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Abstract

We are interested in an evaluation methodology
for molecular optimization. Given a sample of
molecules and their properties of our interest, we
wish not only to train a generator of molecules op-
timized with respect to a target property but also
to evaluate its performance accurately. A common
practice is to train a predictor of the target prop-
erty using the sample and apply it to both training
and evaluating the generator. However, little is
known about its statistical properties, and thus,
we are not certain about whether this performance
estimate is reliable or not. We theoretically inves-
tigate this evaluation methodology and show that
it potentially suffers from two biases; one is due
to misspecification of the predictor and the other
to reusing the same finite sample for training and
evaluation. We discuss bias reduction methods
for each of the biases, and empirically investigate
their effectiveness.

1. Introduction
Molecular optimization aims to generate novel molecules
with improved properties. This problem has been ap-
proached by a combination of a variational autoencoder
and Bayesian optimization (Gómez-Bombarelli et al., 2018)
or reinforcement learning (Olivecrona et al., 2017). Such an
algorithm outputs a generator, which can generate desired
molecules. The performance of each algorithm can be mea-
sured by the quality of molecules generated by the generator;
some define the performance metric by top-k properties of
the generated molecules, and others may define it by the
average property of the generated molecules.

LetM denote the set of molecules. If we have access to the
property function f⋆ :M→ R, which outputs the true prop-
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erty of the input molecule, it is rather trivial to estimate the
performance metric. However, when the target property is
costly to evaluate, which may involve wet-lab experiments,
we do not have access to f⋆, and the performance estimation
becomes harder. In such a case, we instead assume that we
have a dataset, D = {(mn, f

⋆(mn)) ∈ M× R}Nn=1, and
we often substitute a predictor f̂ :M → R trained on D
for f⋆, which allows us to estimate the performance metric.
We call the resultant performance estimator a plug-in per-
formance estimator, deriving from the plug-in principle in
statistics. For example, Li et al. (2018) and Jin et al. (2020)
use predictors for JNK3 and GSK-3β activities; many of
the existing studies use the log P predictor developed by
Wildman & Crippen (1999). In contrast, little attention has
been paid to how reliable such estimators are. A few excep-
tions are empirical studies on it (Renz et al., 2019; Langevin
et al., 2022), although we have not reached any consensus.
Therefore, in this paper, we investigate the reliability of the
plug-in performance estimator from a theoretical perspec-
tive and discuss approaches to improve it.

Our first contribution is to show that the plug-in perfor-
mance estimator is biased in two ways, indicating that it is
not reliable in general (Section 3.1). The first bias called a
misspecification bias comes from the deviation between f̂
and f⋆ on the molecules discovered by the learned generator.
This bias is closely related to the one encountered in covari-
ate shift (Shimodaira, 2000). It grows as the molecules
discovered by the generator become dissimilar to those in
D. The second bias called a reuse-and-finiteness bias is
caused by reusing a finite dataset for training and testing the
generator. In fact, f̂ , which is dependent on D, is used to
train the generator and to estimate the performance metrics.
Due to these biases, the plug-in performance estimator is
not necessarily a good estimator for the true performance.

Our second contribution is to systematically discuss how
to reduce these two biases. Section 4.1 introduces three
approaches to reducing the misspecification bias. Since the
misspecification bias is caused by covariate shift, a natural
idea is to reduce it by applying covariate shift adaptation
methods when learning the predictor (Section 4.1.1). In ad-
dition to it, we find that we can reduce it by constraining the
generator so that the generated molecules become similar
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to those in the dataset D (Section 4.1.2) in exchange for the
performance, which has not been discussed in the literature
of covariate shift adaptation. Yet another approach is to
use a more sophisticated estimator called a doubly-robust
performance estimator (Section 4.1.3).

Our idea to correct the reuse-and-finiteness bias comes from
the analogy to information criteria (Konishi & Kitagawa,
2007), whose main objective is to estimate the test perfor-
mance by correcting the bias of the training performance,
which is computed by reusing the same dataset for training
and testing. Given the analogy, one may consider train-test
split allows us to reduce the bias; we may split the data into
training and test sets, learn two independent predictors from
them, and use one for training a generator and the other for
evaluating it. We however argue that it is not as effective as
that applied to supervised learning due to the key difference
between our setting and supervised learning; the test set in
supervised learning is used to take expectation, while that in
our setting is used to train another predictor, which is much
more complex than expectation. This complexity introduces
a non-negligible bias to the train-test split estimator, result-
ing in a less accurate bias estimation (Section 4.2.1). We
instead propose to use a bootstrap method in Section 4.2.2,
which is proven to estimate the bias more accurately than
the train-test split method.

We empirically validate our theoretical findings in Section 5.
First, we quantify the two biases, and confirm that both are
non-negligible, and the reuse-and-finiteness bias increases
as the sample size decreases, as predicted by our theory.
Second, we assess the effectiveness of the bias reduction
methods, and confirm that the reuse-and-finiteness bias can
be corrected, while the reduction of the misspecification
bias comes at the cost of performance degradation.

Notation. For any set X , we let P(X ) be a set of proba-
bility distributions defined over X . For any distribution P ,
let P̂ ∼ PN denote the empirical distribution of a sample
of N items independently drawn from P . For a notational
reason, we use the empirical distribution of the sample,
P̂ ∈ P(M×R), instead of the sample D itself, and we call
P̂ an empirical distribution and a sample interchangeably.
For a set X , let δx be Dirac’s delta distribution at x ∈ X .
For any integer N ∈ N, let [N ] := {0, . . . , N − 1}. We use
uppercase letters for random variables and lowercase letters
for their realizations.

2. Problem Formulation
We first present our abstract formulation of molecular op-
timization. Since there are a number of different problem
settings with different objectives and algorithms, it is neces-
sary to abstract them into a single mathematical formulation
so that we can theoretically analyze it without much loss of

generality. We define the molecular optimization problem
as Problem 2.1. In the following, let us discuss problem
settings and algorithms that our formulation covers.
Problem 2.1. Let u : R → R be a utility function. The
molecular optimization aims to find a generator G ∈ P(M)
such that the following performance metric is maximized:

J⋆(G) := EM∼G [u (f⋆(M))] . (1)

2.1. Molecular Optimization Algorithms

A molecular optimization algorithm is defined as Defini-
tion 2.2. In this section, we discuss two major approaches
in molecular optimization fit in Definition 2.2.
Definition 2.2. A molecular optimization algorithm is
defined as a mapping αG that receives a sample P̂ ∈
P(M × R) and a property function f⋆ : M → R, and
returns a generator G ∈ P(M).

2.1.1. VARIATIONAL AUTOENCODER APPROACH

The molecular optimization problem has been tackled by a
combination of variational autoencoder (VAE) and Bayesian
optimization (Gómez-Bombarelli et al., 2018). It first trains
VAE (Kingma & Welling, 2014) on a sample P̂ to obtain
a pair of encoder and decoder, which translates between a
molecule m ∈ M and its latent vector z ∈ RDH . Then,
it constructs a dataset {(zn, yn) ∈ RDH × R}Nn=1 from a
sample P̂ = {(mn, yn) ∈ M× R}Nn=1 using the encoder,
and applies Bayesian optimization to obtain promising la-
tent vectors z⋆k ∈ RDH by interacting with f⋆ for each
iteration k = 1, 2, . . . . The latent vectors are converted
into molecules mk ∈M by the decoder at each iteration of
Bayesian optimization.

If we regard each molecule mk as a sample from the gener-
ator, the VAE-based algorithm does not exactly fit in Def-
inition 2.2, because each sampling is not independent; if
its dependency is weak, then it approximately fits in Def-
inition 2.2. Suppose that the algorithm outputs the best
molecule at the final step of Bayesian optimization, and we
repeat the procedure multiple times independently. Then,
the algorithm exactly fits in Definition 2.2. Therefore, our
abstraction can model the VAE approach.

