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Abstract
Pipeline parallelism is a key technique for train-
ing large language models within GPU clusters.
However, it often leads to a memory imbalance
problem, where certain GPUs face high memory
pressure while others underutilize their capacity.
This imbalance results in suboptimal training per-
formance, even when the overall GPU memory
capacity is sufficient for more efficient setups. To
address this inefficiency, we propose BPIPE, a
novel approach for achieving memory balance in
pipeline parallelism. BPIPE employs an activa-
tion balancing method to transfer intermediate
activations between GPUs during training, en-
abling all GPUs to utilize comparable amounts
of memory. With balanced memory utilization,
BPIPE enhances the training efficiency of large
language models like GPT-3 by eliminating re-
dundant recomputations or increasing the micro-
batch size. Our evaluation conducted on 48 A100
GPUs across six nodes interconnected with HDR
InfiniBand shows that BPIPE accelerates the train-
ing of GPT-3 96B and GPT-3 134B models by
1.25x-2.17x compared to Megatron-LM, a state-
of-the-art framework for training large language
models.

1. Introduction
After the advent of the Transformer architecture (Vaswani
et al., 2017), there has been a dramatic increase in the size
of language models (Brown et al., 2020; Smith et al., 2022;
Zhang et al., 2022; Chowdhery et al., 2022; Ouyang et al.,
2022; Thoppilan et al., 2022; OpenAI, 2023). These models
show astonishing results in a wide range of applications by
exploiting more than a hundred billion parameters. Such
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Figure 1. An illustration of how BPIPE deals with a memory imbal-
ance problem. With the 1F1B pipeline schedule (left), the memory
requirement of an earlier pipeline stage could exceed the memory
capacity of a GPU. In that case, training is not feasible even if
the total aggregated memory is sufficient for the memory require-
ment. BPIPE (right) balances the imbalanced memory requirement
by transferring intermediate activations between earlier and later
stages.

an overwhelming number of parameters incurs high mem-
ory pressure, making large language model (LLM) training
challenging. When training a model in mixed precision (Mi-
cikevicius et al., 2017) with the Adam (Kingma & Ba, 2014)
optimizer, we need 20 bytes of memory for each model
parameter (Smith et al., 2022). Hence, training a GPT-3
175B model needs more than 3,000 GiB to store the model
parameters and optimizer states. Yet, no GPU exists whose
memory capacity satisfies the requirement.

A few methods, such as model parallelism and activation
recomputation (Griewank & Walther, 2000; Kirisame et al.,
2021), alleviate the memory pressure to satisfy the require-
ment. Model parallelism partitions the model parameters
and optimizer states across multiple GPUs so that each GPU
stores a subset of the model parameters. It is further classi-
fied into tensor parallelism (Shazeer et al., 2018; Shoeybi
et al., 2019) and pipeline parallelism (Huang et al., 2019),
where tensor parallelism splits the operations across GPUs
and pipeline parallelism splits the layers across GPUs. On
the other hand, activation recomputation releases interme-
diate activations from memory right after forward compu-
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tation and recomputes them during backward computation.
Since model parallelism and activation recomputation add
communication or computation overhead, how we configure
them affects training performance significantly. Therefore,
finding the configuration that achieves maximum perfor-
mance and then scaling up training with data parallelism is
essential for efficient LLM training.

However, due to its nature, pipeline parallelism could hinder
finding the optimal configuration. Unlike tensor parallelism,
pipeline parallelism assigns each GPU to handle a separate
pipeline stage that computes different layers in a model.
Accordingly, each pipeline stage has data dependency on
others and results in computation stalls until the required
data have arrived, commonly known as a pipeline bubble.
To minimize the bubble, a 1F1B (one-forward and one-
backward) pipeline schedule (Narayanan et al., 2019; Fan
et al., 2021) splits an input batch into micro-batches and
processes forward computation and backward computation
alternately. In order to saturate all pipeline stages, earlier
stages should reserve more memory for computing more
forward micro-batches than later stages. Consequently, a
memory imbalance exists across the pipeline stages, and
executing the model fails if the earlier stages run out of
memory, as illustrated in Figure 1.

Our key observation is that the later stages cannot utilize the
same amount of GPU memory as the earlier stages require
to precompute forward micro-batches. Therefore, if we can
exploit the spare memory of later stages as extra memory
of the earlier stages, the memory pressure will be relieved
with a balanced memory load. In addition, reduced memory
pressure allows us to utilize more memory to accelerate
training by avoiding redundant recomputations, increasing
the micro-batch size, or decreasing the model parallelism
degree.

To this end, we propose BPIPE, a memory-balanced pipeline
parallelism approach with an activation balancing method
to resolve the memory imbalance. While training, BPIPE
flattens the memory usage of pipeline stages by transferring
activations between earlier and later stages. We propose
a transfer scheduling algorithm to minimize the number
of transfers while preserving the computation correctness.
Furthermore, we design a pair-adjacent stage assignment
to make transfers not affect the training time. As a result,
BPIPE achieves a balanced GPU memory usage and facili-
tates efficient LLM training.

We have implemented BPIPE on Megatron-LM (Korthikanti
et al., 2022). Our evaluation on six HPE Apollo 6500 8-
GPU A100 nodes with 800 Gbps cross-node bandwidth
shows that BPIPE can accelerate training GPT-3 96B and
GPT-3 134B models by 1.25x-2.17x by executing more
efficient training configurations with fewer recomputations
and larger micro-batch sizes.
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Figure 2. An illustration of a 4-way 1F1B pipeline schedule with
eight micro-batches. The memory pressure of each pipeline
stage increases during the warmup phase, stays constant at the
steady phase, and decreases within the cooldown phase. After the
cooldown phase, parameters are updated with accumulated gradi-
ents of each micro-batch. A number in either forward or backward
denotes the micro-batch index.

