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Abstract
Sequential learning with feedback graphs is a nat-
ural extension of the multi-armed bandit problem
where the problem is equipped with an underlying
graph structure that provides additional informa-
tion - playing an action reveals the losses of all
the neighbors of the action. This problem was
introduced by Mannor & Shamir (2011) and re-
ceived considerable attention in recent years. It
is generally stated in the literature that the mini-
max regret rate for this problem is of order

√
αT ,

where α is the independence number of the graph,
and T is the time horizon. However, this is proven
only when the number of rounds T is larger than
α3, which poses a significant restriction for the
usability of this result in large graphs. In this
paper, we define a new quantity R∗, called the
problem complexity, and prove that the minimax
regret is proportional to R∗ for any graph and time
horizon T . Introducing an intricate exploration
strategy, we define the EXP3-EX algorithm that
achieves the minimax optimal regret bound and
becomes the first provably optimal algorithm for
this setting, even if T is smaller than α3.

1. Introduction
In this paper, we consider a sequential decision-making
problem in an adversarial environment. This problem
consists of N actions, T rounds, and sequence of losses
(ℓt,i)(t,i)∈[T ]×[N ] where [K] ≜ {1, . . . ,K}. Each loss ℓt,i
is associated with round t and action i. We do not impose
any statistical assumptions on the losses provided by the
environment. Instead, we assume that the losses are set by
an oblivious adversary before the learning process begins.
The only assumption on the losses is that they are bounded
in [0, 1], otherwise, the losses can be completely arbitrary
and change in every round.
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The learning process, or the game, proceeds in rounds. In
round t, the learner picks one of the actions denoted by it
and incurs associated loss ℓt,it . The learner also observes
loss ℓt,it itself and possibly, losses of some other actions.
The set of observations depends on the feedback scheme,
we discuss different feedback schemes later.

The goal of the learner is to minimize the total loss received
at the end of the game, after T rounds. This is equivalent
to minimizing the difference between the total loss of the
learner and the loss of the strategy that plays the best-fixed
action in hindsight, after T rounds. We refer to this differ-
ence as regret and define it as

RT ≜ max
i∈[N ]

E
[ ∑
t∈[T ]

(ℓt,it − ℓt,i)

]
,

where the expectation is taken over the potential randomiza-
tion of the environment and the learner.

A quantity of interest to characterize the difficulty of such a
sequential decision-making problem is what we will refer
to here as the minimax regret, namely the regret incurred
by the best possible strategy - the choice of actions (it)t -
on the most difficult possible bandit problem - the choice
of loss sequences (ℓt,i)t,i. Note that the minimax regret
depends on the feedback scheme considered.

Traditionally, this problem is studied under different feed-
back schemes. The most relevant schemes for our paper are
the following:

Full-information feedback (Cesa-Bianchi et al., 1997;
Littlestone & Warmuth, 1994; Vovk, 1990), sometimes
called prediction with expert advice. This feedback is
the simplest since the learner has access to all losses. At
the end of round t the learner observes whole loss vector
(ℓt,1 . . . , ℓt,N ). The minimax rate for this feedback scheme
is
√

T log(N) and is attained by the EXP algorithm (Cesa-
Bianchi & Lugosi, 2006). Note that having access to all the
losses in every round causes the minimax rate scale only as√

log(N) with the number of actions.

Bandit feedback (Thompson, 1933; Robbins, 1952; Auer
et al., 1995). In every round, the learner observes only the
loss of the selected action, namely ℓt,it , while the losses
of other actions are not disclosed. The minimax rate for
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this feedback scheme is
√
NT (Audibert & Bubeck, 2010)

and is attained by INF (Implicitly Normalized Forecaster)
algorithm by Audibert & Bubeck (2010). Having only one
observation per round results in a scaling of the regret with√
N which is significantly worse than in the full-information

feedback.