2.1.2. REINFORCEMENT LEARNING APPROACH

Another approach initiated by Olivecrona et al. (2017) and
others uses reinforcement learning (RL) to generate and
optimize molecules. Let us first introduce a typical Markov
decision process (MDP) of length H + 1 (H ∈ N), used to
construct a molecule. Let S be a set of states, and s⊥ ∈ S
be the terminal state. LetM⊆ S be a subset of states that
correspond to molecules and the rest of the states correspond
to incomplete representations of molecules. Let A be a set
of actions that transform a possibly incomplete molecule
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into another one. There exists the terminal action a⊥ ∈
A that evaluates the property of the molecule at step H ,
after which the state transits to the terminal state s⊥. We
assume that the set of states at step H is limited to M,
indicating that the property evaluation is applied only to
valid molecules. For h ∈ [H + 1], let Th : S ×A → P(S)
be a state transition distribution at step h. Let rh : S ×
A → R be a reward function at step h. Let ρ0 ∈ P(S) be
the initial state distribution. Let Π be the set of policies
and π = {πh(a | s)}Hh=0 ∈ Π be a policy modeled by a
probability distribution over A conditioned on s ∈ S. At
each step h ∈ [H + 1], the agent takes action ah sampled
from πh(· | sh). Let pπh ∈ P(S) be the distribution of states
reached by policy π at step h ∈ [H + 1]. We assume that
we know {S,A, {Th}Hh=0, ρ0, H}.

The RL-based algorithm receives f⋆ and trains the policy
so as to maximize the expected cumulative reward, where
the reward is usually defined using f⋆, e.g.,

rh(s, a) =

{
0 h = 0, 1, . . . ,H − 1

f⋆(s) h = H, a = a⊥, s ∈M.

The trained policy can be regarded as a generator, because
each independent episode generated by interacting the pol-
icy with the environment yields one molecule.

2.2. Performance Metrics

Next, let us discuss that many existing performance metrics
can be approximately or exactly represented as Equation (1).

The most naive metric is the average property of the gener-
ated molecules, which can be modeled by Equation (1) if
we use the identity function for u. This metric can be, for
example, used to obtain a generator of molecules that satisfy
a certain set of conditions (e.g., Lipinski’s rule of five), by
defining f⋆ as Equation (2). Such a generator is useful as an
efficient alternative to a virtual library and virtual screening.

f⋆(m) =

{
1 if m satisfies the conditions,
0 otherwise.

(2)

Another metric used in the literature focuses on top-k scores
of generated molecules. By setting u(x) = exp(Cx) for
large C > 0, we obtain a soft top-k metric, because such
a utility function puts more weights on top-performing
molecules. In fact, in the limit of C → ∞, the perfor-
mance metric prefers the generator that can generate the
best molecule, regardless of the quality of the rest of the
generated molecules. In the following, we set u to be the
identity function for simplicity.

2.3. Plug-in Performance Estimator

Finally, let us formally define the plug-in performance es-
timator. Since the estimator is defined using a predictor,

we first provide our definition of a learning algorithm for a
predictor in Definition 2.3.
Definition 2.3. A learning algorithm for a predictor is repre-
sented as a mapping αf that receives P̂ and returns predictor
f̂ :M→ R.

The plug-in performance estimator is derived by substituting
f̂ for f⋆ when learning and evaluating a generator. Let us
define the predictor learned from P̂ as f̂ = αf (P̂ ) and the
generator learned from f̂ and P̂ as Ĝ := αG(P̂ , αf (P̂ )).
Let us also define the plug-in performance function JPI as,

JPI(G, f) := EM∼Gf(M), (3)

for any generator G and predictor f . Then, the plug-in
performance estimator1 is JPI(Ĝ, f̂).

3. Biases of Plug-in Performance Estimator

Let us investigate the bias of JPI(Ĝ, f̂). We point out that
it is biased in two ways (Section 3.1) and theoretically char-
acterize these biases in Sections 3.2 and 3.3.

3.1. Bias Decomposition

We define the bias as EP̂∼PN [JPI(Ĝ, f̂)− J⋆(Ĝ)] and in-
vestigate its statistical properties. First, we will show that
it can be decomposed into two terms as Theorem 3.1. The
reuse-and-finiteness bias is caused by reusing the finite sam-
ple P̂ to train both the generator and the predictor, and the
misspecification bias is caused by model misspecification of
the predictor. The latter appears when the predictor trained
by the infinite sample, f∞ := αf (P ), does not coincide
with f⋆.
Theorem 3.1. The bias is decomposed as follows:

EP̂∼PN

[
JPI(Ĝ, f̂)− J⋆(Ĝ)

]
=EP̂∼PN

[
JPI(Ĝ, f̂)− JPI(Ĝ, f∞)

]
︸ ︷︷ ︸

reuse-and-finiteness bias

(4)

+ EP̂∼PN

[
JPI(Ĝ, f∞)− J⋆(Ĝ)

]
︸ ︷︷ ︸

Misspecification bias

.

3.2. Misspecification Bias

The inner term of the squared misspecification bias is upper-
bounded by Jensen’s inequality as,(

JPI(Ĝ, f∞)− J⋆(Ĝ)
)2

=
(
EM∼Ĝ [f∞(M)− f⋆(M)]

)2
≤EM∼Ĝ (f∞(M)− f⋆(M))

2
.

(5)

1An estimator is defined a function whose input is data, and a
performance function is a tool to build an estimator.
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To further understand the misspecification bias, let us as-
sume that αf is given by

αf (Q) = argmin
f∈F

EM∼Q (f(M)− f⋆(M))
2
, (6)

for any Q ∈ P(M) and model class F . Then, we notice
that f∞ minimizes the mean squared error (MSE) over P ,
while the bias is upperbounded by MSE over Ĝ, indicat-
ing that f∞ does not necessarily minimize the upperbound
of the bias. This is closely related to covariate shift (Shi-
modaira, 2000), and it is known that f∞ does not minimize
the upperbound (Equation (5)) when the model class is mis-
specified, i.e., f⋆ /∈ F . The bias tends to increase if Ĝ and
P become largely deviated (i.e., the discovered molecules
are not similar to those in the sample).

3.3. Reuse-and-Finiteness Bias

The former term of Equation (4),

bNPI(P ) := EP̂∼PN

[
JPI(Ĝ, f̂)− JPI(Ĝ, f∞)

]
, (7)

quantifies the bias caused by reusing P̂ for training and
testing a generator. We call it a reuse-and-finiteness bias2.

Let us theoretically analyze this bias, assuming the sample
size N is moderately large such that the asymptotic expan-
sions are valid. Then, we have Corollary 3.2, whose proof
is given in Appendix A.2.

Corollary 3.2. bNPI(P ) = O(1/N) holds.

In particular, if the generator maximizes the performance
metric and the predictor is unbiased, i.e., EP̂∼PNαf (P̂ ) =
αf (P ), we can prove that the bias is optimistic (Proposi-
tion 3.3). See Appendix B for its proof.

Proposition 3.3. Assume that EP̂∼PN f̂ = f∞ and
αG(P̂ ) = argmaxG∈G JPI(G,αf (P̂ )) hold. Then,
bNPI(P ) ≥ 0 holds.

4. Bias Reduction Strategies
We have witnessed that the plug-in performance estimator
is biased in two ways. In this section, we discuss how to
reduce these biases to obtain reliable performance estimates.

4.1. Reducing Misspecification Bias

There are mainly three approaches to reducing the mis-
specification bias. The first one is to train the predictor

2The reuse-and-finiteness bias is caused by sample reuse as
well as the finiteness of the sample, the latter of which is clear
when the generator is independent from P̂ ; the reuse-and-finiteness
bias still exists in such a case if EP̂ [αf (P̂ )] ̸= f∞, namely, unless
the predictor is unbiased.

with covariate shift adaptation, correcting the mismatch
between training and testing distributions (Section 4.1.1).
The second approach is to constrain a generator such that
the molecules discovered by it become similar to those in
the sample P̂ (Section 4.1.2). These are mainly motivated
by minimizing the right-hand side of Equation (5). The
third one is motivated by a standard technique in contextual
bandit, the doubly-robust performance estimator instead of
the plug-in performance estimator (Section 4.1.3).

Before going into details, let us introduce the notion of
importance weight, which is used extensively. For any gen-
erator G and any Q ∈ P(M) whose support is no smaller
than that of G, let (G/Q)(m) := G(m)/Q(m) denote the
importance weight between them.

4.1.1. COVARIATE SHIFT ADAPTATION

The misspecification bias will be reduced by minimizing its
upperbound, i.e., the right-hand side of Equation (5), which
is MSE between f∞ and f⋆ over Ĝ. In contrast, f∞ is
usually defined by minimizing MSE over P , and does not
necessarily minimize the upperbound. One approach sug-
gested by Shimodaira (2000) to alleviating such a mismatch
is to train the predictor as follows:

min
f∈F

EM∼Pw(M)λ(f(M)− f⋆(M))2, (8)

where P is the data distribution, w is a weight function
approximating Ĝ/P , and λ ∈ [0, 1] controls the bias and
variance of the estimated predictor. Noticing that the refined
algorithm minimizes the upperbound if λ = 1 and w =
Ĝ/P , the misspecification bias will be reduced.

