
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

Ayano Kaneda* 1 Osman Akar* 2 Jingyu Chen 2 Victoria Alicia Trevino Kala 2 David Hyde 3 Joseph Teran 4

Abstract

We present a novel deep learning approach to ap-
proximate the solution of large, sparse, symmetric,
positive-definite linear systems of equations. Mo-
tivated by the conjugate gradients algorithm that
iteratively selects search directions for minimiz-
ing the matrix norm of the approximation error,
we design an approach that utilizes a deep neural
network to accelerate convergence via data-driven
improvement of the search direction at each iter-
ation. Our method leverages a carefully chosen
convolutional network to approximate the action
of the inverse of the linear operator up to an arbi-
trary constant. We demonstrate the efficacy of our
approach on spatially discretized Poisson equa-
tions, which arise in computational fluid dynamics
applications, with millions of degrees of freedom.
Unlike state-of-the-art learning approaches, our
algorithm is capable of reducing the linear sys-
tem residual to a given tolerance in a small num-
ber of iterations, independent of the problem size.
Moreover, our method generalizes effectively to
various systems beyond those encountered during
training.

1. Introduction
The solution of large, sparse systems of linear equations is
ubiquitous when partial differential equations (PDEs) are
discretized to computationally simulate complex natural
phenomena such as fluid flow (Losasso et al., 2006), ther-
modynamics (Chen et al., 2021), or mechanical fracture
(Paluszny & Zimmerman, 2011). For linear systems arising

*Equal contribution 1Department of Applied Physics, Waseda
University, Tokyo, Japan 2Department of Mathematics, Univer-
sity of California, Los Angeles, USA 3Department of Computer
Science, Vanderbilt University, Nashville, USA 4Department of
Mathematics, University of California, Davis, USA. Correspon-
dence to: Ayano Kaneda <dizzy-miss-lizzy@moegi.waseda.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

from these diverse applications, we use the notation

Ax = b, (1)

where the dimension n of the matrix A ∈ Rn×n and the
vector b ∈ Rn correlates with spatial fidelity of the com-
putational domain. Quality and realism of a simulation are
proportional to this spatial fidelity; typical modern appli-
cations of numerical PDEs require solving linear systems
with millions of unknowns. In such applications, numeri-
cal approximation to the solution of these linear systems
is typically the bottleneck in overall performance; accord-
ingly, practitioners have spent decades devising specialized
algorithms for their efficient solution (Golub & Loan, 2012;
Saad, 2003).

The appropriate numerical linear algebra technique depends
on the nature of the problem. Direct solvers that utilize
matrix factorizations (QR, Cholesky, etc. (Trefethen & Bau,
1997)) have optimal approximation error, but their com-
putational cost is O(n3), and they typically require dense
storage, even for sparse A. Although Fast Fourier Trans-
forms (Nussbaumer, 1981) can be used in limited instances
(periodic boundary conditions, etc.), iterative techniques
are most commonly adopted for sparse systems, which are
typical for discretized PDEs. Many applications with strict
performance constraints (e.g., real-time fluid simulation) uti-
lize basic iterations (Jacobi, Gauss-Seidel, successive over
relaxation (SOR), etc.) given limited computational budget
(Saad, 2003). However, large approximation errors must
be tolerated since iteration counts are limited by the perfor-
mance constraints. This is particularly problematic since the
wide elliptic spectrum of these matrices (a condition that
worsens with increased spatial fidelity/matrix dimension)
leads to poor conditioning and iteration counts. Iterative
techniques can achieve sub-quadratic convergence if their
iteration count does not grow excessively with problem
size n since each iteration generally requires O(n) floating
point operations for sparse matrices. Discrete elliptic opera-
tors are typically symmetric positive (semi) definite, which
means that the preconditioned conjugate gradients method
(PCG) can be used to minimize iteration counts (Saad, 2003;
Hestenes & Stiefel, 1952; Stiefel, 1952).

In the present work, we consider sparse linear systems that
arise from discrete Poisson equations in incompressible flow
applications (Chorin, 1967; Fedkiw et al., 2001; Bridson,

1

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

2008). These equations yield discrete elliptic operators,
so PCG is the algorithm of choice for the associated lin-
ear systems; yet there is a subsequent question of which
preconditioner to use. Preconditioners P for PCG must
simultaneously: be symmetric positive definite (SPD) (and
therefore admit factorization P = F 2), improve the condi-
tion number of the preconditioned system FAFy = Fb,
and be computationally cheap to construct and apply; ac-
cordingly, designing specialized preconditioners for particu-
lar classes of problems is somewhat of an art. Incomplete
Cholesky preconditioners (ICPCG) (Kershaw, 1978) use
a sparse approximation to the Cholesky factorization and
significantly reduce iteration counts; however, their inherent
data dependency prevents efficient parallel implementation.
Nonetheless, these are very commonly adopted for Pois-
son equations arising in incompressible flow (Fedkiw et al.,
2001; Bridson, 2008). Multigrid (Brandt, 1977) and domain
decomposition (Saad, 2003) preconditioners greatly reduce
iterations counts, but they must be updated (with non-trivial
cost) each time the problem changes (e.g., in computational
domains with time-varying boundaries) and/or for different
hardware platforms. In general, choice of an optimal pre-
conditioner for discrete elliptic operators is an open area of
research.

Recently, data-driven approaches that leverage deep learning
techniques have shown promise for solving linear systems.
Various researchers have investigated machine learning es-
timation of multigrid parameters (Greenfeld et al., 2019;
Grebhahn et al., 2016; Luz et al., 2020). Others have devel-
oped machine learning methods to estimate preconditioners
(Götz & Anzt, 2018; Stanaityte, 2020; Ichimura et al., 2020)
and initial guesses for iterative methods (Luna et al., 2021;
Um et al., 2020; Ackmann et al., 2020). Tompson et al.
(2017) and Yang et al. (2016) develop non-iterative machine
learning approximations of the inverse of discrete Poisson
equations from incompressible flow.

This paper develops a novel conjugate gradients-style itera-
tive method, enabled by deep learning, for approximating
the solution of SPD linear systems, which we call the deep
conjugate direction method (DCDM). CG iteratively adds
A-conjugate search directions while minimizing the matrix
norm of the error. We instead use a convolutional neural
network (CNN) as an approximation of the inverse of the
matrix in order to generate more efficient search directions.
We only ask that our network approximate the inverse up
to an unknown scaling since this decreases the degree of
nonlinearity and since it does not affect the quality of the
search direction (which is scale independent). The network
is similar to a preconditioner, but it is not a linear function,
and our DCDM method is designed to accommodate this
nonlinearity. We use self-supervised learning to train our
network with a loss function equal to the L2 difference be-
tween an input vector and a scaling of A times the output

of our network. To account for this unknown scaling during
training, we choose the scale of the output of the network
by minimizing the matrix norm of the error. Our approach
allows for efficient training and generalization to problems
unseen (new matrices A and new right-hand sides b). We
benchmark our algorithm using the ubiquitous pressure Pois-
son equation (discretized on regular voxelized domains) and
compare against FluidNet (Tompson et al., 2017), which is
the state-of-the-art learning-based method for these types of
problems.

DCDM can be viewed as an improved version of Tompson
et al. (2017), because unlike the non-iterative approaches of
Tompson et al. (2017) and Yang et al. (2016), our method
can reduce the linear system residuals arbitrarily. We show-
case our approach with examples that have over 16 million
degrees of freedom.