Graph feedback (Mannor & Shamir, 2011; Alon et al.,
2013; 2015; 2017; Kocák et al., 2014; 2016a;b; Esposito
et al., 2022). In the graph feedback setting, the actions are
vertices of a graph and in every round, the learner observes
the loss of the selected action (so that the setting is strongly
observable) as well as the losses of all its neighbors - see Sec-
tion 2 for a precise definition. This is the feedback scheme
that we consider in this paper, which is an intermediary
between full-information and bandit feedback and contains
both these settings. Similarly to what happens in the ban-
dit setting, the algorithms for bandits with graph feedback
need to balance exploration of actions with exploitation of
already acquired knowledge. In the graph feedback setting,
however, different actions might provide different amounts
of exploration, as an action also provides information on the
losses of its neighbors. So that balancing exploration and
exploitation in this context is more delicate, and efficient
algorithms will need to adapt to the graph structure - and the
minimax regret will also be graph dependent. In this setting,
a relevant graph-dependent quantity is the independence
number α of the graph (see Definition 2.3). Several algo-
rithms with different approaches have been proposed, ELP
(Mannor & Shamir, 2011), EXP3-SET and EXP3-DOM
(Alon et al., 2013), EXP3-IX and FPL-IX (Kocák et al.,
2014), EXP3.G (Alon et al., 2015). While these algorithms
differ in their approach to exploration, assumptions on the
graph disclosure, or computational complexity, the common
denominator is that all of these algorithms’ upper bounds
on the regret, in the case of strongly observable graphs,
are of order

√
αT up to logarithmic terms, regardless of

time horizon T . All of the aforementioned algorithms were
inspired by the lower bound for the setting proposed by
Mannor & Shamir (2011), which states that if T ≥ 374α3,
the minimax regret is lower bounded by a quantity of the
order

√
αT - see Proposition 2.4 for a precise quotation of

their result. This poses the question of what happens for
large graphs - or equivalently when T is small - and whether
current algorithms are also optimal in this case. This is a
very important question since even in a moderately large
problem and for some graphs, where the independence num-
ber is in the hundreds, we need to have millions of rounds
for this assumption to hold.

Partial monitoring. A bit further from the setting that we
consider in this paper, yet related to it, is the field of partial
monitoring (Rustichini, 1999; Audibert & Bubeck, 2010;
Lattimore & Szepesvári, 2019; 2020), where the action

selection is decoupled from the feedback. An example of
this which is very relevant for us is weakly observed graphs
- see (Alon et al., 2015) - which is a generalization of the
graph feedback setting where not all self-loops are included,
which means that one does not necessarily observes the
loss of the action that one selects. The algorithm EXP3.G
therein takes advantage of small dominating sets of vertices
- i.e. sets of vertices whose joint set of neighbors are all
vertices, see Section 2 for a precise definition - to explore
efficiently the vertices, and then focus on promising actions.
While not developed for the setting considered in this paper,
this approach opens however interesting perspectives in
cases of large graphs with a few very connected vertices,
and we will discuss this more in detail in Subsection 2.2.

1.1. Contribution

In this paper, we focus on the setting with graph feedback
- see Section 2 - and our aim is to pinpoint the minimax
regret in the missing case presented in the corresponding
paragraph above, namely for large graphs where T is of
smaller order than α3.

The first important remark that we make in this paper is
that there are some simple cases of large graphs where it
is possible to achieve a minimax regret of much smaller
order than

√
αT , which is the current best known upper

bound. This is e.g. the case when there is one action that
is connected in the graph to all other actions, and that is
therefore very informative. In this case, if T is of smaller
order than α3, a minimax optimal strategy would make
heavy use of this action in order to explore the other actions,
even if this action is sub-optimal. We detail such an example
in 2.2. This is very different from what current algorithms
in the (strongly observable) graph bandit literature do and
is more related to some strategies in partial monitoring, see
e.g. (Lattimore & Szepesvári, 2019) and also (Alon et al.,
2015) that we will discuss in detail later. Starting from this
remark, the main result of this paper is to pinpoint, for any
time horizon T and any given graph, the minimax regret
up to logarithmic terms. We first provide a more refined
lower bound in Section 3, that holds for any graph and time
horizon - therefore also in the case where T < 374α3 which
is not covered by the state of the art lower bound in Mannor
& Shamir (2011) - and that involves a more subtle graph
dependent quantity than the independence number. Then, in
Section 4, we provide EXP3-EX algorithm (EX stands for
Explicit eXploration) that matches this lower bound up to
logarithmic terms, and whose particularity is that it explores
informative actions in a refined and explicit way.

