
Understanding Gradient Regularization in Deep Learning:
Efficient Finite-Difference Computation and Implicit Bias

Ryo Karakida 1 Tomoumi Takase 1 Tomohiro Hayase 2 Kazuki Osawa 3

Abstract
Gradient regularization (GR) is a method that pe-
nalizes the gradient norm of the training loss dur-
ing training. While some studies have reported
that GR can improve generalization performance,
little attention has been paid to it from the algorith-
mic perspective, that is, the algorithms of GR that
efficiently improve the performance. In this study,
we first reveal that a specific finite-difference com-
putation, composed of both gradient ascent and
descent steps, reduces the computational cost of
GR. Next, we show that the finite-difference com-
putation also works better in the sense of gener-
alization performance. We theoretically analyze
a solvable model, a diagonal linear network, and
clarify that GR has a desirable implicit bias to
so-called rich regime and finite-difference compu-
tation strengthens this bias. Furthermore, finite-
difference GR is closely related to some other
algorithms based on iterative ascent and descent
steps for exploring flat minima. In particular, we
reveal that the flooding method can perform finite-
difference GR in an implicit way. Thus, this work
broadens our understanding of GR for both prac-
tice and theory.

1. Introduction
Explicit or implicit regularization is a key component for
achieving better performance in deep learning. For instance,
adding some regularization on the local sharpness of the
loss surface is one common approach to enable the trained
model to achieve better performance (Hochreiter & Schmid-
huber, 1997; Foret et al., 2021; Jastrzebski et al., 2021).
In the related literature, some recent studies have empiri-

1Artificial Intelligence Research Center, AIST, Japan 2Cluster
Metaverse Lab, Japan 3Department of Computer Science, ETH
Zurich, Switzerland. Correspondence to: Ryo Karakida
<karakida.ryo@aist.go.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cally reported that gradient regularization (GR), i.e., adding
penalty of the gradient norm to the original loss, makes
the training dynamics reach flat minima and leads to better
generalization performance (Barrett & Dherin, 2021; Smith
et al., 2021; Zhao et al., 2022). Using only the information
of the first-order gradient seems a simple and computation-
ally friendly idea. Because the first-order gradient is used to
optimize the original loss, using its norm is seemingly easier
to use than other sharpness penalties based on second-order
information such as the Hessian and Fisher information
(Hochreiter & Schmidhuber, 1997; Jastrzebski et al., 2021).

Despite its simplicity, our understanding of GR has been lim-
ited so far in the following points. First, we need to consider
the fact that GR must compute the gradient of the gradient
with respect to the parameter. This type of computation
has been investigated in a slightly different context: input-
Jacobian regularization, that is, penalizing the gradient with
respect to the input dimension to increase robustness against
input noise (Drucker & Le Cun, 1992; Hoffman et al., 2019).
Some studies proposed the use of double backpropagation
(DB) as an efficient algorithm for computing the gradient
of the gradient for input-Jacobian regularization, whereas
others proposed the use of finite-difference computation
(Peebles et al., 2020; Finlay & Oberman, 2021). It remains
unclear which algorithm is more efficient in the case of
GR. Second, theoretical understanding of GR has been lim-
ited. Although empirical studies have confirmed that the
GR causes the gradient dynamics to eventually converge
to better minima with higher performance, the previous
work provides no concrete theoretical evaluation for this
result. Third, it also remains unclear whether the GR has
any potential connection to other regularization methods.
Because the finite difference is composed of both gradient
ascent and descent steps by definition, we are reminded of
some learning algorithms for exploring flat minima such as
sharpness-aware minimization (SAM) (Foret et al., 2021)
and the flooding method (Ishida et al., 2020), which are
also composed of ascent and descent steps. Clarifying these
points would help to deepen our understanding of efficient
regularization methods for deep learning.

In this work, we reveal that a finite-difference computation
is crucial for achieving better performance with GR. This

1

Understanding Gradient Regularization in Deep Learning

approach has a lower computational cost, and surprisingly
achieves better generalization performance. We present
three main contributions to deepen our understanding of
GR:

• We give a brief estimation of the computational costs
of finite difference and DB in a deep neural network,
and empirically demonstrate that the finite difference
is more efficient than DB (Section 3).

• We find that a so-called forward finite difference leads
to better generalization than a backward one and DB
(Section 4.1). Learning with forward finite-difference
GR requires two gradients of the loss function, gra-
dient ascent and descent. We reveal that a relatively
large positive ascent step improves the generalization.
In particular, we give a theoretical analysis of the per-
formance improvement obtained by finite-difference
GR. We analyze the selection of global minima in a di-
agonal linear network (DLN), which is a theoretically
solvable model. We prove that GR has an implicit
bias for selecting desirable solutions in the so-called
rich regime (Woodworth et al., 2020) which would
potentially lead to better generalization (Section 4.3).
This implicit bias is strengthened when we use for-
ward finite-difference GR with an increasing ascent
step size. In contrast, it is weakened for a backward
finite difference, i.e., a negative ascent step.

• Finite-difference GR is also closely related to other
learning methods composed of both gradient ascent
and descent. In particular, we reveal that the flooding
method performs finite-difference GR in an implicit
way (Section 5.1).

Thus, this work gives a comprehensive perspective on GR
for both practical and theoretical understanding.

2. Preliminaries
2.1. Gradient Regularization

We consider GR (Barrett & Dherin, 2021; Smith et al., 2021),
wherein the squared L2 norm of the gradient is explicitly
added to the original loss L(θ) as follows:

L̃(θ) = L(θ) + γ

2
R(θ), R(θ) = ∥∇L(θ)∥2, (1)

where ∥ · ∥ denotes the Euclidean norm and γ > 0 is a con-
stant regularization coefficient. We abbreviate the derivative
with respect to the parameters∇θ by∇. Its gradient descent
is given by

θt+1 = θt − η∇L̃(θt) (2)

for time step t = 0, 1, ... and learning rate η > 0. While
previous studies have reported that explicitly adding a GR

term empirically improves generalization performance, its
algorithms and implementations have not been discussed in
much detail.

2.2. Algorithms

To optimize the loss function with GR (1) using a gradient
method, we need to compute the gradient of the gradient,
i.e., ∇R(θ). As is well studied in input-Jacobian regular-
ization (Drucker & Le Cun, 1992; Hoffman et al., 2019;
Finlay & Oberman, 2021), there are two main approaches
to computing the gradient of the gradient. In the following,
while ∇R denotes the analytical differentiation of R as an
algebraic operation, ∆R represents the calculation used to
compute ∇R within the context of a training algorithm.

Finite difference: The finite-difference method approx-
imates a derivative by a finite step. In the case of GR,
we have∇R(θt)/2 = (∇L(θ′)−∇L(θt))/ε+O(ε) with
θ′ = θt + ε∇L(θt) for a constant ε > 0. The final term is
expressed in Landau notation and is neglected in the com-
putation. We update the GR term by

∆RF (ε) =
∇L(θt + ε∇L(θt))−∇L(θt)

ε
(F-GR).

(3)
We refer to this gradient as Forward finite-difference GR
(F-GR). Because the gradient ∇L(θt) is computed for the
original loss, the finite difference (3) requires only one ad-
ditional gradient computation ∇L(θ′). The order of the
computation time is only double that of the usual gradient
descent. The finite-difference method also has a backward
computation:

∆RB(ε) =
∇L(θt)−∇L(θt − ε∇L(θt))

ε
(B-GR).

(4)
If we allow a negative step size, ∆RB corresponds to ∆RF

through ∆RB(ε) = ∆RF (−ε).

Double Backpropagation: The other approach is to ap-
ply the automatic differentiation directly to the GR term,
i.e.,∇R. For example, its PyTorch implementation is quite
straightforward, as shown in Section A.1 of the Appen-
dices. This approach is referred to as DB, which was origi-
nally developed for input-Jacobian regularization (Drucker
& Le Cun, 1992). We explain more details on the DB com-
putation and its computational graph in Section 3. DB,
in effect, corresponds to computing the original gradient
∇R(θ) given by the following Hessian-vector product:

∆RDB = H(θt)∇L(θt), (5)

where H(θ) = ∇∇L(θ).

Note that for a sufficiently small ε, finite-difference GRs
yield the same original gradient ∇R(θ) if we can neglect

2

Understanding Gradient Regularization in Deep Learning

0 → 1 → … → −1 → → −1→…→ 1

1
−1

Forward Pass
for

Backward Pass
for

Figure 1: Computational graph of DB. Each node with an incoming solid arrow requires one matrix multiplication for the
forward pass.

