
Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Qiyu Kang * 1 Kai Zhao * 1 Yang Song 2 Sijie Wang 1 Wee Peng Tay 1

Abstract
In the graph node embedding problem, embed-
ding spaces can vary significantly for different
data types, leading to the need for different GNN
model types. In this paper, we model the embed-
ding update of a node feature as a Hamiltonian
orbit over time. Since the Hamiltonian orbits gen-
eralize the exponential maps, this approach allows
us to learn the underlying manifold of the graph
in training, in contrast to most of the existing
literature that assumes a fixed graph embedding
manifold with a closed exponential map solution.
Our proposed node embedding strategy can auto-
matically learn, without extensive tuning, the un-
derlying geometry of any given graph dataset even
if it has diverse geometries. We test Hamiltonian
functions of different forms and verify the perfor-
mance of our approach on two graph node embed-
ding downstream tasks: node classification and
link prediction. Numerical experiments demon-
strate that our approach adapts better to different
types of graph datasets than popular state-of-the-
art graph node embedding GNNs. The code is
available at https://github.com/zknus/
Hamiltonian-GNN.

1. Introduction
Graph neural networks (GNNs) (Yue et al., 2019; Ashoor
et al., 2020; Kipf & Welling, 2017b; Zhang et al., 2022; Wu
et al., 2021) have shown remarkable inference performance
on graph-structured data, including, but not limited to, social
media networks, citation networks, and molecular graphs
in chemistry. Most existing GNNs embed graph nodes in
Euclidean spaces without further consideration of the dataset
graph geometry. For some graph structures like the tree-
like graphs (Liu et al., 2019), the Euclidean space may

*Equal contribution 1School of Electrical and Elec-
tronic Engineering, Nanyang Technological University, Sin-
gapore 2C3 AI, Singapore. Correspondence to: Qiyu Kang
<kang0080@e.ntu.edu.sg>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

not be a proper choice for the node embedding. Recently,
hyperbolic GNNs (Chami et al., 2019; Liu et al., 2019)
propose to embed nodes into a hyperbolic space instead
of the conventional Euclidean space. It has been shown
that tree-like graphs can be inferred more accurately by
hyperbolic GNNs.

Real-world graphs often have complex and varied structures,
which can be more effectively represented by utilizing dif-
ferent geometric spaces. As shown in Figure 1, the Gromov
δ-hyperbolicity distributions1 (Gromov, 1987) of various
datasets exhibit a range of diverse values. This indicates that
it is not optimal to embed each dataset with diverse geome-
tries into a single globally homogeneous geometry. Works
like (Zhu et al., 2020b) have attempted to embed graph
nodes in a mixture of the Euclidean and hyperbolic spaces,
where the intrinsic graph local geometry is attained from
the mixing weight. In several studies, including (Gu et al.,
2018; Bachmann et al., 2020; Lou et al., 2020), researchers
use (products of) constant curvature Riemannian spaces for
graph node embedding where the spaces are assumed to
be spherical, hyperbolic, or Euclidean. The work (Xiong
et al., 2022) considers a special pseudo-Riemannian mani-
fold named pseudo-hyperboloid that is of constant nonzero
curvature and is diffeomorphic to the product manifolds of
a unit sphere and the Euclidean space.

Embedding nodes in the aforementioned restricted (pseudo-
)Riemannian manifolds is achieved through the exponential
map in closed forms, which is essentially a geodesic curve
on the manifolds as the projected curve of the cogeodesic
orbits on the manifolds’ cotangent bundles (Lee, 2013; Klin-
genberg, 2011). In our work, we propose to embed the nodes,
via more general Hamiltonian orbits, into a general mani-
fold, which generalizes the above graph node embedding
works.

Manifolds have a diverse set of applications in physics,
and their usage and development can be found interwoven
throughout the literature. From the physics perspective, the
cotangent bundles are the natural phase spaces in classical
mechanics (De León & Rodrigues, 2011) where the phys-
ical system evolves according to the basic laws of physics
modeled as differential equations on the phase spaces. In

1If the δ-hyperbolicity distribution is more concentrated at
lower values, the more hyperbolic the graph dataset.

1

https://github.com/zknus/Hamiltonian-GNN
https://github.com/zknus/Hamiltonian-GNN

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Figure 1. Gromov δ-hyperbolicity distribution of datasets.

this paper, we propose a new GNN paradigm based on
Hamiltonian mechanics (Goldstein et al., 2001) with flex-
ible Hamiltonian functions. Our objective is to design a
new node embedding strategy that can automatically learn,
without extensive tuning, the underlying geometry of any
given graph dataset even if it has diverse geometries. We
enable the node features to evolve on the manifold under the
influence of neighbors. The learnable Hamiltonian function
on the manifold guides the node embedding evolution to
follow a learnable law analogous to basic physical laws.

Main contributions. Our main contributions are summa-
rized as follows:

1. We consider the graph node embedding problem on
an underlying manifold and enable node embedding
through a learnable Hamiltonian orbit associated with
the Hamiltonian scalar function on the manifold’s cotan-
gent bundle.

2. Our node embedding strategy can automatically learn,
without extensive tuning, the underlying geometry of
any given graph dataset even if it has diverse geome-
tries. We empirically demonstrate its ability by testing
on two graph node embedding downstream tasks: node
classification and link prediction.

3. From empirical experiments, we observe that the over-
smoothing problem of GNNs can be mitigated if the
node features evolve through Hamiltonian orbits. By the
conservative nature of the Hamiltonian equations, our
model enables a stable training and inference process
while updating the node features over time and layers.

2. Related Work
While our paper is related to Hamiltonian neural networks
in the literature, we are the first, to our best knowledge,
to model graph node embedding with Hamiltonian equa-

tions. We briefly review Hamiltonian neural networks, Rie-
mannian manifold GNNs, and physics-inspired GNNs in
Appendix A.

Notations: We use the Einstein summation convention (Lee,
2013) for expressions with tensor indices. When using this
convention, if an index variable appears twice in a term,
once as a superscript and once as a subscript, it means a
summation of the term over all possible values of the index
variable. For example, aibi ≜

∑d
i=1 a

ibi.

3. Motivations and Preliminaries
In this section, we briefly review the concepts of the
geodesic curve on a (pseudo-)Riemannian manifold from
the principle of stationary action in the form of Lagrange’s
equations. We then further generalize the geodesic curve to
the Hamiltonian orbit associated with an energy function
H , which is a conserved quantity along the orbit. Our pri-
mary goal is to develop a more flexible and robust method
for graph node embedding by leveraging the concepts of
geodesic curves and Hamiltonian orbits on manifolds. We
first summarize the motivation of our work as follows.

Motivation I: from the exponential map to the Rieman-
nian geodesic. The geodesic curve gives rise to the expo-
nential map that maps points from the tangent space to
the manifold and has been utilized in (Chami et al., 2019;
Bachmann et al., 2020; Xiong et al., 2022) to enable graph
node embedding in some restricted (pseudo-)Riemannian
manifolds where closed forms of the exponential map are
obtainable. From this perspective, by using the geodesic
curve, we generalize the graph node embedding to an ar-
bitrary pseudo-Riemannian manifold with learnable local
geometry g using Lagrange’s equations.

Motivation II: from geodesic to Hamiltonian orbit. De-
spite the above conceptual generalization for node embed-
ding using geodesic curves, the specific curve formulation
involving minimization of curve length may result in a loss
of generality for node feature evolution along the curve. We
thus further generalize the geodesic curve to the Hamilto-
nian orbit associated with a more general energy function H
that is conserved along the orbit. In Section 4, we propose
graph node embedding without an explicit metric by using
Hamiltonian orbits with learnable energy functions H .

We kindly refer readers to Appendix B for a more compre-
hensive elucidation that may enhance their understanding
after we introduce the related concepts in Section 3.2.

3.1. Manifold and Riemannian Metric

Manifold and local chart representation. On a d-
dimensional manifold M , for each point on M , there exists
a triple {q, U, V }, called a chart, such that U is an open

2

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

neighborhood of the point in M , V is an open subset of
Rd, and q : U → V is a homeomorphism, which gives us a
coordinate representation for a local area in M .
Tangent and cotangent vector spaces. For any point q on
M (we identify each point covered by a local chart on M
by its representation q), we may assign two vector spaces
named the tangent vector space TqM and cotangent vector
space T ∗

q M . The vectors from the tangent and cotangent
spaces can be interpreted as representing the velocity and
generalized momentum, respectively, of an object’s move-
ment in classical mechanics.
Riemannian metric. A Riemannian manifold is a manifold
M equipped with a Riemannian metric g, where we assign
to any point q ∈ M and pair of vectors u, v ∈ TqM an
inner product ⟨u, v⟩g(q). This assignment is assumed to be
smooth with respect to the base point q ∈ M . The length of
a tangent vector u ∈ TqM is then defined as

∥u∥g(q) := ⟨u, u⟩1/2g(q). (1)

• Local coordinates representation: In local coordinates
with q =

(
q1, . . . , qd

)⊺
∈ M,u =

(
u1, . . . , ud

)⊺
∈

TqM and v =
(
v1, . . . , vd

)⊺
∈ TqM , the Riemannian

metric g = g(q) is a real symmetric positive definite
matrix and the inner product above is given by

⟨u, v⟩g(q) := gij(q)u
ivj (2)

• Pseudo-Riemannian metric: We may generalize the
Riemannian metric to a metric tensor that only requires
a non-degenerate condition (Lee, 2018) instead of the
stringent positive definiteness condition in the inner
product. One example of a pseudo-Riemannian man-
ifold is the Lorentzian manifold, which is important in
applications of general relativity.

3.2. Geodesic Curves and Exponential Maps

Length and energy of a curve. Let q : [a, b] → M be
a smooth curve.2 We use q̇ and q̈ to denote the first and
second order derivatives of q(t), respectively. We define the
following:

• length of the curve:

ℓ(q) :=

∫ b

a

∥q̇(t)∥g(q(t)) dt. (3)

• energy of the curve:

E(q) :=
1

2

∫ b

a

∥q̇(t)∥2g(q(t)) dt. (4)

2We abuse notations in denoting the chart coordinate map as q
and the curve as q(t). It will be clear from the context which one
is being referred to.

Geodesic curves. On a Riemannian manifold, geodesic
curves are defined as curves that have a minimal length as
given by (3) and with two fixed endpoints q(a) and q(b).
However, computations based on minimizing the length to
obtain the curves are difficult. It turns out that the mini-
mizers of E(q) also minimize ℓ(q) (Malham, 2016). Conse-
quently, the geodesic curve formulation may be obtained by
minimizing the energy of a smooth curve on M .
Principle of stationary action and Euler–Lagrange equa-
tion. The Lagrangian function L(q(t), q̇(t)) minimizes the
following functional (in physics, the functional is known as
an action)

S(q) =

∫ b

a

L(q(t), q̇(t))dt (5)

with two fixed endpoints at t = a and t = b only if the
following Euler–Lagrange equation is satisfied:

∂L

∂qi
(q(t), q̇(t))− d

dt

∂L

∂q̇i
(q(t), q̇(t)) = 0. (6)

Geodesic equation for geodesic curves. The Eu-
ler–Lagrange equation derived from minimizing the energy
(4) with local coordinates representation,

L =
1

2
∥q̇(t)∥2g(q(t)) =

1

2
gik(q)q̇

iq̇k (7)

is expressed as the following ordinary differential equations
called the geodesic equation:

q̈i + Γi
jkq̇

j q̇k = 0, (8)

for all i = 1, . . . , d, where the Christoffel symbols Γi
jk :=

1
2g

iℓ
(

∂gℓj
∂qk

+ ∂gkℓ

∂qj
− ∂gjk

∂qℓ

)
and [gij] denotes the inverse

matrix of the matrix [gij]. The solutions to the geodesic
equation (8) give us the geodesic curves.
Exponential map. Given the geodesic curves, at each point
q ∈ M , for velocity vector v ∈ TqM , the exponential map
is defined to obtain the point on M reached by the unique
geodesic that passes through q with velocity v at time t = 1
(Lee, 2018). Formally, we have

expq(v) = γ(1) (9)

where γ(t) is the curve given by the geodesic equation (8)
with initial conditions q(0) = q and q̇(0) = v.

With regards to Motivation I, we note that (Chami et al.,
2019) considers graph node embedding over a homogeneous
negative-curvature Riemannian manifold called hyperboloid
manifold. In contrast, we generalize the embedding of nodes
to an arbitrary pseudo-Riemannian manifold through the
geodesic equation (8) with a learnable metric g that derives
the local graph geometry from the nodes and their neighbors.