2. Problem Setting
In this section, we formally define the setting introduced by
Mannor & Shamir (2011) and provide all the notation used
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throughout the paper.

We consider an online learning game with a directed observ-
ability graph G = (V,E) over the set of actions V = [N ]
with the set of edges E ⊆ [N ] × [N ]. The graph contains
all the self-loops, i.e. (i, i) ∈ E for every i ∈ V . The indi-
cator function of an edge from node i to node j is defined
as Gi,j ≜ I{(i, j) ∈ E}. The game takes place over T
rounds. Before the game starts the environment, potentially
adversarial, assigns losses {ℓt,i}(t,i)∈[T ]×[N ] to every action
i and round t. We only assume that ℓt,i ∈ [0, 1] for any
t ≤ T, i ≤ N .

In every round t, the learner picks an action it ∈ [N ], incurs
the loss ℓt,it , and observes the losses ℓt,i of all out neighbors
of it, i.e. of all i ∈ V such that (it, i) ∈ E1. Note that in
our setting, we always observe the loss of the chosen action
since the graph contains all the self-loops. The performance
of the learner is then measured in terms of regret - some-
times also called pseudo-regret, or also expected regret - as
explained in the introduction

RT ≜ max
i∈[N ]

E
[ ∑
t∈[T ]

(ℓt,it − ℓt,i)

]
,

where the expectation is taken over the potential randomiza-
tion of the environment and the learner.

2.1. Auxiliary Definitions and Statements

This section sums up all the necessary graph-related defini-
tions we use later throughout the paper.

In bandits with graph feedback, the learner’s task is to select
an action and observe the losses of its neighbors. Each loss
observation can have different sources, either the learner se-
lected the action itself or one of its neighbors. The following
definition provides us with a tool to define side observations
and their sources more easily.

Definition 2.1. Let G = (V,E) be a graph with the set
of vertices V and the set of edges E. We define the out-
neighborhood of vertex i ∈ V as

Nout
i ≜ {j ∈ V : (i, j) ∈ E}

and the in-neighborhood of vertex i ∈ V as

N in
i ≜ {j ∈ V : (j, i) ∈ E}

Playing only a few actions can provide the learner with
information about many other actions. Dominating sets
and numbers provide a convenient way to describe this
phenomenon.

Definition 2.2. Let G = (V,E) be a graph with the set of
vertices V and the set of edges E. We say that D ⊆ V

1We write Nout
it for this set, see definition 2.1 later.

is a dominating set of B ⊆ V (or that D dominates B)
from A ⊆ V if D ⊆ A and B ⊆ ∪i∈DNout

i . We define
the dominating number of B from A as δA(B) ≜ min |D|
where the minimum is taken over all dominating sets D of
B from A. In case no such D exists, we define δA(B) as
∞. Further, we say that δ(B) ≜ δV (B) is the dominating
number of B and δ ≜ δV (V ) is the dominating number of
the graph.

On the other hand, if the actions are not connected by an
edge, playing one action does not provide any additional
information about the other actions. This is captured in the
following definition of independent sets.

Definition 2.3. Let G = (V,E) be a graph with the set
of vertices V and the set of edges E. We say that I ⊆ V
is an independent set of G if for every i, j ∈ I s.t. i ̸= j,
vertices i and j are not connected by an edge, i.e. (i, j) ̸∈
E. Independence number α of G is the size of the largest
independent set of G, i.e.

α ≜ max
I∈{J⊆V : J is independent}

|I|.

2.2. Lower Bound by Mannor & Shamir (2011) and
Motivational Example

In this subsection, we quote formally an important and
state-of-the-art result of the literature and discuss why some
relevant graph feedback examples are not optimally resolved
by existing algorithms.

The following proposition restates the lower bound result
by Mannor & Shamir (2011).