2. Background & Motivation
When training LLMs with limited GPU resources, model
parallelism is necessary to split the model into multiple par-
titions and make each part fit into a single GPU. Depending
on how the model is divided, we can classify model paral-
lelism into two categories: tensor parallelism and pipeline
parallelism.

Tensor parallelism partitions an operation so that each GPU
executes the same operation with partial inputs. An addi-
tional synchronize operation, usually collective communica-
tion such as all-reduce and all-gather, follows the partitioned
operation. Owing to its costly synchronization, tensor paral-
lelism is known to be practical when used within a machine
boundary (Narayanan et al., 2021b).

On the contrary, pipeline parallelism partitions the layers
of a model into multiple stages and distributes them across
the GPUs. While training, two consecutive pipeline stages
exchange intermediate activations or gradients with point-to-
point communication. Since the point-to-point communica-
tion of pipeline parallelism adds small overheads compared
to the synchronization of tensor parallelism, the pipeline
parallelism degree can increase along with the model size.

However, increasing the degree of pipeline parallelism
yields a memory imbalance problem between pipeline stages.
Using the 1F1B pipeline schedule, as illustrated in Figure 2,
the first stage has to store activations as many micro-batches
as the pipeline parallelism degree during the warmup phase.
For the other stages, the number of micro-batches in the
warmup phase decreases linearly, so the last stage holds ac-
tivations of a single micro-batch. Consequently, the imbal-
ance of memory usage exists across the pipeline stages, and
its magnitude amplifies with an escalation in the pipeline
parallelism degree.

Figure 3 shows the memory usage of each pipeline stage
when training a GPT-3 13B (Brown et al., 2020) model
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Figure 3. Memory imbalance among pipeline stages when training
a GPT-3 13B model with 8-way pipeline parallelism. The micro-
batch size is 1, and recomputation is not applied. The memory
difference between the first and last stages is 37 GiB.

with 8-way pipeline parallelism using 8 NVIDIA A100 80
GiB GPUs. In 8-way pipeline parallelism, the first stage
computes eight micro-batches during the warmup phase.
Therefore, the difference in the number of micro-batches
between stage 0 and stage 7 is seven, causing a 37 GiB
memory imbalance. In other words, stage 7 only utilizes up
to half of the memory due to the imbalance. Even worse,
attempting to accelerate training by utilizing the unused
memory of the last pipeline stage (e.g., increasing the micro-
batch size) might fail because the first stage no longer has
enough memory.

Asymmetric partitioning of the pipeline stage (i.e., later
stages contain more layers than earlier stages) might elim-
inate the imbalance, but it incurs inefficiency because the
pipeline latency is minimized when each pipeline stage has
the same computation time (Narayanan et al., 2019; Fan
et al., 2021; Li et al., 2021b; Zheng et al., 2022). Alterna-
tively, Chimera (Li & Hoefler, 2021) relieves the imbalance
by replicating model parameters so that each GPU holds
two pipeline stages. However, since replicating model pa-
rameters doubles the memory usage, the overall memory
usage increases for the same pipeline degree. To the best
of our knowledge, BPIPE is the first work that speeds up
training LLMs by addressing the memory imbalance with
smart activation transfer across GPUs.

3. Method
In this section, we describe an activation balancing method
that solves the memory imbalance problem by transferring
activations between pipeline stages. First, we formalize the
memory imbalance and provide a high-level view of the
activation balancing. Then, we define the balanced memory
objective and demonstrate an activation transfer scheduling
algorithm that achieves the objective. Finally, we describe

how we assign pipeline stages to GPUs to minimize the
transfer time.

3.1. Pipeline Memory Imbalance

On p-way pipeline parallelism with m micro-batches, the
memory usage of the pipeline stage s can be expressed as
M(s) =W (s)+A(s), whereA(s) is the maximum amount
of saved activations and W (s) is the size of model parame-
ters including optimizer states. To simplify, assume that a
model has repetitive layers which account for almost all of
the model parameters, such as Transformer models (Devlin
et al., 2018; Raffel et al., 2020; Brown et al., 2020). If all
pipeline stages have an even number of layers, W (s) =W0

is constant. Then, A(s) that varies with the pipeline stage
s determines the memory usage. If we define µ(s) as the
maximum number of saved micro-batches on stage s, A(s)
becomes A(s) = A0µ(s), where A0 is the size of saved
activations per micro-batch, which is also a constant value
when each pipeline stage has the same number of layers. As
a result, M(s) can be written as the following.

M(s) =W0 +A0µ(s) (1)

According to Figure 2, each pipeline stage in the 1F1B
pipeline schedule possesses at most µ(s) = min(p− s,m).
In the practical case, m� p is satisfied because such a case
fully saturates all pipeline stages. Therefore, µ(s) of the
1F1B pipeline schedule satisfies the following relation.

µ(s) = p− s (2)

Substituting µ(s) in Eq. 1 with p− s, Eq. 1 denotes that the
difference in the number of saved micro-batches is a cause
of the imbalance of M(s).