2. Related Work
Several papers have focused on enhancing the solution of
linear systems (arising from discretized PDEs) using learn-
ing. For instance, Götz & Anzt (2018) generate sparsity
patterns for block-Jacobi preconditioners using convolu-
tional neural networks, and Stanaityte (2020) use a CNN to
predict non-zero patterns for ILU-type preconditioners for
the Navier-Stokes equations (though neither work designs
fundamentally new preconditioners). Ichimura et al. (2020)
develop a neural-network based preconditioner where the
network is used to predict approximate Green’s functions
(which arise in the analytical solution of certain PDEs)
that in turn yield an approximate inverse of the linear sys-
tem. Hsieh et al. (2019) learn an iterator that solves linear
systems, performing competitively with classical solvers
like multigrid-preconditioned MINRES (Paige & Saunders,
1975). Luz et al. (2020) and Greenfeld et al. (2019) use
machine learning to estimate algebraic multigrid (AMG)
parameters. They note that AMG approaches rely most
fundamentally on effectively chosen (problem-dependent)
prolongation sparse matrices and that numerous methods
have attempted to automatically create them from the ma-
trix A. They train a graph neural network to learn (in an
unsupervised fashion) a mapping from matrices A to prolon-
gation operators. Grebhahn et al. (2016) note that geometric
multigrid solver parameters can be difficult to choose to
guarantee parallel performance on different hardware plat-
forms. They use machine learning to create a code generator
to help achieve this.

Several works consider accelerating the solution of linear
systems by learning an initial guess that is close to the
true solution or otherwise helpful to descent algorithms for
finding the true solution. In order to solve the discretized
Poisson equation, Luna et al. (2021) accelerate the conver-
gence of GMRES (Saad & Schultz, 1986) with an initial

2

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

guess that is learned in real-time (i.e., as a simulation code
runs) with no prior data. Um et al. (2020) train a network
(incorporating differentiable physics, based on the underly-
ing PDEs) in order to produce high-quality initial guesses
for a CG solver. In a somewhat similar vein, Ackmann
et al. (2020) use a simple feedforward neural network to
predict pointwise solution components, which accelerates
the conjugate residual method used to solve a relatively sim-
ple shallow-water model (a more sophisticated network and
loss function are needed to handle more general PDEs and
larger-scale problems).

At least two papers (Ruelmann et al., 2018; Sappl et al.,
2019) have sought to learn a mapping between a matrix and
an associated sparse approximate inverse. In their investi-
gation, Ruelmann et al. (2018) propose training a neural
network using matrix-inverse pairs as training data. Al-
though straightforward to implement, the cost of generating
training data, let alone training the network, is prohibitive
for large-scale 3D problems. Sappl et al. (2019) seek to
learn a mapping between linear system matrices and sparse
(banded) approximate inverses. Their loss function is the
condition number of the product of the system matrix and
the approximate inverse; the minimum value of the condi-
tion number is one. Although this framework is quite simple,
evaluating the condition number of a matrix is asymptoti-
cally costly (O(n3)), and in general, the inverse of a sparse
matrix can be quite dense. Accordingly, the method is not
efficient or accurate enough for the large-scale 3D problems
that arise in real-world engineering problems.

DCDM can also be viewed as a novel learning to optimize
(L2O) method. L2O methods use learning to devise contin-
uous optimization algorithms; for example, Andrychowicz
et al. (2016) learn a gradient descent algorithm, Li & Malik
(2016) provide a general reinforcement learning framework
for learning optimization algorithms, Shen et al. (2019)
apply L2O to minimax problems, and Liao et al. (2022)
perform online meta-learning of quasi-Newton optimization
methods. We refer the reader to Chen et al. (2022) for a
recent review of L2O techniques.

Most relevant to the present work is FluidNet (Tompson
et al., 2017). FluidNet uses a highly-tailored CNN architec-
ture to predict the solution of a linear projection operation
(specifically, for the discrete Poisson equation) given a ma-
trix and right-hand side. The authors demonstrate fluid simu-
lations where the linear solve is replaced by evaluating their
network. Because their network is relatively lightweight
and is only evaluated once per time step, their simulations
run efficiently. However, their design allows the network
only one opportunity to reduce the residual for the linear
solve; in practice, we observe that FluidNet is able to reduce
the residual by no more than about one order of magnitude.
However, in computer graphics applications, at least four

 -1

 -1 4 -1

 -1

 -1

 2 -1 -1

 -1 3 -1𝑨! 𝑨"#$%&

𝒂 𝒃 𝒄 𝒅

object

boundary

Figure 1. (a) We illustrate a sample flow domain Ω ⊂ (0, 1)2 (in
2D for ease of illustration) with internal boundaries (blue lines). (b)
We voxelize the domain with a regular grid: white cells represent
interior/fluid, and blue cells represent boundary conditions. (c)
We train using the matrix Atrain from a discretized domain with
no interior boundary conditions, where d is the dimension. This
creates linear system with n = (nc + 1)d unknowns, where nc is
the number of grid cells on each direction. (d) We illustrate the
non-zero entries in an example matrix AΩ from the voxelized and
labeled (white vs. blue) grid for three example interior cells (green,
magenta, and brown). Each case illustrates the non-zero entries
in the row associated with the example cell. All entries of AΩ in
rows corresponding to boundary/blue cells are zero.

orders of magnitude in residual reduction are usually re-
quired for visual fidelity, while in scientific and engineering
applications, practitioners prefer solutions that reduce the
residual by eight or more orders of magnitude (i.e., to within
machine precision). Accordingly, FluidNet’s lack of con-
vergence stands in stark contrast to classical, convergent
methods like CG. Our method resolves this gap.

3. Motivation: Incompressible Flow
We demonstrate the efficacy of our approach with the lin-
ear systems that arise in incompressible flow applications.
Specifically, we use our algorithm to solve the Poisson equa-
tion discretized on a regular grid, following the pressure
projection equations that arise in Chorin’s splitting tech-
nique (Chorin, 1967) for the inviscid, incompressible Euler
equations. These equations are

ρ

(
∂u

∂t
+

∂u

∂x
u

)
+∇p = fext, ∇ · u = 0 (2)

where u is fluid velocity, p is pressure, ρ is density, and
fext accounts for external forces like gravity. The equa-
tions are assumed at all positions x in the spatial fluid flow
domain Ω and for time t > 0. The first equation in Equa-
tion 2 enforces conservation of momentum in the absence
of viscosity, and the second enforces incompressibility and
conservation of mass. These equations are subject to ini-
tial conditions ρ(x, 0) = ρ0 and u(x, 0) = u0(x), as well
as boundary conditions u(x, t) · n(x) = u∂Ω(x, t) on the
boundary of the domain x ∈ ∂Ω (where n is the unit out-
ward pointing normal at position x on the boundary).

Equation 2 is discretized in both time and space. Temporally,

we split the advection
∂u

∂t
+

∂u

∂x
u = 0 and body forces

3

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

terms ρ
∂u

∂t
= fext, and finally enforce incompressibility

via the pressure projection
∂u

∂t
+

1

ρ
∇p = 0 such that ∇ ·

u = 0; this is the standard advection-projection scheme
proposed by Chorin (1967). Using finite differences in time,
we can summarize this as

ρ0
(
u∗ − un

∆t
+

∂un

∂x
un

)
= fext (3)

−∇ · 1

ρ0
∇pn+1 = −∇ · u∗ (4)

− 1

ρ0
∇pn+1 · n =

1

∆t

(
u∂Ω − u∗ · n

)
. (5)

For the spatial discretization, we use a regular marker-and-
cell (MAC) grid (Harlow & Welch, 1965) with cubic voxels
whereby velocity components are stored on the face of voxel
cells, and scalar quantities (e.g., pressure p or density ρ) are
stored at voxel centers. We use backward semi-Lagrangian
advection (Fedkiw et al., 2001; Gagniere et al., 2020) for
Equation 3. All spatial partial derivatives are approximated
using finite differences. Equations 4 and 5 describe the
pressure Poisson equation with Neumann conditions on the
boundary of the flow domain. We discretize the left-hand
side of Equation 4 using a standard 7-point finite difference
stencil. The right-hand side is discretized using the MAC
grid discrete divergence finite difference stencils as well as
contributions from the boundary condition terms in Equa-
tion 5. We refer the reader to Bridson (2008) for more in-
depth implementation details. Equation 5 is discretized by
modifying the Poisson stencil to enforce Neumann boundary
conditions. We do this using a simple labeling of the voxels
in the domain. For simplicity, we assume Ω ⊂ (0, 1)3 is a
subset of the unit cube, potentially with internal boundaries.
We label cells in the domain as either liquid or boundary.
This simple classification is enough to define the discrete
Poisson operators (with appropriate Neumann boundary
conditions at domain boundaries) that we focus on in the
present work; we illustrate the details in Figure 1.