3

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

3.3. From Geodesics to General Hamiltonian Orbits

The geodesic curves and the derived exponential map essen-
tially come from (5) with L in (7) specified from the curve
energy (4). However, the curves derived from this specific
action may potentially sacrifice efficacy for the graph node
embedding task since we do not know what a reasonable
action formulation that guides the evolution of the node
feature in this task is. Therefore, we follow the principle of
stationary action but consider a learnable action that is more
flexible than the length or energy of the curve. To better
model the conserved quantity during the feature evolution,
we reformulate the Lagrange equation to the Hamilton equa-
tion. This is our Motivation II.
Hamiltonian function and equations. The Hamiltonian or-
bit (q(t), p(t)) is given by the following Hamiltonian equa-
tions with a Hamiltonian function H:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (10)

where q is the local chart coordinate on the manifold while
p can be interpreted as a vector of generalized momenta
in the cotangent vector space. In classical mechanics, the
2d-dimensional pair (q, p) is called phase space coordinates
that fully specify the state of a dynamic system with p guid-
ing the movement direction and speed. Later, we consider
the node feature evolution following the trajectory specified
by the phase space coordinates.
Hamiltonian function vs. Lagrangian function. The
Hamiltonian function can be taken as the Legendre trans-
form of the Lagrangian function:

H(q, p) = piq̇
i − L(q, q̇)

with q̇ = q̇(p) s.t. p =
∂L

∂q̇
.

(11)

If H is restricted to strictly convex functions, the Hamil-
tonian formalism is equivalent to a Lagrangian formalism
(De León & Rodrigues, 2011).
Geodesic equation reformulated as Hamiltonian func-
tion. If H is set as

H(q, p) =
1

2
gij(q)pipj , (12)

where [gij] denotes the inverse matrix of the matrix [gij],
we have the following Hamiltonian equations:

q̇i = gijpj , ṗi = −1

2
∂ig

jkpjpk. (13)

The Hamiltonian orbit (q(t), p(t)), as the solution of (13),
gives us again the geodesic curves q(t) on the manifold M
if we only look at the first d-dimensional coordinates.

Theorem 1 (Conservation of energy (Da Silva & Da Salva,
2008)). H(q(t), p(t)) is constant along the Hamiltonian
orbit as solutions of (10).

In physics, H typically represents the total energy of a
system, and Theorem 1 indicates that the time evolution of
the system follows the law of conservation of energy.

4. Proposed Framework
We consider an undirected graph G = (V, E) consisting of
a finite set V of vertices, together with a subset E ⊂ V × V
of edges. Our objective is to learn a mapping f that maps
node features to embedding vectors:

f (V, E) = Z ∈ R|V|×d.

The embedding Z is supposed to capture both semantic and
topological information. Since the input node features in
most datasets are sparse, a fully connected (FC) layer is
first applied to compress the raw input node features. Let
nq be the d-dimensional compressed node feature for node
n after the FC layer.3 However, empirical experiments (see
“MLP” results in Section 5.1) indicate that for the graph
node embedding task, such simple raw compressing without
any consideration of the graph topology does not produce a
good embedding. Further graph neural network layers are
thus required to update the node embedding.

We consider the node features {nq}n∈V to be located on an
embedding manifold M and take the node features as the
chart coordinate representations for points on the manifold.
In Motivations I and II in Section 3, we have provided the
rationale for generalizing graph node embedding from the
exponential map to the pseudo-Riemannian geodesic, and
further to the Hamiltonian orbit. To enforce the graph node
feature update on the manifold with well-adapted learnable
local geometry, we make use of the concepts from Section 3.

4.1. Model Architecture

Node feature evolution along Hamiltonian orbits in a
Hamiltonian layer. As introduced in Section 3.3, the 2d-
dimensional phase space coordinates (q, p) fully specify
a system’s state. Consequently, for the node feature as a
point on the manifold M , we associate to each point nq
a learnable momentum vector np. This vector guides the
direction and speed of the feature update, allowing the node
feature to evolve along Hamiltonian orbits on the manifold.
More specifically, we set

np = Qnet(
nq) (14)

where Qnet
4 is instantiated by an FC layer. We consider

a learnable Hamiltonian function Hnet that specifies the
node feature evolution trajectory in the phase space via the

3We put the node index to the left of the variable to distinguish
it from the manifold dimension index.

4The subscript “net” of a function Fnet indicates that the func-
tion F is parameterized by a neural network.

4

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

position
vector !𝑞(ℓ)

concatenate

(!𝑞(ℓ) ,!𝑝(ℓ)) (!𝑞 ℓ (𝑇),!𝑝 ℓ (𝑇))

aggregation

momentum
vector !𝑝(ℓ)

…

!𝑞 ℓ (𝑇)

use FC to compress
node raw features

and get !𝑞 "
!#"
|𝒱|

Hamiltonian Layer

Hamiltonian Layer × 𝐿

𝑄%&'
(ℓ) canonical

projection

node embedding

𝑍 = 𝑧!
(𝑇

!)*

|𝒱|

input node feature to next
layer: !𝑞 ℓ-* = !𝑞 ℓ (𝑇)

Hamiltonian
feature embedding

HamGNN Pipeline

node classification,
link prediction, etc.

Figure 2. HamGNN architecture: in each layer, each node is assigned a learnable “momentum” vector np (cf. (14)) at time t = 0, which
initializes the evolution of the node feature. The node features evolve on a manifold following (15) to (nq(T), np(T)) at the time t = T .
We only take nq(T) as the embedding and input it to the next layer. After L layers, we take nq(L)(T) as the final node embedding.

Hamiltonian equations:

q̇i =
∂Hnet

∂pi
, ṗi = −∂Hnet

∂qi
(15)

with learnable Hamiltonian energy function

Hnet : (q, p) 7→ R. (16)

The node features are updated along the Hamiltonian or-
bits, which are curves starting from each node (nq, np) at
t = 0. In other words, they are the solution of (15) with the
initial conditions (nq(0), np(0)) = (nq, np) at t = 0. The
solution of (15) on the phase space for each node n ∈ V
at time T is given by a differential equation solver (Chen
et al., 2018a), and denoted by (nq(T),n p(T)). The canoni-
cal projection π(nq(T), np(T)) = nq(T) is taken to obtain
the node feature embeddings on the manifold at time T . The
aforementioned operations are performed within one layer,
and we call it the Hamiltonian layer.
Neighborhood Aggregation. After the node features update
along the Hamiltonian orbits, we perform neighborhood ag-
gregation on the features {nq(ℓ)(T)}n∈V , where ℓ indicates
the ℓ-th layer. Let N (n) = {m : (n,m) ∈ E} denote the set
of neighbors of node n ∈ V . We only perform a simple yet
efficient aggregation (see Section 5) for node n as follows:

nq(ℓ+1) = nq(ℓ)(T) +
1

|N (n)|
∑

m∈N (n)

mq(ℓ)(T). (17)

Layer stacking for local geometry learning. We stack up
multiple Hamiltonian layers with neighborhood aggregation

in between them. We first give an intuitive explanation for
the case where Hnet is set as (12). A learnable metric gnet
for the manifold is involved (see Section 4.2.1 for more
details) and the features are evolved following the geodesic
curves with minimal length (see Section 3). Within each
Hamiltonian layer, the metric gnet that is instantiated by a
smooth FC layer only depends on the local node position
on a pseudo-Riemannian manifold that varies from point to
point. Note that with layer stacking, these features contain
information aggregated from their neighbors. The metric
gnet, therefore, learns from the graph topology, and each
node is embedded with a local geometry that depends on its
neighbors. In contrast, (Chami et al., 2019; Bachmann et al.,
2020; Xiong et al., 2022) consider graph node embedding
using geodesic curves over some fixed manifold without
adjustment of the local geometry.
At the beginning of Section 4, we have assumed the node
features {nq}n to be located in local charts of a prelimi-
nary embedding manifold M . The basic philosophy is that
the embedding manifold evolves with a metric structure
that adapts successively with neighborhood aggregation
along multiple layers, whereas each node’s features evolve
to the most appropriate embedding on the manifold along
the curves. For a general learnable Hnet, the Hamiltonian
orbit that starts from one node has aggregated information
from its neighbors, which guides the learning of the curve
that the node will be evolved along. Therefore, each node is
embedded into a manifold with adaptation to the underlying
geometry of any given graph dataset even if it has diverse
geometries.

5

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Conservation of Hnet. From Theorem 1, the feature updat-
ing through the orbit indicates that the Hnet is conserved
along the curve.
Model summary. Our model is called HamGNN as we use
Hamiltonian orbits for node feature updating on the man-
ifold. We summarize the HamGNN model architecture in
Figure 2 and Algorithm 1. The forms of the Hamiltonian
function Hnet are given in Section 4.2.

4.2. Different Hamiltonian Orbits

We next propose different forms for Hnet from which the
corresponding Hamiltonian orbit and its variations are ob-
tained in our GNN model. The node features are updated
along the Hamiltonian orbits, which are curves starting
from each node (nq, np) at t = 0. Beginning with Moti-
vation I from the paper, we design a learnable metric gnet
in (12) in Section 4.2.1. This approach relaxes the curve
formulation constraint used in (Chami et al., 2019; Bach-
mann et al., 2020; Xiong et al., 2022) and enables learn-
able geodesic curves to guide feature evolution on arbitrary
(pseudo-)Riemannian manifolds while learning local ge-
ometry from graph datasets. To further extend learnable
geodesic curves to learnable Hamiltonian orbits on mani-
folds, as stated in Motivation II, we introduce a flexible H
instantiated by an FC layer without constraints in Section
Section 4.2.2. Subsequently, we present variations based
on Section 4.2.2 in Sections 4.2.3 through 4.2.5 to exam-
ine their performance. In Section 4.2.3, we add constraints
to ensure that H is a convex function, which allows us to
equivalently test a more restricted Lagrangian formalism. In
Section 4.2.4, we include less restricted Hamiltonian me-
chanics without strict constant energy constraints. Finally,
in Section 4.2.5, we consider a more flexible representation
using the symplectic 2-form in comparison to Section 4.2.2.

4.2.1. LEARNABLE METRIC gnet

In this subsection, we consider node embedding onto a
pseudo-Riemannian and set Hnet as (12) where a learnable
metric gnet for the manifold is involved. Within each Hamil-
tonian layer, the metric gnet instantiated by a smooth FC
layer depends on the local node position on the pseudo-
Riemannian manifold that varies from point to point. The
output of gnet at position q represents the inverse metric
local representation [gij]. However, from (12), the space
complexity is order d3 due to the partial derivative of g’s
output being a d × d matrix. We therefore only consider
diagonal metrics to mitigate the space complexity. More
specifically, we now define

gnet(q) = diag([−1, . . . ,−1︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
s

]⊙ hnet(q)) (18)

where hnet : Rd → Rd consists of non-linear trainable
layers and ⊙ denotes element-wise multiplication. To ensure

non-degeneracy of the metric, the output of hnet is set to be
away from 0 with the final activation function of it being
strictly positive. The vector [−1, . . . ,−1, 1, . . . , 1] controls
the signature (r, s) (Lee, 2018) of the metric g with r+ s =
d, where r and s are the number of −1s and 1s, respectively.
The signature of the metric is set to be a hyperparameter.
According to (13), we have

q̇i = gijnetpj , ṗi = −1

2
∂ig

jk
netpjpk. (19)

Intuitively, the node features evolve through the “shortest”
curves on the manifold. The exponential map used in (Chami
et al., 2019; Bachmann et al., 2020; Xiong et al., 2022) is
essentially the geodesic curve on a hyperbolic manifold with
an explicit formulation due to the manifold type restriction.
We do not enforce any assumption here and let the model
learn the embedding geometry.

4.2.2. LEARNABLE Hnet

Different from Section 4.2.1 where H is set as (12) with a
pseudo-Riemannian metric, we choose a more flexible H
instantiated by an FC layer and consider the Hamiltonian
equations:

q̇i =
∂HFC

∂pi
, ṗi = −∂HFC

∂qi
. (20)

4.2.3. LEARNABLE CONVEX Hnet

As discussed in Section 3.3, if Hnet is restricted to strictly
convex functions, the Hamiltonian formalism can degener-
ate to a Lagrangian formalism through the Legendre trans-
formation (11). We take the following restricted Hamilto-
nian equations

q̇i =
∂Hnet

∂pi
, ṗi = −∂Hnet

∂qi
, s. t. Hnet is convex, (21)

where a stationary action in (5) is achieved. To guarantee
that Hnet is convex, we follow the work in (Amos et al.,
2017) to set non-negative layer weights from the second
layer in Hnet, and all activation functions in Hnet to be
convex and non-decreasing. This network design is shown
to be able to approximate any convex functions in (Chen
et al., 2018b).