4.1.2. CONSTRAIN A GENERATOR

The covariate shift adaptation does not always work. If Ĝ
and P are not close enough, the effective sample size of
Equation (8) decreases, leading to poor estimation of f̂ , and
increasing the reuse-and-finiteness bias. This suggests that
not all generators can be accurately evaluated; those largely
deviated from P are difficult to be evaluated.

A straightforward idea to alleviate it is to constrain a diver-
gence between Ĝ and P . In fact, a VAE approach naturally
implements this idea by training a VAE on the data distri-
bution, which constrains Ĝ so that it lies close to P . In
contrast, an RL-based approach does not implement this
idea. In the following, we will discuss how to implement
this idea for the RL-based approach.

Let us assume that the policy is obtained by solving,

min
π∈Π

ℓ(π;P ). (9)

While a natural approach is to add a divergence between the
generator and the data distribution as a regularization term,
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it is computationally expensive, especially when the length
of MDP is large.

We instead propose to regularize the policy, inspired
by behavior cloning (Fujimoto & Gu, 2021). Behav-
ior cloning regularizes the policy so that the policy im-
itates a behavior policy that generates the data. As-
sume that there exists a behavior policy πb that in-
duces the data distribution, i.e., pπb

H (m) = P (m) for
m ∈ M. Note that the behavior policy may not
be available in our setting. Behavior cloning employs
the following regularized objective function: ℓ(π;G) −

ν
H+1

∑H
h=0 ESh∼p

πb
h ,Ah∼πb(Sh)

[log π(Ah | Sh)], where
ν ≥ 0 is a hyperparameter controlling behavior cloning.
The larger ν is, the more the learned policy resembles the
behavior policy, which in turn will make pπH close to the
data distribution, reducing the misspecification bias.

A technical challenge in applying behavior cloning to our
setting is that πb may not be available. Our observation
is that while πb is not available, a trajectory towards each
molecule in the dataset can be often reconstructed. For
example, in an MDP that constructs a molecule atom-
wisely (You et al., 2018), such a trajectory is easily obtained
by removing atoms one by one from the molecule; in another
MDP that constructs a molecule by chemical reactions (Got-
tipati et al., 2020), since each molecule in the dataset should
be synthesizable (molecules in the dataset do exist in reality
and thus are synthesizable), such a trajectory is available for
the molecules in the dataset. This observation is inspired by
the expert imitation proposed by You et al. (2018), where
expert actions are synthesized from molecules in the dataset.

Letting π−1
b (m) = (s0, a0, s1, a1, . . . , sH = m)

be a (potentially random) function to recon-
struct a trajectory from a molecule, we pro-
pose to use a regularizer defined by Ψ(π;P ) =

1
H+1

∑H
h=0 EM∼PES0,A0,...,SH∼π−1

b (M) [log π(Ah | Sh)],
which leads to the following optimization problem:

min
π∈Π

ℓ(π;P )− νΨ(π;P ). (10)

Although this regularization is not sufficient to constrain the
divergence between pπ̂H and P (which has been discussed in
the literature of imitation learning), we consider the idea of
behavior cloning is a simple yet effective heuristic to reduce
the misspecification bias, which will be investigated in the
experiment.

4.1.3. DOUBLY-ROBUST PERFORMANCE ESTIMATOR

The third approach to reducing the misspecification bias
is a doubly-robust performance estimator, which has been
applied in contextual bandit (Dudı́k et al., 2014) and offline
reinforcement learning (Tang et al., 2020) as an alternative to
the plug-in performance estimator. As we will see later, the

performance can also be estimated via importance sampling.
The doubly-robust performance estimator combines these
two estimators so as to inherit their benefits.

Importance-Sampling Performance Estimator. Given
the following change-of-measure,

J⋆(G) = EM∼Gf
⋆(M) = EM∼P (G/P )(M)f⋆(M),

we obtain the following importance-sampling performance
function by substituting an importance weight model w for
the true importance weight,

JIS(w,P ) := EM∼Pw(M)f⋆(M).

This coincides with J⋆(G) if w = G/P . We obtain an
importance-sampling performance estimator by substituting
any weight estimator for w and P̂ for P .

Doubly-Robust Performance Estimator. The doubly-
robust performance function is defined as follows:

JDR(G,w, f, P )

:=EM∼P [w(M)(f⋆(M)− f(M))] + EM∼Gf(M).

(11)

It combines the plug-in and importance-sampling perfor-
mance functions in that JDR(G, 0, f, P ) = JPI(G, f) and
JDR(G,w, 0, P ) = JIS(G,w, P ) hold.

This is called doubly-robust because its misspecification
bias is expressed as,

JDR(Ĝ, w∞, f∞, P )− J⋆(Ĝ)

=EM∼P (w
∞(M)− (Ĝ/P )(M))(f⋆(M)− f∞(M)),

where let w∞ be the weight model trained on P . The above
expression suggests that the bias disappears if either the
predictor or the weight model is correctly specified.

Discussion. Notice that the misspecification biases of JPI

and JIS are given as follows:

EM∼P

[
(Ĝ/P )(M)(f∞(M)− f⋆(M))

]
,

EM∼P

[
(w∞(M)− (Ĝ/P )(M))f⋆(M)

]
.

We can deduce that for M ∼ P (i) if |f⋆(M)−f∞(M)| ≪
|f⋆(M)| holds, the misspecification bias of JDR will
be smaller than that of JIS, and (ii) if |(Ĝ/P )(M) −
w∞(M)| ≪ |(Ĝ/P )(M)| holds, the misspecification bias
of JDR will be smaller than that of JPI. Therefore, if we
can learn both of the predictor and the weight model well,
the doubly-robust performance estimator is preferred to the
other estimators. Otherwise, the doubly-robust performance
estimator can be worse than the others.
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4.1.4. SUMMARY

We have introduced three approaches to reducing misspeci-
fication bias. One can find the best combination of them de-
pending on the closeness between Ĝ and P . If they are close
enough that it is easy to estimate the importance weight be-
tween them, the first and third approaches will work, while
the second approach may not be necessary. Otherwise, since
the importance weight cannot be estimated well, only the
second approach will work.

4.2. Reducing Reuse-and-Finiteness Bias

We investigate how to reduce the reuse-and-finiteness bias.
Our approach is to estimate the bias and substract it from
the estimator. Such a bias reduction has been extensively
discussed in the literature of information criteria (Konishi
& Kitagawa, 2007), which aim to estimate the test perfor-
mance of a predictor by correcting the bias of its training
performance. There are mainly two approaches: train-test
split method and bootstrap method. In the following, we
focus on the naive plug-in performance estimator for sim-
plicity. However, similar results can be derived for the
refined estimators presented in the previous sections.

4.2.1. BIAS ESTIMATION BY TRAIN-TEST SPLIT

The first approach estimates the bias via train-test split of
the sample. The sample D is randomly split into Dtrain and
Dtest such that Dtrain ∩Dtest = ∅ and Dtrain ∪Dtest = D.
Let Ĝtrain and f̂train be the generator and predictor trained
using Dtrain, and f̂test be the predictor trained using Dtest.
Then, the reuse-and-finiteness bias is estimated by

bNsplit(P̂ ) = E[JPI(Ĝtrain, f̂train)− JPI(Ĝtrain, f̂test)],

(12)

where the expectation is taken over random train-test split.

While this estimator seems to be reasonable, it is not rec-
ommended due to the bias of the bias estimator. As demon-
strated in Corollary 4.1, the train-test split estimator has
O(1/N) bias, the same order as the bias bN (P ) itself,
and we cannot distinguish between the bias and the bias
of the bias. Such a bias is due to the non-linearlity of
JPI(Ĝtrain, f̂test) with respect to P̂test, the distribution used
for testing. See Appendix A.3 for its proof and Appendix C
for in-depth discussions.

Corollary 4.1. Suppose we randomly divide the sample
such that |Dtrain| : |Dtest| = λ : (1−λ) for some λ ∈ (0, 1).
Then, EP̂∼PN [bNsplit(P̂ )] = bN (P ) +O(1/N) holds.

Note that direct estimation of test performance by
JPI(Ĝtrain, f̂test) is not recommended similarly, unless the
size of the test sample is sufficiently large. See Appendix C
for detailed discussion.

4.2.2. BOOTSTRAP BIAS ESTIMATION

An alternative approach is bootstrap (Efron & Tibshirani,
1994). A bootstrap estimator of the reuse-and-finiteness
bias bN (P ) is obtained by plugging P̂ into P . Letting P̂ ⋆

be a resampled sample from P̂ , and letting Ĝ⋆ and f̂⋆ be
the generator and predictor trained using P̂ ⋆, the boostrap
estimator is defined as,

bN (P̂ ) = EP̂⋆∼P̂N [JPI(Ĝ
⋆, f̂⋆)− JPI(Ĝ

⋆, f̂)], (13)

which can be computed by Monte-Carlo approximation.