Depth L ResNet - L

(a) MLP ResNet (b)

W
al

l t
im

e
[s

/e
po

ch
]

W
al

l t
im

e
[s

/e
po

ch
]

Figure 2: Finite-difference computation is more efficient than DB computation in wall time. (a) Wall time required for
learning with GR in one epoch. For the ResNet, we used ResNet-{18, 34, 50, 101, 152}. (b)Training dynamics in ResNet-18
on CIFAR-10. Learning with F-GR is much faster in wall time.

any numerical instability caused by the limit. The finite-
difference method has been used in the literature for the
optimization of neural networks, especially for Hessian-
based techniques (Bishop, 2006; Peebles et al., 2020). When
we need a more precise value of ∇R, we can use a higher-
order approximation, e.g., the centered finite difference, but
this requires additional gradient computations, and hence
we focus on the first-order finite difference.

2.3. Related Work

Barrett & Dherin (2021) and Smith et al. (2021) investigated
explicit and implicit GR in deep learning. They found that
the discrete-time update of the usual gradient descent im-
plicitly regularizes the gradient norm when its dynamics
are mapped to the continual-time counterpart. This is re-
ferred to as implicit GR. They also investigated explicit GR,
i.e., adding a GR term explicitly to the original loss, and
reported that it improved generalization performance even
further. Jia & Su (2020) also empirically confirmed that the
explicit GR gave the improvement of generalization. Barrett
& Dherin (2021) characterized GR as the slope of the loss
surface and showed that a low GR (gentle slope) prefers flat
regions of the surface. Recently, Zhao et al. (2022) inde-
pendently proposed a similar but different gradient norm
regularization, that is, explicitly adding a non-squared L2
norm of the gradient to the original loss.

The implementation of GR has not been discussed in much

detail in the literature. In general, to compute the gradient
of the gradient, there are two well-known computational
methods: DB and finite difference. Some previous studies
applied DB to the regularization of an information matrix
(Jastrzebski et al., 2021) and input-Jacobian regularization,
i.e., adding the L2 norm of the derivative with respect to
the input dimension (Drucker & Le Cun, 1992; Hoffman
et al., 2019). Others have used the finite-difference compu-
tation for Hessian regularization (Peebles et al., 2020) and
input-Jacobian regularization (Finlay & Oberman, 2021).
Here, we apply the finite-difference computation to GR and
reveal that the finite-difference computation outperforms
DB computation with respect to computational costs and
generalization performance. Note that our purpose is not to
propose a new finite-difference algorithm but to understand
why and at what points the (forward) finite-difference com-
putation has superiority. Zhao et al. (2022) used a forward
finite-difference computation, but its superiority to other
computation methods was unconfirmed.

In Section 4, we give a theoretical analysis of learning with
GR in diagonal linear networks (DLNs) (Woodworth et al.,
2020). The characteristic property of this solvable model is
that we can evaluate the implicit bias of learning algorithms
(Nacson et al., 2022; Pesme et al., 2021). Our analysis
includes the analysis of SAM in DLN as a special case (An-
driushchenko & Flammarion, 2022). In contrast to previous
work, we evaluate some novel terms caused by the finite
ascent step size, and this enables us to show that forward

3

Understanding Gradient Regularization in Deep Learning

finite-difference GR selects global minima in the so-called
rich regime.

3. Computational Aspect
We clarify the computational efficiencies of each algorithm
of GR in deep networks. First, we give a rough estima-
tion of the computational cost by counting the number of
matrix multiplication required to compute ∇L̃. Consider
an L-layer fully connected neural network with a linear
output layer: Al = ϕ(Ul), Ul = WlAl−1 for l = 1, ..., L.
Note that Al denotes a batch of activation and WlAl−1 re-
quires a matrix multiplication. We denote the element-wise
activation function as ϕ(·) and weight matrix as Wl. For
simplicity, we neglect the bias terms. The number of matrix
multiplications required to compute∇L̃ is given by

Nmul ∼ 6L (for F-GR), 9L (for DB), (6)

where ∼ hides an uninteresting constant shift independent
of the depth. One can evaluate Nmul straightforwardly
from the computational graph (Figure 1), originally de-
veloped for the DB computation of input-Jacobian regu-
larization (Drucker & Le Cun, 1992). In brief, the origi-
nal gradient ∇L, that is, the backpropagation on the for-
ward pass {A0 → A1 → · · · → AL}, requires 3L ma-
trix multiplications: L for the forward pass, L for back-
ward pass Bl = ϕ′(Ul) ◦ (W⊤

l+1Bl+1), and L for gradient
Gl := ∂L/∂Wl = BlA

⊤
l−1. Because F-GR is composed of

both gradient ascent and descent steps, we eventually need
6L. In contrast, for learning using the DB of GR, we need
3L for ∇L and additional 6L for the GR term. The GR
term requires a forward pass of composed of Al, Bl, and
Gl obtained in the gradient computation of∇L. Note that
the upper part {A0 → A1 → · · · → BL → · · · → B1} is
well known as the DB of input-Jacobian regularization. As
pointed out in Drucker & Le Cun (1992), the computation of
∇B1 is equivalent to treating the upper part of the graph as
the forward pass and applying backpropagation. It requires
2L multiplications. In our GR case, we have additional L
multiplications due to Gl. Because the backward pass dou-
bles the number of required multiplications, we eventually
need 2× (2L+L) = 6L multiplication. Further details are
given in Section A.2.

The results of numerical experiments shown in Figure 2
confirm the superiority of finite-difference GR in typical ex-
perimental settings. We trained deep neural networks using
an NVIDIA A100 GPU for this experiment. All experiments
were implemented by PyTorch. We summarize the pseudo
code and implementation of GR in Section A.1 and present
the detailed settings of all experiments in Section B. Figure
2(a) shows the wall time required for one epoch of training
with stochastic gradient descent (SGD) and the objective
function (1). We trained various multi-layer perceptrons

(MLPs) and residual neural networks (ResNets) with differ-
ent depths. The wall time increased almost linearly as the
depth increased. The slope of the line is different for F-GR
and DB, and F-GR was faster. This observation is consis-
tent with the number of multiplications (6). In particular,
in ResNet, one of the most typical deep neural networks,
learning with finite-difference GR was more than twice as
fast as learning with DB. Figure 2(b) confirms that F-GR
has fast convergence in ResNet-18 on CIFAR-10. In Figure
S.1 , we also show the convergence measured by the training
loss and time steps. All of them showed better convergence
for the finite difference.

Note that the finite difference is also better to use from
the perspective of memory efficiency. This is because DB
requires all of the {Al, Bl, Gl} to be retained for the forward
pass, which occupies more memory. It is also noteworthy
that in general, it is difficult for theory to completely predict
the realistic computational time required because it could
heavily depend on the hardware and the implementation
framework and does not necessarily correlate well with the
number of floating-point operations (FLOPs) (Dehghani
et al., 2021). Our result suggests that at least the number
of matrix multiplication explains well the superiority of the
finite-difference approach in typical settings.

4. Implicit Bias of GR
In this section, we show that the superiority of finite-
difference computation over DB also appears in the eventual
performance of trained models. First, we show the empirical
results that F-GR with a relatively large step size achieves
better generalization performance. Next, we confirm this
superiority in a solvable network model that is non-linear
with respect to parameters.

4.1. Empirical Observation of Trained Models

Figure 3 shows the test accuracy of a 4-layer MLP and
ResNet-18 trained by using SGD with GR on CIFAR-10.
We trained the models in an exhaustive manner with various
values for ε and γ for each algorithm of the GR. For learning
with F-GR, the model achieved the highest accuracy on
relatively large ascent steps (ε ∼ 0.1). Figure 4 shows a
more quantitative visualization of the dependence on ε. F-
GR with large ε achieved better generalization performance
than DB and B-GR. In Table S.1 , we summarized the best
test accuracy for all ε and γ. This table also clarifies that
the F-GR achieves the highest generalization performance.
We also confirmed that the same tendencies appeared in
the grid search of ResNet-34 on CIFAR-100 (Figure S.2).
Furthermore, we confirmed in Figure S.3 and Table S.2 that
F-GR performed better than B-GR and DB in the training
of wide residual networks (WRN-28-10) on CIFAR-10 and
CIFAR-100 with/without data augmentation.

4

Understanding Gradient Regularization in Deep Learning

F-GR B-GR DB
(b)

F-GR B-GR DB
(a) MLP

ResNet-18

Figure 3: Grid search on learning with different GR algo-
rithms shows the superiority of F-GR and that a relatively
large ε achieves a high test accuracy. The color bar shows
the average test accuracy over 5 trials. Gray dashed lines
indicate γ = ε.

(b)(a) MLP ResNet-18

Figure 4: Dependence of test accuracy on ε. We fixed
γ = 0.5 for MLP and γ = 0.05 for ResNet-18.