We use the following notation to denote the discrete Poisson
equations associated with Equations 4–5:

AΩx = b∇·u∗
+ bu

∂Ω

, (6)

where AΩ is the discrete Poisson matrix associated with
the voxelized domain, x is the vector of unknown pressure,
and b∇·u∗

and bu
∂Ω

are the right-hand side terms from
Equations 4 and 5, respectively. AΩ in Equation 6, is a large,
sparse, SPD linear system. The computational complexity
of solving Equation 6 strongly depends on data (e.g., internal
boundary conditions in the flow domain, see Figure 1).

We define a special case of the matrix involved in this dis-
cretization to be the Poisson matrix Atrain associated with

Ω = (0, 1)3, i.e., a full fluid domain with no internal bound-
aries. We use this matrix for training, yet demonstrate that
our network generalizes to all other matrices arising from
more complicated flow domains. To be clear, the implica-
tion of this is that by training DCDM one time—which we
have already done, and we release our pre-trained models
and source code along with this paper—practitioners can
immediately apply DCDM to any Poisson system (regard-
less of internal boundary conditions, etc.). Although there
is a clear limitation that we only train our network to solve
Poisson problems, this is a major advantage over state-of-
the-art methods like FluidNet (Tompson et al., 2017), which
require highly diverse training data (matrices from many
fluid simulations, all with different types of obstacles and
boundary conditions) in order to train a network with suffi-
cient generalization; we only ever leverage a single training
matrix (i.e., a single set of boundary conditions) Atrain.

4. Deep Conjugate Direction Method
We present our method for the deep learning acceleration
of iterative approximations to the solution of linear systems
of the form seen in Equation 6. We first briefly discuss
relevant details of search direction methods, particularly the
choice of line search directions1. We then present a deep
learning technique for improving the quality of these search
directions that ultimately reduces iteration counts required
to achieve satisfactory residual reduction. Lastly, we outline
the training procedures for our deep CNN.

Our approach iteratively improves approximations to the
solution x of Equation 6. We build on the method of CG,
which requires the matrix AΩ in Equation 6 to be SPD.
SPD matrices AΩ give rise to the matrix norm ∥y∥AΩ =√

yTAΩy. CG can be derived in terms of iterative line
search improvement based on optimality in this norm. That
is, an iterate xk−1 ≈ x is updated along search direction
dk by a step size αk that is chosen to minimize the matrix
norm of the error between the updated iterate and x:

αk = argmin
α

1

2
∥x− (xk−1 + αdk)∥2AΩ

=
rTk−1dk

dT
kA

Ωdk
, (7)

where rk−1 = b −AΩxk−1 is the (k − 1)th residual (see
Appendix A.2 for details). Different search directions dk re-
sult in different algorithms. A natural choice is the negative
gradient of the matrix norm of the error (evaluated at the
current iterate), dk = − 1

2∇∥xk−1∥2AΩ = rk−1, since this
will point in the direction of steepest decrease. This is the
gradient descent method (GD). Unfortunately, this approach
requires many iterations in practice. CG modifies GD into a

1For a comprehensive background on CG, see Appendix A.1.

4

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

more effective strategy by instead choosing directions that
are A-orthogonal (i.e., dT

i A
Ωdj = 0 for i ̸= j). More

precisely, the search direction dk is chosen as follows:

dk = rk−1 −
k−1∑
i=1

hikdi, hik =
dT
i A

Ωrk−1

dT
i A

Ωdi
,

which guarantees A-orthogonality. The magic of CG is that
hik = 0 for i < k−1, hence this iteration can be performed
without the need to store all previous search directions di

and without the need for computing all previous hik.

While the residual is a natural choice for generating A-
orthogonal search directions (since it points in the direction
of the steepest local decrease), it is not the optimal search
direction. Optimality is achieved when dk is parallel to
(AΩ)−1rk−1, whereby xk will be equal to x since αk (com-
puted from Equation 7) will step directly to the solution. We
can see this by considering the residual and its relation to
the search direction:

rk = b−AΩxk = b−AΩxk−1 − αkA
Ωdk

= rk−1 − αkA
Ωdk.

In light of this, we use deep learning to create an approxi-
mation f(c, r) to (AΩ)−1r, where c denotes the network
weights and biases. This is analogous to using a precondi-
tioner in PCG; however, our network is not SPD (nor even a
linear function). We simply use this data-driven approach
as our means of generating better search directions dk. Fur-
thermore, we only need to approximate a vector parallel to
(AΩ)−1r since the step size αk will account for any scaling
in practice. In other words, f(c, r) ≈ sr(A

Ω)−1r, where
the scalar sr is not defined globally; it only depends on r,
and the model does not learn it. Lastly, as with CG, we
enforce A-orthogonality, yielding search directions

dk = f(c, rk−1)−
k−1∑
i=1

hikdi, hik =
f(c, rk−1)

TAΩdi

dT
i A

Ωdi
.

We summarize our approach in Algorithm 1. Note that we
introduce the variable istart. To guarantee A-orthogonality
between all search directions, we must have istart = 1. How-
ever, this requires storing all prior search directions, which
can be costly. We found that using istart = k − 2 worked
nearly as well as istart = 1 in practice (in terms of our abil-
ity to iteratively reduce the residual of the system). We
demonstrate this in Figure 4c.

Algorithm 1 DCDM
1: r0 = b−AΩx0

2: k = 1
3: while ∥rk−1∥ ≥ ϵ do
4: dk = f(c, rk−1

∥rk−1∥)

5: for istart ≤ i < k do
6: hik =

dT
k AΩdi

dT
i AΩdi

7: dk-=hikdi

8: end for
9: αk =

rT
k−1dk

dT
k AΩdk

10: xk = xk−1 + αkdk

11: rk = b−AΩxk

12: k = k + 1
13: end while

5. Model Architecture, Datasets, and Training
Efficient performance of our method requires effective train-
ing of our deep convolutional network for weights and bi-
ases c such that f(c, r) ≈ sr(A

Ω)−1r (for arbitrary scalar
sr). We design a model architecture, loss function, and self-
supervised training approach to achieve this. Our approach
has modest training requirements and allows for effective
residual reduction while generalizing well to problems not
seen in the training data.

5.1. Loss Function and Self-supervised Learning

Although we generalize to arbitrary matrices AΩ from Equa-
tion 6 that correspond to domains Ω ⊂ (0, 1)3 that have
internal boundaries (see Figure 1), we train using just the
matrix Atrain from the full cube domain (0, 1)3. “the full
cube domain (0, 1)3” is just the unit cube discretized on
regular intervals, see e.g. Figure 1(c).