In contrast to the train-test split method, the bootstrap bias
estimation suffers less from the bias of the estimator, as
stated in Corollary 4.2. See Appendix A.4 for its proof.
Corollary 4.2. EP̂∼PN [bN (P̂ )] = bN (P ) +O(1/N2).

4.2.3. SUMMARY

We have introduced two reusing-bias estimators, referring
to the literature of information criteria. We have found
that the train-test split estimator, one of the most popular
estimators, cannot reliably estimate the bias in our problem
setting, although it works in supervised learning. In contrast,
the bootstrap bias estimator is shown to be less biased than
the train-test split estimator and can estimate the reuse-and-
finiteness bias more reliably. Therefore, we conclude that
the bootstrap bias estimator is preferable to the train-test
split estimator.

From computational point of view, the bootstrap bias estima-
tor requires us to train M generators and M + 1 predictors.
We set M = 20 in the experiments given the result of a
preliminary experiment. Since the bootstrap procedure can
be easily parallelized with low overhead, its wall-clock time
can be reduced in proportion to the computational resource.

5. Empirical Studies
Let us empirically quantify the two biases as well
as the effectiveness of the bias reduction methods.
We employ a reinforcement learning setting as a
case study. The code used in our empirical stud-
ies will be available in https://github.com/
kanojikajino/biases-in-mol-opt.

5.1. Setup

Let us explain our experimental setup. See Appendix D for
full details to ensure reproduciability.

Molecular Representation. Unless otherwise indicated, all
of the functions defined over molecules use the 1024-bit
Morgan fingerprint (Morgan, 1965; Rogers & Hahn, 2010)
with radius 2 as a feature extractor.

Environment and Agent. We employ the environment and
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the agent by Gottipati et al. (2020) with minor modifica-
tions. The agent receives a molecule as the current state,
and outputs an action consisting of a reaction template and
a reactant. The environment, receiving the action, applies
the chemical reaction defined by the action to the current
molecule to generate a product, which is then set as the next
state. This procedure is repeated for H times, and lastly the
agent takes action a⊥ to be rewarded by the property of the
final product. We set H = 1 to reduce the variance in the
estimated performance and better highlight the biases and
their reduction. The agent is implemented by actor-critic
using fully-connected neural networks.

We use the reaction templates curated by Button et al. (2019)
and prepare the reactants from the set of commercially avail-
able substances in the same way as the original environment.
The number of reaction templates is 64, 15 of which require
one reactant, and 49 of which require two reactants. The
number of reactants is 150,560.

Predictor and Importance Weight Model. As a predictor,
we use a fully-connected neural network with one hidden
layer of 96 units with softplus activations except for the last
layer. It is trained by minimizing MSE defined over P̂ .

The importance weight model is learned by the ker-
nel unconstrained least-squares importance fitting (KuL-
SIF) (Kanamori et al., 2012). In particular, the last layer of
the trained predictor is used as a feature extractor, and we
compute the linear kernel using it.

Evaluation framework. To evaluate the biases, we need
f⋆, which however is not available in general. We thus
design a semi-synthetic experiment using a real-world
dataset D0 = {(mn, f

⋆(mn)) ∈ M × R}N0
n=1. We re-

gard a predictor trained on D0 as the true property func-
tion f⋆. In specific, we used the predictor provided by
Gottipati et al. (2020), which was trained on the ChEMBL
database (Gaulton et al., 2017) to predict pIC50 value associ-
ated with C-C chemokine receptor type 5 (CCR5). With this
property function, we have full access to the environment,
and we can construct an offline dataset D of an arbitrary
sample size by running a random policy.

To decompose the bias into the misspecification bias and the
reuse-and-finiteness bias, we also need f∞, the predictor
obtained with full access to the data-generating distribu-
tion P . We approximate it by f̂test, which is a predictor
trained by a large sample Dtest of size 105, constructed in-
dependently of D. This approximation is valid if |Dtest| is
sufficiently large (see Proposition C.2). Then, the misspeci-
fication bias can be estimated by JPI(Ĝ, f̂test)−J⋆(Ĝ) and
the reuse-and-finiteness bias by JPI(Ĝ, f̂)− JPI(Ĝ, f̂test).
The performance estimators are defined by the expectation
with respect to a trajectory of a policy, and we estimate them
by Monte-Carlo approximation with 1,000 trajectories.

5.2. Quantifying the Two Biases

First, we aim to quantify the misspecification and reuse-and-
finiteness biases. We design an experiment to investigate
the relationship between these biases and the sample size.

We vary the training sample size N in {26, 27, . . . , 213}.
For each N , we repeatedly generate a pair of train and test
sets for five times, and evaluate the biases as indicated above.
We report the means and standard deviations.

Figure 1 (left) illustrates the result. We have three obser-
vations. First, when N = 27, the misspecification bias,
JPI(Ĝ, f∞) − J⋆(Ĝ), was roughly twice as large as the
reuse-and-finiteness bias, JPI(Ĝ, f̂)− JPI(Ĝ, f∞), demon-
strating that both are non-negligible. Second, for N ≥ 27,
the reuse-and-finiteness bias increased as the size of the
training sample decreased, which coincides with Corol-
lary 3.2. The results for N < 27 did not coincide with
our theoretical result because the sample size is not large
enough for asymptotic expansion to be justified. Third, the
ground-truth performance of the policies were rather sta-
ble across different training sample sizes. We found that
the policies were similar to each other, suggesting that this
environment has a local optimum with a reasonably good
performance3. This also suggests that the policy learner
was insensitive to the particular sample, and the reuse-and-
finiteness bias in this case is mainly caused by the finiteness
of the sample to train the predictor, not by reusing the same
sample.

5.3. Quantifying Bias Reduction Methods

We then study the effectiveness of the bias reduction meth-
ods presented in Section 4. Since the behavior cloning
coefficient ν will control the trade-off between the misspec-
ification bias and the performance of the learned policy, it
should be determined according to the user’s requirement,
i.e., whether the accuracy of performance estimation or the
actual performance is prioritized. Therefore, we design an
experiment to evaluate the effectiveness of the bias reduction
methods, varying ν in the range of {2−4, . . . , 24}.

To investigate the effectiveness of the bias reduction meth-
ods, we estimate the performance by i) the vanilla plug-in
performance estimator (Section 2.3), ii) that enhanced by
covariate shift adaptation (Section 4.1.1), iii) that enhanced
by bootstrap bias estiomation (Section 4.2.2), and iv) the
doubly-robust performance estimator (Section 4.1.3).

Figure 1 (middle) illustrates the performance estimates for
N = 103. Since the doubly-robust performance estima-
tor JDR performs worse than the vanilla plug-in perfor-
mance estimator JPI, we omit it from the figure. See Ap-

3The score 6.8 is better than the score of a random policy, 5.8,
and thus, we cocnclude the performance is reasonably good.
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Figure 1. Lines show means and shaded areas show standard deviations. (Left) Relationship between the biases and the sample size.
JPI(Ĝ, f̂)− JPI(Ĝ, f∞) corresponds to the reuse-and-finiteness bias and JPI(Ĝ, f∞)− J⋆(Ĝ) to the misspecification bias. (Middle)
Comparison between bias reduction methods. (Right) Comparison between the misspecification bias, reuse-and-finiteness bias, and the
estimated reuse-and-finiteness bias.

pendix E for the full result. We observe that the bootstrap
bias reduction worked well, while the benefit of the co-
variate shift adaptation is marginal. This indicates that the
importance weight estimation did not work well in this set-
ting.

Figure 1 (right) illustrates the biases in the vanilla plug-in
performance estimate and the reuse-and-finiteness bias esti-
mated by bootstrap. As we expected, the misspecification
bias tends to decrease as we increase ν. The reuse-and-
finiteness bias is under-estimated, but the bias estimation
contributes to bias correction.

In summary, we confirm that (i) behavior cloning can re-
duce the misspecification bias at the expense of performance
degradation, (ii) the reuse-and-finiteness bias can be esti-
mated and corrected by bootstrap, and (iii) the methods
using weight models did not perform well in our setting.