3.2. Activation Balancing

BPIPE eliminates the memory imbalance by reducing the
difference in the number of saved micro-batches for all
pipeline stages. Eq. 1 and Eq. 2 show that the memory
usage of the pipeline stage decreases linearly as the pipeline
stage increases. Accordingly, we pair each stage s with
stage p − s − 1 to balance µ(s) and µ(p − s − 1). The
memory imbalance within each pair can be written as the
following equation.

M(s)−M(p− s− 1) = A0(p− 2s− 1) (3)

Eq. 3 implies that the pipeline stages with s < p−1
2 occupy

more memory than the stages with s > p−1
2 . We define the

former stages as evictors and the latter stages as acceptors.
Each pair then consists of an evictor and an acceptor, where
the evictor evicts activations to its pair acceptor to balance
µ(s) and µ(p− s− 1).
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Figure 4. An illustration of the activation balancing and the corre-
sponding changes in the number of saved micro-batches within
a 4-way 1F1B pipeline schedule with eight micro-batches. Stage
0 and stage 3 are the pair evictor and acceptor, so stage 0 evicts
activations to stage 3 and loads them before the backward com-
putation. All transfers are running in parallel to the forward or
backward computation.

Figure 4 illustrates the activation balancing within a 4-way
1F1B pipeline schedule with eight micro-batches. Now, as-
sume we want to make µ(0) as 3. While stage 0 proceeds
the forward computation of the third micro-batch, stage 0
evicts the saved activations to stage 3, a pair acceptor of
stage 0. The number of saved micro-batches does not in-
crease after the forward computation due to the eviction.
BPIPE always evicts the latest micro-batch among the saved
to minimize the number of transfers. Therefore, the sec-
ond micro-batch is evicted instead of the first micro-batch.
The evicted activations should be loaded by stage 0 before
processing the corresponding backward computation at the
steady phase. Stage 0 evicts another micro-batch before
loading because each forward computation and loading in-
crease the number of saved micro-batches by 1, respectively.
For example, evicting the micro-batches whose indices are
3 and 5 in Figure 4 represent it. At the cooldown phase,
stage 0 loads the activations without the additional eviction
because no forward computation is executed along with the
loading. As a result, µ(0) becomes three, as shown in the
graph of Figure 4.

3.3. Balanced Memory Objective

From Eq. 2, the sum of the maximum number of saved
micro-batches for any evictor-acceptor pair is µ(s) + µ(p−
s−1) = p+1. Including a buffer for the additional evictions
at the steady phase, the value becomes p + 2. Now, the
optimally balanced number of micro-batches µopt is derived
as µopt = dp+2

2 e, and the optimal memory balance Mopt is

W0 +A0µopt.

An objective of the activation balancing is accomplishing
µ(s) ≤ µopt for all pipeline stages throughout the training.
An evictor with pipeline stage s achieves the objective by
evicting at most (p− s)−µopt +1 micro-batches to its pair
acceptor. Simultaneously, the pair acceptor saves at most
s + 1 micro-batches following the pipeline schedule and
(p−s)−µopt+1 micro-batches from the evictor. µ(p−s−1)
then becomes p+ 2− µopt, where the value is less or equal
to µopt. Therefore, both the evictor and acceptor achieve
the objective.

The memory objective implies that BPIPE does not trigger
any transfer of activations for the evictors whose stages al-
ready satisfy the objective. In other words, the activation
balancing operates when p ≥ 4, and only the evictors whose
pipeline stage satisfies s ≤ bp−42 c. For example, the inner-
most pair of pipeline stages, which is stage 1 and stage 2 in
Figure 4, does not transfer activations because they already
satisfy the objective.

3.4. Transfer Schedule

To achieve the memory objective, we propose a transfer
scheduling algorithm. The algorithm gets a pipeline paral-
lelism degree p, a pipeline stage s of an evictor, the num-
ber of micro-batches m, and a computation schedule C
of 1F1B pipeline as inputs and returns a transfer sched-
ule T for stage s. A computation schedule is an array of
computation decisions. Each computation decision Ci com-
prises the type of computation made and the index of the
micro-batch being processed. For example, C of pipeline
stage 0 in Figure 4 has 22 computation decisions, including
pipeline bubbles. C0 has 0 as a micro-batch index with a
FORWARD computation type, C9 has 1 as a micro-batch
index with a BACKWARD computation type, and C18 has
an empty micro-batch index because the computation type
of C18 is a BUBBLE .

Algorithm 1 describes the details of scheduling for the given
inputs. The algorithm traverses the computation sched-
ule, deciding when to evict or load. Within the warmup
phase, n evict micro-batches are evicted to make µ(s)
equal to µopt (lines 9-13). When the algorithm encoun-
ters a BACKWARD type computation decision at i and
finds that the micro-batch required to compute the backward
(i.e., Ci.idx) has been evicted, it loads the micro-batch at
i− 1 (lines 14-18). However, this load would make µ(s) ex-
ceed µopt if Ci belongs to the steady phase. In other words,
when Ci−1 is a FORWARD type, both Ci−1 and the load
at i− 1 increase µ(s) so that µ(s) exceeds µopt. The algo-
rithm prevents it by evicting an additional micro-batch that
will be needed at the furthest future at i− 2, whose index
is Ci−3.idx (lines 19-23). On the other hand, if Ci belongs
to the cooldown phase, Ci−1 is the BUBBLE type which
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Algorithm 1 Transfer Scheduling Algorithm
1: Input: p, s, m, 1F1B computation schedule C
2: Output: transfer schedule T
3: µopt ← dp+2