In contrast, other similar approaches (Tompson et al., 2017;
Yang et al., 2016) train using matrices AΩ and right-hand
sides b∇·u∗

+ bu
∂Ω

that arise from flow in many domains
with internal boundaries. We train our network by min-
imizing the L2 difference ∥r − αAtrainf(c, r)∥2, where
α = rT f(c,r)

f(c,r)TAtrainf(c,r)
from Equation 7. This choice of α

accounts for the unknown scaling in the approximation of
f(c, r) to

(
Atrain

)−1
r. We use a self-supervised approach

and train the model by minimizing

Loss(f , c,D) = 1
|D|
∑

r∈D ∥r − rT f(c,r)
f(c,r)TAtrainf(c,r)

Atrainf(c, r)∥2

for a given dataset D consisting of training vectors bi. In
Algorithm 1, the normalized residuals rk

∥rk∥ are passed as
inputs to the model. Unlike in e.g. FluidNet (Tompson
et al., 2017), only the first residual r0

∥r0∥ is directly related
to the problem-dependent original right-hand side b. Hence
we consider a broader range of training vectors than those

5

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

expected in a given problem of interest, e.g., incompress-
ible flows. We observe that generally the residuals rk in
Algorithm 1 are skewed to the lower end of the spectrum
of the matrix AΩ. Since AΩ is a discretized elliptic op-
erator, lower end modes are of lower frequency of spatial
oscillation. We create our training vectors bi ∈ D using
m ≪ n approximate eigenvectors of the training matrix
Atrain. We use the Rayleigh-Ritz method to create approxi-
mate eigenvectors qi, 0 ≤ i < m. This approach allows us
to effectively approximate the full spectrum of Atrain with-
out computing the full eigendecomposition, which can be
expensive (O(n3)) at high resolution. Note that generating
the dataset has O(m2N) complexity, N being the resolution
(e.g., 643 or 1283), due to reorthogonalization of Lanczos
vectors (see Appendix A.4). Hence we tried values like m
= 1K, 5K, 10K, and 20K, and chose the smallest value (m
= 10,000) that gave a viable model after training.

The Rayleigh-Ritz vectors are orthonormal and satisfy
QT

mAtrainQm = Λm, where Λm is a diagonal ma-
trix with nondecreasing diagonal entries λi referred to
as Ritz values (approximate eigenvalues) and Qm =

[q0, q1, . . . , qm−1] ∈ Rn×m. We pick bi =
∑m−1

j=0 cijqj

∥∑m−1
j=0 cijqj∥ ,

where the coefficients cij are picked from a standard normal
distribution

cij =

{
9 · N (0, 1) if j̃ ≤ j ≤ m

2 + θ

N (0, 1) otherwise

where θ is a small number (we used θ = 500), and j̃ is
the first index that λj̃ > 0. This choice creates 90% of
bi from the lower end of the spectrum, with the remaining
10% from the higher end. The Riemann-Lebesgue Lemma
states the Fourier spectrum of a continuous function will
decay at infinity, so this specific choice of bi’s is reasonable
for the training set. In practice, we also observed that the
right-hand sides of the pressure system that arose in flow
problems (in the empty domain) tended to be at the lower
end of the spectrum. Notably, even though this dataset
only uses Rayleigh-Ritz vectors from the training matrix
Atrain, our network can be effectively generalized to flows
in irregular domains, e.g., smoke flowing past a rotating box
and flow past a bunny (see Figure 3).

We generate the Rayleigh-Ritz vectors by first tridiagonal-
izing the training matrix Atrain with m Lanczos iterations
(Lanczos, 1950) to form Tm = QL

m
T
AtrainQL

m ∈ Rm×m.
We then diagonalize Tm = Q̂TΛmQ̂. While asymptoti-
cally costly, we note that this algorithm is performed on the
comparably small m × m matrix Tm (rather than on the
Atrain ∈ Rn×n). This yields the Rayleigh-Ritz vectors as
the columns of Qm = QL

mQ̂. The Lanczos vectors are the
columns of the matrix QL

m and satisfy a three-term recur-
rence whereby the next Lanczos vector can be iteratively

16 x 1283 16 x 1283 16 x 1283 16 x 128316 x 1283

1 Residual Block

2K+1 Conv Layers

K Residual Blocks (K-RB)

16 x 1283 16 x 1283

1 x 1283
16 x 1283 16 x 1283

2-RB

16 x 1283 16 x 1283

5-RB

16 x 643 16 x 643

2x2x2 AveragePooling 2x2x2 UpScale

3-RB

16 x 1283 16 x 1283 1 x 1283

: 3x3x3 Conv, ReLU
: Addition
: 3x3x3 Conv, Linear
: Dense, Linear

Figure 2. Architecture for training with Atrain on a 1283 grid.

computed from previous two as

βjq
L
j+1 = AtrainqL

j − βj−1q
L
j−1 − αjq

L
j ,

where αj and βj are diagonal and subdiagonal entries of
T k. βj is computed so that qL

j+1 is a unit vector, and
αj+1 = qT

j+1A
trainqj+1. We initialize the iteration with

a random qL
0 ∈ span(Atrain). The Lanczos algorithm can

be viewed as a modified Gram-Schmidt technique to create
an orthonormal basis for the Krylov space associated with
qL
0 and Atrain, and it therefore suffers from rounding error

sensitivities manifested as loss of orthonormality with vec-
tors that do not appear in the recurrence. We found that the
simple strategy described in Paige (1971) of orthogonaliz-
ing each iterate with respect to all previous Lanczos vectors
to be sufficient for our training purposes. Dataset creation
takes 5–7 hours for a 643 computational grid, and 2–2.5
days for a 1283 grid (see Appendix A.4 for more detail).

We reiterate that since DCDM generalizes to various Poisson
systems (see Sections 5.2 and 6) despite only using data
corresponding to an empty fluid domain, practitioners do
not need to generate new data in order to apply our method.
Moreover, we show in the examples that it is possible to
use trained model weights from a lower-resolution grid for
higher-resolution problems, so practitioners may not need
to generate new data even if running problems at different
resolutions than what we consider.

5.2. Model Architecture

The internal structure of our CNN architecture for a 1283

grid is shown in Figure 2. It consists of a series of convo-
lutional layers with residual connections. The upper left of
Figure 2 (K Residual Blocks) shows our use of multiple
blocks of residually connected layers. Notably, within each
block, the first layer directly affects the last layer with an
addition operator. All non-input or output convolutions use
a 3× 3× 3 filter, and all layers consist of 16 feature maps.
In the middle of the first level, a layer is downsampled (via
the average pooling operator with (2 × 2 × 2) pool size)

6

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

and another set of convolutional layers is applied with resid-
ual connection blocks. The last layer in the second level
is upscaled and added to the layer that is downsampled.
The last layer in the network is dense with a identity func-
tion. The activation functions in all convolutional layers are
ReLU, except for the first convolution, which uses a linear
activation function.

Initially we tried a simple deep feedforward convolutional
network with residual connections (motivated by He et al.
(2016)). Although such a simple model works well for
DCDM, it requires a high number of layers, which results in
higher training and inference times. We found that creating
parallel layers of CNNs with downsampling reduced the
number of layers required. In summary, our goal was to first
identify the simplest network architecture that provided ade-
quate accuracy for our target problems, and subsequently,
we sought to make architectural changes to minimize train-
ing and inference time. We are interested in a more thorough
investigation of potential network architectures, filter sizes,
etc., to better characterize the tradeoff curves between ac-
curacy and efficiency; as a first step in this direction, we
included a brief ablation study in Appendix A.4.

Differing resolutions use differing numbers of convolutions,
but the fundamental structure remains the same. More pre-
cisely, the number of residual connections is changed for
different resolutions. For example, a 643 grid uses one resid-
ual block on the left, two on the right on the upper level, and
three on the lower level. Furthermore, the weights trained on
a lower resolution grid can be used effectively with higher
resolutions. Figure 4d shows convergence results for a 2563

grid, using a model trained for a 643 grid and a 1283 grid.
The model that we use for 2563 grids in our final examples
was trained on a 1283 grid; however, as the shown in the
figure, even training with a 643 grid allows for efficient
residual reduction. Table 1 shows results for three differ-
ent resolutions, where DCDM uses 643 and 1283 trained
models. Since we can use the same weights trained over a
64d domain and/or 128d domain, the number of parameters
does not depend on the spatial fidelity. It depends on d for
the kernel size.