Proposition 2.4. Let G be an observability graph with
independence number α. Then there exists a series of losses
{ℓt,i}(t,i)∈[T ]×[N ] such that for every T ≥ 374α3 and any
learner, the expected regret is at least 0.06

√
αT

It is important to note that the statement assumes that T
needs to be large - T ≥ 374α3 - for the lower bound to hold.
As mentioned in the introduction, some existing algorithms
match this lower bound up to logarithmic factors (Kocák
et al., 2014, Corollary 1) (Alon et al., 2015, Theorem 1).
These algorithms also function when T < 374α3 where the
best known upper bounds on the regret are of order

√
αT

up to logarithmic factors. However, since the existing lower
bound stated above does not cover this case, it is therefore
unclear whether those algorithms are optimal or not.

The following lemma demonstrates that
√
αT is indeed not

the correct rate.

Lemma 2.5. Let G = (V,E) be a graph with |V | = N
and E = {(N, i) : i ∈ [N − 1]} (see Figure 1). Then, there
exists an algorithm such that the regret upper bound of this
algorithm is of δ1/3T 2/3 where δ = 1 is the dominating
number of G.
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. . .

N − 1

Figure 1. Bandit problem with one hub action that observes all
other N − 1 actions.

The independence number of the graph from the previous
lemma is N − 1. This also means that whenever T ≪ α3

in the lemma above, the regret bound of δ1/3T 2/3 is an im-
provement over the regret bound of

√
αT . See Appendix A

for the proof and further discussion.

2.3. Problem Complexity

We have seen some indications (e.g. the example in
Lemma 2.5) that for small T , the minimax regret might
not scale with

√
αT .

In what follows, we define the graph-dependent problem
complexity that will later appear in our lower and upper
bounds. This quantity is complex and depends on the graph
in a refined way. It is however what one would expect for
a worst-case stochastic problem - namely a problem where
losses ℓi,t are independent and sampled according to a dis-
tribution depending on i. In order to introduce the problem
complexity, we resort to intuitions from the stochastic set-
ting, although we will analyze the problem in an adversarial
setting, and provide precise results later, see Theorems 3.1
and 4.4.

Assume that we are given a set containing all promising
actions that could be optimal, given available information -
let us call it I , in a stochastic setting it would typically be
a set of actions whose empirical mean confidence intervals
intersect one of the actions with higher lower confidence
bound. Let us oversimplify the problem and assume in this
informal explication that all these actions but one have a
small gap ∆ > 0 with respect to the optimal action. The
optimal action is also in I and has a gap of 0. When playing
an action in I , one incurs an average instantaneous regret
of ∆ except if one samples the optimal action. We are
facing the following choice when we try to find the optimal
action: we can either sample in I directly and have small
instantaneous regret - namely ∆ - or we can sample outside
of this set and have an instantaneous regret that is in all
generality bounded by 1. However, sampling outside of
I might still be interesting if some of the actions there
are connected to many actions in I , providing in this way
very informative feedback on many actions therein - see
e.g. Figure 1 where even if the hub action is clearly sub-

optimal from the samples, it might still be interesting to take
advantage of it. At the end of the budget and if one wants to
have found the optimal action - and to therefore not pay an
instantaneous regret of at least ∆ at each round - one would
need as is usual in stochastic bandits to have observed all
actions - from inside or outside of I- at least 1/∆2 times.
In the stochastic setting, we would therefore expect that the
most difficult graph bandit problems would correspond to
the worst choice of (I,∆).

These considerations drive us to the first definition of the
problem complexity Q∗.

Definition 2.6. Let G = (V,E) be a graph and T be the
number of rounds. Then the problem complexity Q∗

I for
given set I ⊆ V is defined as

Q∗
I ≜ max

∆∈(0,1/2]
Q∗

I,∆

where

Q∗
I,∆ ≜ min

π∈Π
min

[
T
∑
i∈I

πi∆+ T
∑
i ̸∈I

πi, T∆

]

and

Π =

{
π ∈ RN

+ :
∑
i∈[N ]

πi ≤ 1,

T
∑
i∈[N ]

πiGi,j ≥ 1/∆2,∀j ∈ I

}
.

Moreover, we define the problem complexity Q∗ as

Q∗ ≜ max
I⊆V

Q∗
I .

