.2. Contrastive Debiasing without Bias-free Data via
Bias-transformed Views

Motivated by the findings of Section 2, we propose a novel
debiasing method referred to as Contrastive Debiasing via
Generative Bias-transformation (CDvG). The method em-

Algorithm 1 Contrastive Debiasing via Generative Bias-
transformation (CDvG)

1: Input: Encoder E, Projection head H , Classifier C,
Biased generator G, Augmentation family T

2: Data: Training set D = {(x, y)} ⊂ X × Y
3: for minibatch {(xk, yk)}Nk=1 do
4: y′k ∼ Categorical(|Y|)
5: x′

k = G(xk, y
′
k)

6:
7: t1 ∼ T , t2 ∼ T
8: x̃k, x̃

′
k = t1(xk), t2(x

′
k)

9:
10: Update E,C,H to minimize
11:

∑
k(LCE(C(E(x̃k)), yk)+LCE(C(E(x̃′

k)), yk))+
LCL(E,H)

12: end for

ploys the biased translation model to transform an image
to have different biases corresponding to other classes and
integrates it with the contrastive learning framework. The
contrastive loss is employed to encourage the learning of
bias-invariant representations without the need for explicitly
identifying bias-free data. The bias-transformed views are
contrasted against each other to attenuate the bias while
effectively learning the features that are relevant to the task.
The whole process is outlined in the following paragraphs
and summarized in Algorithm 1.

First, we train StarGAN on a given biased training dataset
to obtain the bias-transformation generator G. The bias-
transformation generator G is then utilized to generate di-
verse bias-transformed views x′ = G(x, y′) of an input
image x with a target label y′, where y′ is uniformly sam-
pled for every iteration (Step 1 of the whole framework in
Figure 4, Line 4 and 5 in Alg. 1). Bias-translation with G is
only applied during training, not in the testing phase, due to
the distribution shifts.

After the bias-transformation step, we additionally apply
the random augmentation operators t1 and t2 to the original
and the bias-transformed images respectively as x̃ = t1(x),
x̃′ = t2(x

′), where t1 and t2 are sampled from the same
augmentation family T (Step 2 of the whole framework in
Figure 4, Line 7 and 8 in Alg. 1). According to Chen et al.
(2020a), strong augmentations are essential to the perfor-
mance of the contrastive learning framework as they prevent
the encoder from easily finding a clue about the fact that
two views come from the same image. By following Chen
et al. (2020a), T is composed of the following sequential
augmentations: random resized cropping and random hor-
izontal flipping. Please note that we did not adopt color
distortion methods because most biases are related to color.

Finally, the resulting learning objective is given by the com-
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Table 1: The average and the standard deviation of accuracy over 3 runs. Ratio(%) represents that the proportion of bias-free
samples. ✓ indicates that the model exploits auxiliary information of the bias and ✗ does not.

Dataset Ratio(%)
Vanilla ReBias LfF DisEnt BiaSwap BPA CDvG CDvG+LfF

✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Colored
MNIST

0.0 12.53±0.92 14.64±0.50 13.16±1.87 11.65±0.61 - 10.08±0.04 96.16±0.48 96.48±0.19

0.5 39.12±0.91 70.47±1.84 66.54±3.80 62.13±3.96 85.76 54.52±3.39 95.73±0.14 96.20±0.12

1.0 56.02±1.81 87.40±0.78 79.83±2.23 75.49±0.21 83.74 72.63±0.27 96.13±0.48 96.45±0.19

2.0 69.32±0.22 92.91±0.15 82.66±0.39 80.08±0.45 85.29 78.52±0.59 96.90±0.22 96.97±0.17

5.0 83.93±0.89 96.96±0.04 83.30±1.23 85.00±1.17 90.85 85.30±0.93 96.73±0.05 96.98±0.05

Corrupted
CIFAR-10

0.0 16.05±0.13 21.93±0.37 15.88±0.45 18.76±0.88 - 17.14±1.54 28.44±0.21 29.24±0.47

0.5 20.87±0.34 22.27±0.41 25.58±0.23 28.62±1.74 29.11 25.50±1.03 31.50±0.33 39.07±0.27