5.3. Training

Using the procedure explained in Section 5.1, we create the
training dataset D ∈ span(Atrain)∩Sn−1 of size 20,000 gen-
erated from 10,000 Rayleigh-Ritz vectors. Sn−1 is the unit
sphere, i.e., all training vectors are scaled to have unit length.
We train our model with TensorFlow (Abadi et al., 2015)
on a single NVIDIA RTX A6000 GPU with 48GB memory.
Training is done with standard deep learning techniques—
more precisely, back-propagation and the ADAM optimizer
(Kingma & Ba, 2015) (with starting learning rate 0.0001).
Training takes approximately 10 minutes and 1 hour per

Figure 3. DCDM for simulating a variety of incompressible flow
examples. Left: smoke plume at t = 6.67, 13.33, 20 seconds.
Middle: smoke passing a bunny at t = 5, 10, 15 seconds. Right:
smoke passing a spinning box (time-dependent Neumann boundary
conditions) at t = 2.67, 6, 9.33 seconds.

epoch for grid resolutions 643 and 1283, respectively. We
trained our model for 50 epochs; however, the model from
the thirty-first epoch was optimal for 643, and the model
from the third epoch was optimal for 1283.

6. Results and Analysis
We demonstrate DCDM on three increasingly difficult ex-
amples and provide numerical evidence for the efficient
convergence of our method. All examples were run on a
workstation with dual stock AMD EPYC 75F3 processors,
and an NVIDIA RTX A6000 GPU with 48GB memory.The
grid resolutions we evaluate are the same as used in e.g.
Tompson et al. (2017) and are common for graphics papers.

Figure 3 showcases DCDM for incompressible smoke sim-
ulations. In each simulation, inlet boundary conditions are
set in a circular portion of the bottom of the cubic domain,
whereby smoke flows around potential obstacles and fills
the domain. We show a smoke plume (no obstacles), flow
past a complex static geometry (the Stanford bunny), and
flow past a dynamic geometry (a rotating cube). Visually
plausible and highly-detailed results are achieved for each
simulation (see supplementary material for larger videos).
The plume example uses a computational grid with resolu-
tion 1283, while the other two uses grids with resolution
2563 (representing over 16 million unknowns). For each
linear solve, DCDM was run until the residual was reduced
by four orders of magnitude2. In our experience, production-
grade solvers (e.g., 3D smoke simulators for movie visual
effects) use resolutions of 1283 or more, and as computing
resources improve we are seeing more problems solved at
huge scales like 5123 and above, where a learning-enhanced

2Computer graphics experts have found that solving Poisson
equations until a four orders-of-magnitude reduction in residual is
achieved is enough for visual realism (any further computational
effort does not yield easily perceptible differences) (McAdams
et al., 2010; Panuelos et al., 2023).

7

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

method like DCDM will have a more dramatic impact.

iterations

lo
g

10
(k

rk
=k

r 0
k)

0 10 20 30 40
-4

-3

-2

-1

0
DCDM 128
FN 128
DCDM 256
FN 256

0 100 200 300 400 500 600 700
-4

-3

-2

-1

0
ICPCG
CG
FN
DCDM
De.atedCG

0 5 10 15 20 25 30 35
-4

-3

-2

-1

0
is = k
is = k ! 1
is = k ! 2
is = k ! 10
is = 1

0 20 40 60 80 100
-4

-3

-2

-1

0 64 trained
128 trained

Figure 4. Convergence data for the bunny example (see also Table
1). (a) Mean and std. dev. (over all 400 frames in the simulation) of
residual reduction during linear solves (with 1283 and 2563 grids)
using FluidNet (FN) and DCDM. (b) Residual plots with ICPCG,
CG, FN, DCDM, and Deflated CG at frame 150. Dashed and
solid lines represent results for 1283 and 2563, respectively. (c)
Decrease in residuals with varying degrees of A-orthogonalization
(is = istart) in the 1283 case. (d) Reduction in residuals when
the network is trained with a 643 or 1283 grid for the 2563 grid
simulation shown in Figure 3 Middle.

For the bunny example, Figures 4a–b demonstrate how resid-
uals decrease over the course of a linear solve, comparing
DCDM with other methods. Figure 4a shows the mean
results (with standard deviations) over the course of 400
simulation frames, while in Figure 4b, we illustrate behav-
ior on a particular frame (frame 150). For FluidNet, we
use the optimized implementation provided by fluidnetsc22
(2022). This implementation includes pre-trained models
that we use without modification. In both subfigures, it is
evident that the FluidNet residual never changes, since the

method is not iterative; FluidNet reduces the initial residual
by no more than one order of magnitude. On the other hand,
with DCDM, we can continually reduce the residual (e.g.,
by four orders of magnitude) as we apply more iterations
of our method, just as with classical CG. In Figure 4b, we
also visualize the convergence of three other classical meth-
ods, CG, Deflated CG (Saad et al., 2000), and incomplete
Cholesky preconditioned CG (ICPCG); clearly, DCDM re-
duces the residual in the fewest number of iterations (e.g.,
approximately one order of magnitude fewer iterations than
ICPCG). Since FluidNet is not iterative and lacks a notion
of residual reduction, we treat r0 for FluidNet as though an
initial guess of zero is used (as is done in our solver).

To clarify these results, Table 1 reports convergence statis-
tics for DCDM compared to standard iterative techniques,
namely, CG, Deflated CG, and ICPCG. For all 643, 1283,
and 2563 grids with the bunny example, we measure the
time tr and the number of iterations nr required to reduce
the initial residual on a particular time step of the simulation
by four orders of magnitude. DCDM achieves the desired
results in by far the fewest number of iterations at all
resolutions. At 2563, DCDM performs approximately 6
times faster than CG, suggesting a potentially even wider
performance advantage at higher resolutions. Inference
is the dominant cost in an iteration of DCDM; the other
linear algebra computations in an iteration of DCDM
are comparable to those in CG. The nice result of our
method is that despite the increased time per iteration, the
number of required iterations is reduced so drastically that
DCDM materially outperforms classical methods like CG.
Although ICPCG successfully reduces number of iterations
(Figure 4b), we found the runtime to scale prohibitively
with grid resolution. We used SciPy’s (Virtanen et al.,
2020) sparse.linalg.spsolve triangular
function for forward and back substitution in our ICPCG
implementation, and we also used a precomputed L that is
not accounted for in the table results (though this took no
more than 4 seconds at the highest resolution); Appendix
A.3 includes further details on ICPCG.

Notably, even though Deflated CG and DCDM are based
on approximate Ritz vectors, DCDM performs far better,
indicating the value of using a neural network.

We performed three additional sets of tests. First, we tried
low resolutions, 163 and 323, which are such small problems
that we would expect CG to win due to the relatively high
overhead of evaluating a neural network: indeed, DCDM
and CG take 0.377sec/15iter and 0.008sec/48iter at 163, re-
spectively, and 0.717sec/16iter and 0.063sec/53iter at 323.
Note that we used the model (and parameters) tailored
for 643 resolution to obtain these results; a lighter model,
trained specifically for 163 and 323 resolutions, would give
better timings, though likely still behind CG. Second, we

8

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

643 Grid 1283 Grid 2563 Grid

Method tr nr tpr tr nr tpr tr nr tpr

DCDM-64 2.71s 16 0.169s 22s 27 0.814 s 261s 58 4.50s
DCDM-128 5.37s 19 0.283 s 26s 25 1.083s 267s 44 6.07s

CG 1.77s 168 0.0105s 26s 465 0.0559s 1548s 1046 1.479s
Deflated CG 771.6s 117 6.594s 3700s 277 13.357s 21030s 489 43.00s

ICPCG 164s 43 3.813s 2877s 94 30.60s 54714s 218 250.98s

Table 1. Timing and iteration comparison for different methods on the bunny example. tr , nr and tpr represents time, iteration and time
per iteration. DCDM-{64,128} calls a model whose parameters are trained over a {643, 1283} grid. All computations are done using
only CPUs; model inference does not use GPUs. All implementation is done in Python. See Appendix A.3 for convergence plots.

tested cases where d = 2, at resolutions 2562 and 5122. For
this setup, running the smoke plume test (2D analogue of
3 Left) at 2562, DCDM and CG take 2.18sec/64iter and
0.59sec/536iter, respectively. Again, since the system for
this resolution is much smaller than those reported in Ta-
ble 1, we expect CG to be more efficient. However, at
5122, the system is big enough where we actually do out-
perform CG in time as well: 3.87sec/126iter for DCDM
vs. 5.60sec/1146iter for CG. Third, we performed compar-
isons between DCDM and a more recent work, Sappl et al.
(2019). Since Sappl et al. (2019) requires many asymptoti-
cally expensive computations (see Section 2), we expected
a significant performance advantage with DCDM. For the
2562 smoke plume example, using matrices from frame 10
of the simulation, Sappl et al. (2019) requires 1024 iterations
for convergence (15.41s), vs. only 50 for DCDM (1.50s).