Q∗
I,∆ would correspond to the regret of the best stationary

policy π over a problem as described above, for a fixed set
I and gap ∆. The worst-case problem is then obtained by
taking the worst case of set I and gap ∆.

Unfortunately, the quantity defined in Definition 2.6 is very
unintuitive, in that it is unclear how it relates to quantities
such as dominating numbers, and independence numbers, of
(sub-)graphs. we, therefore, define another relevant notion
of the problem complexity R∗.

Definition 2.7. Let G = (V,E) be a graph and T be a
number of rounds. Then the problem complexity R∗

I for
given set I ⊆ V is defined as

R∗
I ≜ min

J⊆I
max

{
δI(J)

1
2T

1
2 , δV (I \ J) 1

3T
2
3

}
.

Moreover, we define the problem complexity R∗ as

R∗ ≜ max
I⊆V

R∗
I .
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This definition is much more tractable from a graph per-
spective, as it involves only two relevant graph-dependent
quantities, namely the dominating set δI(J) of J from I ,
and the dominating number δV (I \J) of I \J from V . Here
the choice of the optimal policy is reduced to only choosing
the set J that is best explored from inside of I , and we then
select the worst case of I .

Interestingly, the following lemma shows that both defi-
nitions of the problem complexity are almost equivalent
and differ only up to a logarithmic factor. From now on,
whenever talking about the problem complexity, we specify
which definition we use and the reasons why.
Lemma 2.8. Let G = (V,E) be a graph and I ⊆ V be any
set of actions. Then for the problem complexities Q∗

I and
R∗

I , the following inequalities hold.

R∗
I/(10 logN) ≤ Q∗

I ≤ 2R∗
I

The proof of this lemma can be found in Appendix B.

3. Lower Bound
Ever since the introduction of the setting by Mannor &
Shamir (2011), the lower bound in Proposition 2.4 was used
to drive the ideas for the algorithms. However, in general,
this lower bound holds only when T ≥ 374α3.

Even though approaches of algorithms and their upper
bound analyses differ from paper to paper, most of them are
able to match the lower bound for T ≥ 374α3. Without the
lower bound for regimes where T < 374α3, there was no
incentive for the algorithms to strive for a different rate than
the one suggested by Proposition 2.4. In this section, we
present a new lower bound that holds regardless of the value
of T and thus, extend the result in Proposition 2.4.

The following theorem shows a regret lower bound that
scales with the problem complexity R∗ and is one of the
main results of our paper.
Theorem 3.1. Let G = (V,E) be a directed graph with
N = |V | and T be a number of rounds. Then, for any
learner, there exists a sequence of randomized losses such
that regret RT of the learner is lower bounded as

RT ≥ Q∗

27
≥ R∗

2710 logN
.

where Q∗ and R∗ are problem complexities

Proof idea. The idea of the proof follows standard lower
bound proof steps, see e.g. (Lattimore & Szepesvári, 2020,
Chapter 15), with our problem-specific twist. The idea is
to create a set of ”difficult” stochastic bandit problems and
show that no matter what the learner does, there always will
be at least two different problems that the learner can not
distinguish.

We create the problems by first choosing a set of near-
optimal actions I and then setting the gap of every action
outside of I to 1 and inside of I to some small constant
∆. The only exception is the optimal action. For different
problems, we choose different optimal actions from I and
set its gap to 0.

Using information-theoretic tools, we can show that every
action needs to be explored enough, i.e. at least 1/∆2 times,
in order to be able to distinguish the problems. The result of
the theorem is then obtained by carefully choosing the gap
parameter ∆ and the set of difficult actions I .

The detailed proof of the theorem can be found in Ap-
pendix C. Note that the lower bound in Theorem 3.1 scales
with either of the definitions of the problem complexity.
Later, we show that the rate depending on the problem com-
plexity is indeed minimax optimal and we comment on the
connection to the rate in the previous papers in Section 5.