2 e
4: n evict← min(p− s,m)− µopt

5: evicted← ∅
6: Ti ← None ∀0 ≤ i < |C|
7: for i = 0 to |C| − 1 do
8: if Ci.type = FORWARD then
9: if µopt − 1 ≤ Ci.idx < µopt − 1 + n evict then

10: /* warmup phase */
11: Ti ← Evict(Ci−1.idx)
12: evicted← evicted ∪ {Ci−1.idx}
13: end if
14: else if Ci.type = BACKWARD then
15: /* steady or cooldown phase */
16: if Ci.idx ∈ evicted then
17: Ti−1 ← Load(Ci.idx)
18: evicted← evicted \ {Ci.idx}
19: if Ci−1.type = FORWARD then
20: /* steady phase */
21: /* evict to keep µ(s) ≤ µopt */
22: Ti−2 ← Evict(Ci−3.idx)
23: evicted← evicted ∪ {Ci−3.idx}
24: end if
25: end if
26: end if
27: end for

does not increase µ(s). Thus, µ(s) does not exceed µopt,
and the algorithm does not evict an additional micro-batch.

The generated transfer schedule T contains an array of trans-
fer decisions that interleaved with the 1F1B computation
schedule. While processing the 1F1B schedule, BPIPE
simultaneously processes the transfer schedule. BPIPE
evicts the saved activations of the j-th micro-batch if Ti
is Evict(j) and loads them if Ti is Load(j). When Ti is
None, a default decision in line 6, BPIPE does not process
any transfer.

Following the computations with the corresponding trans-
fer decisions, BPIPE achieves the memory objective for
all pipeline stages with the minimum number of transfers.
The number of transfers is the summation of the number of
Evicts and Loads. We only consider the number of Evicts
because each eviction requires exactly one corresponding
Load before processing the backward computation. Subse-
quently, we can interpret the micro-batch eviction as analo-
gous to cache eviction. In other words, an evictor manages
a cache storage whose capacity is µopt. It evicts an item
(i.e., forward micro-batch) to the memory space of its pair
acceptor when the cache is full. Deciding which item to
evict is then determined based on a cache eviction policy.
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Figure 5. An illustration of standard assignment and pair-adjacent
assignment for 16-way pipeline parallelism on two nodes, each
with 8 GPUs. The dotted lines represent the communication be-
tween evictor-acceptor pairs. The standard assignment makes each
pair communicate over the slow inter-node link. In contrast, the
pair-adjacent assignment lets them transfer their activations over
the fast intra-node link.

Unlike common caching scenarios, we know exactly when
each item is required in the future. Therefore, as evicting
the item that will be needed in the furthest future is opti-
mal (Belady, 1966), our scheduling algorithm minimizes
the number of transfers.

Although the algorithm assumes a 1F1B computation sched-
ule as an input, we can extend it to other variants of
1F1B (Narayanan et al., 2021a;b; Yang et al., 2021; Athlur
et al., 2022; Zhuang et al., 2022) because they all have a
memory imbalance. Appendix A describes how we can
extend the algorithm to the interleaved 1F1B pipeline sched-
ule (Narayanan et al., 2021b).

3.5. Pair-Adjacent Assignment

As BPIPE processes a transfer schedule simultaneously with
a 1F1B computation schedule, each transfer should take less
time than FORWARD or BACKWARD not to affect the
training time. To minimize the transfer time, we propose a
pair-adjacent assignment that locates each evictor-acceptor
pair in the same node in a cluster. Within the same node,
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Figure 6. An illustration of how the pair-adjacent assignment as-
signs pipeline stages to GPUs when 4-way pipeline parallelism
with 2-way tensor parallelism and 2-way data parallelism on two
nodes, each with 8 GPUs. ‘TP’ and ‘DP’ denote the rank of ten-
sor parallelism and data parallelism. ‘PP’ represents the pipeline
stage.

each pair can exploit a high-bandwidth intra-node communi-
cation link like NVLink rather than using a relatively slower
inter-node communication link like Ethernet or InfiniBand.

Figure 5 illustrates how pipeline stages are assigned to GPUs
using 16-way pipeline parallelism on a cluster with two
nodes, each of which has 8 GPUs. A standard assignment as-
signs pipeline stages to GPUs in order, as Figure 5(a) shows.
However, it assigns all pipeline pairs to different nodes. In-
stead, BPIPE assigns pair stages to adjacent GPUs, as shown
in Figure 5(b). Each pair then resides in the same node
and utilizes fast intra-node communication. Although the
pair-adjacent assignment entails additional inter-node com-
munication of dependent data between consecutive pipeline
stages, it is beneficial because the bytes transferred between
pairs are much bigger than the bytes exchanged between
consecutive stages.

When pipeline parallelism is used with either tensor or data
parallelism, the pair-adjacent assignment assigns pipeline
stages considering other parallelism methods. Figure 6 il-
lustrates how the pair-adjacent assignment operates with
data and tensor parallelisms. BPIPE prioritizes pipeline
parallelism over data parallelism because the gradient syn-
chronization of data parallelism is performed only once for
each training step. On the other hand, BPIPE prioritizes
tensor parallelism over pipeline parallelism to ensure that
the frequent collective communication of tensor parallelism
always takes place within a node. Hence, when the ten-
sor parallelism degree is equal to the number of GPUs in
a single node, BPIPE transfers activations across the node
boundary. Nevertheless, the activation balancing is feasi-
ble across the node boundary in our evaluation setup. In
Appendix B, we provide formalized details on the network
bandwidth requirements of the activation balancing.