1.0 24.05±0.61 25.72±0.20 30.68±0.50 32.31±0.03 32.54 26.86±0.69 33.25±0.20 43.81±0.35

2.0 29.47±0.20 31.66±0.43 37.96±1.09 36.51±2.34 35.25 27.47±1.46 35.16±0.23 47.45±0.07

5.0 41.12±0.16 43.43±0.41 48.49±0.16 46.41±0.62 41.62 34.29±2.20 42.75±0.19 52.31±0.13

BFFHQ
0.0 37.93±0.96 43.47±0.74 39.67±1.00 38.13±2.13 - 48.20±1.40 48.80±1.18 49.60±1.18

0.5 52.40±1.88 56.80±1.56 58.07±0.82 54.33±0.92 - 51.40±2.98 56.80±0.33 62.20±0.45

bination of the cross entropy loss and the contrastive loss
(Step 3 of the whole framework in Figure 4, Line 11 in Alg.
1). First, the encoder E and the following classifier C are
optimized to minimize the cross entropy loss LCE which is
applied to both x̃ and x̃′:

min
E,C

LCE(C(E(x̃)), y) + LCE(C(E(x̃′)), y).

Also, we train the encoder E and the projection head H
to minimize the contrastive loss LCL to tie the original
view x̃ and the bias-transformed view x̃′ as LCL(E,H) =∑N

k=1 ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1). The loss ℓ(i, j) for a
positive pair (i, j) is defined as

ℓ(i, j) = − log
exp(simi,j/τ)∑2N

k=1 1k ̸=i exp(simi,k/τ)
,

Where simi,j = z⊤i zj/(||zi||||zj ||) is the cosine similarity,
and zi = H(E(x̃i)) is a projected representation of x̃i with
the base encoder E followed by the projection head H . By
tying the original view x̃ and the bias-transformed view x̃′

as a positive pair, the encoder attempts to attenuate biases
while emphasizing the true signals shared by the views via
maximizing the mutual information between their latent
representations.

4. Experiments
To validate the effectiveness of CDvG compared to recent
debiasing methods, we conduct image classification exper-
iments on standard benchmark datasets for debiasing. We
first outline the experimental setup, including the datasets
and baselines in Section 4.1. Then, we present the main re-
sults, which consist of comprehensive comparisons between

our method and the baselines across various datasets in Sec-
tion 4.2, and provide detailed analysis of the learned bias-
invariant representations by visualizations in Section 4.3.
Additionally, we conducted ablation studies to demonstrate
the contributions of each component of CDvG toward the
performance improvements in Section 4.4. Also, detailed in-
formation regarding the datasets is provided in Appendix A,
while implementation specifics are covered in Appendix B.”

4.1. Experimental settings

Dataset We experiment on {Colored MNIST, Biased
MNIST, Corrupted CIFAR-10} and {BFFHQ, ImageNet-9
(IN-9), Waterbirds} which are synthetic datasets injected
with synthetic biases and real-world datasets with natural
biases, respectively. By setting the proportion of bias-free
samples to a range of 0-5%, we evaluate the performance
considering the highly biased setting (0.5-5%) as following
the convention and, moreover, the most challenging scenario
(0%) where bias-free samples are absent. The datasets with
0% bias-free samples are constructed by excluding bias-free
samples from the datasets with a ratio of 0.5%.

Baselines To evaluate the performance of CDvG, we con-
ducted comprehensive comparisons with various categories
of debiasing methods. Specifically, we compared CDvG
against HEX (Wang et al., 2019) and Rebias (Bahng et al.,
2020), which leverage domain knowledge to address bias,
as well as LfF (Nam et al., 2020), which intentionally trains
an auxiliary biased classifier to identify and utilize bias-free
samples. Moreover, we assessed DisEnt (Lee et al., 2021)
and BiaSwap (Kim et al., 2021), which build upon the bias-
free sample selection scheme employed by LfF, aiming to
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Table 2: ImageNet-9 dataset.