Note that in real training, the performance of F(B)-GR for a
small ε does not necessarily coincide with that of DB. When
the ascent step was too small, we observed numerical insta-
bility in the calculation of the gradient. It is also noteworthy
that the best accuracy of F-GR was obtained close to the
line of γ = ε. This line is closely related to SAM algorithm.
We explain more details in Section 5.2. Overall, the experi-
ments suggest that F-GR with a large ascent step is better to
use for achieving higher generalization performance.

4.2. Linear Model

Although previous work and our experiments in Section 4.1
indicate improvements of prediction performance caused
by GR, theoretical understanding of this phenomenon re-
mains limited. Because the gradient norm itself eventually

becomes zero after the model achieves a zero training loss,
it seems challenging to distinguish the generalization ca-
pacity by simply observing the value of the gradient norm
after training. In addition, our experiments clarified that the
performance also depends on the choice of the algorithm
and revealed that the situation is more complicated.

One approach to obtaining theoretical insight into empirical
observation is to analyze them in a simple model. First, let
us consider a naive linear model Xθ, where X denotes a
data matrix and θ denotes training parameters. Interestingly,
the difference among GR algorithms does not appear in the
linear model as follows.

Proposition 4.1. Suppose a mean square error loss L(θ) =
∥Xθ − y∥2/2. Then, finite-difference GR has the same
gradient as the original GR, that is,

∆RF = ∆RB = ∇R = X⊤XX⊤(Xθ − y), (7)

which is independent of ε.

The derivation is straightforward. Note that from the mean
value theorem, the finite-difference GR is equivalent to

∆RF (ε) =
1

ε

∫ ε

0

dsH(θt + s∇L(θt))∇L(θt). (8)

We can interpret the finite difference as taking an average
of the curvature (Hessian) along the line of gradient update.
This includes ∆RB(ε) for a negative ε and ∇R for ε→ 0.
Because we have a constant Hessian H = X⊤X for the
above linear model, we immediately obtain (7) from (8).

Since the gradient is the same in the whole training, the
eventual solution is also the same for for any ε. This result
suggests that the difference of GR algorithms would be
caused by some non-linearity of models. In the following,
we show that the dependence on GR algorithms actually
appears in a simple network model with non-linearity.

4.3. Diagonal Linear Network (DLN) Model

4.3.1. SETTING

A DLN is a solvable model proposed by Woodworth et al.
(2020). It is a linear transformation of input x ∈ Rd defined
as ⟨β, x⟩ where β is parameterized in a non-linear way, that
is, β = w2

+ − w2
− with w = (w+, w−) ∈ R2d. Here, the

square of the vector is an element-wise square operation.
Suppose that we have n training samples (x(j), y(j)) (j =
1, ..., n). The training loss is given by

L(w) = 1

4n

n∑
j=1

(〈
w2

+ − w2
−, x

(j)
〉
− y(j)

)2

. (9)

Consider continual-time training dynamics dw/dt = −∇L.
We set an initialization w+(t = 0) = w−(t = 0) = α0

5

Understanding Gradient Regularization in Deep Learning

which is a d-dimensional vector and whose entries are non-
zero. We define a data matrix X whose i-th row is given
by x(i). Woodworth et al. (2020) found that interpolation
solutions of usual gradient descent are given by

β∞(α) = argmin
β∈Rd s.t. Xβ=y

ϕα(β), (10)

where α = α0 and the potential function ϕα is given by
ϕα(β) =

∑d
i=1 α

2
i q

(
βi/α

2
i

)
with q(z) = 2 −

√
4 + z2 +

z arcsinh(z/2). For a larger scale of initialization α, this
potential function becomes closer to L2 regularization as
α2
i q(βi/α

2
i) ∼ |βi|2, which corresponds to the L2 min-

norm solution of the lazy regime (Chizat et al., 2019). In
contrast, for a smaller scale of initialization α, it becomes
closer to L1 regularization as α2

i q(βi/α
2
i) ∼ |βi|. In this

way, we can observe a one-parameter interpolation between
L1 and L2 implicit biases. Deep neural networks in practice
acquire rich features depending on data structure and are
believed to be beyond the lazy regime. Thus, obtaining an L1
solution by setting small α is referred to as the rich regime
and desirable. Previous work has revealed that effective
values of α depend on algorithms. For example, α decreases
by a larger learning rate in the discrete update (Nacson
et al., 2022), SGD (Pesme et al., 2021), and SAM update
(Andriushchenko & Flammarion, 2022). It means that they
have an implicit bias that chooses the L1 sparse solution in
the rich regime.

4.3.2. RESULTS

Now, we analyze a gradient flow with GR given by

dw

dt
= −∇L(w)− γ∆RF (ε) (11)

for a real value ε ∈ R. Note that this expression includes not
only the F-GR case but also the other cases as ∆RB(ε) =
∆RF (−ε) and ∇R = limε→0 ∆RF (ε). We find that the
GR has implicit bias towards the rich regime, and moreover,
the strength of the bias depends on the step size ε.

We use the following assumption:

Assumption 4.2. (i) the gradient dynamics converges to
the interpolation solution satisfying Xβ = y, (ii) ∥w(t)∥
has a constant upper bound independent of γ and ε, (iii)
for sufficiently small γ and ε, the integral of the training
loss, i.e.,

∫∞
0
L(w(t))dt, has a constant upper bound R

independent of γ and ε.

Assumption (i) is common among the studies of DLNs. As-
sumption (ii) is known to hold under a certain condition
identified by Nacson et al. (2022). Assumption (iii) is re-
lated to the convergence speed of training dynamics and a
sufficient condition that the dynamics converge to the inter-
polation solution. See Section C.3 for more details. We find
the following:

Theorem 4.3. Under Assumption 4.2, for sufficiently small
γ, interpolation solutions are given by β∞(αGR) with

αGR = α0 ◦ exp(−γ(c0 + εc1 + ε2c2) +O(γ2)), (12)

where

c0 =

∫ ∞

0

(X⊤(Xβ(s)− y))2ds/n2, (13)

c1 = (X⊤(Xβ(t = 0)− y))2/2n2, (14)

and c2 is a d-dimensional vector.

The proof is given in Section C.1. Note that c0, c1 and c2 are
d-dimensional vectors and ◦ denotes an entry-wise product.
This theorem clarifies the dependence of the solution on
the step size ε. The positive c0 term is a factor that makes
the solution biased towards the rich regime for all ε. The
problem is how εc1 and ε2c2 terms determine the eventual
value of αGR. First, let us neglect the ε2c2 term by taking
a sufficiently small |ε|. Then, we can see that αGR gets
smaller than α0 for ε > 0 because of the positivity of c0 and
c1. In other words, F-GR provides an implicit bias towards
the rich regime. In contrast, for ε < 0, the εc1 term takes a
negative value and this suggests that B-GR is not necessarily
biased towards the rich regime.

Next, for a more quantitative evaluation, we provide an
upper bound of αGR for F-GR:

Proposition 4.4. Suppose the i-th entry of c1 is non-zero,
i.e., c1,i > 0. Under Assumption 4.2, by taking small posi-
tive ε and γ satisfying 0 < ε ≤ ε′ and 0 < γ ≤ γ′ for some
constants ε′ and γ′, we have

αGR,i ≤ α0,i exp(−γεc1,i/2). (15)

It is highly likely for c1 to take non-zero values because c1
is determined by initialization and we usually have Xβ(t =
0) ̸= y. The deviation is shown in Section C.2 and detailed
definitions of constants γ′ and ε′ are given in Eqs. (S.40
,S.42). The proposition clarifies that F-GR has an implicit
bias to select the L1 solution, that is, the rich regime because
α is always smaller than α0. In the same way, for ε < 0 and
a sufficiently small |ε|, we can immediately find

αGR,i ≥ α0,iD
γ exp(γ|ε|c1,i) (16)

where D is a constant scalar. This inequality reveals that
B-GR has an increasing lower bound for a larger |ε|. It
suggests that B-GR has an implicit bias towards the lazy
regime.

Figure 5 confirms our theory by numerical experiments. As
in previous work, we trained DLNs on the synthetic data of
a sparse regression problem, where x(j) ∼ N (µ1, σ2I) and
y(j) ∼ N

(〈
β∗, x(j)

〉
, 0.01

)
, and where β∗ is k∗-sparse

6

Understanding Gradient Regularization in Deep Learning
G

R
, i

0,
i

(a) (b)

(d)(c)

m
ax

 i

Figure 5: Experimental results of DLNs trained by gradient
descent with F-GR/B-GR (γ = 0.02). (a) Test loss, (b)
The largest αGR,i over i = 1, ..., d, (c) L1 norm of the
solutions, (d) Distribution of exponents after training with
F-GR (ε = 0.05).

with non-zero entries equal to 1/
√
k∗ (d = 100 and n = 50).