Table 1. Model configurations for evaluation. L denotes the num-
ber of layers, D denotes hidden dimension size, and H denotes
the number of attention heads. Finally, G and B are the numbers
of GPUs used to execute the model and batch size, respectively.

Model L D H G B

GPT-3 13B 40 5120 40 8 32
GPT-3 96B 80 9984 104 32 128

GPT-3 134B 84 11520 120 48 192

4. Evaluation
To evaluate BPIPE, we ask the following questions.

• Does BPIPE facilitate faster training of large language
models? (§ 4.2)

• Does BPIPE flatten the memory usage of each pipeline
stage? (§ 4.3)

• Does BPIPE efficiently evict and load activations with-
out performance degradation? (§ 4.4)

4.1. Implementation and Environment Setup

We have implemented BPIPE on Megatron-LM v3 (Kor-
thikanti et al., 2022). We utilize separate CUDA streams for
evicting and loading activations so that activations can be
transferred concurrently with either forward or backward
computation. In addition, we manually manage CUDA
memory for activations that are needed for backward com-
putation and reuse pre-allocated memory after the eviction
to avoid unexpected memory fragmentation.

Our evaluations are conducted on a cluster of six HPE
Apollo 6500 Gen10 Plus nodes, each of which is equipped
with 8 NVIDIA 80 GiB A100 GPUs connected over NVLink
and 4 Mellanox 200 Gbps HDR InfiniBand HCAs for com-
munication. All experiments are executed on the NVIDIA
PyTorch NGC 22.09 container. We evaluate GPT-3 (Brown
et al., 2020) throughout the experiments, one of the most
representative LLMs. We use three different model configu-
rations, as shown in Table 1, in which the largest model has
134 billion parameters in total. Sequence length and vocab-
ulary size are 2,048 and 51,200 for all models, respectively,
and we use mixed precision training (Micikevicius et al.,
2017). Although we evaluate only GPT-3 models, BPIPE
is applicable to any model as long as pipeline parallelism is
used to train the model.

4.2. Training Performance

To evaluate whether BPIPE can accelerate training, we find
the fastest configuration for training GPT-3 96B and GPT-
3 134B models, with and without BPIPE. Our baseline is
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Table 2. Training configurations of GPT-3 96B and GPT-3 134B
models. ‘tensor’ and ‘pipeline’ represent the tensor and pipeline
parallelism degrees, respectively. The remaining GPUs are used
for data parallelism, and we use ZeRO stage-1 data parallelism (Ra-
jbhandari et al., 2020) that splits optimizer states. Moreover, tensor
parallelism includes partitioning layer normalization and dropout,
as introduced in Korthikanti et al. 2022. ‘mb’ denotes the micro-
batch size, and each value corresponds to a different training con-
figuration.

Model Model Parallelism mb Recompute
scopeID tensor pipeline

GPT-3
96B

(1) 1 16 1 layer
(2) 2 8 1,2 layer
(3) 4 4 1 attention

2 layer
(4) 8 2 1 attention

2,4 layer
(5) 2 16 1 attention

2,4 layer
(6) 4 8 1,2 attention

4,8 layer
(7) 8 4 1,2 attention

4,8 layer

GPT-3
134B

(1) 2 12 1,2 layer
(2) 4 6 1 attention

2,4 layer
(3) 8 3 1 attention

2,4 layer
(4) 4 12 1,2 attention

4 layer
(5) 8 6 1,2 attention

4,8 layer

Megatron-LM v3 (Korthikanti et al., 2022), a state-of-the-art
LLM training framework. We perform a grid search to find
the best configuration as follows. In addition to the notations
in Table 1, we define tensor parallelism degree as t, pipeline
parallelism degree as p, data parallelism degree as d, and
micro-batch size as mb. Then, the following constraints
exist.

• H mod t = 0: The number of attention heads should
be divisible by the tensor parallelism degree because
tensor parallelism for Transformer layers splits atten-
tion heads.

• 8 mod t = 0 (8 is the number of GPUs in a single
node): Tensor parallelism is practical when used within
a node boundary due to its costly synchronization.

• L mod p = 0: The number of layers should be divisi-
ble by the pipeline parallelism degree, assuming that
pipeline parallelism evenly divides the layers.

• B mod (mb× d) = 0: The total batch size should be
divisible by the micro-batch size times data parallelism
degree. The number of micro-batches is B/(mb× d).

• t × d × p = G: Multiplication of tensor, data, and
pipeline parallelism degrees should be equal to the
total number of GPUs.

Under the constraints, we enumerate all possible tuples of
(t, p, d,mb). We evaluate them with Megatron-LM for each
recomputation scope in the order of none, attention, and
layer, where the none scope does not recompute any activa-
tion, the attention scope recomputes only the self-attention
of the Transformer layer, which is known as the selective
recomputation (Korthikanti et al., 2022), and the layer scope
recomputes the entire Transformer layer. We apply early
stopping when succeeding to execute with fewer recompu-
tations because carrying out more recomputations for the
same (t, p, d,mb) is inefficient. Then, each (t, p, d,mb)
with a recomputation scope composes a single training con-
figuration. For BPIPE, we evaluate the configurations that
Megatron-LM cannot execute since the activation balanc-
ing does not accelerate training. If BPIPE fails due to the
out-of-memory error, we exclude those configurations. As a
result, Table 2 lists all feasible training configurations.