7. Conclusions
We presented DCDM, incorporating CNNs into a CG-style
algorithm that yields efficient, convergent behavior for solv-
ing linear systems. Our method effectively acts as a precon-
ditioner, albeit a nonlinear one3. Our method is evaluated
on linear systems with over 16 million degrees of freedom
and converges to a desired tolerance in merely tens of itera-
tions. Furthermore, despite training the underlying network
on a single domain (per resolution) without obstacles, our
network is able to successfully predict search directions
that enable efficient linear solves on domains with complex
and dynamic geometries. Moreover, the training data for
our network does not require running fluid simulations or
solving linear systems ahead of time; our Rayleigh-Ritz
vector approach enables us to quickly generate very large
training datasets, unlike other works. We release our code,
data, and pre-trained models so users can immediately apply

3Algebraically, any preconditioner P is attempting to learn an
inverse of AΩ, which is equivalent to what DCDM achieves for
purposes of CG (learning the action of the inverse of the matrix on
a vector x). We initially tried learning a low-rank linear precondi-
tioner, but our explorations were not successful; the approach was
not efficient for higher resolutions because it required a large k.

DCDM to Poisson systems without further dataset gener-
ation or training, especially due to the feasibility of pre-
trained weights for inference at different grid resolutions:
https://github.com/ayano721/2023_DCDM.

Our network was designed for and trained exclusively us-
ing data related to the discrete Poisson matrix, which likely
limits the generalizability of our present model. However,
we believe our method is readily applicable to other classes
of PDEs (or general problems with graph structure) that
give rise to large, sparse, symmetric linear systems. To that
end, we briefly applied DCDM to matrices arising from
discretized heat equations (a similar class of large, sparse
matrices; hence expected to work well with DCDM). We
found that we can achieve convergence (reducing the ini-
tial residual by four orders of magnitude) using DCDM
trained only on Poisson matrices—even though our test heat
equation used Dirichlet boundary conditions, unlike the
Neumann boundary conditions used with the Poisson equa-
tion systems we solved before. For a heat equation matrix at
N = 64, DCDM can converge in only 14 iterations. Future
work will extend this analysis. We note that our method is
unlikely to work well for matrices that have high computa-
tional cost to evaluate A ∗ x (e.g., dense matrices), since
training relies on efficient A ∗x evaluations. An interesting
question is how well our method and current models would
apply to discrete Poisson matrices arising from non-uniform
grids, e.g., quadtrees or octrees (Losasso et al., 2004).

Acknowledgements
This work is supported by DARPA through contract number
FA8750-20-C-0537. Any opinions, findings, conclusions,
or recommendations expressed are those of the authors and
do not necessarily reflect the views of the sponsor. This
research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Depart-
ment of Energy Office of Science and the National Nuclear
Security Administration. This research was also supported
under DoE ORNL contract 4000171342. We would like to
thank Professor Shigeo Morishima for his advice.

9

https://github.com/ayano721/2023_DCDM

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Ackmann, J., Düben, P. D., Palmer, T. N., and Smo-
larkiewicz, P. K. Machine-learned preconditioners for
linear solvers in geophysical fluid flows. arXiv preprint
arXiv:2010.02866, 2020.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N.
Learning to learn by gradient descent by gradient descent.
Advances in Neural Information Processing Systems, pp.
29, 2016.

Brandt, A. Multi-level adaptive solutions to boundary-value
problems. Math Comp, 31(138):333–390, 1977.

Bridson, R. Fluid simulation for computer graphics. Taylor
& Francis, 2008.

Chen, J., Kala, V., Marquez-Razon, A., Gueidon, E., Hyde,
D. A. B., and Teran, J. A momentum-conserving im-
plicit material point method for surface tension with con-
tact angles and spatial gradients. ACM Trans. Graph.,
40(4), jul 2021. ISSN 0730-0301. doi: 10.1145/
3450626.3459874. URL https://doi.org/10.
1145/3450626.3459874.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang,
Z., and Yin, W. Learning to optimize: a primer and a
benchmark. Journal of Machine Learning Research 23,
pp. 8562–8620, 2022.

Chorin, A. A numerical method for solving incompressible
viscous flow problems. J Comp Phys, 2(1):12–26, 1967.

Fedkiw, R., Stam, J., and Jensen, H. Visual simulation of
smoke. In SIGGRAPH, pp. 15–22. ACM, 2001.

fluidnetsc22. fluidnetsc22/fluidnet sc22: v0.0.1, April
2022. URL https://doi.org/10.5281/
zenodo.6424901. doi: 10.5281/zenodo.6424901,
URL: https://doi.org/10.5281/zenodo.
6424901.

Gagniere, S., Hyde, D., Marquez-Razon, A., Jiang, C.,
Ge, Z., Han, X., Guo, Q., and Teran, J. A hybrid La-
grangian/Eulerian collocated velocity advection and pro-
jection method for fluid simulation. Computer Graphics
Forum, 39(8):1–14, 2020. doi: https://doi.org/10.1111/
cgf.14096.

Golub, G. and Loan, C. V. Matrix computations, volume 3.
JHU Press, 2012.

Götz, M. and Anzt, H. Machine learning-aided numerical
linear algebra: Convolutional neural networks for the
efficient preconditioner generation. In 2018 IEEE/ACM
9th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems (scalA), pp. 49–56. IEEE, 2018.

Grebhahn, A., Siegmund, N., Köstler, H., and Apel, S. Per-
formance prediction of multigrid-solver configurations.
In Software for Exascale Computing-SPPEXA 2013-2015,
pp. 69–88. Springer, 2016.

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., and Kimmel,
R. Learning to optimize multigrid PDE solvers. In Int
Conf Mach Learn, pp. 2415–2423. PMLR, 2019.

Harlow, F. and Welch, E. Numerical calculation of time
dependent viscous flow of fluid with a free surface. Phys
Fluid, 8(12):2182–2189, 1965.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hestenes, M. R. and Stiefel, E. Methods of conjugate gra-
dients for solving linear systems. Journal of research of
the National Bureau of Standards, 49(6):409, 1952.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural PDE solvers with convergence
guarantees, 2019. URL https://arxiv.org/abs/
1906.01200.

Ichimura, T., Fujita, K., Hori, M., Maddegedara, L., Ueda,
N., and Kikuchi, Y. A fast scalable iterative implicit
solver with Green’s function-based neural networks. In
2020 IEEE/ACM 11th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (ScalA), pp.
61–68, 2020. doi: 10.1109/ScalA51936.2020.00013.

Kershaw, D. The incomplete Cholesky conjugate gradient
method for the iterative solution of systems of linear
equations. J Comp Phys, 26(1):43–65, 1978.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

10

https://www.tensorflow.org/
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.5281/zenodo.6424901
https://doi.org/10.5281/zenodo.6424901
https://doi.org/10.5281/zenodo.6424901
https://doi.org/10.5281/zenodo.6424901
https://arxiv.org/abs/1906.01200
https://arxiv.org/abs/1906.01200

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators. 1950.