6. Related Work
Our primary contribution is the comprehensive study of
theoretically-sound evaluation methodology for molecular
optimization algorithms. Since the pioneering work by
Gómez-Bombarelli et al. (2018), a number of studies on this
topic have been published in the communities of machine
learning and cheminformatics to advance the state-of-the-art.
While some of them (Takeda et al., 2020; Das et al., 2021)
have been validated on physical experiments, many others
have been evaluated in computer simulation.

Early studies (Kusner et al., 2017) adopted the octanol-water
partition coefficient, logP , penalized by the synthetic acces-
sibility score (Ertl & Schuffenhauer, 2009) and the number
of long rings as the target property to be maximized. The
score can be easily computed by RDKit, and is often implic-
itly regarded as a reliable score computed by an accurate
simulator. Some recently consider that the logP optimiza-

tion is not appropriate as a benchmark task because it is
easy to optimize (Brown et al., 2019) or its prediction can
be inaccurate (Yang et al., 2021), and alternative benchmark
tasks have been investigated; some of them propose a suite
of benchmark tasks (Brown et al., 2019; Polykovskiy et al.,
2020) and the others use other property functions trained by
real-world data (Olivecrona et al., 2017; Li et al., 2018; Jin
et al., 2020; Gottipati et al., 2020; Xie et al., 2021).

As far as we are aware of, there are at least two empirical
studies concerning about potential biases in the plug-in per-
formance estimator. Renz et al. (2019) pointed out that the
plug-in performance estimator is biased due to the diver-
gence between the predictor and the true objective function
and overfitting of the predictor, while a follow-up study by
Langevin et al. (2022) attributed the bias to the train-test
split used by Renz et al. (2019); the train and test sets were
far from being identically distributed. While these two pio-
neering studies shed light on the potential flaw in the plug-in
performance estimator, they do not offer full explanations
due to being solely empirical.

Our contribution to this line of studies is that we empirically
and theoretically demonstrate potential biases in the current
evaluation methodology using real-world data and present
bias reduction methods. In specific, we theoretically analyze
the bias pointed out by Renz et al. (2019) and Langevin et al.
(2022) to identify two sources of the bias (Theorem 3.1),
which allows us not only to understand the bias clearly but
also to devise bias reduction methods.

Our analysis also unveils why the logP optimization task
has been hacked, and warns that the alternative benchmark
tasks will be hacked as long as no bias reduction method is
applied. The logP function implemented in RDKit (Wild-
man & Crippen, 1999) is obtained by fitting a linear model
to a dataset of experimental logP values, and is in fact a
predictor. Our theory suggests that unless the bias reduc-
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tion methods are applied, the learned generator can gen-
erate unrealistic molecules that are far from those in the
dataset (which has been often reported in logP optimiza-
tion), and the resultant performance estimates are biased.
It also suggests that by incorporating bias reduction meth-
ods, we can reliably estimate the performance and therefore
can safely compare different methods even when using the
logP optimization task.

A related but different literature is the applicability do-
main (AD) of a quantitative structure–activity relation-
ship (QSAR) model (Gadaleta et al., 2016). In short, AD is
a subspace ofM where every prediction is reliable. In other
words, it aims to ensure the reliability of prediction for a
single molecule. In contrast, we aim to ensure the reliability
of the performance of a generator, defined by predictions
for multiple molecules. This indicates that our problem is
easier than setting AD; a method to define AD can solve our
problem, but a solution to our problem cannot define AD.

7. Conclusion and Future Work
We have discussed that the plug-in performance estimator is
biased in two ways; one is due to model misspecification and
the other is due to reusing the same finite sample for training
and testing. In order to reduce these biases to obtain more
accurate estimates, we recommend to (i) add a constraint to
the generator so that it stays close to the data distribution and
(ii) correct the bias by bootstrapping if it is non-negligible
and we can afford to do it.

Since the present paper focuses on analysing the biases
and puts less focus on bias reduction methods, an inter-
esting research direction is to develop more sophisticated
bias reduction methods. One important step is to improve
the importance weight estimation so that the bias reduction
methods using importance weights work. Another direction
is to constrain a generator with less performance degrada-
tion. Adversarial training as done by You et al. (2018) may
be helpful to better constrain the generator.

Another interesting direction is to study the exploration-
exploitation dilemma when we are granted a limited access
to the true property function f⋆. The present paper focused
on the situation where no data acquisition is allowed, and
therefore, it is recommended to learn a conservative genera-
tor. However, if a limited number of data can be acquired,
we may first learn a generator without any constraint for
exploration, and gradually turn to more conservative gen-
erators so that we can accurately estimate the performance.
It is valuable to study how to balance exploration and ex-
ploitation.

9



Biases in Evaluation of Molecular Optimization Methods and Bias Reduction Strategies

References
Brown, N., Fiscato, M., Segler, M. H. S., and Vaucher, A. C.

Guacamol: Benchmarking models for de novo molecular
design. Journal of Chemical Information and Modeling,
59:1096–1108, 2019.

Button, A., Merk, D., Hiss, J. A., and Schneider, G. Au-
tomated de novo molecular design by hybrid machine
intelligence and rule-driven chemical synthesis. Nature
Machine Intelligence, 1:307–315, 2019. ISSN 2522-
5839. doi: 10.1038/s42256-019-0067-7. URL https:
//doi.org/10.1038/s42256-019-0067-7.

Das, P., Sercu, T., Wadhawan, K., Padhi, I., Gehrmann,
S., Cipcigan, F., Chenthamarakshan, V., Strobelt, H.,
dos Santos, C., Chen, P.-Y., Yang, Y. Y., Tan, J. P. K.,
Hedrick, J., Crain, J., and Mojsilovic, A. Accelerated
antimicrobial discovery via deep generative models and
molecular dynamics simulations. Nature Biomedical En-
gineering, 5:613–623, 2021. ISSN 2157-846X. doi:
10.1038/s41551-021-00689-x. URL https://doi.
org/10.1038/s41551-021-00689-x.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159,
2011. ISSN 15324435. URL http://jmlr.org/
papers/v12/duchi11a.html.

Dudı́k, M., Erhan, D., Langford, J., and Li, L. Doubly robust
policy evaluation and optimization. Statistical Science,
29:485–511, 12 2014. ISSN 08834237, 21688745. URL
http://www.jstor.org/stable/43288496.

Efron, B. and Tibshirani, R. J. An introduction to the boot-
strap. CRC press, 1994.

Ertl, P. and Schuffenhauer, A. Estimation of synthetic ac-
cessibility score of drug-like molecules based on molec-
ular complexity and fragment contributions. Journal
of Cheminformatics, 1:8, 2009. ISSN 1758-2946. doi:
10.1186/1758-2946-1-8. URL https://doi.org/
10.1186/1758-2946-1-8.

Fujimoto, S. and Gu, S. A minimalist approach to of-
fline reinforcement learning. 2021. URL https:
//openreview.net/forum?id=Q32U7dzWXpc.

Gadaleta, D., Mangiatordi, G. F., Catto, M., Carotti, A.,
and Nicolotti, O. Applicability domain for qsar mod-
els: where theory meets reality. International Journal of
Quantitative Structure-Property Relationships (IJQSPR),
1:45–63, 2016.

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Cham-
bers, J., Mendez, D., Mutowo, P., Atkinson, F., Bel-
lis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N.,

Karlsson, A., Magariños, M. P., Overington, J. P., Pa-
padatos, G., Smit, I., and Leach, A. R. The ChEMBL
database in 2017. Nucleic acids research, 45:D945–
D954, 1 2017. ISSN 1362-4962 (Electronic). doi:
10.1093/nar/gkw1074.

Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H.,
Liu, S., Liu, S., Blackburn, S., Thomas, K., Coley, C.,
Tang, J., Chandar, S., and Bengio, Y. Learning to navigate
the synthetically accessible chemical space using rein-
forcement learning. volume 119, pp. 3668–3679. PMLR,
2020. URL http://proceedings.mlr.press/
v119/gottipati20a.html.
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A. Asymptotic Analysis on the Reuse-and-Finiteness Bias
In this section, we analyze the reuse-and-finiteness bias by stochastic expansion to prove Corollary 3.2. We review the
technical background of Taylor expansion using Fréchet derivative (Appendix A.1.1) and stochastic expansion of an
estimator (Appendix A.1.2).

A.1. Technical Background

For completeness, let us first define the Fréchet derivative and Taylor expansion using it in Appendix A.1.1.

A.1.1. TAYLOR EXPANSION USING FRÉCHET DERIVATIVE

In this paper, we mainly analyze a function between Banach spaces by its Taylor expansion. To do so, it is necessary to
introduce the Fréchet derivative, which is a generalization of the total derivative on the space of real numbers to that on
Banach spaces. In this section, we provide a brief introduction to the Fréchet derivative and Taylor expansion.