We use model FLOPS utilization (MFU) as an evaluation
metric, a ratio of the observed throughput to the hard-
ware maximum throughput (Korthikanti et al., 2022). Fig-
ure 7 shows that BPIPE can execute the configuration that
achieves 52.06% MFU, though Megatron-LM cannot exe-
cute it due to the memory imbalance problem. Consequently,
BPIPE accelerates training the models by 1.25x compared
to the fastest training configuration that Megatron-LM can
execute and 2.17x than the most inefficient configuration
of Megatron-LM. The raw MFU numbers of Figure 7 are
listed in Appendix C.

4.3. Memory Balancing

Figure 8 presents the change in memory usage when using
BPIPE. Without the activation balancing, the maximum
memory usage difference between the pipeline stages is
larger than 25 GiB. The model cannot be executed because
the first stage runs out of memory. However, the difference
sharply reduces to 10 GiB with BPIPE because BPIPE flat-
tens the memory usage of each evictor-acceptor pair. As a
result, BPIPE facilitates faster training with more efficient
resource utilization, as Figure 7 shows.

If the model size grows, the pipeline parallelism degree
should increase because increasing the tensor parallelism
degree is bounded up to the number of GPUs in a single
node. Then, the memory imbalance would also increase
following the pipeline parallelism degree. For example,
Narayanan et al. (2021b) and Korthikanti et al. (2022) use

7



BPIPE: Memory-Balanced Pipeline Parallelism for Training Large Language Models

(5) (6) (1) (2) (3) (4) (5) (6) (7)
mb 1 2 1 1 2 1 2 1 2 4 1 2 4 1 2 4 8 1 2 4 8

0

10

20

30

40

50

M
F

U
 [

%
]

X X

(4) (1) (2) (3) (4) (5)
mb 2 1 2 1 2 4 1 2 4 1 2 4 1 2 4 8

0

10

20

30

40

50

M
F

U
 [

%
]

X

BPipe Megatron-LM

(a) GPT-3 96B (b) GPT-3 134B

Figure 7. Normalized training throughputs of GPT-3 96B and GPT-3 134B models. Labels of the bars represent the training configurations
of Table 2. For example, a bar whose label is (1)-mb1 denotes training configuration with model parallelism ID (1) and the micro-batch
size as 1. ‘X’ denotes that Megatron-LM fails to execute due to the out-of-memory (OOM). On the other hand, BPIPE makes executing
all of them possible with the activation balancing. Moreover, they are faster than all the configurations that Megatron-LM can execute.
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Figure 8. Memory usage of each pipeline stage with the activation
balancing compared to without the activation balancing when train-
ing a GPT-3 134B model with configuration (4)-mb2 of Table 2.
To estimate the memory usage without the activation balancing,
we allow the activation balancing only for stage 0 and stage 11
since stage 0 has insufficient memory to execute.

64-way pipeline parallelism for scaling up GPT-3 model to
1 trillion parameters. It implies that BPIPE can dramatically
flatten the memory imbalance, paving the way for more
efficient training of LLMs.

4.4. Performance Analysis

We inspect the efficiency of BPIPE by comparing the itera-
tion time before and after applying the activation balancing.
Figure 9 shows the additional time cost of the activation
balancing, varying the batch size from 32 to 1,024 when
training a GPT-3 13B model with 8-way pipeline paral-
lelism. The cost occupies 1.1% even when the number of
micro-batches is sufficiently large.

BPIPE achieves a low time cost by virtue of the asyn-
chronous activation transfer. If we transfer activations syn-
chronously, the time overhead shoots up to 11%, as Figure 9
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Figure 9. The relative difference in iteration time with various
batch sizes when training a GPT-3 13B with 8-way pipeline par-
allelism. No recomputation is applied, and the number of micro-
batches is equal to the batch size.

shows. On the contrary, asynchronous transfer overlaps
with the computation because the computation time takes
far longer than the transfer time. The transfer overlaps even
if the model size grows because the computation time in-
creases more steeply than the transfer time, as Table 3 shows.
Furthermore, the size of activations to transfer increases
with fewer recomputations. However, the transfer time does
not exceed the forward time even for the no recomputation,
as Table 4 shows.

5. Related Work
Data parallelism. Data parallelism replicates model pa-
rameters and optimizer states across GPUs (Li et al., 2020).
An input batch is divided into multiple mini-batches for
each training step, so each GPU conducts forward-backward
computation with a different mini-batch. After each GPU
finishes a single training step, all GPUs carry out an all-
reduce collective communication to synchronize gradients
and then update the model parameters. Thereby, all GPUs
always have the same parameters throughout the training.
Since collective communication occurs only once in a single
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Table 3. Time breakdown of transfer, forward, and backward. All
times are the elapsed time for processing a single micro-batch. For
GPT-3 13B, 8-way pipeline parallelism is used with the attention
recomputation scope and the micro-batch size is 1. For GPT-3 96B
and GPT-3 134B, we use configuration (6)-mb2 and (4)-mb2 of
Table 2, respectively.

Model transfer forward backward

GPT-3 13B 7.63 ms 36.32 ms 83.57 ms
GPT-3 96B 15.63 ms 143.37 ms 287.90 ms
GPT-3 134B 12.06 ms 126.87 ms 256.30 ms

Table 4. Time breakdown by varying the recomputation scope of a
GPT-3 13B model with 8-way pipeline parallelism.