4.2.4. LEARNABLE Hnet WITH RELAXATION

Different from Section 4.2.2, we enforce additional system
biases along the curve as follows:

q̇i =
∂Hnet

∂pi
, ṗi = −∂Hnet

∂qi
+ fnet(q). (22)

Instead of keeping the energy during the feature update
along the Hamiltonian orbit, we now also include an addi-
tional energy term during the node feature update.

6

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Algorithm 1 Graph Node Embedding with HamGNN
1: Initialize: the network modules including Hamiltonian

function network {H(ℓ)
net}Lℓ=1, the learnable momentum

function {Q(ℓ)
net}Lℓ=1, and the raw node features com-

pressor network FC.
2: I. Training:
3: for Epoch 1 to N do
4: 1). At each epoch, perform the following to obtain the

embedding Z with the n-th column being nq(L)(T):
5: Input: G = (V, E) with raw node features.

Apply FC to compress raw node features and get
{nq(1)}|V|

n=1.
6: for layer ℓ = 1 to L do
7: i). Solve the following Hamiltonian equations (15)

(or its variants) using neural differential equation
solvers (Chen et al., 2018a):

q̇(ℓ)i =
∂H

(ℓ)
net

∂p
(ℓ)
i

, ṗ
(ℓ)
i = −∂H

(ℓ)
net

∂q(ℓ)i

with q(ℓ)(0) = nq(ℓ) and p(ℓ)(0) = Q
(ℓ)
net(

np(ℓ)) at
t = 0. The feature vector nq(ℓ)(T) at time T is
obtained from this step.

8: ii). Perform neighborhood aggregation according
to the following equation (17) to obtain nq(ℓ+1):

nq(ℓ+1) = nq(ℓ)(T) +
1

|N (n)|
∑

m∈N (n)

mq(ℓ)(T)

which is used as the initial condition at the next
layer ℓ+ 1.

9: end for
10: 2). Utilize backpropagation to minimize the cross-

entropy loss in node classification and link prediction,
with the latter employing negative sampling.

11: 3). Perform validation over the validation split.
12: 4). Save the model parameters.
13: end for
14: II. Testing:
15: Load the model from the best validation epoch and per-

form Step I.1). to obtain the final embedding over the
test split. Perform node classification or link prediction.

4.2.5. LEARNABLE Hnet WITH A FLEXIBLE SYMPLECTIC
FORM

Hamiltonian equations have a more flexible representation
using the symplectic 2-form (cf. Appendix G). The chart
coordinate representation (q, p) may not be the Darboux
coordinate system for the symplectic 2-form. Even if our
learnable Hnet may be able to learn the energy representa-
tion under the chosen chart coordinate system, we consider
a learnable symplectic 2-form to act in concert with Hnet.

More specifically, following (Chen et al., 2021), we have
the following 1-form

θ1net = fi,netdq
i,

where fi,net : M → Rd is the output’s i-th component of
the neural network parameterized function. The Hamiltonian
orbit is then provided by (Chen et al., 2021) as follows:(

q̇i, ṗi
)
= W−1(q, p)∇Hnet(q, p), (23)

where the skew-symmetric 2d× 2d matrix W , whose ele-
ments are written in terms of (∂ifj,net − ∂jfi,net), is given
in (24) in the appendix due to space limitations.

5. Experiments
In this section, we implement the proposed HamGNNs with
different settings as shown in Section 4.2 and Appendix C.
We select datasets with various geometries including the
three citation networks: Cora (McCallum et al., 2004), Cite-
seer (Sen et al., 2008), Pubmed (Namata et al., 2012); and
two low hyperbolicity datasets (Chami et al., 2019): Dis-
ease and Airport (cf. Table 5). Furthermore, we create new
datasets with more complex geometry by combining Dis-
ease and Cora/Citeseer so that the new datasets have a mix-
ture of both hyperbolic and Euclidean local geometries.
Adhering to the experimental settings of (Chami et al., 2019;
Gu et al., 2018; Bachmann et al., 2020; Lou et al., 2020;
Xiong et al., 2022), we evaluate the effectiveness of the node
embedding by performing two downstream tasks: node clas-
sification and link prediction using the embeddings. Rather
than beating all the existing GNNs on these two specific
tasks, we want to demonstrate that our node embedding strat-
egy is able to automatically learn, without extensive tuning,
the underlying geometry of any given graph dataset even if
its underlining geometry is very complex, e.g., a mixture of
multiple geometries. Such examples can be found in Table 3.
Due to space constraints, we refer the readers to Appendix E
for the description of datasets and implementation details.

To fairly compare the performance of the proposed
HamGNN, for the node classification tasks, we select sev-
eral popular GNN models as the baseline. These include
Euclidean GNNs: GCN (Kipf & Welling, 2017a), GAT
(Veličković et al., 2018), SAGE (Hamilton et al., 2017), and
SGC (Wu et al., 2019); Hyperbolic GNNs (Chami et al.,
2019; Liu et al., 2019): HGNN, HGCN, HGAT and LGCN
(Zhang et al., 2021b); a GNN that mixes Euclidean and
hyperbolic embeddings: GIL (Zhu et al., 2020b); (Pseudo-
)Riemannian GNNs: κ-GCN (Bachmann et al., 2020) and
Q-GCN (Xiong et al., 2022); as well as Graph Neural Diffu-
sions: GRAND (Chamberlain et al., 2021b) and GraphCON
(Rusch et al., 2022). We also include the MLP baseline,
which does not utilize the graph topology information. To
further demonstrate the advantage of HamGNN, we also

7

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

include one vanilla ODE system, whose formulation is
given in Appendix F.1. This vanilla ODE system neither
includes the learnable "momentum" vector p nor adheres to
the Hamiltonian orbits (26). For the link prediction task, we
compare HamGNN to the standard graph node embedding
models, including all the aforementioned baselines in the
node classification task except the graph neural diffusion
baselines. For the link prediction tasks, we report the best
results from different versions of HamGNN: HamGNN (19)
on the Disease dataset and (20) on the remaining datasets.

Method Disease Airport Pubmed Citeseer Cora
δ-hyperbolicity 0.0 1.0 3.5 4.5 11.0

MLP 50.00±0.00 76.96±1.77 71.95±1.38 58.10±1.87 57.15±1.15
HNN (Ganea et al., 2018) 56.40±6.32 80.49±1.54 71.60±0.47 55.13±2.04 58.03±0.55

GCN (Kipf & Welling, 2017a) 81.10±1.33 82.25±0.56 77.83±0.77 71.78±0.34 80.29±2.29
GAT (Veličković et al., 2018) 87.01±2.77 92.99±0.83 77.58±0.81 68.07±1.31 80.33±0.61
SAGE (Hamilton et al., 2017) 81.60±7.68 81.97±0.85 77.63±0.15 65.90±2.32 74.50±0.88

SGC (Wu et al., 2019) 82.78±0.93 81.40±2.21 76.83±1.11 70.88±1.32 81.98±1.71

HGNN (Liu et al., 2019) 80.51±5.70 84.54±0.72 76.65±1.38 69.43±0.99 79.53±0.98
HGCN (Chami et al., 2019) 89.87±1.13 85.35±0.65 76.38±0.81 65.80±2.04 78.70±0.96
HGAT (Zhang et al., 2021a) 88.68±3.36 87.50±0.99 78.00±0.50 69.20±0.96 80.88±0.75
LGCN (Zhang et al., 2021b) 88.47±1.80 88.22±0.18 77.35±1.38 68.08±1.98 80.60±0.92

GIL (Zhu et al., 2020b) 90.78±0.45 91.52±1.74 77.76±0.57 71.10±1.24 82.10±1.12

κ-GCN (Bachmann et al., 2020) - 87.92±1.33 79.20±0.65 73.25±0.51 81.08±1.45
Q-GCN (Xiong et al., 2022) 70.79±1.23 89.72±0.52 81.34±1.54 74.13±1.41 83.72±0.43

Vanilla ODE in (27) 71.81±18.85 90.34±0.67 73.30±3.31 56.60±1.26 68.38±1.18

GRAND (Chamberlain et al., 2021b) 74.52±3.37 60.02±1.55 79.32±0.51 71.76±0.79 82.80±0.92
GraphCON (Rusch et al., 2022) 87.50±4.06 68.61±2.10 78.80±0.97 71.33±0.83 82.49±1.08

HamGNN (19) 91.26±1.40 95.50±0.48 78.08±0.48 70.12±0.86 82.16±0.80
HamGNN (20) 88.74±1.17 95.11±0.40 78.18±0.54 71.48±1.42 81.52±1.27
HamGNN (21) 84.57±5.78 93.28±1.40 78.83±0.46 72.00±0.73 81.84±0.88
HamGNN (22) 87.48±5.90 95.46±0.68 78.30±0.34 72.38±0.85 81.56±0.97
HamGNN (23) 88.35±1.51 93.66±0.16 78.60±0.32 71.52±1.41 81.24±0.59
HamGNN (25) 91.18±0.99 95.80±0.19 77.90±0.49 69.18±1.63 80.90±0.35
HamGNN (26) 91.50±2.07 95.99±0.13 78.26±0.64 69.10±1.95 80.10±1.56

Table 1. Node classification accuracy(%). The best, second best,
and third best results for each criterion are highlighted in red, blue,
and cyan, respectively. “-” indicates the open source code and/or
the result is unavailable.

Method Disease Airport Pubmed Citeseer Cora
δ-hyperbolicity 0.0 1.0 3.5 4.5 11.0

MLP 83.37±5.04 87.04±0.56 88.69±1.59 89.65±1.00 91.07±0.56
HNN (Ganea et al., 2018) 81.37±8.78 86.06±2.08 94.69±0.25 89.83±0.39 92.83±0.76

GCN (Kipf & Welling, 2017a) 60.38±2.51 90.97±0.65 91.37±0.09 93.20±0.28 92.89±0.77
GAT (Veličković et al., 2018) 62.03±1.58 91.05±0.83 91.03±0.67 93.83±0.65 93.34±0.50
SAGE (Hamilton et al., 2017) 68.02±0.43 91.40±0.88 93.61±0.26 93.37±0.88 92.94±0.40

SGC (Wu et al., 2019) 59.83±4.01 89.72±0.82 92.16±0.13 94.78±0.77 93.15±0.22

HGNN (Liu et al., 2019) 60.20±1.14 92.46±0.20 93.09±0.09 90.35±0.57 92.05±0.33
HGCN (Chami et al., 2019) 78.09±2.79 94.28±0.20 96.79±0.01 93.60±0.14 94.10±0.05
HGAT (Zhang et al., 2021a) 76.32±3.41 94.64±0.51 96.86±0.03 93.45±0.25 94.96±0.36

GIL (Zhu et al., 2020b) 99.97±0.08 97.92±2.64 91.22±3.25 95.99±8.89 97.78±2.31

κ-GCN(Bachmann et al., 2020) - 96.35±0.62 96.60±0.32 95.79±0.24 94.04±0.34
Q-GCN (Xiong et al., 2022) - 96.30±0.22 96.86±0.37 97.01±0.30 95.16±1.25

HamGNN 99.73±0.26 99.99±0.01 92.15±0.30 99.99±0.00 98.20±1.73

Table 2. Link prediction ROC(%). The best, second best, and third
best results for each criterion are highlighted in red, blue, and
cyan, respectively. “-” indicates the open source code and/or the
result is not available.