Following (Nacson et al., 2022), we chose µ = σ2 = 5,
where the parameter norm a(t) is suppressed and assump-
tion (ii) is expected to hold. We initialized parameters by
α0,i ∼ N (0, 0.01). The solid lines show the results of
actual gradient descent training with F-GR or B-GR. The
dashed lines show the results without GR. Other technical
details including methods to empirically estimate αGR and
ci are summarized in Section B.3.

As the ascent step increased, the models trained by F-GR
initially achieved smaller αGR (Figure 5(a)) and sparser
solution (Figure 5(b)) as is expected from our theory. This
led to better generalization (Figure 5(c)). Note that the im-
provement of generalization caused by the sparse solution is
widely observed in the studies of other learning algorithms
(Nacson et al., 2022). After the step size increased to some
degree, αGR increased slightly, and then the training dynam-
ics exploded for too large ε. This increase of αGR is also
consistent with our theory because we empirically observed
negative ε2c2 terms (Figure 5(d)) and they can make the
αGR increased as in Eq. (12). It is noteworthy that the
performance of more realistic neural networks (Figure 4)
showed qualitatively similar behavior, where the best gen-
eralization performance was achieved by the F-GR with a
large ascent step. In Figure S.4, we also present the largest
eigenvalue of the Hessian (S.4), computed after training.
As the ascent step size increased, F-GR chose flatter minima.
This is also consistent with empirical observations of GR
(Barrett & Dherin, 2021). For B-GR, we can see that αGR

increased as |ε| increased, as is expected from the implicit
bias to the lazy regime (16).

5. Implicit Finite-Difference GR
So far, we have obtained a better understanding of explicit
GR, especially, finite-difference GR. Here, we show that the
GR has hidden connections to other gradient-based learn-
ing methods. We recall that the finite-difference GR is
composed of both gradient ascent and descent steps. This
computation makes it essentially related to two other learn-
ing methods similarly composed of both gradient ascent and
descent steps: the flooding method and the SAM algorithm.

5.1. Flooding

The flooding method (Ishida et al., 2020) is a learning algo-
rithm composed of both gradient ascent and descent steps.
Its update rule is given by

θt+1 = θt − ηSign(L − b)∇L (17)

for a constant b > 0, referred to as the flood level. When the
training loss becomes lower than the flood level, the sign
of the gradient is flipped and the parameter is updated by
gradient ascent. Therefore, the flooding causes the training
dynamics to continue to wander around L(θ) ∼ b, and
its gradient continues to take a non-zero value. This would
seem a kind of early stopping, but previous work empirically
demonstrates that flooding performs better than naive early
stopping and finds flat minima. For simplicity, let us focus
on the gradient descent for a full batch. The following
theorem clarifies a hidden mechanism of flooding.

Theorem 5.1. Consider the time step t satisfying L(θt) < b
and L(θt+1) > b. Then, the flooding update from θt to θt+2

is equivalent to the gradient of the F-GR with ε = γ = η:

θt+2 = θt − η2
∇L(θt + η∇L(θt))−∇L(θt)

η
. (18)

Similarly, for L(θt) > b and L(θt+1) < b, the flooding
update is equivalent to the gradient of the B-GR.

Although its derivation is quite straightforward (see Section
D), this essential connection between finite-difference GR
and flooding has been missed in the literature. Ishida et al.
(2020) conjectured that flooding causes a random walk on
the loss surface and this would contribute to the search
for flat minima in some ways. Our result implies that the
dynamics of flooding are not necessarily random and it can
actively search the loss surface in a direction that decreases
the GR. This is consistent with the observations that the
usual gradient descent with GR finds flat minima (Barrett &
Dherin, 2021; Zhao et al., 2022).

Figure 6 empirically confirms that the flooding method de-
creases the gradient norm R(θ). We trained ResNet-18 on
CIFAR-10 by using flooding. Figure 6(a) shows that at
the beginning of the training, the training loss decreased in

7

Understanding Gradient Regularization in Deep Learning

(b)(a)

Figure 6: Flooding decreases the gradient norm, as expected
by theory. (a) Training dynamics of flooding with b = 0.05.
(b) Test accuracy and gradient norm after the training.

the usual way because the loss was far above flood level b.
Around the 10th epoch, the loss value became sufficiently
close to the flood level for the decrease in the loss to slow
(Figure S.6). Then, the flooding update became dominant
in the dynamics the gradient norm began to decrease. Fig-
ure 6(b) demonstrates that the gradient norm of the trained
model decreased as the initial learning rate increased. This
is consistent with Theorem 5.1 because the theorem claims
that the larger learning rate induces the larger regularization
coefficient of the GR γ = η. In contrast, naive SGD train-
ing without flooding always reaches an almost zero gradient
norm regardless of the learning rate. Thus, the change in the
gradient norm depending on the learning rate is specific to
flooding and implies that it implicitly performs GR through
the finite difference computation.

5.2. SAM

Finally, let us give a remark on a connection with SAM.
The SAM algorithm was derived from the minimization of
a surrogate loss max∥ε∥≤ρ L(θ + ε) for a fixed ρ > 0, and
has achieved the highest performance in various models
(Foret et al., 2021). After some heuristic approximations, its
update rule reduces to iterative gradient ascent and descent
steps: θt+1 = θt − η∇L(θ′) with θ′ = θt + εt∇L(θt) and
εt = ρ/∥∇L(θt)∥. Under a specific condition, the SAM
update can be seen as gradient descent with F-GR. Let us
consider time-dependent regularization coefficient γt and
ascent step εt. Then, for γt = εt, the gradient descent with
F-GR becomes equivalent to the SAM update:

∇L(θ) + γt
εt
(∇L(θ′)−∇L(θ)) = ∇L(θ′). (19)

A similar equivalence has been pointed out in Zhao et al.
(2022) which supposes a non-squared gradient norm and
εt = ρ/∥∇L(θt)∥ naturally appears. Suppose the SAM
update without the gradient normalization for simplicity,
that is, εt = ρ. This simplified SAM update was analyzed
on DLNs in Andriushchenko & Flammarion (2022). We
can recover their expression of α by setting a sufficiently
small γ = ε and neglecting c1 and c2 terms in Theorem 4.3.

It will be curious to identify any optimal setting of (ε, γ)
for generalization performance although we remain it as
future work. In Figure 3, we empirically observed the op-
timal setting for generalization was very close to or just
on the line γ = ε. In contrast, our experiments on DLN
(Figures 5 & S.5) and the previous study Zhao et al. (2022)
demonstrated that the optimal setting was not on γ = ε, and
thus combining the ascent and descent steps would be still
promising.

6. Discussion
This work presented novel practical and theoretical insights
into GR. The finite-difference computation is effective in the
sense of both reducing computational cost and improving
generalization performance. In particular, it is promising to
use the F-GR with a relatively large ascent step. Theoreti-
cal analysis supports that this computation has an implicit
bias that chooses potentially better minima. Because deep
learning requires large-scale models, it would be reasonable
to use learning methods only composed of first-order de-
scent or ascent gradients. The current work suggests that
the F-GR is a promising direction for further investigation
and could be extended for our understanding and practical
usage of gradient-based regularization.

We suggest several potentially interesting research direc-
tions. From a broader perspective, we may regard finite-
difference GR, SAM, and flooding as a single learning
framework composed of iterative gradient ascent and de-
scent steps. It would be interesting to investigate if there
is optimal combination of these steps for further improv-
ing performance. Related to the combination between the
gradient descent and ascent, although we fixed the ascent
step size as a constant, a step size decay or any schedul-
ing could enhance the performance further. For instance,
Zhuang et al. (2022) used a time-step dependent ascent step
to achieve high prediction performance for SAM. These
advanced topics could be interesting for developing further
efficient algorithms or regularization methods.

It will also be interesting to explore any theoretical clari-
fication beyond the scope of DLNs. Although a series of
analyses in DLNs enable us to explore the implicit bias
for selecting global minima, it assumes global convergence
and avoids an explicit evaluation of convergence dynamics.
Thus, it would be informative to explore the convergence
rate or escape from local minima in other solvable models
or a more general formulation if possible. Constructing
generalization bounds would also be an interesting direc-
tion. Some theoretical work has proved that regularizing
first-order derivatives of the network output controls the
generalization capacity (Ma & Ying, 2021), and such deriva-
tives are included in the gradient norm as a part. We expect
that the current work will serve as a foundation for further

8

Understanding Gradient Regularization in Deep Learning

developing and understanding regularization methods in
deep learning.