Dataset Test type Vanilla RUBi LfF Rebias CDvG+LfF

IN-9
Biased 94.0±0.1 93.9±0.2 91.2±0.1 94.0±0.2 95.2±0.1

Unbiased 92.7±0.2 92.5±0.2 89.6±0.3 92.7±0.2 94.5±0.1

IN-a 30.5±0.5 31.0±0.2 29.4±0.8 30.5±0.2 34.6±0.4

Table 3: Waterbirds dataset.

Dataset Test type
ResNet-18 ResNet-50

Vanilla LfF BPA CDvG+LfF ERM EIIL CDvG+LfF

Waterbirds
Unbiased 84.63 85.48 87.05 86.25 97.30 96.90 91.30

Worst-group 62.39 68.02 71.39 74.92 60.30 78.70 84.80

incorporate other biases into the instances. Regarding Bi-
aSwap, we relied on available performance directly from
the corresponding paper while leaving blank spaces for the
others due to the unavailability of the official code. Addition-
ally, we examined BPA (Seo et al., 2022) and EIIL (Creager
et al., 2021) for further comparison.

4.2. Main Results

We report the results on the standard benchmark datasets to
validate the effectiveness of CDvG for debiasing when bias
labels are not available. We observed that the CDvG demon-
strated superior performance when bias is more malignant,
specifically when bias-free samples are scarce(0.5%) or ab-
sent(0%). Furthermore, to leverage bias-free samples, we
propose to combine CDvG and reweighting-based meth-
ods such as LfF (Nam et al., 2020) (‘CDvG+LfF’ in Table
1). The combined version is consistently superior to the
baselines with a low standard deviation in Table 1. In more
detail, in the training process, we trained CDvG by con-
currently applying LfF’s sample-wise weighting to CE loss
for both original images and bias-translated images. There-
fore, ‘CDvG+LfF’ allows us to utilize both bias-aligned
and bias-free samples to debias by translating bias-aligned
samples into bias-free samples (CDvG) and giving more
weights to bias-free samples (LfF). Please note that CDvG
can be easily integrated with other debiasing methods in a
plug-and-play manner.

Synthetic datasets In Table 1, we observe that the CDvG
performs well on Colored MNIST and Corrupted CIFAR-10
when the bias-free samples are scarce or absent, i.e., when
the biases are more malignant. CDvG+LfF, which is our

Table 4: Biased MNIST dataset.

Dataset ERM SD UpWt GroupDPO PGI CDvG

BiasedMNIST 36.8 37.1 37.7 19.2 48.6 49.48

integrated method, outperforms the baselines on the overall
ratio by a large margin.

Real-world datasets We conducted experiments on
BFFHQ, IN-9, and Waterbirds to evaluate the performance
in a real-world setting. CDvG+LfF shows improved perfor-
mance with small standard deviations on BFFHQ compared
to state-of-the-art and also shows improved or comparable
performance on IN-9 and Waterbirds in Table 2 and Table 3,
respectively. For Waterbirds, we borrow the performance
on ResNet-18 and ResNet-50 directly from BPA and EIIL,
respectively.

Multiple biases datasets To verify our method can han-
dle multiple types of biases, we conducted experiments
on Biased MNIST which has ‘digit color’, ‘type of back-
ground texture’, ‘background color’, ‘co-occurring letters’,
and ‘colors of the co-occurring letters’ as biases. We con-
firmed that CDvG shows better performance than baselines
when multiple biases exist in Table 4. Also, we confirm
that the translation model uncovers all sources of biases
according to their intensity. We borrow the performance
of SD (Pezeshki et al., 2021), GroupDPO (Sagawa* et al.,
2020), and PGI (Ahmed et al., 2021) on ResNet-18 from
Shrestha et al. (2022).

In summary, our method can handle various types of syn-
thetic and real-world biases and works well on a wide range
of bias ratios, especially when bias-free samples are scarce
and even absent compared with state-of-the-art methods.
Overall consistent results empirically demonstrate that our
method debias better than previous approaches focusing
only on bias-free samples.