Let V and W be Banach spaces, U ⊂ V , and f : U →W be a function. If a bounded linear mapping A : V →W such that

lim
∥h∥→0

∥f(x+ h)− f(x)−Ax(h)∥
∥h∥

= 0 (14)

exists, f (1)
x := Ax is called the Fréchet derivative of f at x ∈ U . Let D be the Fréchet differential operator and we express

Dfx := f
(1)
x when emphasizing the operator. Equation (14) implies that,

f(x+ h) = f(x) + f (1)
x (h) + o(∥h∥), (15)

holds. Similarly, we can define a higher-order Fréchet derivative f
(k)
x for k ≥ 0, and it is a symmetric multilinear map from

V k to W when fixing x. The Taylor expansion of f is obtained as,

f(x+ h) =

∞∑
k=0

1

k!
f (k)
x (h⊗k), (16)

where h⊗k represents k repetitions of h.

For a bivariate function f(x, y) : U2 → W , let us introduce partial Fréchet derivatives. If a bounded linear mapping
A : V →W such that,

lim
∥hx∥→0

∥f(x+ hx, y)− f(x, y)−Ax,y(hx)∥
∥hx∥

= 0 (17)

exists, f (1,0)
x,y := Ax,y is called the (1, 0)-th Fréchet derivative of f at (x, y) ∈ U with respect to x. Similarly, we can define

the (k, l)-th Fréchet derivative f
(k,l)
x,y as a multilinear map from V k × V l to W , when fixing (x, y) ∈ U2. Let D(k,l) be the

Fréchet differential operator and we express D(k,l)fx,y := f
(k,l)
x,y when putting emphasis on the operator. Then, the Taylor

expansion of f is obtained as,

f(x+ hx, y + hy) =

∞∑
k=0

1

k!

k∑
l=0

(
k

l

)
f (l,k−l)
x,y (h⊗l

x , h⊗(l−k)
y ). (18)

A.1.2. STOCHASTIC EXPANSION

Stochastic expansion is a mathematical tool to expand an estimator θ(P ) with respect to its input distribution P . We are
often interested in the estimator averaged over the possible sample space, EP̂∼PN θ(P̂ ), and we often expand θ(P̂ ) around
P to understand the averaged estimator. This section provides a useful formula to compute it.

Lemma A.1 (Stochastic expansion formula). Let X be a set and let P(X ) be the set of probability measures on X . Let
V be a Banach space, and let f : P(X ) → V be a function. Let D = {Xn}Nn=1 be an i.i.d. sample from P ∈ P(X ).
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1 1 3 2 3

(2,2,1)Partition

Partition
assignment

Assignment 3 3 2 1 2

. . . . .

. . . . .

Figure 2. Assignment in N = 3, k = 5 can be abstracted into a partition assignment, where blocks with the same pattern fill will have the
same index. A partition assignment is further abstracted into a partition, a sequence of non-increasing integers, each of which indicates
the size of each pattern.

Let n1, . . . , nk ∈ [N ]. If the k-th Fréchet derivative of f exists at P and there exists i ∈ [k] such that ni ̸= nj for all
j ∈ [k]\{i} (such an index i is called singular), then

ED[f
(k)
P (δXn1

− P, . . . , δXnk
− P )] = 0, (19)

holds. Moreover, the number of assignments (n1, . . . , nk) ∈ [N ]k such that there does not exist singular indices is
O(N⌊k/2⌋) regarding k as a constant.

Proof. The expectation can be calculated as,

ED[f
(k)
P (δXn1

− P, . . . , δXnk
− P )]

=ED\Xi
[EXi

[f
(k)
P (δXn1

− P, . . . , δXni
− P, . . . , δXnk

− P )]] (∵ {Xn}Nn=1are independent)

=ED\Xi
[f

(k)
P (δXn1

− P, . . . ,EXi
[δXni

− P ], . . . , δXnk
− P )] (∵ f

(k)
P is multilinear)

=ED\Xi
[f

(k)
P (δXn1

− P, . . . , 0, . . . , δXnk
− P )]

=0. (∵ f
(k)
P is multilinear)

Then, let us count the number of non-singular assignments (n1, . . . , nk) ∈ [N ]k by using the abstraction illustrated in
Figure 2. Assignments can be abstracted into partition assignments, and they are further abstracted into partitions, as
explained in the caption of Figure 2.

A sequence of integers p = (p1, . . . , pL) is a partition if and only if p1 ≥ · · · ≥ pL ≥ 1 and
∑L

l=1 pl = k. The number of
partitions depends only on k, not on N . For each partition, the number of associated partition assignments depends only
on k, not on N . For each partition assignment with partition p = (p1, . . . , pL), the number of associated assignments is at
most NL. Therefore, the number of assignments associated with partition p = (p1, . . . , pL) is at most C(k)NL. Since for
a partition to be non-singular, it must not contain 1, i.e., pL ≥ 2, L ≤ ⌊k2 ⌋ holds. Therefore, the number of non-singular
assignments is at most C(k)N⌊ k

2 ⌋.

A.2. Result 1: Asymptotic Analysis of the Reuse-and-Finiteness Bias

This section analyze the reuse-and-finiteness bias in the asymptotic case (Corollary 3.2). For notational simplicity, we
provide a more general statement in Proposition A.2, and we position Corollary 3.2 as a corollary of Proposition A.2; we
can prove Corollary 3.2 by setting τ(P1, P2) = JPI(αG(P1, αf (P1)), αf (P2)). In the following, we often use τ instead of
the performance estimator of our interest for notational simplicity.

Proposition A.2. Let X be a set and let τ : P(X )2 → R be a bivariate function. Let us define a bias of τ by,

bN (P ; τ) := EP̂∼PN [τ(P̂ , P̂ )− τ(P̂ , P )], N ≥ 1, P ∈ P(X ), (20)
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where P̂ := 1
N

∑N
n=1 δXn

denotes the empirical distribution of an i.i.d. sample D = {Xn}Nn=1 ∼ P . Then, we have

bN (P ; τ) =
1

2N
EX∼P

[
2τ

(1,1)
P,P (δX − P, δX − P ) + τ

(0,2)
P,P (δX − P, δX − P )

]
+O(1/N2).

Proof of Proposition A.2. Assume that τ admits the Taylor expansion, i.e.,

τ(P1, P2) =

∞∑
k=0

1

k!

k∑
ℓ=0

(
k

ℓ

)
τ
(ℓ,k−ℓ)
P,P ((P1 − P )⊗ℓ, (P2 − P )⊗(k−ℓ))

for all P, P1, P2 ∈ P(X ). Thus, substituting P̂ for P1 and P2 and taking the expectation with respect to P̂ , we have

E[τ(P̂ , P̂ )]

=

∞∑
k=0

1

k!

k∑
ℓ=0

(
k

ℓ

)
E[τ (ℓ,k−ℓ)

P,P ((P̂ − P )⊗l, (P̂ − P )⊗(k−l))]

=

∞∑
k=0

1

k!

k∑
ℓ=0

(
k

ℓ

)
1

Nk

N∑
n1,...,nk=1

E

τ (ℓ,k−ℓ)
P,P

 l⊗
i=1

(δXni
− P )),

k⊗
j=l+1

(δXnj
− P ))

 ,

where the first equality is owing to the entirety of τ and the last equality follows from the multilinearity of the Fréchet
derivatives.

Let us calculate each of the summands using the stochastic expansion formula (Lemma A.1) in the following. The summand
of k = 0 is τ(P, P ). The summand of k = 1 is calculated as,

1

1!

1∑
ℓ=0

(
1

ℓ

)
1

N

N∑
n1=1

E

τ (ℓ,1−ℓ)
P,P

 l⊗
i=1

(δXni
− P )),

1⊗
j=l+1

(δXnj
− P ))


=

1

N

N∑
n1=1

E
[
τ
(0,1)
P,P (δXn1

− P ) + τ
(1,0)
P,P (δXn1

− P )
]

=0.

The summand of k = 2 is calculated as

1

2!

2∑
ℓ=0

(
2

ℓ

)
1

N2

N∑
n1,n2=1

E

τ (ℓ,2−ℓ)
P,P

 l⊗
i=1

(δXni
− P )),

2⊗
j=l+1

(δXnj
− P ))


=

1

2N2

2∑
ℓ=0

(
2

ℓ

) ∑
n1=n2

+
∑

n1 ̸=n2

E

τ (ℓ,2−ℓ)
P,P

 l⊗
i=1

(δXni
− P )),

2⊗
j=l+1

(δXnj
− P ))


=

1

2N2

2∑
ℓ=0

(
2

ℓ

) N∑
n=1

E
[
τ
(ℓ,2−ℓ)
P,P (δXn

− P, δXn
− P )

]
=

1

2N

2∑
ℓ=0

(
2

ℓ

)
EX∼P

[
τ
(ℓ,2−ℓ)
P,P (δX − P, δX − P )

]
.