Acknowledgements
We thank the reviewers for helpful feedbacks to the
manuscript. We also thank Satoshi Hara, Kohei Hayashi,
Taiji Suzuki, and the members of ML Research Team in
AIST for their insightful comments on an early version
of this work. We acknowledge the funding support from
JST ACT-X (Grant Number JPMJAX190A), JST FOREST
Program (Grant Number JPMJFR226Q), JSPS KAKENHI
(Grant Number 22H05116) and NEDO (Project Number
JPNP20006).

References
Andriushchenko, M. and Flammarion, N. Towards under-

standing sharpness-aware minimization. In International
Conference on Machine Learning (ICML), pp. 639–668.
PMLR, 2022.

Barrett, D. G. and Dherin, B. Implicit gradient regulariza-
tion. In International Conference on Learning Represen-
tations (ICLR), 2021.

Bishop, C. M. Pattern recognition and machine learning.
Springer, 2006.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 32, 2019.

Dehghani, M., Tay, Y., Arnab, A., Beyer, L., and Vaswani,
A. The efficiency misnomer. In International Conference
on Learning Representations (ICLR), 2021.

Drucker, H. and Le Cun, Y. Improving generalization perfor-
mance using double backpropagation. IEEE Transactions
on Neural Networks, 3(6):991–997, 1992.

Finlay, C. and Oberman, A. M. Scaleable input gradient reg-
ularization for adversarial robustness. Machine Learning
with Applications, 3:100017, 2021.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations (ICLR), 2021.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural
computation, 9(1):1–42, 1997.

Hoffman, J., Roberts, D. A., and Yaida, S. Robust learning
with Jacobian regularization. arXiv:1908.02729, 2019.

Ishida, T., Yamane, I., Sakai, T., Niu, G., and Sugiyama,
M. Do we need zero training loss after achieving zero

training error? In International Conference on Machine
Learning (ICML), pp. 4604–4614. PMLR, 2020.

Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G. B., Wang,
H., Xiong, C., Socher, R., Cho, K., and Geras, K. J.
Catastrophic Fisher explosion: Early phase Fisher matrix
impacts generalization. In International Conference on
Machine Learning (ICML), pp. 4772–4784. PMLR, 2021.

Jia, Z. and Su, H. Information-theoretic local minima charac-
terization and regularization. In International Conference
on Machine Learning (ICML), pp. 4773–4783. PMLR,
2020.

Ma, C. and Ying, L. On linear stability of SGD and input-
smoothness of neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021.

Nacson, M. S., Ravichandran, K., Srebro, N., and Soudry,
D. Implicit bias of the step size in linear diagonal neu-
ral networks. In International Conference on Machine
Learning (ICML), pp. 16270–16295. PMLR, 2022.

Peebles, W., Peebles, J., Zhu, J.-Y., Efros, A., and Torralba,
A. The Hessian penalty: A weak prior for unsupervised
disentanglement. In European Conference on Computer
Vision (ECCV), pp. 581–597. Springer, 2020.

Pesme, S., Pillaud-Vivien, L., and Flammarion, N. Implicit
bias of SGD for diagonal linear networks: a provable
benefit of stochasticity. Advances in Neural Information
Processing Systems (NeurIPS), 34:29218–29230, 2021.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. On
the origin of implicit regularization in stochastic gradi-
ent descent. In International Conference on Learning
Representations (ICLR), 2021.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, I., Soudry, D., and Srebro, N. Ker-
nel and rich regimes in overparametrized models. In
Conference on Learning Theory (COLT), pp. 3635–3673.
PMLR, 2020.

Zhao, Y., Zhang, H., and Hu, X. Penalizing gradient norm
for efficiently improving generalization in deep learn-
ing. In International Conference on Machine Learning
(ICML), volume 162, pp. 26982–26992. PMLR, 2022.

Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek,
N. C., sekhar tatikonda, s Duncan, J., and Liu, T. Surro-
gate gap minimization improves sharpness-aware training.
In International Conference on Learning Representations
(ICLR), 2022.

9

Understanding Gradient Regularization in Deep Learning

A. Computational Aspect of GR
A.1. Pseudo-code and implementation

In the experiments on benchmark datasets, we computed the GR term in each mini-batch of SGD update. The pseudo-code
for F-GR is given in Algorithm 1. PyTorch code is available at https://github.com/ryokarakida/gradient_
regularization. The double backward computation is implemented as shown in Listing 1.

Algorithm 1 Learning with F-GR

Input: mini-batches{B1, ..., BK}
1: while SGD update do
2: if i-th mini-batch then
3: ∆L ← ∇L(θ;Bi)
4: θ′ ← θ + ε∆L
5: ∆L′ ← ∇L(θ′;Bi)
6: ∆R← (∆L′ −∆L)/ε
7: θ ← θ − η(∆L+ γ∆R)
8: end if
9: end while

1 ...
2 loss.backward(create_graph=True) #backpropagation of original loss
3 loss_DB = (gamma/2)*sum([torch.sum(p.grad**2) for p in model.parameters()]) #computing GR

term
4 loss_DB.backward() #backpropagation of GR term
5 optimizer.step()
6 ...

Listing 1: Implementation of DB in PyTorch.

A.2. Evaluation on the number of Matrix Multiplication

We represent an L-layer fully connected neural network with a linear output layer by Al = ϕ(Ul), Ul = WlAl−1 for
l = 1, ..., L. We define the element-wise activation function by ϕ(·) and weight matrix by Wl. For simplicity, we neglect bias
terms. Note that we have multiple samples A0 (within each minibatch) as an input and WlAl requires a matrix-matrix product.
Therefore, the forward pass requires L matrix multiplication. Next, let us overview usual backpropagation on the forward
pass {A0 → A1 → · · · → AL}. We can express the backward pass as Bl = ϕ′(Ul) ◦ (W⊤

l+1Bl+1), where the backward
signal Bl corresponds to ∂L/∂Ul (l = 1, ..., L− 1). Then, the backward pass requires L− 1 matrix-matrix multiplication
between weights W and backward signals B. In addition, we need to compute the gradient ∂L/∂Wl = BlA

⊤
l−1 for∇L and

this is also a matrix-matrix multiplication. Alter all, we need 3L− 1 matrix multiplication for∇L.

Finite difference computation: ∇L(θ′) requires the same number of matrix multiplication as the normal backpropagation.
Therefore, ∇L̃ requires 6L− 2. For a sufficiently deep network, this is ∼ 6L.

Double Backward computation: Let us denote ∂L/∂Wl by Gl. Figure 1 represents the forward pass for computing
the gradient of GR. Note that the upper part of this graph, i.e., {A0 → A1 → · · · → BL → · · · → B1}, is well-known
in double backpropagation of ∇B1 for the input-Jacobian regularization. As explained in Drucker & Le Cun (1992), the
computation of ∇B1 is equivalent to apply backpropagation to this upper part of the graph. GR requires additional L
nodes for Gl. Note that when we have a forward pass with matrix multiplication, its backward computation requires two
matrix multiplications. That is, when a node of the forward pass S is a function of the matrix X given by X = UV , we
need to compute ∂S/∂U = (∂S/∂X)V and ∂S/∂V = U(∂S/∂X) in the backpropagation. In addition, we do not need
to compute the derivative of A0. After all, we need 2× (3L− 1)− 2 = 6L− 4 for the ∇R. Since we also compute the
gradient of the original loss∇L, we need 9L− 5. For a sufficiently deep network, this is ∼ 9L.

10

https://github.com/ryokarakida/gradient_regularization
https://github.com/ryokarakida/gradient_regularization

Understanding Gradient Regularization in Deep Learning

B. Details of Experiments
B.1. Computational Aspect

Figure 2: We trained MLP (width 512) and ResNet on CIFAR-10 by using SGD with GR. We used Rectified Linear Units
(ReLUs) for activation functions, and set batch size 256, momentum 0.9, initial learning rate 0.01 and used a step decay of
the learning rate (scaled by 5 at epochs 60, 120, 160), γ = ε = 0.05 for GR. We showed the average and standard deviation
over 5 trials of different random initialization.

Figure S.1: This figure provides supplementary information for Figure 2. Figures S.1(left, center) show the trajectories of
the original training loss L during the training. Figure S.1 (right) shows the trajectory of test accuracy with respect to the
epoch. We observed that learning with F-GR could make the loss decrease faster than DB in the sense of convergence rate
(i.e., the number of epochs). This means that the loss converges even faster in wall time.

Figure S.1 : Training dynamics in ResNet-18 on CIFAR-10. Learning with F-GR is much faster in wall time.