4.3. Visualizations

We explore the interpretability of the learned bias-invariant
representations using t-SNE (Van der Maaten & Hinton,
2008) and GradCAM (Selvaraju et al., 2017) on Colored
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Figure 5: Visualization of learned representations of the
vanilla model and CDvG using t-SNE in Colored MNIST.

MNIST and BFFHQ datasets, respectively. Our results on
t-SNE show that the vanilla model heavily relies on the
biased attribute ’color’ for classification, as shown in the
first column in Figure 5. In contrast, CDvG focuses more on
the true label ’digits’, as shown in the second column. This
indicates that CDvG is better able to learn bias-invariant
representations and is less dependent on biased attributes.

Similarly, in the case of GradCAM, we found that the vanilla
model heavily relies on biased attributes ’gender’ such as
the beard of a male and the hair of a female, while CDvG is
less dependent on these attributes and instead focuses more
on facial features in Figure 6. These findings demonstrate
that CDvG can learn more bias-invariant representations
than the vanilla model.

4.4. Ablation study

We study the effectiveness of each component of CDvG
framework. As shown in Table 5, CDvG without bias-
transformation generator (CDvG w/o G), which is adding
augmentation operator T and contrastive loss to vanilla,
shows degradation in performance. This is due to the fact
that the use of an T alone, without the bias-transformation
generator, results in augmented samples that are still biased
and ultimately contribute to the model becoming biased.
However, when only the bias-transform generator G is used
for augmentation (CDvG w/o CL), there are 8.21%, 5.37%,
4.07%, 2.22%, and 1.43% improvements for each ratio, re-
spectively. This demonstrates that the bias-transformation
generator effectively augments bias-transformed images to
some extent.

Despite this, it is important to note that the bias-
transformation generator G is not always a perfect model,
as it may not fully translate biases due to the intensity of

Figure 6: Visualization of Grad-CAM heatmaps for the la-
bels ’Young’ and ’Old’ of BFFHQ using the vanilla model
and the proposed CDvG.

the bias. Therefore, it is essential to induce bias-invariance
and capture the true signal shared by the bias-transformed
view and the original view by contrastive loss. The results
of the ablation study show that the use of both the bias-
transformation generator and contrastive loss (CDvG) re-
sults in the most significant improvement in performance,
demonstrating that our whole framework effectively ad-
dresses the bias problem rather than a single component.

Table 5: Ablation study for bias-transformed view genera-
tion (w/o G) and for contrastive loss (w/o CL).

Dataset Ratio(%) Vanilla CDvG w/o G CDvG w/o CL CDvG

Corrupted
CIFAR-10

0.0 16.04±0.13 18.29±0.90 24.25±0.15 28.44±0.21

0.5 20.87±0.34 20.75±0.21 26.24±0.12 31.50±0.33

1.0 24.05±0.61 21.37±0.29 28.12±0.21 33.25±0.20

2.0 29.47±0.20 24.50±0.34 31.69±0.41 35.16±0.23

5.0 41.12±0.16 31.13±0.56 42.55±0.50 42.75±0.19

5. Related Work
In real-world datasets across diverse domains, various kinds
of incidental biases are strongly but spuriously correlated
with task-related information. However, when the bias fac-
tors are more noticeable and easier to learn than the task-
related signals, DNNs tend to lean on such biases (Nam
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et al., 2020), causing failures in generalization. To counter
this effect, several lines of work were developed.

Explicit bias supervision can be used to screen or miti-
gate the influence of bias. Kim et al. (2019) uses bias super-
vision to train an auxiliary network that helps in reducing
the influence of bias. Sagawa* et al. (2020) uses bias super-
vision to group data samples for grouped distributionally
robust optimization. Hong & Yang (2021) propose bias-
contrastive loss and bias-balanced regression that encour-
ages the model to pull together the samples in the same class
with different bias features with balancing the target-bias
distribution.