It is also shown that the summands of k ≥ 3 is O(1/N⌈ k
2 ⌉) by Lemma A.1. Summing up, we have

E[τ(P̂ , P̂ )] = τ(P, P ) +
1

2N

2∑
ℓ=0

(
2

ℓ

)
EX∼P

[
τ
(ℓ,2−ℓ)
P,P (δX − P, δX − P )

]
+O(1/N2).

The other term, τ(P̂ , P ), can be expanded in a similar way, and we have,

E[τ(P̂ , P )] = τ(P, P ) +
1

2N
EX∼P [τ

(2,0)
P,P (δX − P, δX − P )] +O(1/N2).

Combining these two expansions yields the desired result.
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A.3. Result 2: Asymptotic Analysis of the Train-Test-Split Estimator for the Reuse-and-Finiteness Bias

Following the previous section, this section analyzes the train-test-split estimator for the reuse-and-finiteness bias discussed
in Section 4.2.1. We provde a more general statement in Proposition A.3 in the same way as the previous section, and prove
Corollary 4.1 as a corollary.
Proposition A.3. Suppose we randomly divide the sample such that |Dtrain| : |Dtest| = λ : (1− λ) for some λ ∈ (0, 1),
and let P̂train and P̂test be the corresponding empirical distributions. Let us define,

bNsplit(P̂ ; τ) = E
[
τ(P̂train, P̂train)− τ(P̂train, P̂test)

]
. (21)

Then, the following holds:

EP̂∼PN [bNsplit(P̂ ; τ)] = bN (P ; τ) +O(1/N). (22)

Proof. By expanding τ around (P1, P2) = (P, P ), we have,

τ(P1, P2) =

∞∑
k=0

1

k!

k∑
ℓ=0

(
k

ℓ

)
τ
(ℓ,k−ℓ)
P,P ((P1 − P )⊗ℓ, (P2 − P )⊗(k−ℓ)).

Suppose we split the sample D into Dtrain and Dtest whose sample sizes are Ntrain and Ntest respectively such that
Dtrain ∪ Dtest = D, Dtrain ∩ Dtest = ∅, and Ntrain : Ntest = λ : (1− λ) (0 < λ < 1). Then, we have,

EP̂∼PN [bNsplit(P̂ ; τ)] = EP̂train∼PNtrain

P̂test∼PNtest

[
τ(P̂train, P̂train)− τ(P̂train, P̂test)

]
.

Each of the terms in the right-hand side can be expanded as follows:

EP̂train∼PNtrain τ(P̂train, P̂train) =τ(P, P ) +
1

2Ntrain

2∑
l=0

(
2

l

)
EX∼P

[
τ
(l,2−l)
P,P (δX − P, δX − P )

]
+O(1/N2

train), (23)

EP̂train∼PNtrain

P̂test∼PNtest

τ(P̂train, P̂test) =τ(P, P ) +
1

2Ntrain
EX∼P

[
τ
(2,0)
P,P (δX − P, δX − P )

]
+

1

2Ntest
EX∼P

[
τ
(0,2)
P,P (δX − P, δX − P )

]
+O(1/N2

test).

(24)

By combining the above expansions, we have,

EP̂∼PN [bNsplit(P̂ ; τ)] =
1

λN
EX∼P

[
τ
(1,1)
P,P (δX − P, δX − P )

]
+

1

2N

(
1

λ
− 1

1− λ

)
EX∼P

[
τ
(0,2)
P,P (δX − P, δX − P )

]
+O(1/N2) = bN (P ; τ) +O(1/N).

A.4. Result 3: Asymptotic Analysis of the Bootstrap Estimator for the Reuse-and-Finiteness Bias

In Section 4.2.2, we propose to use a bootstrap method to estimate the reuse-and-finiteness bias. The following proposition
shows that τ(P̂ , P̂ ) with bias correction by the bootstrap estimator bN (P̂ ; τ) is the second-order biased estimator of τ(P̂ , P ),
which is better than the plug-in estimator τ(P̂ , P̂ ).
Proposition A.4 (Bias of a bootstrap estimator of the reuse-and-finiteness bias). Take P , P̂ and bN (P ; τ) as in Proposi-
tion A.2. Then, we have

E[bN (P̂ ; τ)] = bN (P ; τ) +O(1/N2),

which implies,

E[τ(P̂ , P̂ )− bN (P̂ ; τ)] = E[τ(P̂ , P )] +O(1/N2). (25)

Moreover, √
E{bN (P̂ ; τ)− bN (P ; τ)}2 = O(1/N1.5).
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Proof. Define the coefficient of the O(1/N) term of the bias by,

β(P ; τ) := EX∼P

[
2τ

(1,1)
P,P (δX − P, δX − P ) + τ

(0,2)
P,P (δX − P, δX − P )

]
,

so that bN (P ; τ) = 1
2N β(P ; τ) + O(1/N2). Note that β(P ; τ) is independent of N . Thus, the stochastic expansion of

β(P̂ ; τ) at P gives

E[β(P̂ ; τ)] =

∞∑
k=0

1

k!
E
[
β
(k)
P ((P̂ − P )⊗k; τ)

]
=

∞∑
k=0

1

k!

1

Nk

N∑
n1,...,nk=1

E
[
β
(k)
P (δXn1

− P, ..., δXnk
− P ; τ)

]
= β(P ; τ) +

1

2N
EX∼P

[
β
(2)
P ((δX − P )⊗2; τ)

]
+O(1/N2).

Substituting this back to E[bN (P̂ ; τ)] = 1
2NE[β(P̂ ; τ)] +O(1/N2), we have

E[bN (P̂ ; τ)] =
1

2N

[
β(P ; τ) +

1

2N
EX∼P

[
β
(2)
P ((δX − P )⊗2; τ)

]
+O(1/N2)

]
+O(1/N2)

=
1

2N
β(P ; τ) +O(N−2) = bN (P ; τ) +O(1/N2),

which is the first desired result.

Similarly, the stochastic expansion gives

E{β(P̂ ; τ)− β(P ; τ)}2

= E

{ ∞∑
k=1

1

k!
β
(k)
P ((P̂ − P )⊗k; τ)

}2

=

∞∑
k=1

∞∑
ℓ=1

1

k!

1

ℓ!
E
[
β
(k)
P ((P̂ − P )⊗k; τ)β

(ℓ)
P ((P̂ − P )⊗ℓ; τ)

]
=

∞∑
k=1

∞∑
ℓ=1

1

k!

1

ℓ!

1

Nk

1

N ℓ

N∑
n1,...,nk=1

N∑
n′
1,...,n

′
ℓ=1

E
[
β
(k)
P (δXn1

− P, ..., δXnk
− P ; τ)β

(ℓ)
P (δXn′

1
− P, ..., δXn′

ℓ

− P ; τ)
]

=
1

N
EX∼P

[
β
(1)
P (δX − P ; τ)β

(1)
P (δX − P ; τ)

]
+O(1/N2)

= O(1/N),

and thus √
E{bN (P̂ ; τ)− bN (P ; τ)}2 =

√
1

4N2
E{β(P̂ ; τ)− β(P ; τ)}2 +O (1/N4) = O

(
1/N1.5

)
.

B. Reuse-and-Finiteness Bias for Optimal Generators
This section proves that the reuse-and-finiteness bias is non-negative for optimal generators under certain assumptions (Propo-
sition 3.3).

Proof of Proposition 3.3. Let αG(Q) := argmaxG∈G JPI(G,αf (Q)) for any distribution Q ∈ P(M × R). Since
JPI(αG(P̂ ), αf (P̂ )) ≥ JPI(αG(P ), αf (P̂ )) holds for any empirical distribution P̂ , taking the expectations of P̂ ∼ PN

yields,

EP̂∼PNJPI(αG(P̂ ), αf (P̂ )) ≥ EP̂∼PNJPI(αG(P ), αf (P̂ )) = JPI(αG(P ), αf (P )). (26)
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Since JPI(αG(P ), αf (P )) ≥ JPI(αG(P̂ ), αf (P )) holds for any P̂ , taking the expectations of P̂ ∼ PN yields,

JPI(αG(P ), αf (P )) ≥ EP̂∼PNJPI(αG(P̂ ), αf (P )). (27)

By combining these, we obtain the inequality.