B.2. Generalization Performance

MLP AND RESNET

Figure 3: We trained (a) 4-layer MLP and (b) ResNet-18 on CIFAR-10 by using SGD with GR. We trained the models
with various hyper-parameters ε = {10−5, 5× 10−5, ..., 0.5, 1} and γ = {10−4, 2× 10−4, 5× 10−4, 10−3, ..., 1, 2, 5}. The
other settings are the same as in Figure 2. We set batch size 128, weight decay 0.0001, and used no other regularization
technique or data augmentation. Table S.1 shows the highest average test accuracy among all settings of γ and ε.

Table S.1 : Summary of the highest test accuracy in the grid search of (ε, γ) shown in Figure 3.

MLP ResNet-18

F-GR 58.6± 0.2 87.0 ± 0.2

B-GR 58.3± 0.2 86.2 ± 0.3

DB 57.6± 0.2 86.3 ± 0.3

Figure 4: To see the difference among algorithms in more detail, we show test accuracy along ε axis with a fixed γ of the
grid search shown in Figure 3. Each line represents the average and standard deviation over 5 trials of different random
initialization. We fixed γ = 0.5 for MLP and γ = 0.05 for ResNet-18. This means that the objective function is the same
among different algorithms. Nevertheless, the eventual performance is different. For a large ε, F-GR achieves the higher test
accuracy than DB beyond one standard deviation. For such a large ε, F-GR also performs better than B-GR.

Figure S.2: We trained ResNet-34 on CIFAR-10. (a) This figure shows the same grid search as is shown in Section
4.1. The result is consistent with those in MLP and ResNet-18 (Figure 3). Learning with F-GR achieved the highest
accuracy for large ascent steps. In addition, it was better than the highest accuracy of DB. The best test accuracy was
(F-GR,B-GR,DB) = (59.9, 58.6, 59.5)± (0.5, 0.4, 0.5). (b) This figure shows test accuracy along the ε axis with a fixed
γ = 0.05. Each line represents the average and standard deviation over 5 trials of different random initialization. As is
similar to Figure 4, F-GR achieves the highest test accuracy.

11

Understanding Gradient Regularization in Deep Learning

F-GR B-GR DB (b)(a)

Figure S.2 : Learning with different GR algorithms in ResNet-34 on CIFAR-100. (a) The color map shows the average test
accuracy over 5 trials. Gray dashed lines indicate γ = ε. (b) Case of γ = 0.05.

ε εε ε

Te
st

 A
cc

.

CIFAR-10 w/o DA CIFAR-10 w/ DA CIFAR-100 w/o DA CIFAR-100 w/ DA

Figure S.3 : Learning with different GR algorithms in WideResNet-28-10 (γ = 0.1).

WIDERESNET

Table S.2 and Figure S.3: We trained WideResNet-28-10 (WRN-28-10) with γ = {0, 10−4, 10−3, 10−2, 10−1}. For F-GR
and B-GR, we set ϵ = {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. We computed the average and standard deviation over 5 trials of
different random initialization. We used crop and horizontal flip as data augmentation, cosine scheduling with an initial
learning rate of 0.1, and set momentum 0.9, batch size 128, and weight decay 0.0001. Table S.2 reported the best average
accuracy achieved over all the above combinations of hyper-parameters. R-GR achieves the highest test accuracy in all cases.
Figure S.3 shows the test accuracy with γ = 0.1 for F/B-GR and the highest test accuracy of DB over all γ. It clarifies that
the F-GR achieves the highest accuracy for large ε and performs better than B-GR and DB.

Table S.2 : Test accuracy of WRN-28-10 shows that F-GR performs better. We trained the models with/without data
augmentation (DA).

WRN-28-10
CIFAR-10 CIFAR-100

w/o DA w/ DA w/o DA w/ DA

F-GR 92.4± 0.1 96.1± 0.1 71.9± 0.1 81.2± 0.2

B-GR 91.9± 0.1 95.9± 0.1 71.2± 0.6 80.2± 0.2

DB 91.7± 0.2 95.9± 0.1 70.3± 0.2 80.3± 0.4

B.3. Diagonal Linear Network

Figures 4 and S.4: We generated synthetic data by x(j) ∼ N (µ1, σ2I) and y(j) ∼ N
(〈
β∗, x(j)

〉
, 0.01

)
. β∗ is k∗-sparse

with non-zero entries equal to 1/
√
k∗. We set d = 100, n = 50, µ = σ2 = 5, γ = 0.02 and initialization α0,i ∼ N (0, 0.01).

We trained the models by the discrete update of gradient descent with a small learning rate η = 0.001. We trained the
models until the training loss L became lower than 10−8. We showed the average of 40 trials with different seeds.

12

Understanding Gradient Regularization in Deep Learning

In numerical experiments of training DLNs, we can estimate αGR without explicitly evaluating Ψ. From Eq. (S.8), we have

w+(∞) ◦ w−(∞) = α2
0 ◦ exp

(
− γ

n2
Ψ
)
. (S.1)

This leads to the following formula:

αGR =
√
w+(∞) ◦ w−(∞). (S.2)

Thus, we can estimate αGR by using the parameters eventually obtained by gradient dynamics. We computed αGR shown
in Figure 5(a) by using this formula. We can also obtain the density distribution of αGR,i as is shown in Figure S.4 (left).

In Figure 5(b), we plotted the density distributions of exponents c0, c1 and c2 after the training. The exponent c1 is
determined at initialization and is easy to compute. As is shown in Section C.1, we have c0 = Ψ0/n

2 and c2 = Ψ2/n
4

where Ψ0 and Ψ2 are obtained by integrals over time (S.21). We numerically estimated them by taking the summation over
the steps of gradient descent. For instance, we computed c0 ≈

∑
t=0(X

⊤r(t))2η where η is the learning rate of gradient
descent.

GR, i 0,i

m
ax

Figure S.4 : Supplementary figures for the experiments of DLN. (Left) The largest eigenvalue of Hessian. (right) Density of
αGR,i/α0,i (γ = 0.02, ε = 0.05).

Figure S.4 (right) shows the largest eigenvalue of the Hessian. For the MSE loss of the DLN, the Hessian is given by

H =
1

n

(
diag(X̃⊤r) + 2diag(w)X̃⊤X̃diag(w)

)
. (S.3)

At the interpolation solution, we have

H =
2

n
diag(w)X̃⊤X̃diag(w). (S.4)

Figure S.5: We trained DLNs with various ε and γ in the same setting as in Figure 5. The color map shows the average over
10 trials. One can see that the test loss is correlated very well with αGR. While the test loss and αGR could decrease as ε
increases in F-GR, they increased in B-GR. This behavior is consistent with our theory.

F-GR F-GRB-GR B-GR

log (Test Loss)

(a) (b)

log ()
G

R
, i

0,i
m

ax
 i

εε ε ε

Figure S.5 : Training of DLNs by GR with various γ and ε. (a) Test Loss. (b) The largest αGR,i over i = 1, ..., d. Training
dynamics exploded in the gray area.

13

Understanding Gradient Regularization in Deep Learning

B.4. Flooding Method

Figure S.6: This figure confirms at which epoch the training loss started to get close to the flood level. The experimental
setting is the same as in Figure 6. The blue line shows a flip rate, that is, the ratio of how many times the training loss gets
smaller than the flood level during each epoch. Around the 10th epoch, the training loss started to reach the flooding level
and the gradient norm also started to decrease.

Figure S.6 : Flip rate of flooding with b = 0.05.

C. Analysis in Diagonal Linear Networks
C.1. Proof of Theorem 4.3

C.1.1. INTERPOLATION SOLUTIONS BETWEEN L1 AND L2 REGULARIZATION

We consider the training dynamics with F-GR as

ẇt = −∇L(wt)− γ
∇L(wt + ε∇L(wt))−∇L(wt)

ε
(S.5)

= −q1∇L(wt)− q2∇L(wt + ε∇L(wt)), (S.6)

where q1 = (1− γ/ε), q2 = γ/ε. The training loss L(w) is defined in (9). The dynamics are rewritten as

dw(t)

dt
= −q1

n
(X̃⊤r(t)) ◦ w(t)− q2

n
(X̃⊤r∗(t)) ◦ w∗(t), (S.7)

where ◦ denotes the element-wise product between vectors. We defined r(t) = X̃w(t)2 − y, r∗(t) = X̃w∗(t)2 − y,
w∗(t) = w(t) + ε∇L(w(t)), and put X̃ =

[
X −X

]
∈ Rn×2d. We recall that the square of the vector is an element-

wise square operation. The general solution of (S.7) is written as

w(t) =

[
α0

α0

]
◦ exp

(
− 1

n
X̃⊤

∫ t

0

(q1r(s) + q2r
∗(s))ds

)
◦ exp

(
−q2ε

n2

∫ t

0

(X̃⊤r∗(s)) ◦ (X̃⊤r(s))ds

)
. (S.8)

This recovers the GD solution obtained by Woodworth et al. (2020) for (q1, q2) = (1, 0), and SAM solution by An-
driushchenko & Flammarion (2022) for (q1, q2) = (0, 1). GR requires us to consider general (q1, q2).