Domain knowledge of biases. When acquiring bias su-
pervision is impractical, we can leverage domain-specific
knowledge about bias type. For example, it was shown that
ImageNet-trained classifiers exploit texture information in
the image rather than information contained in the object of
interest (.Gatys et al., 2017; Brendel & Bethge, 2019). Uti-
lizing this fact, Geirhos et al. (2019) construct an augmented
dataset by applying various textures to the images for texture
debiasing. Also, Wang et al. (2019) and Bahng et al. (2020)
exploit an auxiliary model which is carefully designed to
capture biases over signals. However, these methods are
grounded on obtaining such knowledge - which is often
costly, or even impossible. In addition, designing a bias-
oriented auxiliary model may not be so intuitive, depending
on the type of bias.

Without domain knowledge. Using the fact that malig-
nant biases are learned faster than salient task-relevant fea-
tures, Nam et al. (2020) train an auxiliary model using gener-
alized cross entropy (Zhang & Sabuncu, 2018) to emphasize
malignant bias and assign more weight to the bias-free sam-
ples for the debiased follower. Seo et al. (2022) cluster the
training samples and reweight the loss of each sample in a
batch according to the assigned clusters. Lee et al. (2021)
proposed feature-level data augmentation that disentangles
bias features by using a biased auxiliary model obtained by
following Nam et al. (2020) and swaps latent bias features.
Kim et al. (2021) employs task-related features in abundant
bias-aligned samples by synthesizing a new image that takes
the bias-irrelevant core features from the biased sample and
the bias attribute from the bias-free sample. However, all
these methods presume that bias-free samples do exist in
sufficient quantities and can be distinguished, which cannot
always be guaranteed.

Contrastive learning is a self-supervised learning method
proven to learn representations substantially beneficial to
numerous downstream tasks, achieving state-of-the-art per-
formance (Chen et al., 2020a;b; Grill et al., 2020; Chen &
He, 2021; Khosla et al., 2020). Chen et al. (2020a) defines

the contrastive prediction task in two steps: a) augmenting
two views from the same image by strong data augmen-
tations (Bachman et al., 2019; Henaff, 2020; Krizhevsky
et al., 2017) and b) maximizing agreement between the
augmented views on the latent space by employing the con-
trastive loss (van den Oord et al., 2018) to capture core
features of the image. In the process of maximizing the
agreement between the augmented views, the encoder dis-
cards the deviating features between the views and learns
transformation-invariant representations. For example, us-
ing color distortion methods such as color jitter and gray
scale in the augmentation step encourages the encoder to
learn color-invariant representations.

6. Conclusion
In this paper, we propose a novel debiasing method called
Contrastive Debiasing via Generative bias-transformation
(CDvG). This method is a general debiasing approach that
does not require bias labels, bias type information, or even
the existence of bias-free samples. Motivated by the ob-
servation that not only discriminative models but also im-
age translation models tend to focus on bias, we utilize a
translation model as a bias-translator to synthesize novel
views with altered bias features. We then employ contrastive
learning to pit one bias type against another and obtain bias-
invariant representations. CDvG can be integrated with other
debiasing techniques in a plug-and-play manner and espe-
cially shows good synergy when integrated with models
that focus on bias-free samples, such as Nam et al. (2020).
Our extensive experiment on various datasets shows that
our method outperforms state-of-the-art, especially when
bias-free samples are scarce or even absent.

As a future direction, and a current limitation, we aim to ex-
tend our method to datasets where bias-free data are the ma-
jority. Recent debiasing approaches, including our method,
focus on the highly biased setting, which has yet to be con-
quered. While these situations may not require debiasing
techniques from the start, suggesting a robust method that
works in general is an important area of ongoing research.
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A. Datasets
Colored MNIST is a biased version of MNIST with colors as biases.

Biased MNIST is a biased version of MNIST with multiple biases such as digit color, type of background texture,
background color, co-occurring letters, and colors of the co-occurring letters.

Corrupted CIFAR-10 is an artificially corrupted version of CIFAR-10 (Krizhevsky et al., 2009) to carry biases as proposed
in Hendrycks & Dietterich (2019). Specifically, the dataset has been corrupted by the following types of method: {Snow,
Frost, Fog, Brightness, Contrast, Spatter, Elastic transform, JPEG, Pixelate, and Saturate}.

Biased Action Recognition (BAR) is a real-world action dataset proposed by Nam et al. (2020). There are six action labels
that are biased toward background places.