C. More Insights into the Train-Test Split Method
This section investigates more on the train-test split method. First, Proposition C.1 shows that the test performance estimated
by the train-test split method is biased by O(1/N), which is the same order as the difference between Eτ(P̂ , P ) and τ(P, P ).
In contrast, the test performance estimated by bootstrap (e.g., Equation (25)) is biased by O(1/N2), which is better than the
train-test split method.
Proposition C.1. Test performance estimation by train-test split also fails:

Eτ(P̂train, P̂test) = EP̂∼PN τ(P̂ , P ) +O(1/N),

where EP̂∼PN τ(P̂ , P ) = τ(P, P ) +O(1/N) holds.

Proof. Recall that we split the sampleD intoDtrain andDtest with sample sizes Ntrain and Ntest such that Ntrain : Ntest =
λ : (1− λ). Equation (24) suggests that,

EP̂train∼PNtrain

P̂test∼PNtest

τ(P̂train, P̂test) =τ(P, P ) +
1

2λN
EX∼P

[
τ
(2,0)
P,P (δX − P, δX − P )

]
+

1

2(1− λ)N
EX∼P

[
τ
(0,2)
P,P (δX − P, δX − P )

]
+O(1/N2),

(28)

whereas the following holds:

EP̂∼PN τ(P̂ , P ) = τ(P, P ) +
1

2N
EX∼P

[
τ
(2,0)
P,P (δX − P, δX − P )

]
+O(1/N2). (29)

By comparing the equations above, the coefficients of O(1/N) terms do not coincide, and therefore, the test performance
estimated by the train-test split is biased by O(1/N).

The train-test split method is less biased if the test set is sufficiently large (Proposition C.2). This proposition is not useful in
practice, but it guarantees that we can estimate τ(P̂train, P ) by using a sufficiently large test sample.
Proposition C.2. In the limit of Ntest →∞, τ(P̂train, P̂test) coincides with τ(P̂train, P ) in expectation up to O(1/Ntrain)-
term.

Proof of Proposition C.2. Equation (24) suggests that,

lim
Ntest→∞

EP̂train∼PNtrain

P̂test∼PNtest

τ(P̂train, P̂test) = τ(P, P ) +
1

2Ntrain
EX∼P

[
τ
(2,0)
P,P (δX − P, δX − P )

]
+O(1/N2

train), (30)

which coincides with EP̂train∼PNtrain τ(P̂train, P ) up to O(1/Ntrain) term.

Let us finally discuss why the train-test split method is less accurate in our setting, whereas it is a common practice in
supervised learning. The key difference is that τ(P1, P2) is non-linear with respect to P2 in our setting, while it is linear
in the setting of supervised learning. Let us re-define τ(P1, P2) as an abstract performance estimator of a data-dependent
algorithm using P1 evaluated by another data-dependent algorithm using P2. The evaluation of a supervised learning
algorithm f can be instantiated as follows:

τ(P1, P2) = EZ∼P2ℓ(f(P1), Z), (31)

where Z = (X,Y ) is an example and ℓ denotes a loss function. The key observation is that Equation (31) is linear
in P2, whereas the performance estimator in our setting is in general non-linear in P2. If τ(P1, P2) is linear in P2,
τ
(0,2)
P,P (δX − P, δX − P ) = 0 holds, and therefore, the train-test split estimator coincides with the true bias up to O(1/N)

and is biased by O(1/N2).
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D. Experimental Settings
In this section, we introduce the details of our experimental settings. While we follow the environment and agent developed
by Gottipati et al. (2020) as much as possible, we made some modifications for consistency with our setting. The
main difference from the original environment is that we employ a finite-horizon reinforcement learning rather than an
infinite-horizon RL formulation. The environment and agent are modified accordingly.

D.1. Environment

The state space S is the set of molecules. The action space A is the direct product of the set of reaction templates and that of
reactants. In particular, let us represent the set of reactants by their feature vectors consisting of 35 molecular descriptors
used by Gottipati et al. (2020), V = {v1, . . . ,vL} ⊂ R35, and the set of reaction templates by Ω = {ω1, . . . , ωW }, and the
action space is defined as A = R35 × Ω. Given an action (v, ωw) ∈ A at the current state sh, the environment transits to
the next state as follows.

1. If the reaction template ωw requires one reactant, the reaction template is applied to the current mol sh.

(a) If the reaction succeeds, one of the possible products is randomly selected as the next state.
(b) If it fails, the current molecule is set as the next state.

2. If the reaction template ωw requires two reactants, the next state is defined as follows.

(a) Assume that the current molecule is used as the first reactant. The set of reactants is sorted by the distance to the
query vector v in ascending order, and the second reactant is selected by the one with the smallest distance of
those in the set which can be reacted with the first reactant using the reaction template ωw. As a result, a set of
possible products is obtained.

(b) Assuming that the current molecules is used as the second reactant, the first reactant is selected in the same way as
the previous procedure, and another set of possible products is obtained.

(c) One of these possible products is set as the next state.

Note that all of the reaction templates require no more than two reactants, and the above two cases cover all.

D.2. Agent

We employ an actor-critic architecture following the existing work (Gottipati et al., 2020). To adapt to the finite-horizon
setting, we prepare H + 1 copies of actors and critics, and use each copy for each step. Let πh(a | s; θh) be the actor and
Qh(s, a;ϕh) be the critic at step h ∈ [H + 1]. The learning algorithm repeatedly obtains pairs of an actor and a critic
for each h = H,H − 1, . . . , 0 backwardly. At each step, the parameters of the actor and critic are updated as follows for
t = 0, 1, 2, . . . , T − 1:

θ
(t+1)
h ← θ

(t)
h + α(t) ∂

∂θh
E
(s,a)∼D̄(t)

h

[
Qh(s, πh(s; θ

(t)
h );ϕ

(t)
h )

]
, (32)

ϕ
(t+1)
h ← ϕ

(t)
h − β(t) ∂

∂ϕh
E
(s,a)∼D̄(t)

h

[(
Qh(s, a;ϕ

(t)
h )− r −Qh+1(s

′, πh+1(s
′; θh+1);ϕh+1)

)2
]
, (33)

where α(t) and β(t) are learning rates and D̄(t)
h is a mini-batch of state-action pairs at step h drawn from a sample of

trajectories D̄.

The actor πh(a | s; θh) consists of a template selector, which receives the current state and outputs a reaction template to
be aplied at the next step, followed by a reactant selector, which receives the current state and the output of the template
selector and outputs a query vector of a reactant, v ∈ R35.

The template selector consists of a Morgan fingerprint module with radius 2 and 1024 bits, followed by a fully-connected
neural network with one hidden layer with 256 units, interleaved with a softplus activation except for the last layer. The
reactant selector consists of a Morgan fingerprint module with radius 2 and 1024 bits, which is then combined with the
output of the template selector and is fed into a fully-connected neural network with one hidden layer with 256 units,
interleaved with a softplus activation except for the last layer.
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Figure 3. Experimental result with the doubly-robust performance estimator JDR.

The critic network is a mapping from the current state and the outputs of the template selector and reactant selector to
the estimated value of the current state and the action generated by the actor. The current molecule is converted into a
continuous vector using the Morgan fingerprint with radius 2 and 1024 bits, which are concatenated with the outputs and fed
into a fully-connected neural network with one hidden layer with 256 units, interleaved with a softplus activation except for
the last layer.

For the first 500 steps, we only update the parameters of the critic, fixing those of the actor, and after that, both of them are
updated for another 1,500 steps. They are optimized by AdaGrad (Duchi et al., 2011) with initial learning rate 4× 10−4 and
batch size 64.

D.3. Evaluators

The reward model f̂ is a fully-connected neural network with one hidden layer of 96 units with softplus activations except
for the last layer. It is trained by minimizing the risk defined over S ∼ P by AdaGrad for 104 steps with initial learning rate
10−3 and batch size 128.

The importance weight model, KuLSIF, has a regularization hyperparameter λw. We chose it from {2−20, . . . , 20} by
leave-one-out cross validation.

D.4. Computational Environment

We implement the whole simulation in Python 3.9.0. All of the chemistry-related operations including the template-based
chemical reaction is implemented by RDKit (2021.09.3). We used an IBM Cloud with 16×2.10GHz CPU cores, 128GB
memory, and two NVIDIA Tesla P100 GPUs.

E. Full Experimental Result
We report the performance estimates by the doubly-robust performance estimator JDR in Figure 3. As evident from it, the
scores are over-estimated primarily due to the over-estimation by the importance sampling performance estimator.
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