5.1. Performance Results and Ablation Studies

Node classification. The node classification performance
on the benchmark datasets using the baseline models and

the proposed HamGNNs with different Hnets is shown
in Table 1. We observe that HamGNN adapts well to all
datasets with various geometries. For the datasets such as
Cora, Citeseer and Pubmed, which can be well embedded
into Euclidean space, HamGNNs achieve comparable per-
formance to the conventional Euclidean GNNs. For exam-
ple, HamGNN (19) achieves the third-best performance
on the Cora. For tree-like graph data Disease and Airport,
HamGNNs outperform the other GNNs, including all the hy-
perbolic GNNs, which are tailored for hyperbolic datasets,
and Riemannian GNNs which use a Cartesian product of
spherical, hyperbolic, and Euclidean spaces. From the re-
sults in Table 1, we can see that Riemannian GNNs κ-GCN
and Q-GCN are biased towards embedding data into Eu-
clidean space since they have the best performance on high
hyperbolicity datasets but average performance on low hy-
perbolicity datasets.
Furthermore, the comparison between HamGNNs with the
vanilla ODE GNN in (27) without any Hamiltonian mecha-
nism implies the importance of the Hamiltonian layer.
Link prediction. In Table 2, we report the averaged ROC
for the link prediction task. We observe HamGNN adapts
well to all datasets and is the best performer on the Airport,
Citeseer, and Cora.
Comparison between different Hnet. We compare
HamGNNs with different Hnets as elaborated in Section 4.2
on the node classification task. In Section 3.3, we argue that
the geodesic curves derived from the action of curve length
may potentially sacrifice efficacy for the graph node embed-
ding task since we do not know what a reasonable action
formulation that guides the evolution of the node feature in
this task is. We therefore also include a more flexible Hnet

in (20) with other variations, e.g., (21) to (23). From Table 1,
we observe that the original HamGNN (19) shows good
adaptations of node embedding to various datasets. Simply
using a FC layer for H in (20) has no obvious improvement.
Further imposing convexity on H in (21) also has little pos-
itive impact on the performance. Including system bias in
(22) achieves the best performance on Citeseer among all
HamGNNs. The HamGNNs that achieve the best perfor-
mance on Disease and Airport are (25) and (26). Overall,
all HamGNN variants elaborated in Section 4.2 have well-
adapted node embedding performance for various datasets
even though some variants may perform slightly better. This
observation indicates that good geometry adaptations may
come from the HamGNN model architecture with the Hamil-
tonian orbit evolution. This is further verified by the node
classification performance from vanilla ODE in (27), which
does not have a well-adapted node embedding performance
and is designed without the philosophy of Hamiltonian me-
chanics. Good experiment results in Section 5.2 using both
(19) and (20) also provide further evidence to support our
conclusion.
We next compare the HamGNNs using (20) and (23). The

8

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

difference between those two settings is that the symplec-
tic form in (20) is set to be the special Poincaré 2-form
while in (23), the symplectic form is a learnable one. We
however observe that the two HamGNNs achieve similar
performance and the more flexible symplectic form does
not improve the model performance. This may be because
of the fundamental Darboux theorem (Lee, 2013) in sym-
plectic geometry, which states that we can always find a
Darboux coordinate system to give any symplectic form the
Poincaré 2-form. The feature compressing FC may have the
network capacity to approximate the Darboux coordinate
map, while the flexible learnable Hnet also has the network
capacity to get the energy representation under the chosen
chart coordinate system.

datasets GCN HGCN GIL Q-GCN HamGNN (19) HamGNN (20)
Air+Cora 75.16±0.65 78.72±0.42 82.04±1.27 90.25±0.81 94.82±0.78 93.08±0.55
Air+Cite 70.97±0.34 74.65±0.40 77.83±1.57 87.63±0.28 90.03±0.29 88.94±0.75

Table 3. Node classification on the Mixed Geometry Dataset. First
row: mixed Airport+Cora dataset; Second row: mixed Air-
port+Citeseer dataset.

Dataset Models 3 layers 5 layers 10 layers 20 layers

Cora
GCN 80.29±2.29 69.87±1.12 26.50±4.68 23.97±5.42

HGCN 78.70±0.96 38.13±6.20 31.90±0.00 26.23±9.87
HamGNN (21) 81.84±0.88 81.08±0.16 81.40±0.44 80.58±0.30

Table 4. Node classification accuracy(%) when increasing the num-
ber of layers on the Cora dataset.

5.2. Mixed Geometry Dataset

5.2.1. MIXED AIRPORT + CORA DATASET

To understand the node embedding capacity of HamGNN,
we created a new mixed geometry graph dataset by combin-
ing the Airport (3188 nodes) and Cora (2708 nodes) datasets
into a single large graph with 5896 nodes (cf. Table 5). The
results are presented in the first row of Table 3.
This new dataset is composed of a mixture of hyperbolic
and Euclidean geometries, as the Airport dataset is known
to have a more hyperbolic geometry, and the Cora dataset
is known to have a more Euclidean geometry, as shown in
Figure 1. We choose these two datasets also because they
have a similar number of nodes. To standardize the node
feature dimension across datasets, we pad the node features
with additional zeros. We do not create any new edges in
the new dataset so that the new graph contains two discon-
nected subgraphs: Airport and Cora. We use a 60%, 20%,
20% random split for training, validation, and test sets on
this new dataset.
We test our HamGNN against several baselines including
GCN, HGCN, GIL, and Q-GCN. The results are shown
in Table 3 from which we can observe that, in this more
complex geometry setting, HamGNN performs the best.

5.2.2. MIXED AIRPORT + CITESEER DATASET

We also include experiments on another new mixed dataset
created using Airport and Citeseer. The combination of
these two datasets is the same as the previous one. This new
dataset therefore has different geometry in each component
from Airport or Citeseer. The results are reported in the
second row of Table 3. We observe that our HamGNN still
performs the best.

These two experiments show that our model can adapt well
to the underlying complex geometry.

5.3. Observation of Resilience to Over-Smoothing

As a side benefit of HamGNN, we observe from Table 4 that
if more Hamiltonian layers are stacked, HamGNN is still
able to distinguish nodes from difference classes, while the
other GNNs suffer severe oversmoothing problem (Chen
et al., 2020a). This may be because when updating node
features their energy is constrained to be alone in the Hamil-
tonian orbit. So, if two nodes are distinct in terms of their
energy at the input of HamGNN, they will still be distin-
guishable by their energy at the output of HamGNN, no
matter how many times the feature aggregation operation
has been implemented.

More Experiments. We kindly refer readers to Appendix F
where we include more empirical analysis and visualization.

6. Conclusion
In this paper, we have designed a new node embedding strat-
egy from Hamiltonian orbits that can automatically learn,
without extensive tuning, the underlying geometry of any
given graph dataset even when multiple different geome-
tries coexist. We have demonstrated empirically that our
approach adapts better than popular state-of-the-art graph
node embedding GNNs to various graph datasets on two
graph node embedding downstream tasks.

Acknowledgments
This research is supported by A*STAR under its RIE2020
Advanced Manufacturing and Engineering (AME) Indus-
try Alignment Fund – Pre Positioning (IAF-PP) (Grant No.
A19D6a0053) and the National Research Foundation, Sin-
gapore and Infocomm Media Development Authority un-
der its Future Communications Research and Development
Programme. The computational work for this article was
partially performed on resources of the National Supercom-
puting Centre, Singapore (https://www.nscc.sg).

9

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In Proc.
Int. Conf. Mach. Learn., pp. 21–29, 2019.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. In Proc. Int. Conf. Mach. Learn., pp. 146–155,
2017.

Ashoor, H., Chen, X., Rosikiewicz, W., Wang, J., Cheng,
A., Wang, P., Ruan, Y., and Li, S. Graph embedding and
unsupervised learning predict genomic sub-compartments
from hic chromatin interaction data. Nat. Commun., 11,
2020.

Bachmann, G., Bécigneul, G., and Ganea, O. Constant
curvature graph convolutional networks. In Proc. Int.
Conf. Mach. Learn., 2020.

Bi, W., Du, L., Fu, Q., Wang, Y., Han, S., and Zhang, D.
Make heterophily graphs better fit gnn: A graph rewiring
approach. arXiv preprint arXiv:2209.08264, 2022.

Bishnoi, S., Bhattoo, R., Ranu, S., and Krishnan, N. Enhanc-
ing the inductive biases of graph neural ode for modeling
dynamical systems. arXiv preprint arXiv:2209.10740,
2022.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-
frequency information in graph convolutional networks.
In Proc. AAAI Conf. Artif. Intell., pp. 3950–3957, 2021.

Chamberlain, B. P., Rowbottom, J., Eynard, D., Di Giovanni,
F., Xiaowen, D., and Bronstein, M. M. Beltrami flow
and neural diffusion on graphs. In Advances Neural Inf.
Process. Syst., 2021a.

Chamberlain, B. P., Rowbottom, J., Goronova, M., Webb,
S., Rossi, E., and Bronstein, M. M. Grand: Graph neural
diffusion. In Proc. Int. Conf. Mach. Learn., 2021b.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hyperbolic
graph convolutional neural networks. In Advances Neural
Inf. Process. Syst., 2019.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In Proc.
AAAI Conf. Artif. Intell., pp. 3438–3445, 2020a.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proc. Int.
Conf. Mach. Learn., pp. 1725–1735, 2020b.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Advances
Neural Inf. Process. Syst., 2018a.

Chen, R. T. Q. torchdiffeq, 2018. URL https://
github.com/rtqichen/torchdiffeq.

Chen, Y., Shi, Y., and Zhang, B. Optimal control via
neural networks: A convex approach. arXiv preprint
arXiv:1805.11835, 2018b.

Chen, Y., Matsubara, T., and Yaguchi, T. Neural symplectic
form: Learning hamiltonian equations on general coor-
dinate systems. In Advances Neural Inf. Process. Syst.,
2021.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Da Silva, A. C. and Da Salva, A. C. Lectures on symplectic
geometry, volume 3575. Springer, 2008.

De León, M. and Rodrigues, P. R. Generalized Classical
Mechanics and Field Theory: a geometrical approach
of Lagrangian and Hamiltonian formalisms involving
higher order derivatives. Elsevier, 2011.

Fecko, M. Differential geometry and Lie groups for physi-
cists. Cambridge university press, 2006.

Ganea, O., Bécigneul, G., and Hofmann, T. Hyperbolic
neural networks. In Advances Neural Inf. Process. Syst.,
2018.

Goldstein, H., Poole, C., and Safko, J. Classical Mechanics.
Addison Wesley, 3 edition, 2001.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. In Advances Neural Inf. Process. Syst.,
2019.

Gromov, M. Hyperbolic Groups. Springer New York, New
York, 1987.

Gu, A., Sala, F., Gunel, B., and Ré, C. Learning mixed-
curvature representations in product spaces. In Proc. Int.
Conf. Learn. Representations, 2018.

Haber, E. and Ruthotto, L. Stable architectures for deep neu-
ral networks. Inverse Problems, 34(1):1–23, December
2017.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Advances
Neural Inf. Process. Syst., 2017.

Hartman, P. Ordinary differential equations. SIAM, 2002.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs, 2021.

10

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Huang, Y., Yu, Y., Zhang, H., Ma, Y., and Yao, Y. Adver-
sarial robustness of stabilized neural ode might be from
obfuscated gradients. In Bruna, J., Hesthaven, J., and
Zdeborova, L. (eds.), Proc. Mathematical and Scientific
Machine Learning Conference, pp. 497–515, 2022.

Ji, F., Lee, S. H., Meng, H., Zhao, K., Yang, J., and Tay, W. P.
Leveraging label non-uniformity for node classification in
graph neural networks. In Proc. Int. Conf. Mach. Learn.,
Haiwaii, USA, Jul. 2023.

Kang, Q., Song, Y., Ding, Q., and Tay, W. P. Stable neural
ODE with Lyapunov-stable equilibrium points for defend-
ing against adversarial attacks. In Advances Neural Inf.
Process. Syst., 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proc. Int. Conf.
Learn. Representations, pp. 1–14, 2017a.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proc. Int. Conf.
Learn. Representations, 2017b.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In Proc. Int. Conf. Learning Representations,
2019.

Kline, M. Mathematical Thought from Ancient to Modern
Times: Volume 2, volume 2. Oxford university press,
1990.

Klingenberg, W. P. Riemannian geometry, volume 1. Walter
de Gruyter, 2011.

Lee, J. M. Introduction to smooth manifolds. Springer,
London, 2013.

Lee, J. M. Introduction to Riemannian manifolds. Springer,
London, 2018.

Lee, S. H., Ji, F., and Tay, W. P. SGAT: Simplicial graph
attention network. In Proc. Inter. Joint Conf. Artificial
Intell., Vienna, Austria, Jul. 2022.

Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural
networks. In Advances Neural Inf. Process. Syst., 2019.

Lou, A., Katsman, I., Jiang, Q., Belongie, S., Lim, S.-N.,
and De Sa, C. Differentiating through the fréchet mean.
In Proc. Int. Conf. Mach. Learn., pp. 6393–6403, 2020.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks. arXiv preprint arXiv:2210.07606,
2022.

Malham, S. J. An introduction to lagrangian and hamiltonian
mechanics, 2016.

McCallum, A., Nigam, K., Rennie, J. D. M., and Seymore,
K. Automating the construction of internet portals with
machine learning. Information Retrieval, 3:127–163,
2004.

Namata, G. M., London, B., Getoor, L., and Huang, B.
Query-driven active surveying for collective classification.
In Workshop Mining Learn. Graphs, 2012.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Rudin, W. et al. Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York, 1976.

Rusch, T. K., Chamberlain, B. P., Rowbottom, J., Mishra, S.,
and Bronstein, M. M. Graph-coupled oscillator networks.
In Proc. Int. Conf. Mach. Learn., 2022.

Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., and
Battaglia, P. Hamiltonian graph networks with ode inte-
grators. In Advances Neural Inf. Process. Syst. Workshop
on Machine Learning and the Physical Sciences, 2019.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93, Sep. 2008.