From Eq. (S.8), we can represent an interpolation solution by

β∞ = w+(∞)2 − w−(∞)2 (S.9)

= 2α2
F -GR ◦ sinh

(
X⊤ν

)
, (S.10)

where ν = − 2
n

∫∞
0

(q1r(s) + q2r
∗(s))ds and

αGR := α0 ◦ exp
(
− γ

n2
Ψ
)
, Ψ :=

∫ ∞

0

(
X⊤r∗(s)

)
◦
(
X⊤r(s)

)
ds. (S.11)

14

Understanding Gradient Regularization in Deep Learning

Put β∞ = BαGR

(
X⊤ν

)
with BαGR

(z) = 2α2
F -GR ◦ sinh(z). Because the form of the function β∞ = Bα

(
X⊤ν

)
is the

same as in the analysis of usual gradient descent (Woodworth et al., 2020), we can use exactly the same transformation of
β∞ as it is. Their transformation is summarized as follows: suppose an interpolation solution β∞ written in the form of

β∞ = argmin
β∈Rd s.t. Xβ=y

ϕ(β). (S.12)

Then, the KKT condition of the interpolation solution is given by

∇βϕ(β) = X⊤ν, (S.13)

where ν is a Lagrange multiplier. Comparing this KKT condition and Eq. (S.10), we can see that the function ϕ should
satisfy

∇βϕα(β) = B−1
α (β) = arcsinh

(
1

2α2
◦ β

)
. (S.14)

Taking the integral of∇βϕα, we obtain
β∞(α) = argmin

β∈Rd s.t. Xβ=y

ϕα(β) (S.15)

with

ϕα(β) =

d∑
i=1

α2
i q

(
βi/α

2
i

)
(S.16)

and
q(z) = 2−

√
4 + z2 + z arcsinh(z/2). (S.17)

While we have α = α0 in the analysis of usual gradient descent (Woodworth et al., 2020), we have α = αGR for GR. Thus,
the evaluation of GR reduces to that of αGR and its exponent Ψ.

C.1.2. BASIC PROPERTY OF Ψ

From the definitions of r(t) and r∗(t), we have

r∗(t)− r(t) =
2ε

n
X̃((X̃⊤r(t)) ◦ w(t)2) + ε2

n2
X̃((X̃⊤r(t))2 ◦ w(t)2). (S.18)

Then,

Ψ =

∫ ∞

0

(X⊤r(s))2ds+
ε

n

∫ ∞

0

2(X⊤X̃((X̃⊤r(s)) ◦ w(s)2)) ◦ (X⊤r(s))︸ ︷︷ ︸
=:z(s)

ds

+
ε2

n2

∫ ∞

0

(X⊤X̃((X̃⊤r(s))2 ◦ w(t)2)) ◦ (X⊤r(s))︸ ︷︷ ︸
=:zh(s)

ds. (S.19)

Let us put

Ψ = Ψ0 +
ε

n
Ψ1 +

ε2

n2
Ψ2, (S.20)

Ψ0 :=

∫ ∞

0

(X⊤r(s))2ds, Ψ1 :=

∫ ∞

0

z(s)ds, Ψ2 :=

∫ ∞

0

zh(s)ds. (S.21)

Note that the first term Ψ0 essentially corresponds to the implicit bias of the SAM update investigated in the previous study
(Andriushchenko & Flammarion, 2022). Because the SAM update corresponds to γ = ε, the dominant term of γΨ is Ψ0

and Ψ1 and Ψ2 terms disappear. In our GR case, γ and ε have different scales in general and we need to evaluate these
novel terms. The essential problem is that the positivity of Ψ1 and Ψ2 is non-trivial. Fortunately, we can prove the positivity
of Ψ1 for a sufficiently small γ in the following Lemma C.1.

One may regard the finite difference computation as a “noisy” approximation of the original gradient obtained by DB.
Our theoretical results imply that the noise of F-GR contributes to finding better minima. Roughly speaking, as the noise

15

Understanding Gradient Regularization in Deep Learning

increases by a large step size, the integral over the dynamics Ψ becomes large and we obtain a small α. This reminds us
that an SGD noise in DLNs has an implicit bias towards a small α as well (Pesme et al., 2021). As the gradient dynamics
wander for a long distance by the noise, the model can become far from the lazy regime. One interesting point of our
finite-difference GR is that the noise is structured and does not necessarily make the solution far from the lazy regime. That
is, the appropriate noise (F-GR, i.e., ε > 0) can enhance the exploration for better minima while B-GR (i.e., ε < 0) causes
bias towards the lazy regime.

C.1.3. EVALUATION OF EXPONENTS IN αGR

Theorem 4.3 is obtained from the following lemma.

Lemma C.1. Under Assumption 4.2 (i)-(iii), Ψ1 = nb(0)2/2 +O(γ).

Proof of Lemma A.1. The dynamics (S.7) are rewritten as

n
dw

dt
= −b̃ ◦ w − γ

n
[2(Z̃(b̃ ◦ w2)) ◦ w + b̃2 ◦ w]

− γε

n2
[(Z̃(b̃2 ◦ w2)) ◦ w + 2(Z̃(b̃ ◦ w2)) ◦ w ◦ b̃]− γε2

n3
[(Z̃(b̃2 ◦ w2)) ◦ w ◦ b̃], (S.22)

where we put b̃ = X̃⊤r and Z̃ = X̃⊤X̃ . This gives us

n

2

dβ

dt
= −b ◦ a− γ

n
[2(Z(b ◦ a)) ◦ a+ b2 ◦ β]︸ ︷︷ ︸

=:Q1(t)

− γε

n2
[(Z(b2 ◦ β)) ◦ a+ 2(Z(b ◦ a)) ◦ β ◦ b]︸ ︷︷ ︸

=:Q2(t)

−γε2

n3
[(Z(b2 ◦ β)) ◦ β ◦ b]︸ ︷︷ ︸

=:Q3(t)

, (S.23)

where we put a = w2
+ + w2

−, b = X⊤r and Z = X⊤X . Note that db/dt = X⊤(dr/dt) = X⊤X(dβ/dt). By multiplying
X⊤X to (S.23) and taking the Hadamard product with b, we have

n
db2

dt
= −4b ◦ (X⊤X(b ◦ a))− 4γ

n
b ◦ [X⊤X(Q1(t) +

ε

n
Q2(t) +

ε2

n2
Q3(t))]︸ ︷︷ ︸

=:Q(t)

. (S.24)

The point is that we have 2b◦ (X⊤X(b◦a)) = z(t). This relation enables us to evaluate the seemingly complicated term Ψ1

by the change of b(t)2, which corresponds to a training loss. By taking the integral over time, the above dynamics become

Ψ1 =

∫ ∞

0

z(s)ds =
n

2
b(0)2 − 2

γ

n

∫ ∞

0

Q(s)ds. (S.25)

We used assumption (i) that we have a global minimum and b(∞) = 0. If γ is sufficiently small and
∫∞
0

Q(s)ds is finite,
we will have a non-negative Ψ1.

Here, we use assumption (ii) that the parameter norm has a finite constant upper bound independent of γ and ε. Because
∥a(t)∥ = ∥w+(t)

2 + w−(t)
2∥ ≤ ∥w∥2, we have an upper bound of ∥a(t)∥ as well:

∥a(t)∥ ≤ ā. (S.26)

Define κ1 := argmaxi∥Xx(i)∥, κ2 := argmaxi∥x(i)∥ and κ3 := ∥XX⊤∥2. Then, we find

|Q1,i(t)| ≤ 2ai∥Xx(i)∥∥b ◦ a∥+ b2i |βi| (S.27)

≤ 2ā2κ1
√
κ3∥r(t)∥+ āκ2

2∥r(t)∥2. (S.28)

where we used ∥b ◦ a∥ ≤ ∥b∥∥a∥ ≤ √κ3ā∥r∥ and ∥β∥ ≤ ∥a∥ ≤ ā. Similarly, we have

|Q2,i(t)| ≤ ā2κ1κ3∥r∥2 + 2ā2κ1κ2
√
κ3∥r∥2, (S.29)

16

Understanding Gradient Regularization in Deep Learning

where we used ∥b2∥ ≤
√∑

i(Xir)4 ≤
∑

i(Xir)
2 = ∥b∥2. We also have

|Q3,i(t)| ≤ ā2κ1κ2κ3∥r∥3. (S.30)

Note that under assumption (ii), the training loss is upper-bounded as well because

∥r(t)∥ ≤ ∥Xβ∥+ ∥y∥ ≤
√
κ3ā+ ∥y∥ =: L̄. (S.31)

Therefore, we have
|Q3,i(t)| ≤ ā2κ1κ2κ3L̄∥r∥2. (S.32)

After all, the inequalities (S.28 ,S.29 ,S.32) lead to∫ ∞

0

dsQi(s) ≤ C

∫ ∞

0

ds∥r∥2 ≤ CR̄ (S.33)

where C denotes an uninteresting positive constant, which depends on {κ1, κ2, κ3, L̄, ā}, and we used the assumption (iii).
After all, since the integral of Qi is bounded by a constant, we have

Ψ1 =
n

2
b(0)2 +O(γ) (S.34)

for sufficiently small γ. ■

After all, putting c0 = Ψ0/n
2 and c2 = Ψ2/n

4 and substituting Ψ1 = n
2 b(0)

2 +O(γ) into Eq. (S.11), we obtain Theorem
4.3.