BFFHQ is proposed by Kim et al. (2021) which is curated from Flickr-Faces-HQ (Karras et al., 2019). It consists of face
images where age (young/old) is a task label and gender (male/female) is a bias attribute.

ImageNet-9 (IN-9) is proposed by Bahng et al. (2020) which is a subset of ImageNet (Russakovsky et al., 2015) containing
9 super-classes with texture as biases (Ilyas et al., 2019).

Waterbirds is proposed by Sagawa* et al. (2020), which combines bird photographs from the Caltech-UCSD Birds-200-
2011 (CUB) dataset with image backgrounds from the Places dataset. It consists of bird images where a type of bird is a task
label and a background (water/land) is a bias attribute.

Colored MNIST, Corrupted CIFAR-10, and BFFHQ can be obtained from the official Github repository of DisEnt (Lee
et al., 2021) (https://github.com/kakaoenterprise/Learning-Debiased-Disentangled).

Biased MNIST is available in the official Github repository of OccamNets (Shrestha et al., 2022)
(https://github.com/erobic/occam-nets-v1).

BAR is available in the BAR Github repository (https://github.com/alinlab/BAR) provided by Nam et al. (2020).

ImageNet-9 is available in the official Github repository of ReBias (Bahng et al., 2020) (https://github.com/clovaai/rebias).

Waterbirds is available in the official Github respository of GroupDRO (Sagawa* et al., 2020)
(https://github.com/kohpangwei/group DRO).

B. Implementation details
Basically, we follow the same experimental settings in baselines (Nam et al., 2020; Lee et al., 2021). All models are trained
on 4 RTX-3090ti GPUs.

Training StarGAN. First, we specify the details of training biased StarGAN. We basically follow the default settings for
architectures, optimizers weights for loss terms, and other training configurations in the Github repository of StarGAN
(https://github.com/yunjey/stargan) across all datasets. For the generator, we use the basic architecture which is composed of
total of 3 and 6 blocks for Colored MNIST and the others, respectively. Each block consists of 2 convolutional layers and
a skip connection. For the discriminator, we use the architecture which is composed of total 4 and 5 blocks for {Colored
MNIST, BFFHQ and IN-9} and {Corrupted CIFAR10 and waterbirds}, respectively. For Colored MNIST, we set the
reconstruction weight to 500 and trained for 5000 iterations without random horizontal flipping. For IN-9 and Waterbirds,
we resize them to 224 and use the original image size for others.

Training Configuration. For the encoder, we use MLP with three hidden layers for Colored MNIST, randomly initialized
ResNet-18 (He et al., 2016) for Corrupted CIFAR-10 and BFFHQ We use batch sizes of 256, 128, and 64 for {Colored
MNIST, and Corrupted CIFAR-10}, IN-9, and {BFFHQ and waterbirds}, respectively. We use learning rates of 0.001
for {Colored MNIST, Corrupted CIFAR-10, BFFHQ, IN-9 and waterbirds}.Also, We use the Adam optimizer with
default parameters. We train the model for 120, 200, and 500 epochs for IN-9,{Colored MNIST, BFFHQ and waterbirds}
and Corrupted CIFAR-10, respectively. We use cosine annealing from initial learning rates lr to lr ∗ 0.13 for learning
rate scheduling (Loshchilov & Hutter, 2017) for all datasets. Note that we do not use random horizontal flipping for
ColoredMNIST. Additionally, the original image size of BFFHQ is 128, but we resize them to 224 by following the previous
work (Lee et al., 2021).
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Contrastive learning. we use Normalized Temperature-scaled Cross Entropy NT-Xent (Chen et al., 2020a) with a temperature
parameter 0.01. For projection head H , 2-layer MLP and a linear layer with the dimensions from the input to the output as
[512, 512, 128] and [100, 100] for {Corrupted CIFAR-10, BFFHQ, IN-9 and waterbirds} and Colored MNIST respectively,
following Chen et al. (2020a) for the most of the settings.