Li, K. and Malik, J. Learning to optimize. arXiv preprint,
2016.

Liao, I., Dangovski, R. R., Foerster, J. N., and Soljačić,
M. Learning to optimize quasi-newton methods. arXiv
preprint, 2022.

Losasso, F., Gibou, F., and Fedkiw, R. Simulating water and
smoke with an octree data structure. ACM Trans. Graph.,
23(3):457–462, 2004.

Losasso, F., Fedkiw, R., and Osher, S. Spatially adaptive
techniques for level set methods and incompressible flow.
Computers & Fluids, 35(10):995–1010, 2006.

Luna, K., Klymko, K., and Blaschke, J. P. Accelerating
GMRES with deep learning in real-time, 2021. URL
https://arxiv.org/abs/2103.10975.

Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh, I.
Learning algebraic multigrid using graph neural networks.
In Int Conf Mach Learn, pp. 6489–6499. PMLR, 2020.

McAdams, A., Sifakis, E., and Teran, J. A parallel multigrid
poisson solver for fluids simulation on large grids. In Proc
2010 ACM SIGGRAPH/Eurograph Symp Comp Anim, pp.
65–74. Eurographics Association, 2010.

Nussbaumer, H. The fast Fourier transform. In Fast
Fourier Transform and Convolution Algorithms, pp. 80–
111. Springer, 1981.

Paige, C. C. The computation of eigenvalues and eigenvec-
tors of very large sparse matrices. PhD thesis, University
of London, 1971.

Paige, C. C. and Saunders, M. A. Solution of sparse in-
definite systems of linear equations. SIAM journal on
numerical analysis, 12(4):617–629, 1975.

Paluszny, A. and Zimmerman, R. W. Numerical simu-
lation of multiple 3d fracture propagation using arbi-
trary meshes. Computer Methods in Applied Mechan-
ics and Engineering, 200(9):953–966, 2011. ISSN
0045-7825. doi: https://doi.org/10.1016/j.cma.2010.11.
013. URL https://www.sciencedirect.com/
science/article/pii/S0045782510003373.

Panuelos, J., Goldade, R., Grinspun, E., Levin, D., and
Batty, C. PolyStokes: A polynomial model reduction
method for viscous fluid simulation. ACM Trans Graph
(TOG), 42(4), 2023.

Ruelmann, H., Geveler, M., and Turek, S. On the prospects
of using machine learning for the numerical simulation
of PDEs: Training neural networks to assemble approx-
imate inverses, 2018. URL http://dx.doi.org/
10.17877/DE290R-18778.

Saad, Y. Iterative Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics, USA, 2nd
edition, 2003. ISBN 0898715342.

Saad, Y. and Schultz, M. GMRES: A generalized mini-
mal residual algorithm for solving nonsymmetric linear
systems. SIAM J Sci Stat Comp, 7(3):856–869, 1986.

Saad, Y., Yeung, M., Erhel, J., and Guyomarc’h, F. A de-
flated version of the conjugate gradient algorithm. SIAM
Journal on Scientific Computing, 21:1909–1926, 2000.

Sappl, J., Seiler, L., Harders, M., and Rauch, W. Deep
learning of preconditioners for conjugate gradient solvers
in urban water related problems, 2019. URL https:
//arxiv.org/abs/1906.06925.

Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W.,
and Wang, Z. Learning a minimax optimizer: A pilot
study. International Conference on Learning Representa-
tions, 2019.

Stanaityte, R. ILU and Machine Learning Based Precondi-
tioning For The Discretized Incompressible Navier-Stokes
Equations. PhD thesis, University of Houston, 2020.

Stiefel, E. Über einige methoden der relaxationsrechnung.
Zeitschrift für angewandte Mathematik und Physik ZAMP,
3(1):1–33, 1952.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin, K.
Accelerating Eulerian fluid simulation with convolutional
networks. In Precup, D. and Teh, Y. (eds.), Proc 34th Int
Conf Mach Learn, volume 70 of Proc Mach Learn Res,
pp. 3424–3433. PMLR, 06–11 Aug 2017.

Trefethen, L. and Bau, D. Numerical Linear Algebra, vol-
ume 50. SIAM, 1997.

Um, K., Brand, R., Fei, Y., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative PDE-solvers. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6111–6122. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
43e4e6a6f341e00671e123714de019a8-Paper.
pdf.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,

11

https://arxiv.org/abs/2103.10975
https://www.sciencedirect.com/science/article/pii/S0045782510003373
https://www.sciencedirect.com/science/article/pii/S0045782510003373
http://dx.doi.org/10.17877/DE290R-18778
http://dx.doi.org/10.17877/DE290R-18778
https://arxiv.org/abs/1906.06925
https://arxiv.org/abs/1906.06925
https://proceedings.neurips.cc/paper/2020/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/43e4e6a6f341e00671e123714de019a8-Paper.pdf

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Yang, C., Yang, X., and Xiao, X. Data-driven projection
method in fluid simulation. Comp Anim Virt Worlds, 27
(3-4):415–424, 2016.

12

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

A. Appendix
A.1. Conjugate Gradients Method

In this appendix, we provide a review of the conjugate gradients (CG) method, which is the inspiration for DCDM as
presented in this paper. The conjugate gradients method is a special case of the line search method, where the search
directions are A-orthogonal to each other. It can also be viewed as a modification of gradient descent (GD) where the search
direction is chosen as the component of the residual (equivalently, the negative gradient of the matrix norm of the error) that
is A-orthogonal to all previous search directions:

dk = rk−1 −
k−1∑
i=1

hikdi, hik =
dT
i Ark−1

dT
i Adi

.

With this choice, the search directions form a basis for Rn so that the initial error can be written as e0 = x−x0 =
∑n

i=1 eidi,

where ei are the components of the initial error written in the basis. Furthermore, since the search directions are A-orthogonal,
the optimal step sizes αk at each iteration satisfy

αk =
rTk−1dk

dT
kAdk

=
dT
kAek−1

dT
kAdk

=
dT
kA

(∑n
i=1 eidi −

∑k−1
j=1 αjdj

)
dT
kAdk

= ek.

That is, the optimal step sizes are chosen to precisely eliminate the components of the error on the basis defined by the
search directions. Thus, convergence is determined by the (at most n) non-zero components ei in the initial error. Although
rounding errors prevent this from happening exactly in practice, this property greatly reduces the number of required
iterations (Golub & Loan, 2012).

Furthermore, hik = 0 for i < k − 1, and thus iteration can be performed without the need to store all previous search
directions di and without the need for computing all previous hik. To see this, it is sufficient to show dT

i Ark−1 = 0.

Lemma In the CG method, residuals are orthogonal, i.e., rTk rj = 0 for all j < k.

Proof

rTk rj = (rk−1 − αkAdk)
Trj

= rTk−1rj − αkd
T
kArj

= rTk−1rj − αkd
T
kA

(
dj+1 +

j∑
i=1

hi(j+1)di

)

For j < k−1, rTk−1rj = 0 follows from induction. dT
kA(dj+1+

∑j
i=1 hi(j+1)di) = dT

kAdj+1+
∑j

i=1 hi(j+1)d
T
kAdi=0

13

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

because di are A-orthogonal by their definition. For j = k − 1,

rTk rk−1 = rTk−1rk−1 − αkd
T
kArk−1

= rTk−1rk−1 −
rTk−1dk

dT
kAdk

dT
kArk−1

= rTk−1rk−1 −
rTk−1dk

dT
kAdk

dT
kA

(
dk +

k−1∑
i=1

hidk

)
= rTk−1rk−1 − rTk−1dk (by A-orthogonality of dk)

= rTk−1(rk−1 − dk)

= rTk−1

(
k−1∑
i=1

hikdi

)

=
k−1∑
i=1

hikr
T
k−1di

So proving rTk−1di = 0 for i < k would finish the proof. However, by the definition of di = ri−1 −
∑i−1

j=1 hijdk, induction
proves di ∈ span(r1, r2, . . . , ri−1). Hence, rTk−1di = 0 for all i ≤ k − 1, which proves the lemma.