She, R., Kang, Q., Wang, S., Tay, W. P., Guan, Y. L.,
Navarro, D. N., and Hartmannsgruber, A. Stable archi-
tectures for deep neural networks. IEEE Trans. Image
Process., May 2023.

Song, Y., Kang, Q., Wang, S., Zhao, K., and Tay, W. P.
On the robustness of graph neural diffusion to topology
perturbations. In Advances Neural Inf. Process. Syst.,
2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In Proc. Int.
Conf. Learn. Representations, pp. 1–12, 2018.

Wang, S., Kang, Q., She, R., Tay, W. P., Hartmannsgruber,
A., and Navarro, D. N. RobustLoc: Robust camera pose
regression in challenging driving environments. In Proc.
AAAI Conf. Artif. Intell., Washington, DC, Feb. 2023a.

Wang, S., Kang, Q., She, R., Wang, W., Zhao, K., Song,
Y., and Tay, W. P. HypLiLoc: Towards effective LiDAR
pose regression with hyperbolic fusion. In Proc. Conf.
Comput. Vision Pattern Recognition, Vancouver, Canada,
Jun. 2023b.

11

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
Proc. Int. Conf. Mach. Learn., 2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Trans. Neural Netw. Learn. Syst., 32(1):4–24, 2021.

Xiong, B., Zhu, S., Potyka, N., Pan, S., Zhou, C., and Staab,
S. Pseudo-riemannian graph convolutional networks. In
Advances Neural Inf. Process. Syst., 2022.

Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosav-
inasab, S., Huang, Y., Lin, S. M., Zhang, W., Zhang, P.,
and Sun, H. Graph embedding on biomedical networks:
methods, applications and evaluations. Bioinformatics,
36(4):1241–1251, 2019.

Zhang, Y., Wang, X., Shi, C., Jiang, X., and Ye, Y. F. Hy-
perbolic graph attention network. IEEE Tran. Big Data,
63(1), 2021a.

Zhang, Y., Wang, X., Shi, C., Liu, N., and Song, G.
Lorentzian graph convolutional networks. In Proc. Web
Conf., 2021b.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs: A
survey. IEEE Trans. Knowl. Data Eng., 34(1):249–270,
Jan 2022.

Zhao, K., Kang, Q., Song, Y., She, R., Wang, S., and Tay,
W. P. Graph neural convection-diffusion with heterophily.
In Proc. Inter. Joint Conf. Artificial Intell., Macao, China,
Aug. 2023.

Zhong, Y. D., Dey, B., and Chakraborty, A. Symplectic
ode-net: Learning hamiltonian dynamics with control. In
Proc. Int. Conf. Learn. Representations, 2020.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Advances
Neural Inf. Process. Syst., 2020a.

Zhu, S., Pan, S., Zhou, C., Wu, J., Cao, Y., and Wang, B.
Graph geometry interaction learning. In Advances Neural
Inf. Process. Syst., 2020b.

A. Related Work
Graph Neural Networks (GNNs) (Yue et al., 2019; Ashoor
et al., 2020; Kipf & Welling, 2017b; Zhang et al., 2022;
Wu et al., 2021; Lee et al., 2022; She et al., 2023; Wang
et al., 2023a; Ji et al., 2023) have exhibited remarkable
inferential performance in a broad range of applications. In
this section, we provide a succinct review of Hamiltonian
Neural Networks, Riemannian Manifold GNNs, and Graph
Neural Diffusions.

Hamiltonian neural networks. Among the physics-
inspired deep learning approaches, Hamiltonian equations
have been applied to conserve an energy-like quantity when
training neural networks. The work by (Haber & Ruthotto,
2017) introduces a Hamiltonian-inspired neural ODE to sta-
bilize gradients, avoiding vanishing and exploding issues.
Further, (Huang et al., 2022) investigates the adversarial
robustness of Hamiltonian ODE. In the physics community,
several works propose learning a Hamiltonian function from
the observation of systems to simulate physical systems or
solve problems in particle physics. Studies such as (Grey-
danus et al., 2019; Zhong et al., 2020; Chen et al., 2021)
train a neural network to infer the Hamiltonian dynamics
of a physical system, where the Hamiltonian equations are
solved using neural ODE solvers. To better model interac-
tions between physical objects, works like (Bishnoi et al.,
2022; Sanchez-Gonzalez et al., 2019) employ a graph net-
work with a Hamiltonian inductive design to capture the
dynamics of physical systems from observed trajectories.
For instance, to forecast dynamics, (Bishnoi et al., 2022)
employs graph networks incorporating Hamiltonian me-
chanics to learn phase space orbits efficiently. This work
demonstrates the effectiveness of Hamiltonian graph neural
networks on several dynamics benchmarks, including pendu-
lum systems and spring networks. Compared to traditional
neural networks, Hamiltonian (graph) neural networks offer
several advantages, such as energy preservation, natural in-
corporation of conservation laws, and a more interpretable
and physically meaningful representation of the system.

In this paper, we are neither simulating a Hamiltonian
physics system nor solving a real-world Hamiltonian
physics problem. Instead, we apply Hamiltonian equations
to generic graph node embedding tasks. Our approach gen-
eralizes the Riemannian manifold GNNs and has not been
investigated in the above-mentioned works.

Riemannian manifold GNNs. Most GNNs in the litera-
ture (Yue et al., 2019; Ashoor et al., 2020; Kipf & Welling,
2017b; Zhang et al., 2022; Wu et al., 2021) embed graph
nodes in Euclidean spaces. In what follows, we simply
call them (vanilla or Euclidean) GNNs. They perform well
on some datasets like the Cora dataset (McCallum et al.,
2004) whose Gromov δ-hyperbolicity distributions (Chami
et al., 2019) is high. When dealing with datasets whose

12

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

δ-hyperbolicities are low (hence embedding should more
appropriately be in a hyperbolic space) such as the Dis-
ease (Chami et al., 2019) and Airport (Chami et al., 2019)
datasets, those GNNs suffer from improper node embed-
ding. To better handle hierarchical graph data, (Liu et al.,
2019; Chami et al., 2019; Zhang et al., 2021b; Zhu et al.,
2020b; Wang et al., 2023b) propose to embed nodes into a
hyperbolic space, thus yielding hyperbolic GNNs. Moreover,
(Zhu et al., 2020b) proposes a mixture of embeddings from
Euclidean and hyperbolic spaces. This mixing operation
relaxes the strong space assumption of using only one type
of space for a dataset. In some recent studies, such as (Gu
et al., 2018; Bachmann et al., 2020; Lou et al., 2020), the re-
searchers use (products of) constant curvature Riemannian
spaces for graph node embedding where the spaces are as-
sumed to be spherical, hyperbolic, or Euclidean. In work by
(Xiong et al., 2022), a special type of pseudo-Riemannian
manifold called the pseudo-hyperboloid, which has constant
non-zero curvature and is diffeomorphic to the product of
a unit sphere and Euclidean space, has been considered for
the same purpose.

In this paper, we embed nodes into a general learnable
manifold via the Hamiltonian orbit on its symplectic cotan-
gent bundle. This allows our model to flexibly adapt to the
inherent geometry of the dataset.

Graph neural diffusion. Neural Partial Differential Equa-
tions (PDEs) (Chamberlain et al., 2021b;a; Song et al., 2022;
Zhao et al., 2023) are extensions of neural Ordinary Differ-
ential Equations (ODEs) (Chen et al., 2018a; Kang et al.,
2021) and have been applied to graph-structured data, where
different diffusion schemes are assumed when performing
message passing on graphs. To be more specific, the heat
diffusion model is assumed in (Chamberlain et al., 2021b)
and the Beltrami diffusion model is assumed in (Chamber-
lain et al., 2021a; Song et al., 2022). (Rusch et al., 2022)
models the nodes in the graph as coupled oscillators, i.e., a
second-order ODE.

While the above-mentioned graph neural diffusion schemes
and our model all use ODEs, there is a fundamental
difference between our model and graph neural flows. The
graph PDE models wrap the message passing function,
e.g., aggregation functions like the one in GCN, and
attention-based aggregation functions like the one in GAT,
into an ODE function. In contrast, our model treats the
node embedding process and node aggregation process as
two independent processes: we use the ODE function only
to learn a suitable node embedding space which is then
followed by a node aggregation step. In summary, the ODE
layer in our model is a node embedding layer taking node
features as the input, whereas graph PDE layers can be
interpreted as node aggregation layers taking node features
as well as the graph adjacency matrix as the input.

B. Motivation
Our primary goal is to develop a more flexible and robust
method for graph node embedding by leveraging the con-
cepts of geodesic curves and Hamiltonian orbits on mani-
folds.

The embedding strategies in our work and the literature
(Chami et al., 2019; Bachmann et al., 2020; Xiong et al.,
2022) can be unified in equation (5) (and its dual equation
(11)):

S(q) =

∫ b

a

L(q(t), q̇(t))dt.

Our work and the previous works all follow the same “prin-
ciple of stationary action” (action means “cost”, see below
for more explanation) to minimize the functional (5). The
minimization leads to different curves on fixed or arbitrary
manifolds. The embedding strategy is to learn to move the
node on the manifolds to specific positions by following
these curves.

In previous works (Chami et al., 2019; Bachmann et al.,
2020; Xiong et al., 2022), L takes the (7):

L =
1

2
∥q̇(t)∥2g(q(t)) =

1

2
gik(q)q̇

iq̇k

where g is fixed to some formulation, depending on whether
the fixed manifold is assumed to be spherical, hyperbolic,
or Euclidean. These methods learn to move the node on a
fixed manifold following limited geodesic curves induced
from a fixed g. With the Lagrangian L setting as (7), we
obtain the shortest geodesic that induces the exponential
map in (pseudo-)Riemannian manifolds, which has been
widely used in the literature (Chami et al., 2019; Bachmann
et al., 2020; Xiong et al., 2022) to map features to specific
manifolds. These successes in the literature demonstrate
that the shortest geodesic or more general the “principle of
stationary action” helps the node embedding quality.

One philosophical reason for the success, as opined by
Pierre Louis Maupertuis, is that “nature is thrifty in all
its actions” https://en.wikipedia.org/wiki/
Stationary-action_principle (Kline, 1990).
Here, actions mean “effort” or “cost”. The classical physics
example is that “light travels between two given points
along the path of shortest time”. The embedding process
(the feature evolution following a geodesic curve) on a
manifold also obeys a similar least-action philosophy.

Motivation I: Enhancing the adaptability of node embed-
dings using Riemannian geodesics. Traditional graph node
embedding approaches (Chami et al., 2019; Bachmann et al.,
2020; Xiong et al., 2022) often assume a fixed geometry g
that induces fixed Riemannian geodesics (i.e., exponential

13

https://en.wikipedia.org/wiki/Stationary-action_principle
https://en.wikipedia.org/wiki/Stationary-action_principle

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

map) on manifolds for node embedding, which may not ad-
equately represent all types of geometries in graph datasets.
By integrating learnable geodesic curves with learnable g on
arbitrary (pseudo-)Riemannian manifolds, our method can
adaptively learn the local geometry for each dataset. This
not only enables the use of a broader class of functions but
also offers improved representation for diverse graph data
with varying underlying geometries.

In summary, for Motivation I, we replace the fixed g in
the aforementioned L with a more flexible and learnable
function. This learnable g guides more adaptable geodesic
curves on arbitrary (pseudo-)Riemannian manifolds, allow-
ing us to learn the local geometry for each dataset more
effectively. As a result, the graph node features that move
along these learnable geodesic curves to positions on the
manifold will lead to improved embedding quality.

Motivation II: Enhancing node feature evolution with
Hamiltonian orbits. While the geodesic curve-based node
embedding presented in Motivation I, using (7) with learn-
able g, allows for a more flexible representation of data, it
still has limitations w.r.t. the generality of the node feature
evolution along the manifold curve. To tackle this issue, we
propose to extend the learnable geodesic curve concept to
learnable Hamiltonian orbits on manifolds. These orbits,
which are also curves, are associated with a more general
Lagrangian function L. Our method can therefore effec-
tively capture the underlying complexities and variations in
the data, resulting in better performance in various graph
learning tasks.

In summary, Motivation II involves further relaxing the
aforementioned L (7) to include more general functions,
leading to more general Hamiltonian orbits (which are also
curves) on manifolds. Note that geodesic curves are a spe-
cific type of Hamiltonian orbit (after the projection). As L
and H are dual, we set different learnable H in Section 4.2
of the paper. Graph node features continue to move along
the learned curves to positions on the manifold, but the gen-
eralized L allows for more flexible curve options than those
provided in Motivation I.