4. Algorithm
The algorithm for our setting, similarly to the previous pa-
pers, uses exponential weights to define a probability distri-
bution over the set of actions and then samples according to
this distribution. Similarly to EXP3.G algorithm by Alon
et al. (2015), we add extra exploration to some actions. This
extra exploration adapts to the estimated quality of each
action, but also to its informativeness, i.e. to how much it is
connected to other promising actions on the graph.

The construction of the exploration distribution is rather
intricate and is the main algorithmic contribution of this
paper, and we will discuss it in detail later. We first present
the main algorithm, with part devoted to the construction
of this exploration distribution. We then present associated
theoretical guarantees.

4.1. Main Algorithm

As is usual in the literature, our algorithm (EXP3-EX pre-
sented in Algorithm 1) updates at each time t a probability
distribution pt. It then plays at each round action it, which
in the graph setting reveals the losses ℓt,i of all its neighbors
i ∈ Nout

it
. These losses enable us to update unbiased esti-

mates of the (cumulative) loss estimates, which will be used
in the algorithm.

(Cumulative) Loss estimates. In the graph setting, the
probability Pt,i of observing loss ℓt,i is simply the sum of
probabilities of playing any of the in-neighbors of arm i and
is defined as Pt,i ≜

∑
j∈Nin

i
pt,j . This allows us, at the end

of each round t, to construct, conditionally unbiased loss
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estimates ℓ̂t,i of the loss of each action

ℓ̂t,i ≜
ℓt,iI{i ∈ Nout

it
}

Pt,i
for all i ∈ [N ]

and to also update the cumulative loss estimates as

L̂t,i ≜ L̂t−1,i + ℓ̂t,i for all i ∈ [N ].

We now describe the construction of the distribution pt. As
in (Alon et al., 2015) and in several other papers from the lit-
erature, we mix a distribution based on exponential weights
- i.e. we update at each time t the exponential weights wt

and define a normalized distribution qt, as in (Auer et al.,
2002) - with an exploration distribution ut. We postpone
the construction of the learning distribution to Section 4.2
(summary in Definition 4.3), as it is intricate and our main
algorithmic contribution. We describe below how we con-
struct wt,qt,pt, based on ut.

Recallibration of the parameters. Our algorithm first
recalibrates at every step the learning rate ηt of the EXP3
part of the algorithm - we describe later in how it is chosen.
Our algorithm uses it to also callibrates the mixing probabil-
ity γt ≜ min{(ηtT )−1, 1/2} of sampling the exploration
distribution ut.

(Renormalized) Exponential weights. Based on the cu-
mulative loss estimate L̂t−1,i of arm i at time t, we can
define as in (Auer et al., 2002) the exponential weights wt,i

as

wt,i ≜ exp(−ηtL̂t−1,i) for all i ∈ [N ].

Using these weights, we can construct a distribution simply
by re-normalizing them to define

qt,i ≜
wt,i

Wt
≜

wt,i∑
j∈[N ] wt,j

for all i ∈ [N ]. (1)

Mixed distribution. Based on ut, we define our sampling
distribution as

pt,i ≜ (1− γt)qt,i + γtut,i for all i ∈ [N ]. (2)

So far the algorithm is not different from the majority of
algorithms designed for the graph setting and it is summa-
rized in Algorithm 1. The key difference lies in the explo-
ration distributions (ut,i)i∈[N ] leveraging the structure of
the graph, and in the learning rates ηt defined later in The-
orem 4.4. Especially exploration distributions (ut,i)i∈[N ]

set our algorithm apart from the previous algorithms and
enables us to improve the upper bound to match the newly
proposed lower bound. The following section explains all
the details necessary for the definition of the exploration
distributions.

Algorithm 1 EXP3-EX

Input: G = (V,E), L̂0,i = 0 for all i ∈ [N ]
for t = 1 to T do

Set learning rate ηt (see Theorem 4.4)
γt = min{(ηtT )−1, 1/2}
wt,i = (1/N) exp(−ηL̂t−1,i)
Wt =

∑
i∈[N ] wt,i

qt,i = wt,i/Wt

pt,i = (1− γt)qt,i + γtut,i (see Definition 4.3)
Choose it ∼ pt = (pt,1, . . . , pt,N )
Observe losses ℓt,i for i ∈ Nout(it)
Pt,i =

