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Abstract
The state-of-the-art memory model is the General
Associative Memory Model, a generalization of
the classical Hopfield network. Like its ances-
tor, the general associative memory has a well-
defined state-dependant energy surface, and its
memories correlate with its fixed points. This is
unlike human memories, which are commonly se-
quential rather than separated fixed points. In this
paper, we introduce a class of General Sequen-
tial Episodic Memory Models (GSEMM) that, in
the adiabatic limit, exhibit a dynamic energy sur-
face, leading to a series of meta-stable states capa-
ble of encoding memory sequences. A multiple-
timescale architecture enables the dynamic na-
ture of the energy surface with newly introduced
asymmetric synapses and signal propagation de-
lays. We demonstrate its dense capacity under
polynomial activation functions. GSEMM com-
bines separate memories, short and long sequen-
tial episodic memories, under a unified theoreti-
cal framework, demonstrating how energy-based
memory modeling can provide robust and scalable
memory systems in static and dynamic memory
cases.

Introduction
Episodic memory refers to the conscious recollection of
facts or subjective past experiences and forms an essential
component of long-term memory (Tulving, 2002; Duff et al.,
2019; Renoult et al., 2019). The recollection process may
have both singleton and sequence characteristics. Singleton
retrieval is the associative recall of a single memory from
a retrieval cue. This memory could be the description of
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a particular object of interest or important dates of events.
Sequence retrieval leads to a recollection process that is
not just a single memory but a trajectory of sequentially
connected memories. Memories organized into these trajec-
tories are called episodes. Memories may come together in
episodes allowing us to link and retrieve sometimes distinct
and representationally unrelated memories. The Sequence
Episodic Memory (SEM) problem in Recurrent Neural Net-
works (RNNs) pertains to creating and manipulating these
memories and their sequential relationships by encoding
relevant information in some form in the synapses.

The energy paradigm plays a major role in singleton
episodic memory modeling. The energy paradigm for mem-
ory was introduced by Hopfield (Hopfield, 1982; Amari,
2004), who defined energy as a quadratic function of the
neural activity in symmetrically connected networks with
binary neurons. A single memory is stored as a local mini-
mum of the energy surface. The network states update such
that it converges to one of the local minima and retrieves
a stable activity state representing a single memory. The
Hopfield network model has subsequently been generalized
along two directions.

The first direction focuses on memory capacity. Capacity
relates to the number of neurons required in the ensemble
to store and retrieve a certain number of memories without
corruption. The capacity of the original Hopfield model was
14% of the number of neurons, a small fraction of the num-
ber of neurons in the population(McEliece et al., 1987; Folli
et al., 2016; Amit et al., 1985). A significant breakthrough
in capacity came with the introduction of Dense Associative
Memory (Krotov & Hopfield, 2016), which introduced a
polynomial non-linearity to separate the contribution of each
memory to the energy minimum. The non-linearity enabled
the models to store more memories than the number of neu-
rons (hence the term dense). Further studies extended these
ideas to continuous state spaces, and exponential memory
capacity (Demircigil et al., 2017). Currently, these models
form the fundamental components of transformer architec-
tures (Vaswani et al., 2017; Ramsauer et al., 2021) with
high levels of performance on large-scale natural language
processing tasks (Radford et al., 2018; Devlin et al., 2019)
and computer vision (Carion et al., 2020) tasks. Recently,
General Associative Memory Model (GAMM) (Krotov &
Hopfield, 2021) unified these advances in associative mem-
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Figure 1: System architecture and schematic retrieval process for the General Sequential Episodic Memory Model(GSEMM)
A The two-layer neural architecture with neural connectivity of GSEMM. The new delay-based synapses (�) we introduced
(shown in red) are directed connections between neurons in the hidden layer of GAMM. Dotted curved lines in the figure
indicate one-to-many connections. B The schematic representation of how the network performs its computations. The new
synapses create a delayed signal of the feature layer neurons, which is provided as input to the hidden layer. C The typical
retrieval process for GAMM with three stored memories (�1, �2, �3,). The energy surface is shown by the colormap with
high energy denoted by red and low energy blue. The system (shown by the white ball) flows to the basin corresponding to
the nearest attractor. Due to the energy surface’s static nature, GAMM stays in a low-energy memory. Consequently, the
system cannot retrieve more than one memory (�3 in the figure). D Similar retrieval process for GSEMM. Unlike GAMM,
the system changes the energy surface so that a new minimum is formed that connects to a sequentially related memory
(�3 ! �1 in the figure). The dynamic nature of the energy surface allows the system to adapt to the new minimum under the
condition that the changes in the energy surface are adiabatic to changes in state. This feature of GSEMM enables it to
retrieve more than one memory organized in sequence.
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