Recompute
scope

transfer forward backward

none 22.48 ms 36.32 ms 74.12 ms
attention 7.63 ms 36.32 ms 83.57 ms
layer 0.58 ms 36.32 ms 110.33 ms

training step, data parallelism is the best way to scale up
training. Beyond replicating model parameters, ZeRO (Ra-
jbhandari et al., 2020) and Fully Sharded Data Parallelism
(FSDP) (Zhao et al., 2023) reduce the memory pressure by
splitting optimizer states. They propose more aggressive
splits, including gradients and model parameters, with more
frequent collective communication.

Tensor parallelism. Mesh-TensorFlow (Shazeer et al.,
2018) introduces an abstraction that can express arbitrary
operation partitioning. It also presents that data parallelism
is one of the cases of tensor parallelism that splits tensors
across the batch dimension. Moreover, some model-specific
tensor parallel strategies exist that efficiently reduce memory
pressure with moderate synchronization costs. For example,
Megatron-LM (Shoeybi et al., 2019) proposes an efficient
partitioning strategy of two consecutive matrix multiplica-
tions in the Transformer layer. Additionally, partitioning
along the sequence dimension of the Transformer layer is
also feasible (Li et al., 2021a; Korthikanti et al., 2022).

Pipeline parallelism. To further minimize the pipeline
bubble, several pipeline schedules (Narayanan et al.,
2021a;b; Li & Hoefler, 2021; Yang et al., 2021; Athlur
et al., 2022; Zhuang et al., 2022) have been proposed. Such
schedules stem from the 1F1B schedule but sacrifice mem-
ory usage or even affect model correctness. Furthermore,
token-level scheduling (Li et al., 2021b) is proposed for an
auto-regressive language model (Brown et al., 2020). How-
ever, it is effective when the batch size is much smaller
than the pipeline parallelism degree, which is unlikely in
practical LLM training scenarios.

Activation recomputation. Since recomputation incurs
an overhead equal to the forward computation time, activa-
tions to discard and reserve should be well-decided. Chen
et al. (2016) proposed an algorithm that can reduce memory
consumption to sub-linear costs for a linear computation
chain. Checkmate (Jain et al., 2020) solves a mixed integer
linear program to find an optimal recomputation strategy
for an arbitrary model structure. When models have repeti-
tive layers, recomputing activations layer by layer is widely
adopted in practice. In addition to the layerwise strategy,
recent research (Korthikanti et al., 2022) has shown that
recomputing only the attention of the Transformer layer can
efficiently reduce the memory pressure with small computa-
tion overhead.

CPU offloading. In general, a CPU has orders of mag-
nitude larger, cheaper, and slower memory than a GPU.
Accordingly, several approaches have been proposed that
exploit CPU memory as a swap storage of limited GPU
memory (Rhu et al., 2016; Wang et al., 2018; Pudipeddi
et al., 2020; Peng et al., 2020; Huang et al., 2020; Ren et al.,
2021; Rajbhandari et al., 2021). However, utilizing CPU
memory is not scalable because communication between
CPU and GPU is slow due to the limited communication
bandwidth of PCIe.

Automatic search for the optimal training configuration.
Given a deep learning model and a cluster environment, var-
ious systems exist that automatically search for the optimal
execution plan (Wang et al., 2019; Jia et al., 2019; Lepikhin
et al., 2020; Rasley et al., 2020; Tarnawski et al., 2021; Xu
et al., 2021; Bian et al., 2021; Karakus et al., 2021; Jia et al.,
2022; Zheng et al., 2022; Unger et al., 2022). Such systems
configure a search space with a cost model and explore it to
find the best result. As BPIPE rewrites the memory usage
of pipeline parallelism, BPIPE can expand the search space
and help find better configurations.

6. Conclusion
We propose BPIPE, a memory-balanced pipeline parallelism
method for training LLMs. With the activation balanc-
ing that transfers intermediate activations between pipeline
stages, BPIPE resolves the memory imbalance problem of
pipeline parallelism. While training, all pipeline stages uti-
lize a comparable amount of memory by storing a balanced
amount of activations in the unit of micro-batch. Our evalua-
tion shows that BPIPE speeds up training large-scale GPT-3
models by executing faster training configurations that are
not feasible without BPIPE.
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A. Transfer Scheduling for Interleaved 1F1B Pipeline Schedule
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Figure 10. An illustration of the activation balancing within a 4-way interleaved 1F1B pipeline schedule with eight micro-batches and two
model chunks for each pipeline stage.

Narayanan et al. (2021b) propose an interleaved 1F1B pipeline schedule that reduces the pipeline bubble. BPIPE can apply
the activation balancing to the interleaved 1F1B schedule as the following. In the interleaved schedule, each pipeline stage
computes model chunks, which are non-contiguous subsets of layers (Narayanan et al., 2021b). Assume a pipeline stage s of
p-way pipeline parallelism. When each pipeline stage has v model chunks, it processes µ(s) = p(v− 1) + 2(p− s− 1) + 1
micro-batches before the first backward computation. Then, µopt is derived as the following.

µopt = d
µ(s) + µ(p− s− 1) + 1

2
e

= dp(v − 1) + 2(p− s− 1) + 1 + p(v − 1) + 2(p− (p− s− 1)− 1) + 1 + 1

2
e

= pv + 1

The transfer scheduling of the interleaved 1F1B pipeline schedule is similar to that of the vanilla 1F1B schedule. Figure 10
illustrates how the activation balancing operates with a 4-way interleaved 1F1B pipeline schedule with two model chunks.
µopt becomes 9, so stage 0 evicts two micro-batches to stage 3. In the steady or cooldown phase, it loads the evicted
micro-batches to perform the backward computations.