C. Some Formulations and More Hamiltonian
Orbits

In section, we first present the formulations which are not
shown in detail in the main paper due to space constraints.
More Hamiltonian-related flows are also presented, which
however do not strictly follow the Hamiltonian orbits on the
cotangent bundle T ∗M .

C.1. W in Section 4.2.5

See (24).

C.2. Learnable Metric gnet with Relaxation

Similar to Section 4.2.4, we now impose additional system
biases along the curve compared to the cogeodesic orbits
Section 4.2.1,

q̇i = gijnetpj , ṗi = −1

2
∂ig

jk
netpjpk + fnet(q). (25)

Therefore, the projection of the curve from (25) now no
longer follows the geodesic curve along the base manifold
equipped with metric gnet.

C.3. Hamiltonian Relaxation Flow with Higher
Dimensional “Momentum”

In the paper main context, we present a new type of
Hamiltonian-related flow, which does not strictly follow
the Hamiltonian equations. Inspired from the work (Haber
& Ruthotto, 2017), we now associate to each node q ∈ Rd

an additional a learnable momentum vector p ∈ Rk which
however is not strictly a cotangent vector of the manifold
if d ̸= k. We update the node features using the following
equations

q̇ = ϕ
(
h1
net(p)− ρq

)
,

ṗ = ϕ
(
h2
net(q)− ρp

)
.

(26)

where h1
net and h2

net are neural networks with d-dimensional
output and k-dimensional output respectively, ϕ is a non-
linear activation function and ρ is a scalar hyper-parameter.

D. Dataset Configuration
The statistics of the datasets we use are reported in Table 5.
We follow the data pre-processing strategy in (Chami et al.,
2019) to normalize the adjacency matrix and features before
inputting them into the GNN models.

Dataset Nodes Edges Classes Node Features

Disease 1044 1043 2 1000
Airport 3188 18631 4 4
Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500

Table 5. Dataset statistics, where the dataset hyperbolicity is shown
in Figure 1.

E. Main Paper Experiments Setting
We select the citation networks Cora (McCallum et al.,
2004), Citeseer (Sen et al., 2008), and Pubmed (Namata
et al., 2012), and the low-hyperbolicity (Chami et al., 2019)
Disease, Airport as the benchmark datasets. The citation

14

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

W =

0 ∂1f2,net − ∂2f1,net ∂1f3,net − ∂3f1,net · · ·

∂2f1,net − ∂1f2,net 0 ∂2f3,net − ∂3f2,net · · ·
∂3f1,net − ∂1f3,net ∂3f2,net − ∂2f3,net 0 · · ·

...
...

...
. . .

 (24)

datasets are widely used in graph representation learning
tasks. We use the same dataset splitting settings in (Kipf
& Welling, 2017a). The low-hyperbolicity datasets Disease
and Airport are proposed in (Chami et al., 2019), where
the Euclidean GNN models cannot learn the node embed-
dings effectively. We adhere to the data splitting and pre-
processing procedures outlined in (Chami et al., 2019) for
the Disease and Airport datasets.

We adjust the model parameters in HamGNN based on
the results from the validation data. We use the ADAM
optimizer (Kingma & Ba, 2014) with the weight decay as
0.001. We set the learning rate as 0.01 for citation networks
and 0.001 for Disease and Airport datasets. The results
presented in Table 1 are under the 3 layers HamGNN setting.
We report the results by running the experiments over 10
times with different initial random seeds.

HamGNN first compresses the dimension of input features
to the fixed hidden dimension (e.g. 64) through a fully con-
nected (FC) layer. Then the obtained hidden features are
input to the stacked Hnet ODE layers and aggregation layers.
The q in Hamiltonian flow is initialized by the node embed-
dings after the FC layer. Table 13 shows the implementation
details of the layers in HamGNN.

E.1. ODE solver for Hamiltonian equations

We employ the ODE solver (Chen, 2018) in the implemen-
tation of HamGNN. For computation efficiency and per-
formance effectiveness, the fixed-step explicit Euler solver
(Chen et al., 2018a) is used in HamGNN. We also compare
the influence of ODE solvers and report the results in Ta-
ble 6. One drawback of the ODE solvers provided in (Chen,
2018) is that they are not guaranteed to have the energy-
preserving property in solving the Hamiltonian equations.
However, this flaw does not significantly deteriorate our
model performance regarding the embedding adaptation to
datasets with various structures. Our extensive experiments
on the node classification and link prediction tasks have
demonstrated that the solvers provided in (Chen, 2018) are
sufficient for our use. We leave the use of Hamiltonian equa-
tion solvers for future work to investigate whether solvers
with the energy-preserving property can better help graph
node embedding or mitigate the over-smoothing problem.

F. More Ablation Studies and Experiments
F.1. Vanilla ODE

To demonstrate the advantage of HamGNN’s design, we
also conduct more experiments that replace the Hamiltonian
layer in HamGNN with a vanilla ODE as follows:

q̇(t) = f̃net(q(t)) (27)

where the f̃net(q(t)) is composed of two FC layers and a
non-linear activation function. Compared to the Hamiltonian
orbits in Section 4.2, the equation (27) does not include the
learnable “momentum” vector for each node and does not
follow the Hamiltonian orbits on the cotangent bundle.

F.2. Influence of Metric Signature

We vary the parameter s to explore the influence of the
signature of the learned metric g. The results are presented
in Table 7. We observe that for the Airport dataset, the
influence of the signature is moderate where the best (with
r = 4) and worst performance (with r = 2) has a moderate
gap of 0.39% in accuracy. For other datasets, metrics with
different pre-defined signatures perform similarly to each
other. In Table 1 of the paper, we present the best signature.
Further theoretical understanding of the influence of the
signature is left for future work.

F.3. Node Classification on Heterophilic Datasets

In this section, we include experiments on the node classi-
fication task using heterophilic graph datasets. We would
like to emphasize that our HamGNN is not specifically de-
signed for heterophilic datasets, where nodes with different
attributes or classes are more likely to be linked together in
the graph. Our primary focus is on homophily datasets with
varying local geometry, and the experiments presented in the
paper mainly address this focus. It is important to note that
the local uniform message-passing aggregation (17) used in
our paper is also more suited to homophily datasets. The ad-
ditional experiments on heterophilic datasets in the appendix
serve to demonstrate that even in such cases, our model can
achieve competitive performance when compared to GNNs
that are specifically designed for heterophilic datasets, pro-
vided that a good node embedding layer is designed in our
paper. In the context of heterophilic datasets, common tech-
niques like higher-order neighbor mixing, adaptive message
aggregation, and ego-neighbor separation (Zhu et al., 2020a;

15

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

ODE solver Euler Euler Implicit Adams Implicit Adams Dopri5

Step size 0.1 0.5 0.1 0.5 -

Cora 81.10±1.13 81.52±1.27 81.62±0.58 81.40±0.77 81.62±0.58

Table 6. Node classification accuracy(%) under different ODE solvers in HamGNN (20).

metric signature (r, s) Disease Airport Pubmed Citeseer Cora
(0, 64) 90.16±1.15 95.15±0.53 77.82±0.21 69.52±0.51 81.62±1.61
(1, 63) 89.45±1.53 95.42±0.54 77.38±0.34 69.98±1.17 82.16±0.80
(2, 62) 89.84±1.38 95.11±0.40 77.50±0.39 69.26±0.87 81.22±1.56
(4, 60) 91.18±1.32 95.50±0.48 77.40±0.51 69.12±1.71 81.24±1.97
(8, 56) 89.21±3.09 95.19±0.31 77.34±0.39 69.68±0.10 80.98±1.41
(16, 48) 88.19±4.92 95.19±0.62 78.08±0.48 69.52±0.97 80.86±1.26
(32, 32) 91.26±1.40 95.27±0.52 77.82±0.22 70.12±0.86 81.32±1.06

Table 7. The impact of the signature of metric g in on the node
classification performance.

Method Cornell Wisconsin Texas
Geom-GCN 60.54±3.67 64.51±3.66 66.76±2.72

H2GCN 82.70±5.28 87.65±4.98 84.86±7.23
GPRGCN 78.11±6.55 82.55±6.23 81.35±5.32
FAGCN 76.76±5.87 79.61±1.58 76.49±2.87
GCNII 77.86±3.79 80.39±3.40 77.57±3.83

MixHop 73.51±6.34 75.88±4.90 77.84±7.73
WRGAT 81.62±3.90 86.98±3.78 83.62±5.50

GraphCON 75.14±4.95 84.90±2.64 80.00±3.66
HamGNN 76.49±5.10 83.92±4.87 81.62±6.22

Table 8. Node classification accuracy(%) on heterophilic datasets
under 10 fixed 48%/32%/20% splits taken from (Pei et al., 2020).

Bo et al., 2021; Abu-El-Haija et al., 2019) hold the potential
to enhance our model’s performance. We intend to inves-
tigate these strategies and their impact on our novel node
embedding approach in future work.

In this section, we select the heterophilic graph datasets
Cornell, Texas and Wisconsin from the CMU WebKB 5

project where randomly generated splits of data are provided
by (Pei et al., 2020). The edges in these graphs represent
the hyperlinks between webpages nodes. The labels are
manually selected into five classes, student, project, course,
staff, and faculty. The features on node are the bag-of-words
of the web pages.

For the heterophilic graph datasets, we include the baselines
GCN, GAT, SAGE, APPNP (Klicpera et al., 2019), GCNII
(Chen et al., 2020b), GPRGNN (Chien et al., 2020), and
H2GCN (Zhu et al., 2020a) which are the common baselines
for heterophilic graph datasets (Bi et al., 2022). Addition-
ally, we also include GraphCON (Rusch et al., 2022) for
comparisons. We report the results by running the experi-
ments over 10 times with different initial random seeds for
GraphCON and HamGNN, while for the other baselines

5http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-11/www/wwkb/

on the heterophilic graph datasets, we use the results re-
ported in the paper (Luan et al., 2022). We still observe
that our method is competitive for GNNs that are designed
specifically for heterophilic datasets.

F.4. Aggregation

In the main paper, we have chosen to implement a sim-
ple yet effective fixed-weight aggregation in accordance
with Occam’s razor principle rather than incorporating com-
plex and computationally heavy attention-based aggregation
operations. However, our model is compatible with more ad-
vanced aggregation methods. To demonstrate this, we have
conducted additional experiments using attention-based ag-
gregation with (19), and the results are presented in Table 9.
We observe that on the Disease dataset, the attention-based
aggregation can further improve the node classification ac-
curacy.

Aggregation Disease Airport Pubmed Citeseer Cora
attention 92.72±1.65 94.35±1.00 78.03±0.69 70.53±1.84 81.91±1.03

fixed-weight (17) 91.26±1.40 95.50±0.48 78.08±0.48 70.12±0.86 82.16±0.80

Table 9. Performance of attention-based aggregation on the node
classification task.

F.5. Performance on Larger Graph Datasets

In this section, to underscore our model’s capacity for
handling large graph datasets, we conduct a series of ex-
periments on the Ogbn datasets obtained from https:
//ogb.stanford.edu/docs/nodeprop/, in com-
pliance with the experimental setup detailed in (Hu et al.,
2021). The corresponding results are encapsulated in Ta-
ble 10. For the training of our model on the Ogbn-products
dataset, we employ a straightforward neighborhood sam-
pling approach, as introduced in GraphSage (Hamilton
et al., 2017). The GCN results are extracted directly from
the leaderboard available at https://ogb.stanford.
edu/docs/leader_nodeprop/. We observe that for
such large datasets, our model still performs efficiently com-
pared to other methods.

Model Ogbn-Arxiv Ogbn-Products
HAMGNN 71.70±0.27 79.87±0.04

GCN 71.74±0.29 75.64±0.21

Table 10. Node classification results(%) on Ogbn datasets

16

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
https://ogb.stanford.edu/docs/nodeprop/
https://ogb.stanford.edu/docs/nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

F.6. Computational Cost

To provide further information, we present the memory
usage along with the training and inference time in Ta-
ble 11. When considering efficiency, HamGNN exhibits
a reduced training and inference duration in comparison
to both HGCN and GIL. Furthermore, it boasts a smaller
model size relative to GIL, while maintaining a similar size
to GCN/HGCN. Overall, the table suggests that HamGNN
models require higher computational resources than GCN
but are more efficient than HGCN and GIL, and can achieve
higher accuracy on low hyperbolicity graph learning tasks.

HamGNN(20) GCN HGCN GIL

Num of para 113025 92231 92231 189740
Model Size (MB) 0.431 0.352 0.352 0.724

Inference Time (ms) 3.245 1.662 4.355 14.332
Training Time (ms) 9.612 6.064 38.766 60.022

Table 11. Model size and computation time. All models are using
one hidden layer with a hidden dimension of 64 on the CORA
dataset for a fair comparison.