∑
j∈Nin(i) pt,j

ℓ̂t,i = ℓt,iI{i ∈ Nout(it)}/Pt,i

L̂t,i = L̂t−1,i + ℓ̂t,i
end for

4.2. Mixing Distribution and Exploration

In the graph setting, the interest of an algorithm for sampling
an arm is not only characterized by the quality of this arm
- i.e. minus its cumulative loss at time t - but also by the
informativeness of this algorithm on other relevant arms -
namely, whether or not it is connected to many arms with
small cumulative loss at time t. While a classical adversarial
bandit algorithm would take into account the first of these
two factors, we need to add extra exploration to take into
account the second factor, namely the connections of the
arms through the graph structure.

The idea of the algorithm is to homogenize the actions by
grouping them up according to their cumulative loss as well
as the amount of information they provide and then define
the exploration for each partition separately. We create the
partitioning in two steps.

Partitioning of the actions into sets (It,k,l)t,k,l
. For ev-

ery round t, we create partitions {It,k}k∈[K+1], for K =
⌈5 log2(N)⌉, such that the normalized exponential weights
of arms, defined in Equation 1, are similar within a partition.
More precisely define

It,k ≜
{
i ∈ [N ] : qt,i ∈ (2−k, 2−k+1]

}
.

The last partition It,K+1 contains the rest of the arms, i.e.

It,K+1 ≜
{
i ∈ [N ] : qt,i ≤ 2−K

}
.

Note that for every action i ∈ It,K+1, qt,i can be upper
bounded by 1/N5.

We further subdivide each set It,k into subsets that are
roughly homogeneous in terms of the numbers of neigh-
bors in It,k. For every arm i ∈ It,k, we define degt,k(i) as
the number of neighbors of i within partition It,k:

degt,k(i) ≜ |{j ∈ It,k : (i, j) ∈ E}|.

6
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For L = ⌈log2(N)⌉, we will further subdivide each set
It,k into subsets {It,k,l}l∈[L] that are roughly homogeneous
in terms of numbers of neighbors in It,k - namely, arm
i ∈ It,k,l if and only if degt,k(i) ∈ (N2−l, N2−l+1]. The
following definition summarizes the construction of the
partitions.
Definition 4.1. Let K ≜ ⌈5 log2(N)⌉ and L ≜ ⌈log2(N)⌉,
then for every (t, k, l) ∈ [T ]× [K]× [L] we define

It,k,l ≜
{
i ∈ [N ] : qt,i ∈

(
2−k, 2−k+1

]
,

degt,k(i) ∈
(
N2−l, N2−l+1

]}
and

It,K+1 ≜
{
i ∈ [N ] : qt,i ≤ 2−K

}
.

Partition in exploration sets from inside and outside of
It,k,l. Inspired by the definition of the problem complexity
in Definition 2.7, we can define a splitting of every set
It,k,l, for k ∈ [K] and l ∈ [L], into two parts, Jt,k,l and
J ′
t,k,l ≜ It,k,l \ Jt,k,l that minimize expression

max
{
δIt,k,l(Jt,k,l)

1
2T

1
2 , δV (J ′

t,k,l)
1
3T

2
3

}
.

We write R∗
It,k,l

the value of this minimum for each given
set It,k,l. As we discussed in Section 2.3, an optimal explo-
ration of the set Jt,k,l can be done using actions in It,k,l,
while an optimal exploration of J ′

t,k,l can be performed
using actions outside It,k,l.

In order to construct our exploration distribution, we would
like to have access to the sets Jt,k,l and J ′

t,k,l, and more
specifically to some (approximate) dominating sets, in order
to be able to define the exploration distribution. While it is
possible in theory to find these sets based on the It,k,l and
on the graph, solving the optimization problem that leads to
them can be computationally very expensive.