Evaluation. Note here that, by following Lee et al. (2021), the performances on BFFHQ whose task is a binary classification,
are evaluated only on bias-free test samples that consist of young male and old female samples.

C. Learning without Bias-free Samples
In Table 6, we empirically demonstrate that previous methods fail to effectively debias the model (showing low classification
scores, almost comparable to Vanilla) when the bias-free samples are absent, i.e., when the biases are more malignant. Nam
et al. (2020) and Lee et al. (2021) show surprisingly degraded performances due to the failure of reweighting scheme. Also,
Kim et al. (2021) and Hong & Yang (2021) break down because they require bias-free samples necessarily to construct pairs
of the bias-aligned and bias-free samples in the same class.

Table 6: Comparison of debiasing methods on three biased datasets devoid of bias-free samples (ratio 0%). We report averaged accuracy
on the last epoch and the standard deviation over 3 runs.

Method ColoredMNIST CorruptedCIFAR10 BFFHQ
(ratio (%)) 0 0 0
Vanilla 12.53±0.92 16.05±0.13 37.93±0.96

LfF (Nam et al., 2020) 13.16±1.87 15.88±0.45 39.67±1.00

DisEnt (Lee et al., 2021) 11.65±0.61 18.76±0.88 38.13±2.13

ReBias (Bahng et al., 2020) 12.72±0.07 14.40±0.49 38.73±0.38

SoftCon (Hong & Yang, 2021) 34.06±0.41 25.90±0.22 38.65±0.38

CDvG 95.97±0.18 31.24±0.31 42.80±0.33

Furthermore, to evaluate whether the reweighting scheme assigns sufficiently high weights to bias-free samples when
bias-free samples are scarce, we further analyze DisEnt (Lee et al., 2021), which is the state-of-the-art, on Corrupted
CIFAR10. In Figure 7, we measure the ratio of bias-free weight (blue bar), which implies how much the bias-free samples
are focused, as the ratio of the sum of weights for bias-free samples to the total sum of weights for all samples

∑
i∈F wi∑N
i=1 wi

where wi is the assigned weight of i-th sample, F is the set of indices of bias-free samples and N is the total number of
training samples. As the bias-free samples become scarce, the ratio of bias-free weight calculated by DisEnt decreases,
which fails to debias the model, resulting in decreased accuracy (red line).

On the other hand, CDvG shows better performance even with 0% bias-free samples compared to the DisEnt with 0.5% bias-
free samples. This is because CDvG does not necessarily require bias-free samples for debiasing, unlike the baselines (Bahng
et al., 2020; Hong & Yang, 2021; Nam et al., 2020; Lee et al., 2021; Kim et al., 2021).

Figure 7: Changes in the ratio of bias-free weight (blue bar) and accuracy (red line) of DisEnt (Lee et al., 2021) as the ratio of bias-free
samples (x-axis) decreases. The green and black horizontal lines are the accuracy of ours (GDvG) and Vanilla, respectively, when the
bias-free samples are absent.
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D. Bias-transformed images by CycleGAN
As an example that other translation models also can be used in our framework, we show bias-transformed images generated
by CycleGAN (Zhu et al., 2017a), which translates between two domains trained on BAR dataset.

The leftmost column of the figure contains the original images and each column is the transformed images of each target
domain. The resulting images show the translated background bias attributes.

Figure 8: Bias-transformed images by CycleGAN on BAR dataset.
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E. StarGAN V2
We conducted an experiment in which the multi-task discriminator of Choi et al. (2020) was replaced with a domain
discriminator. In Table 7, we empirically demonstrate that recent translation models are also inherently bias-susceptible
to bias when using a domain classifier. In conclusion, the use of recent translation models can improve the debiasing
performance by improving the quality of translated images, but there is a trade-off between cost and performance due to the
large size of the network (6 times larger than StarGAN).

Table 7: Corrupted CIFAR-10 with Choi et al. (2020)

Dataset Ratio
(%) Vanilla CDvG

w/ StarGAN
CDvG

w/ StarGANv2

Corrupted
CIFAR-10

0.0 20.87 31.50 32.30
5.0 41.12 42.75 47.80
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