F.7. Examination of learned curvature parameters

In this section, we provide the visualization of the learned
Ricci scalar curvature (https://en.wikipedia.
org/wiki/Ricci_curvature) that is computed from
our learnable metric g. We use one high δ-hyperbolicity
dataset, the Cora dataset, and one low δ-hyperbolicity
dataset, the Airport dataset. (Note that higher δ-
hyperbolicity means less hyperbolic.)

Airport: We observe that the local curvatures learned on the
Airport dataset show various values, ranging from -2000 to
+2000. Few embeddings show positive curvature, and most
of the embeddings show negative or near 0 curvature at
the local geometry. This is expected as hyperbolic GNNs
(Chami et al., 2019; Liu et al., 2019) have demonstrated
that tree-structured datasets have improved classification
accuracy if they are embedded into a hyperbolic space with
constant negative curvature rather than the zero curvature
Euclidean space. Our model automatically learns to achieve
this. The difference is that in HamGNN with (19), the local
curvature varies from point to point based on learning, and
some points may even be embedded with a local positive
curvature geometry. The visualized learned local curvatures
explain why our model can surpass the baselines on the
lower δ-hyperbolicity datasets.

Cora: For the Cora dataset, from the visualization, we
observe that almost all the embeddings are located at lo-
cations with near zero curvature, i.e., similar to the Eu-
clidean space. This is consistent with our results shown in
the paper that HamGNN has a comparable performance with
Euclidean-based GNNs on high δ-hyperbolicity datasets.

Our HammGNN successfully learns to embed the nodes in
spaces that closely resemble Euclidean spaces.

The above curvature visualization further demonstrates that
the curvature in HamGNN can successfully adapt for differ-
ent structures of different datasets, and this learnable metric
leads to all-around good performance.

Airport Cora

Figure 3. Ricci scalar curvature on the Cora and Airport dataset
using t-SNE.

F.8. Over-Smoothing

Our proposed model aims to alleviate the over-smoothing
issue in GNNs during the feature updating stage rather than
the aggregation stage. We are not claiming that HamGNN to-
tally resolves the over-smoothing problem. Over-smoothing
typically arises from the repeated application of graph con-
volution or aggregation operations, which tend to mix and
average features from neighboring nodes. However, since
our model still employs the traditional aggregation stage, our
experiments on over-smoothing also suggest that some of
the over-smoothing may originate from the feature updating
stage. We continue from Section 5.3 to conduct more exper-
iments on the Cora and Pubmed datasets to demonstrate the
resilience of HamGNN against over-smoothing.

From Table 12, we observe that if the Hnet in (21) is con-
vex, HamGNN can even retain its classification ability better
than vanilla Hnet in (20). One possible reason has been indi-
cated in Section 4.2.3 since now the Hamiltonian formalism
degenerates to a Lagrangian formalism with a possible mini-
mization of the dual energy functional (5). In physics, lower
energy in most cases indicates a more stable system equilib-
rium. Moreover, to further show that with the convex Hnet

in (21) HamGNN can perform better than the vanilla Hnet in
(20) against over-smoothing, we now include more choices
of convex network Hnet with different layer sizes and differ-
ent activation functions (as along as the layer weights from
the second layer in Hnet are non-negative, and all activation
functions in Hnet are convex and non-decreasing). The net-
work details of Hnet are given in Table 13. The experiment
results are shown in Table 12. We clearly observe that for dif-
ferent convex functions and on different datasets, HamGNN

17

https://en.wikipedia.org/wiki/Ricci_curvature
https://en.wikipedia.org/wiki/Ricci_curvature

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

with convex Hnet nearly keeps the full node classification
ability even though we have stacked 20 Hamiltonian layers.

Figure 4 shows how the node features evolve over 10 layers.
We sample a node from the test set of the PubMed dataset
and input it to three models, which are 1) HamGNN, 2)
GIL, and 3) GCN. Each of these three GNNs contains 10
layers, and we compute the node feature magnitude, which
is defined to be the L2-norm of the feature vector, and
the node feature phase, which is defined to be the cosine
similarity between the output feature at the current layer
and the input feature to the first layer. We can observe from
Figure 4 that HamGNN has its learned node features that
change steadily and slowly, while the node features learned
by GIL and GCN change abruptly, especially for the feature
phases. The features from two nodes of different classes,
learned by GIL and GCN, are converging to each other
much faster than HamGNN.

In this paper, we have presented extensive experimental
analyses supporting HamGNN’s ability to mitigate over-
smoothing. Further theoretical analysis of our HamGNN is
left for future work.

F.9. Stability

A known characteristic of Hamiltonian systems is their
energy-conserving nature. Our proposed HamGNN retains
this property of stability or conservation. For our analysis,
we incorporate three neural ODE-based GNN models: 1)
HamGNN, 2) an ODE model employing a positive-definite
linear layer as the ODE function, and 3) an ODE model
using a negative-definite linear layer as the ODE function.
Each of these three GNNs consists of 10 layers. The results,
as presented in Figure 5, illustrate noticeable trends: the
feature magnitude (analogous to feature energy) learned by
HamGNN remains constant across layers, while the fea-
ture magnitude learned by the positive-definite model esca-
lates after a few layers and the one learned by the negative-
definite ODE model approaches zero. With respect to the
feature phase, the phases from two nodes gradually converge
when using HamGNN, while those learned by other neu-
ral ODEs exhibit abrupt shifts, and the difference between
two nodes using the negative-definite ODE is insignificantly
small.

The work (Haber & Ruthotto, 2017) constructs a
Hamiltonian-inspired neural ODE and asserts its capabil-
ity to stabilize gradients, thereby circumventing issues of
vanishing and exploding gradients. This resilience to van-
ishing and exploding gradients may also contribute to the
resistance to over-smoothing. The further theoretical inves-
tigation remains a subject for future work.

G. Differential Geometry and Hamiltonian
System

In this supplementary material, we review some concepts
from a differential geometry perspective. We hope that this
overview makes the paper more accessible for readers from
the graph learning community.

G.1. Manifold, Bundles, and Fields

Roughly speaking, a manifold is a topological space that
locally looks like Euclidean space. More strictly speaking,
a topological space (M,O), where O is the collection of
open sets on space M , is called a d-dimensional manifold if
for every point x ∈ M , we can find an open neighborhood
U ∈ O for x and a coordinate map

q : U → q(U) ⊆ Rd

that is a homeomorphism, where Rd is the d-dimensional
Euclidean space with the standard topology. (U, q) is called
a chart of the manifold, which gives us a numerical rep-
resentation for a local area in M . In this work, we only
consider smooth manifolds (Lee, 2013) that any two over-
lapped charts are smoothly compatible. The set of all smooth
functions from M to R is denoted as C∞(M). On top of the
smooth manifolds, we can define other related manifolds
like the tangent or cotangent bundles and the more general
tensor bundles. From bundles, we can define the vector or
covector fields and the more general tensor fields. In this
work, we mainly consider the manifold with the 2-forms
that are special (0, 2) smooth tensor fields with antisym-
metric constraints. More specifically, we mainly consider
the symplectic form (Lee, 2013) with some other light shed
on the metric tensor which is another type of (0, 2) smooth
tensor field.

Definition 1 (tangent vector and tangent space). Let γ :
I → M be a smooth curve through x ∈ M s.t. γ(0) = x
and I is an interval neighborhood of 0. The tangent vector
is a directional derivative operator at x along γ that is the
linear map

vγ,x : C∞(M)
∼−→ R

f 7→ (f ◦ γ)′(0).

We also call the directional derivative operator as “velocity”
of γ at 0 and denote it as γ̇(0). (More generally, the ‘velocity”
of γ at t is denoted at γ̇(t) which is a tangent vector at point
γ(t) ∈ M from the curve reparametrization trick (Fecko,
2006)). Correspondingly, the tangent space to M at x is the
vector space over R with the underlying set

TxM := {vγ,x | γ is a smooth curve and γ(0) = x}.
(28)

18

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Dataset Models 3 layers 5 layers 10 layers 20 layers

Cora

GCN 80.29±2.29 69.87±1.12 26.50±4.68 23.97±5.42
HGCN 78.70±0.96 38.13±6.20 31.90±0.00 26.23±9.87

HamGNN (20) 81.52±1.27 81.58±0.73 79.00±2.17 76.20±0.13
HamGNN (21) 81.84±0.88 81.08±0.16 81.40±0.44 80.58±0.30

HamGNN (21) type 2 82.10±0.80 81.10±0.10 81.06±1.49 79.26±1.07

Pubmed

GCN 77.83±0.77 76.00±0.87 77.53±1.06 56.50±12.79
HGCN 76.38±0.81 77.20±1.05 65.90±9.44 42.16±2.54

HamGNN (20) 78.18±0.54 77.86±1.45 77.73±1.15 76.13±0.80
HamGNN (21) 78.83±0.46 78.43±0.25 78.50±0.61 77.20±0.69

HamGNN (21) type 2 79.03±0.58 78.46±0.11 78.53±0.31 77.50±0.44

Table 12. Node classification accuracy(%) when increasing the number of layers on the Pubmed dataset.
Fe

at
ur

e
m

ag
ni

tu
de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Fe
at

ur
e

m
ag

ni
tu

de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Fe
at

ur
e

m
ag

ni
tu

de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Node 0 mag.
Node 1 mag.

Node 0 mag.
Node 1 mag.

Node 0 mag.
Node 1 mag.

Node 0 phase
Node 1 phase

Node 0 phase
Node 1 phase

Node 0 phase
Node 1 phase

Layer Layer Layer

Figure 4. Two nodes from different classes and the evolution of their feature vectors over layers. Left: HamGNN, middle: GIL, right:
GCN.

Fe
at

ur
e

m
ag

ni
tu

de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Fe
at

ur
e

m
ag

ni
tu

de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Fe
at

ur
e

m
ag

ni
tu

de

Fe
at

ur
e

ph
as

e
(ra

di
an

s)

Node 0 mag.
Node 1 mag.

Node 0 phase
Node 1 phase

Node 0 mag.
Node 1 mag.

Node 0 mag.
Node 1 mag.

Node 0 phase
Node 1 phase

Node 0 phase
Node 1 phase

Layer Layer Layer

Figure 5. Two nodes from different classes and the evolution of their feature vectors over layers. Left: HamGNN, middle: neural ODE
using a positive-definite linear layer, right: neural ODE using a negative-definite linear layer.

Note for f ∈ C∞(M), using the chart (U, q) with x ∈ U ,
we have the local representation

vγ,x(f) := (f ◦ γ)′(0)
= (f ◦ q−1 ◦ q ◦ γ)′(0)
= (qi ◦ γ)′(0) · ∂i

(
f ◦ q−1

)∣∣
q(x)

,

where qi is the i-th component of q, ◦ is the function compo-
sition and (·)|q(x) means evaluating (·) at q(x). Therefore

for a local chart around x, we have a basis of TxM as{(
∂

∂q1

)
x

, ...,

(
∂

∂qd

)
x

}

and we call it the chart induced basis, where
(

∂
∂q1

)
x

:=

∂i(f ◦ q−1)|q(x).
Definition 2 (tangent bundle). Given a smooth manifold
M , the tangent bundle of M is the disjoint union of all the

19

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Table 13. Neural network modules and the parameters, where κ(x) = 0.5x2 if x > 0 and = exp(x)− 1 if x < 0

Network Modules Activation Output Channels

(20)
Linear
tanh

Linear
tanh 1

(21)

ReHU(Amos et al., 2017)
Linear
ReHU
Linear
ReHU
Linear
ReHU

ReHU 1

(21) type 2

κ
Linear

κ
Linear

κ
Linear

κ

ReHU 1

(26)

Linear
act1

Linear
act1

act1 576

(22)
Linear
tanh

Linear
tanh 1

(25)

Linear
tanh

Linear
Sigmoid

tanh
Sigmoid 64

(23)

Linear
sin

Linear
sin

sin H:1
W:128

Qnet Linear identity 64
Raw feature compressing FC Linear identity 64

MLP in Section 5

Linear
ReLU
Linear
ReLU
Linear

ReLU Number of classes

tangent spaces to M , i.e., we have

TM :=
∐
x∈M

TxM, (29)

equipped with the canonical projection map

π̃ : TM → M

X 7→ π̃(X),

where π̃(X) sends each vector in TxM to the point x at
which it is tangent, and

∐
is the disjoint union. Furthermore,

the tangent bundle6 is a 2d-dimensional manifold. If X ∈
6In this paper, we may just use the word “bundle” to indicate

20

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

x

TxM

X ∈ TxM

U

π̃

π̃−1(U)

M

Figure 6. Visualization of a 1-dimensional manifold and its tangent
bundle.