B. Network Bandwidth Requirement for Activation Balancing

Table 5. Definition of the variables.

Variable Definition

L number of layers
H number of attention heads
D hidden dimension size
l sequence length
p pipeline parallelism degree
t tensor parallelism degree
b micro-batch size
f forward computation time of a single micro-batch [sec]

Since each transfer of the activation balancing should finish earlier than the forward computation of a single micro-batch,
we can calculate the required network bandwidth of a single GPU with the forward computation time. Using the variables in
Table 5, we can derive the bandwidth requirements as the following. According to Korthikanti et al. (2022), the bytes of
activation memory per each forward micro-batch are:

No recomputation:
Llbh

pt
(34 +

5Hl

h
) bytes (4)
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Table 6. MFU numbers of the GPT-3 96B model, when the tensor parallelism degree is 8.

Model Model Parallelism mb Recompute scope Megatron-LM MFU [%] BPIPE MFU [%]
ID tensor pipeline

GPT-3
96B

(7) 8 4 1 attention 36.18 35.80
2 attention 36.56 36.52
4 layer 38.04 38.00
8 layer 24.31 27.47

Attention recomputation scope: 34
Llbh

pt
bytes (5)

Layer recomputation scope: 2
Llbh

p
bytes (6)

Dividing Eq (4) to (6) by f , bandwidth requirements are derived as the following equations.

No recomputation:
1

109
Llbh

ptf
(34 +

5Hl

h
) GB/s (7)

Attention recomputation scope:
34

109
Llbh

ptf
GB/s (8)

Layer recomputation scope:
2

109
Llbh

pf
GB/s (9)

If a single node has 8 GPUs, two GPUs within the node where an evictor-acceptor pair resides should have larger bandwidth
than Eq (7) to (9) when the tensor parallelism degree is 1, 2, or 4. For the tensor parallelism degree of 8, inter-node
bandwidth divided by 8 should be larger than the derived bandwidths.

In our evaluation, the fastest configuration of BPIPE for the GPT-3 96B model uses 4-way tensor parallelism, 8-way pipeline
parallelism, attention recomputation scope, and the micro-batch size of 2. Then the total bytes to transfer are 3.48 GB. Since
each forward computation takes 143.37 ms in Table 3, the required bandwidth is 24.25 GB/s. As the forward computation
time does not change by the recomputation scope, we can derive that NVLink is also sufficient for no recomputation in
which the required bandwidth is 100.31 GB/s.

When the tensor parallelism degree is equal to the number of GPUs in a single node, BPIPE transfers activations across
the node boundary. However, the inter-node transfer is feasible if (1) a cluster has a fast inter-node network such as
InfiniBand and (2) recomputation is used for training. Moreover, we alleviate the bandwidth requirements with the following
optimization. In general, backward computation takes twice as long as forward computation. Therefore, we allow the
consecutive Evict-Load to be performed over the timespan of consecutive BACKWARD-FORWARD computation
within the steady phase. For example, in Figure 4, evicting and loading the micro-batches whose indices are 3 and 1 can be
completed within the sum of the time required for backward and forward computations. The bandwidth requirements are
then relieved as the following equations.

No recomputation:
1

109
2Llbh

3ptf
(34 +

5Hl

h
) GB/s (10)

Attention recomputation scope:
68

3 · 109
Llbh

ptf
GB/s (11)

Layer recomputation scope:
4

3 · 109
Llbh

pf
GB/s (12)

Table 6 presents the MFU values when the tensor parallelism degree is 8 for the GPT-3 96B model. The results show that
BPIPE is feasible even when the tensor parallelism degree is 8. Furthermore, when the micro-batch size is 8, the MFU value
of BPIPE is higher than the MFU value of Megatron-LM. For such a large micro-batch size, we observed that PyTorch
periodically vacates the cache allocator due to high memory pressure, resulting in performance degradation. BPIPE partially
avoids such inefficiency with the activation balancing.

14



BPIPE: Memory-Balanced Pipeline Parallelism for Training Large Language Models

C. Raw MFU Numbers

Table 7. Raw MFU numbers of Figure 7. The numbers are the values of Megatron-LM, except those annotated with (BPIPE). For those
configurations, Megatron-LM fails to run due to the out-of-memory error.

Model Model Parallelism mb Recompute scope MFU [%]
ID tensor pipeline

GPT-3
96B

(1) 1 16 1 layer 38.08
(2) 2 8 1 layer 40.46

2 layer 30.29
(3) 4 4 1 attention 37.59

2 layer 40.51
(4) 8 2 1 attention 35.47

2 layer 30.07
4 layer 38.08

(5) 2 16 1 attention 48.78 (BPIPE)
2 layer 36.78
4 layer 29.79

(6) 4 8 1 attention 37.09
2 attention 50.64 (BPIPE)
4 layer 36.23
8 layer 25.74

(7) 8 4 1 attention 36.18
2 attention 36.56
4 layer 38.04
8 layer 24.31

GPT-3
134B

(1) 2 12 1 layer 39.98
2 layer 38.64

(2) 4 6 1 attention 39.90
2 layer 41.40
4 layer 30.06

(3) 8 3 1 attention 37.77
2 layer 31.76
4 layer 38.81

(4) 4 12 1 attention 39.19
2 attention 52.06 (BPIPE)
4 layer 37.22

(5) 8 6 1 attention 38.45
2 attention 38.72
4 layer 38.72
8 layer 24.01
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