C.2. Derivation of Proposition 4.4

Consider the i-th entry satisfying bi(0) ̸= 0. This condition is rational because bi(0) is determined by the training error at
initialization, that is, X⊤β(0)− y, and expected to take a positive value. First, from Ineq. (S.33), we find

Ψ1,i ≥
3nbi(0)

2

8
> 0 for γ ≤ n2bi(0)

2

16CR̄
. (S.35)

Next, we evaluate Ψ2. Since
zh = (Z(b2 ◦ β)) ◦ b, (S.36)

we have

|zh,i| ≤ κ1κ2κ3āL̄∥r∥2. (S.37)

Therefore,

|Ψ2,i| = |
∫ ∞

0

zh,i(s)ds| ≤ ChR̄, (S.38)

where Ch denotes an uninteresting positive constant 4nκ1κ2κ3āL̄. Then, by using Ψ0 ≥ 0 and (S.35),

Ψi ≥
ε

n
Ψ1,i +

ε2

n2
Ψ2,i ≥ ε(

3bi(0)
2

8
+

ε

n2
Ψ2,i) (S.39)

for

γ ≤ min
i

n2bi(0)
2

16CR̄
=: γ′. (S.40)

Furthermore, from (S.38), we have

Ψi ≥ ε(
3bi(0)

2

8
− ε

n2
ChR̄) ≥ ε

bi(0)
2

4
(S.41)

for

ε ≤ min
i

n2bi(0)
2

8ChR̄
=: ε′. (S.42)

17

Understanding Gradient Regularization in Deep Learning

After all, we obtain αGR,i ≤ α0,i exp(−γεc1,i/2). ■

As a side note, we can easily obtain the lower bound of αGR in the same way. We have αGR,i ≥
α0,i exp

(
−γ

(
D0 + εD1 + ε2D2

))
for some positive constants Dk. The lower bound monotonically decreases as in-

creases and is biased towards the rich regime as is expected. It is also noteworthy that the inequality (S.35) of γ gives us
some insight into non-asymptotic evaluation on how large γ we can take. First, the constant C includes ā and it implies that
we need a smaller γ for a larger parameter norm ā. Second, note that R̄ controls the integral of the training loss over the
whole training dynamics. We need a smaller γ as well for a larger R̄ which implies the convergence of dynamics is slower.
In the same way, we need a smaller ε for larger ā and R̄.

Remark on an average of Ψ0: Note that we used no information of Ψ0 in the inequality (S.39). If one can make a
tight lower bound of Ψ0,i, it may improve the upper bound of αGR,i. Here, let us look at the average value of Ψ0, that is,
∥Ψ0∥1 =

∑d
i=1 Ψ0,i. Suppose that

∫∞
0
L(w(t))dt has a constant lower bound R. Then, we have

∥Ψ0∥1 =

∫ ∞

0

r(s)⊤(XX⊤)r(s)ds (S.43)

≥ 4nλmin(XX⊤)R. (S.44)

Although it seems not easy to obtain a lower bound of each Ψ0,i, it is related to R on average.

Case of B-GR (Derivation of Ineq. (16)): Note that we can see B-GR as the F-GR with a negative ε. For B-GR, instead of
(S.39), we have

Ψi ≤ Ψ0,i + ε
3bi(0)

2

8
+

ε2

n2
Ψ2,i (S.45)

for γ ≤ γ′. By taking −ε′ ≤ ε < 0, we have

Ψi ≤ Ψ0,i + εbi(0)
2/2. (S.46)

In addition, we have

Ψ0,i ≤ κ2
2

∫ ∞

0

∥r(s)∥2ds ≤ 4nκ2
2R̄. (S.47)

By putting D = exp(−4κ2
2R̄/n), we obtain the result.

C.3. Validity of Assumptions

Let us summarize the assumptions that we used in the above analysis.

Assumption C.2 (Assumption 4.2 restated). (i) the gradient dynamics converges to the interpolation solution satisfying
Xβ = y, (ii) ∥w(t)∥ has a constant upper bound independent of γ and ε, (iii) for sufficiently small γ and ε, the integral of
the training loss, i.e.,

∫∞
0
L(w(t))dt, has a constant upper bound R independent of γ and ε.

These assumptions seem rational in the following sense. First, assumption (i) is commonly used in the study of DLNs
(Woodworth et al., 2020). Second, Nacson et al. (2022) recently reported that we can obtain interpolation solutions with a
smaller parameter norm ∥w(t)∥ using the discrete update with a larger learning rate. Because the interpolation solutions of
gradient descent are also those of our learning with GR, assumption (ii) seems rational. The upper bound of assumption (iii)
means that the convergence speed of L(w(t)) does not get too small for sufficiently small γ and ε. As a side note, we can
replace assumption (iii) with the positive definiteness of a certain matrix. This is seemingly rather technical, but related to a
sufficient condition that the dynamics converge to the global minima as follows.

Assumption C.3 (Alternative to Assumption 4.2 (iii)). For sufficiently small ε and γ, the smallest eigenvalue of S(t) :=
Xdiag(a(t))X⊤ is positive.

Since we suppose the overparameterized case (d > n), the matrix X is a wide matrix and S has no trivial zero eigenvalue.
The positive definiteness of S is a sufficient condition of global convergence as follows. From Eq. (S.23), we have

n

4

d∥r∥2

dt
=

n

2
b⊤

dβ

dt
= −r⊤Sr − γ

n
r⊤X(Q1(t) +

ε

n
Q2(t) +

ε2

n2
Q3(t)). (S.48)

18

Understanding Gradient Regularization in Deep Learning

Using the inequalities (S.28 ,S.29 ,S.32), we have

n

4

d∥r∥2

dt
≤ −λ∗

min∥r∥2 + γC∥r∥2. (S.49)

where we take the lower bound of the smallest eigenvalue as λ∗
min = mint,γ,ε λmin(S(t)). By taking a sufficiently small γ

such that γ < 3λ∗
min/(4C), we obtain

∥r(t)∥2 ≤ ∥r(0)∥2 exp(−λ∗
mint/n), (S.50)

from Grönwall’s inequality. Since L(w(t)) = ∥r(t)∥2/(4n), we obtain global convergence. In addition, we have∫ ∞

0

ds∥r(s)∥2 ≤ ∥r(0)∥2
∫ ∞

0

ds exp(−λ∗
mint/n) = n∥r(0)∥2/λ∗

min. (S.51)

This gives the upper bound R̄. Thus, instead of assumption (iii), we can apply Assumption C.3 in the transformation from
(S.33) to (S.35).

Note that S(t) is known as the neural tangent kernel in the lazy regime and its positive definiteness is straightforward
(Woodworth et al., 2020). Although there is no proof of the positive definiteness in the rich regime, we observed it in
numerical experiments and the assumption C.3 seems rational.

D. Derivation of Theorem 5.1
It is straightforward to derive this theorem. Consider the time step t satisfying L(θt) < b and L(θt+1) > b. The update rule
is given by

θt+1 = θt + η∇θL(θt), (S.52)
θt+2 = θt+1 − η∇θL(θt+1). (S.53)

Taking the summation, we get

θt+2 = θt − η(∇θL(θt+1)−∇θL(θt)) (S.54)

= θt − η2
∇L (θt + η∇L (θt))−∇L (θt)

η
. (S.55)

Similarly, for L(θt) > b and L(θt+1) < b, we have

θt+1 = θt − η∇θL(θt), (S.56)
θt+2 = θt+1 + η∇θL(θt+1). (S.57)

and get

θt+2 = θt + η(∇θL(θt+1)−∇θL(θt)) (S.58)

= θt − η2
∇L (θt)−∇L (θt − η∇L (θt))

η
. (S.59)

19