π̃−1(U) ⊆ TM with a local chart (U, q) on M s.t. x ∈ U ,
then X ∈ Tπ̃(X)M from the definition. Since π̃(X) ∈ U , X
can be written in terms of the chart induced basis:

X = p̃i(X)

(
∂

∂qi

)
π̃(X)

, (30)

where p̃1, . . . , p̃d are smooth scalar functions. We can then
define the following map as a local chart for the manifold
TM induced from the chart (U, q) on M :

ξ : π̃−1(U) → q(U)× Rd ⊆ R2d

X 7→ (q1(π̃(X)), . . . , qd(π̃(X)), p̃1(X), . . . , p̃d(X)),

and the topological structure on TM is derived from the
initial topology to ensure continuity.

Definition 3 (vector field). A vector field on M is a smooth
section (Lee, 2013) of the tangent bundle, i.e. a smooth map
σ : M → TM such that π̃ ◦ σ = idM , where idM is the
identity map on M .

TM

M

π̃σ (31)

We denote the set of all vector fields on M by Γ(TM):

Γ(TM) := {σ : M → TM | σ is smooth and π̃ ◦ σ = idM}.
(32)

Definition 4 (cotangent vector, cotangent bundle, dual basis,
and covector field). For the vector space TxM , a continuous
linear functional from TxM to R is called a cotangent vec-
tor at x. The set of all such linear maps is denoted as T ∗

xM
which is the dual vector space of TxM . For f ∈ C∞(M),
at each point x, we define the following linear operator in
T ∗
xM

(df)x : TxM → R
Xx 7→ (df)x(Xx) := Xx(f).

the total space in the bundle.

Given a chart (U, q) with x ∈ U and its chart induced basis,
the dual basis for the dual space T ∗

xM is the set{(
dq1

)
x
, . . . ,

(
dqd

)
x

}
,

where we have (dqa)x
((

∂
∂qb

)
x

)
=

(
∂

∂qb

)
x
(qa) = δab with

δab = 1 iff a = b and δab = 0 otherwise. We call it the chart
induced dual basis . Analogous to the above definition of the
vector field, we can define the cotangent bundle of M as

T ∗M :=
∐
x∈M

T ∗
xM (33)

which is again a 2d-dimensional manifold equipped with
the canonical projection map

π : T ∗M → M

ω 7→ π(ω),
(34)

where π(ω) sends each vector in T ∗
xM to the point x at

which it is cotangent. If ω ∈ π−1(U) ⊆ T ∗M with a local
chart (U, q) s.t. x ∈ U , then ω ∈ T ∗

π(ω)M from the defini-
tion. Since π(ω) ∈ U , ω can be written in terms of the chart
induced dual basis:

ω = pi(ω)(dq
i)π(ω), (35)

where p1, . . . , pd are smooth scalar functions. We can then
define the following map as a local chart for manifold T ∗M
induced from the chart (U, q) on M :

ξ : π−1(U) → q(U)× Rd ⊆ R2d

ω 7→ (q1(π(ω)), . . . , qd(π(ω)), p1(ω), . . . , pd(ω)),

and the topological structure on T ∗M is derived from the
initial topology to ensure continuity. The covector fields are
smooth sections of T ∗M . The set of all covector fields is
denoted as Γ(T ∗M).

Definition 5 (tensor field and 2-form). The tensor field
can be defined using the smooth sections on tensor bundles
analogously to the vector fields or the covector fields. We
refer readers to (Lee, 2013) for more details. Here, instead
of a rigorous definition, we show some basic properties of
the tensor fields. For a (r, s) tensor field τ , at x ∈ M , it is
a multilinear map

τx : T ∗
xM × · · · × T ∗

xM︸ ︷︷ ︸
r copies

×TxM × · · · × TxM︸ ︷︷ ︸
s copies

→ R.

The differential k-form ω is the (0, k) tensor field that admits
alternating (Lee, 2013). Specifically, for the 2-form ω, at
each point x, ωx is a antisymmetric (0, 2) tensor

ωx : TxM × TxM → R (36)
s. t. ωx(X1, X2) = −ωx(X2, X1) ∀X1, X2 ∈ TxM

(37)

21

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

which in other words, ω satisfies

ω : Γ(TM)× Γ(TM) → C∞(M) (38)
s. t. ω(X,Y) = −ω(Y,X) ∀X,Y ∈ Γ(TM) (39)

In local chart representation, we have that every k-form ω
can be expressed locally on U as

ω = ωa1···ak
dxa1 ∧ · · · ∧ dxak , (40)

where ωa1···ak
∈ C∞(U), 1 ≤ a1 < · · · < ak ≤ dimM

are increasing sequences and dxa1∧· · ·∧dxak is the wedge
product (Lee, 2013). Here we could abstractly view the set
{dxa1 ∧· · ·∧dxak}a1,...,ak

, with ai enumerated from 1 to d,
abstractly as a basis without more illustrations of the wedge
product (We refer readers to (Lee, 2013) for more details).

Definition 6 (integral curve). Given a vector field X on M ,
an integral curve of X is a differentiable curve γ : I → M ,
where I ⊆ R is an interval, whose velocity at each point is
equal to the value of X at that point:

γ̇(t) = Xγ(t) for all t ∈ I. (41)

If 0 ∈ J , the point γ(0) is called the starting point of
γ. From Picard’s theorem (Hartman, 2002), we know that
locally we always have an interval I on which the solution
exists and is necessarily unique.

Definition 7 (exterior derivative and closed form). The
exterior derivative is a linear operator that maps k-forms
to k + 1-forms. In local chart representation, we have that
if ω is a k-form on M with the local representation as

ω = ωa1···ak
dxa1 ∧ · · · ∧ dxak . (42)

Then, we have the exterior derivative

dω = dωa1···ak
∧ dxa1 ∧ · · · ∧ dxak

= ∂bωa1···ak
dxb ∧ dxa1 ∧ · · · ∧ dxak . (43)

A form ω is called closed if dω = 0.

Theorem 2. From (Rudin et al., 1976; Lee, 2013), we know
that

d ◦ d ≡ 0, (44)

which is a dual statement that the boundary of the boundary
of a manifold is empty from Stokes’ theorem.

G.2. Hamiltonian Vector Fields on Symplectic
Cotangent Bundle

Definition 8 (symplectic vs. Riemannian). Let M be a
smooth manifold.

1. symplectic form: A 2-form (so it is antisymmetric) ω is
said to be a symplectic form on M if it is closed, i.e,

dω = 0,

and it is non-degenerate, i.e,

(∀ Y ∈ Γ(TM) : ω(X,Y) = 0) ⇒ X = 0. (45)

2. metric tensor: A (0, 2) tensor field g is said to be a
Riemannian metric on M if it is non-degenerate and
symmetric at each x, i.e.,

gx : TxM × TxM → R (46)
s. t. gx(X1, X2) = gx(X2, X1) ∀X1, X2 ∈ TxM

(47)

Remark 1. A manifold equipped with a symplectic form ω
is called a symplectic manifold, while a manifold equipped
with a metric tensor g is called a pseudo-Riemannian mani-
fold. The Riemannian metric g is a (0, 2)-tensor field mea-
suring the norms of tangent vectors and the angles between
them. To some extent, the “shape structure” of the manifold
M is only available if we equipped M with a metric g.

• From the above definition, we know the symplectic
form and the metric tensor are both nondegenerate
bilinear (0, 2) tensor fields. One difference is the sym-
plectic form is antisymmetric while the metric tensor
is symmetric. At each point x ∈ M , if we use the local
chart coordinate representation, the (0, 2) tensor can
be represented as the following matrix multiplication

p̃
⊺

Wxp̃

where d× d matrix W is symmetric for metric tensor
and is skew-symmetric for symplectic form. p̃

⊺

is the
transpose of the velocity representation (which is a
numerical vector) in a local chart.

• Because of non-degenerate, on a symplectic manifold
M , we can define an isomorphism between Γ(TM)
and Γ(T ∗M) by mapping a vector field X ∈ Γ(TM)
to a 1-form ηV ∈ Γ(T ∗M), where

ηX(·) := ω2(·, X) (48)

Similarly, on a pseudo-Riemannian manifold, we can
define an isomorphism between Γ(TM) and Γ(T ∗M)
by mapping a vector field X ∈ Γ(TM) to a 1-form
∈ Γ(T ∗M), where

αg : TM −→ T ∗M. (49)

In a local chart coordinate representation, αg = gij
and its inverse α−1

g = gij with
∑m

j=1 gijg
jk = δki and

δki = 1 iff i = k and 0 otherwise. Note the components
of the metric and the inverse metric are all taken in a
given chart without explicitly mentioning them.

22

Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Definition 9 (Hamiltonian flow and orbit). For a general
symplectic manifold M with a symplectic form ω2, if we
have H ∈ C∞(M), then dH is a differential 1-form on M .
We define the vector field called the Hamiltonian flow XH

associated to the Hamiltonian H , which satisfies that

ηXH
(·) = dH(·).

The integral curves of are called Hamiltonian orbits of H:

γ̇(t) = (XH)γ(t) for all t ∈ I. (50)

where (XH)γ(t) is the tangent vector at γ(t) ∈ M .
Definition 10 (Poincaré 1-form and 2-form). On the cotan-
gent bundle T ∗M of a manifold M , we have a natural
symplectic form, called the Poincaré 1-form

θ1Poincaré = pidq
i. (51)

Therefore, by the exterior derivative, we have the Poincaré
2-form

ω2
Poincaré = dθ1 = d(pidq

i) =
∑
i

dpi ∧ dqi (52)

which is closed from (44). Therefore Poincaré 2-form is
a symplectic form on the cotangent bundle and cotangent
bundles are the natural phase spaces of classical mechanics
(De León & Rodrigues, 2011).

For more general symplectic forms on the cotangent bundle,
we can again use (44) to construct the closed 2-form from a
1-form which is potentially symplectic:
Corollary 1 ((Chen et al., 2021)). According to (44), on the
cotangent bundle T ∗M of a manifold M , from a 1-form,

θ1 = fidq
i,

we derive a closed 2-form using the exterior derivative (43),
and its local representation is given by the following

ω2 = dθ1 = d(fidq
i) =

∑
i<j

(∂ifj − ∂jfi) dpi ∧ dqj

Remark 2. Note, strictly speaking, we only can get the
necessary “closed” condition for ω2 to be potentially sym-
plectic. However, it is enough for our use in our proposed
framework.

We now state one of the most fundamental results in sym-
plectic geometry that links the general symplectic form to
the special Poincaré 2-form.
Theorem 3 (Darboux (Lee, 2013)). Let (M̃, ω̃2) be a 2d-
dimensional symplectic manifold. For any x ∈ M̃ , there are
smooth coordinates

(
q̃1, . . . , q̃d, p̃1, . . . , p̃n

)
centered at x

in which ω2 has the coordinate representation

ω̃2 =

n∑
i=1

dq̃i ∧ dp̃i. (53)

as a Poincaré 2-form, any coordinates satisfying (53) are
called Darboux or symplectic coordinates.

Remark 3. Therefore, for any symplectic form w2 on the
above cotangent bundle T ∗M of M , we can always find a
symplectic coordinate with the Poincaré 2-form.

Corollary 2 ((Da Silva & Da Salva, 2008)). According to
(39), from the antisymmetric of the 2-forms, we have

ω2(XH , XH) = 0 (54)

which implies that hamiltonian vector fields preserve their
hamiltonian functions H .

Remark 4. In physics, hamiltonian functions are typically
energy functions for a physical system. Corollary 2 indicates
if the system updates its status according to the hamiltonian
vector fields, the time-evolution of the system follows the
law of conservation of energy.

Definition 11 (Hamiltonian orbit generated from Poincaré
2-form (Lee, 2013)). The Hamiltonian orbit generated by
the Hamiltonian flow XH on the cotangent bundle equipped
with the Poincaré 2-form given in local coordinates (q, p)
is given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (55)

Definition 12 (cogeodesic orbits). If additionally M is
equipped with a metric tensor g, i.e, if M is a pseudo-
Riemannian manifold with metric g, and if we set the hamil-
tonian H on T ∗M as

H(q, p) =
1

2
gij(q)pipj ,

the Hamiltonian orbit generated from Poincaré 2-form is
given by

q̇i =
∂H

∂pi
= gijpj , ṗi = −∂H

∂qi
= −1

2
∂ig

jkpjpk. (56)

It is called the cogeodesic orbits of (M, g). The canoni-
cal projection of cogeodesic orbits under π (34) is called
geodesic on the base manifold M which generalizes the
notion of a "straight or shortest line" to manifold where the
length is measured by the metric tensor.

23