Claim In the CG method, search directions are A-orthogonal to all previous residuals, i.e., dT
i Ark−1 = 0 for all i < k − 1.

Proof rTi rk−1 = (rTi−1 − αiAdi)
Trk−1, hence diArk−1 = rTi−1rk−1 − rTi rk−1 = 0 for all i < k − 1, using the lemma

above.

This proves the sparsity of the hik. As discussed in the main body of the paper, this “memoryless” property of CG is
inherited by DCDM and enables the efficiency of our method.

A.2. Choice of α

Line search is an iterative method to find a local minimum of an objective function h : Rn → R. In the context of
variationally solving Ax = b, h(x) = 1

2xT Ax − xT b, and the kth iterate is computed by

xk = xk−1 + αkdk.

One desires a step size αk that yields h(xk) < h(xk−1). More specifically, the optimal choice is

αk = argmin
α

h(xk−1 + αdk) =
rTk−1dk

dT
kAdk

,

where rk−1 = b−Axk−1 is the (k − 1)th residual. To see that this choice of αk is indeed the minimizer, we can define the
objective function as g(α) and write

g(α) = h(xk−1 + αdk)

=
1

2
(xk−1 + αdk)

TA(xk−1 + αdk)− bT (xk−1 + αdk)

=
1

2
α2dT

kAdk + α(dT
kAxk−1 − dT

k b) +

(
1

2
xT
k−1Axk−1 + xT

k−1b

)
=

1

2
α2dT

kAdk − αdT
k rk−1︸︷︷︸

b−Axk−1

+(constant terms).

Taking the derivative with respect to α, we have g′(α) = αdT
kAdk − dT

k rk−1 = 0, yielding α =
rT
k−1dk

dT
k Adk

as the minimizer
of g(α).

14

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

A.3. Additional Convergence Results

We include additional convergence results, similar to those shown in Figure 4b, in Figure 5. Specifically, these plots show the
convergence of all the methods reported in Table 1 at each of the resolutions reported there. The figure visually demonstrates
the significant reduction in iteration count achieved by DCDM.

0 50 100 150 200
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(a) N = 64

0 50 100 150 200 250 300 350 400
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(b) N = 128

0 100 200 300 400 500 600 700
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(c) N = 256

Figure 5. Convergence of different methods on the 3D bunny example for N = 64, 128, 256; summary results, as well as timings, are
reported in Table 1. DCDM-{64,128} calls a model whose parameters are trained over a {643, 1283} grid.

We remark on ICPCG since it is a popular preconditioner and closest in performance to DCDM. When using ICPCG with
matrices that arise in a domain with moving internal boundaries (such as our bunny examples), the approximate factorization
of A must be recomputed. Recomputation is also required in the approach of Tompson et al. (2017) in examples like these.
Moreover, as Figure 4d shows, DCDM does not require full A-orthogonality. Hence the algorithm only stores two previous
vectors, just like CG, and unlike the much more significant memory requirements of ICPCG. For example, the L and D
matrices for 1283 take about 18.7MB in scipy.sparse format, while our network can be stored in less than 500KB.

A.4. Ablation Study and Runtime Analysis

Method DCDM Model 1 Model 2 Model 3 Model 4 U-Net

Number of Parameters 97,457 97,457 97,457 97,457 24,537 3,527,505

Table 2. Number of parameters for each network architecture considered in the ablation study.

Here, we provide results of a small ablation study on network architecture in order to justify some of the architectural
choices we made in constructing the DCDM network. We considered a few different models (Figure 8a to Figure 8e), several
of which are modifications of the model we ultimately used to generate our results (Figure 8a). The models we considered
include one without ResNet connections (Figure 8b), one with simple downsampling and upsampling (a U-Net-like structure)
(Figure 8c), a minimal CNN (Figure 8d), and a model with different filter sizes of the blocks (Figure 8e). We compared how
these models perform on the same bunny example considered in the main part of the paper (at resolution 643). Figure 6
shows that the architecture we ultimately selected for DCDM yields the best results.

Each model’s parameter count is listed in Table 2. Compared to a basic CNN or U-Net architecture (like the one used
in Tompson et al. (2017)), our DCDM network is actually quite light. For example, the U-Net architecture in Tompson
et al. (2017) uses 3,527,505 parameters (at N = 64 in 3D), while our network (at the same resolution) requires only 97,457
parameters (a 36x reduction). In addition, one advantage of our method is that DCDM only needs to be trained once (and
data only generated once) per problem class (and possibly size). So if a user desired to solve Poisson systems (which are
quite common in computer graphics and engineering), they could use our pre-trained models off the shelf; though we readily
concede that new classes of matrices or new resolutions could require new data generation or retraining.

Dataset generation is a key step in using the DCDM model we selected. We found that we needed to include orthogonalization
to previous vectors in the Lanczos problem in practice (a well-known limitation of the method). This causes the creation
of a dataset (cf. Section 5.1) to take O(n3m2) time, where m is the number of Lanczos vectors to be created and n is the

15

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

0 5 10 15 20
iterations

-4

-3

-2

-1

0

lo
g

1
0
(k

rk
=
kr

0
k)

4 orders of magnitude

DCDM
Model 1
Model 2
Model 3
Model 4
U-net

Figure 6. Residual plot for the bunny example at N = 64 with each trained model. The dashed line represents a four-orders-of-magnitude
reduction in residual, which is the convergence criterion we use throughout our examples.

resolution. Hence increasing resolution from 643 to 1283 increases the time by a factor of 8, which scales 5–7 hours to
2–2.5 days. (However, since we can use low resolution models on higher resolution problems, this scaling can be mitigated,
cf. Section 5.2.) In addition, the orthogonalization step makes dataset generation have complexity O(n3m2), instead of
the O(n3m) complexity of classical Lanczos processes. If we can find any other solution for the numerical problems of
classical Lanczos iteration besides orthogonalization, we can drastically reduce the time to generate the dataset (such a task
is outside the scope of the present work). We note that storing the training dataset has asymptotic cost O(kn3); for instance,
the dataset of k = 20,000 synthetic data takes 23GB and 159GB of storage for resolutions 643 and 1283, respectively.

A.5. Model training

Figure 7 shows the decrease in training and validation losses observed when training the neural network used for DCDM.
As mentioned in Section 5.3, for DCDM, we selected the model after epoch 31 for N = 64 and epoch 3 for N = 128. The
plots clearly demonstrate that training and validation loss seem to decrease after these epochs. However, we found that our
epoch selections yielded the best performance on our test data, namely, the examples we showed in Section 6. Accordingly,
we conjecture that our model overfit relatively quickly to both training and validation data, and that perhaps training and
validation data were much more similar to each other compared to the test data. We are interested in exploring this further in
future work. Of course, philosophically, choosing a model by comparing its performance from different epochs on test data
essentially makes that test data part of the validation data, but this is a broader discussion for the learning community.

0 10 20 30 40 50
Epoch

2

4

6

8

10

12

14

L
os

s

#10-3

Training Loss
Validation Loss

(a) N = 64

0 10 20 30 40 50
Epoch

0.02

0.04

0.06

0.08

0.1

L
os

s

Training Loss
Validation Loss

(b) N = 128

Figure 7. Training and validation loss for the networks used in DCDM at resolutions N = 64 and N = 128.

16

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+

+

+

+

+

+

+ : adding

+

(a) DCDM (our model)

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+ : adding

(b) Model 1

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(c) Model 2

Input

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(d) Model 3

Input

Average pooling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Up sampling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Output

+

+

+

+

+

+

+

+

+ : adding

(e) Model 4

Figure 8. Network architectures considered for our ablation study.

17