For this reason, we do not work directly with the sets
Jt,k,l, J

′
t,k,l, but rather with some approximations that are

computationally tractable. Such approximations exist, as
stated in Corollary 4.2 below, and are described in Ap-
pendix D.
Corollary 4.2. The algorithm described in Appendix D,
which is polynomial time in N (as it consists in solving a
linear optimization problem under linear constraints) out-
puts partitions J̄t,k,l, J̄ ′

t,k,l of It,k,l together with their cor-
responding dominating sets D̄t,k,l, D̄′

t,k,l, which satisfy

|D̄t,k,l| ≤ log(N)δIt,k,l(J̄t,k,l),

|D̄′
t,k,l| ≤ log(N)δV (J̄ ′

t,k,l),

and

max
{
|D̄t,k,l|

1
2T

1
2 , |D̄′

t,k,l|
1
3T

2
3

}
≤

≤ 24× 104 log(N)4
√
log(N)R∗

It,k,l
.

As mentioned, J̄t,k,l (resp. J̄ ′
t,k,l) serves as a surrogate of

Jt,k,l (resp. J ′
t,k,l) and dominating set D̄t,k,l (resp. D̄′

t,k,l)
is an approximation of the smallest dominating set of J̄t,k,l
(resp. J̄ ′

t,k,l) from It,k,l (resp. V ). While the full construc-
tion of these sets is deferred to Appendix D, we discuss and
sketch briefly their construction in Subsection 2.3.

Having an efficient way of computing partitions J̄ ′
t,k,l and

their dominating sets D̄′
t,k,l allows us to define the following

exploration distribution

Definition 4.3. let It,k,l, for (t, k, l) ∈ [T ] × [K] × [L]
be a partition of V from Definition 4.1 and D̄′

t,k,l be a
dominating set, from Corollary 4.2. Then, we can define,

ut,i ≜
1

KL+ 1

 1

N
+
∑

k∈[K]

∑
l∈[L]

uk,l
t,i

 (3)

where

uk,l
t,i =

1

|D̄′
t,k,l|

for all i ∈ D̄′
t,k,l

uk,l
t,i = 0 for all i ̸∈ D̄′

t,k,l.

Distribution (ut,i)i∈[N ] can be seen as a mixture of uni-
form distributions where the term 1/N in Equation 3 cor-
responds to the uniform distribution over all the actions
and (uk,l

t,i )i∈[N ] corresponds to the uniform distribution over
set D̄′

t,k,l which, as a consequence, secures exploration of
J̄ ′
t,k,l.

4.3. Main Upper Bound Theorem

Utilization of the exploration distributions (ut,i)i∈[N ] from
the previous section and appropriately tuned learning rates
ηt enable us to prove the optimal regret upper bound for
Algorithm 1 stated in the following theorem.

Theorem 4.4. Let learning rate ηt is defined as

min
s∈[t]

min
k∈[K]

min
l∈[L]

min
{
|D̄s,k,l|−

1
2T− 1

2 , |D̄′
s,k,l|−

1
3T− 2

3

}
,

where we remind that D̄t,k,l and D̄′
t,k,l be the dominating

sets outputted by the algorithm described in Appendix D.
Then the regret of Algorithm 1 is upper bounded as

RT ≤ 24× 104 log(N)5DR∗

for

D = 4KL+ 2 +
(
(KL)2 +KL+ 1

)
log(N),

K = ⌈5 log2(N)⌉,
L = ⌈log2(N)⌉.

Proof idea. The proof of the theorem relies heavily on
the partitioning from the Definition 4.1 by decomposing the

7
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regret along the partitions. Careful construction of partitions
allows us to show that the actions corresponding to one
individual partition contribute to regret with no more than
R∗, up to logarithmic factors. The fact that the number of
partitions KL+ 1 is only polylogarithmic in the number of
actions allows us to obtain the final regret bound as the sum
of regret bounds for individual partitions.

The detailed proof of the theorem can be found in Ap-
pendix E.

5. Discussion
We have presented the regret lower bound for the setting
(Section 3, Theorem 3.1) as well as the matching, up to
logarithmic terms, regret upper bound for the proposed al-
gorithm (Section 4, Theorem 4.4). Together, these two
theorems prove that the minimax rate for online learning
with feedback graphs is proportional to the problem com-
plexity R∗ (Definition 2.7). In this section, we compare
the minimax rate presented in this paper to the previously
known results and emphasize the improvements that we
bring to the setting. We focus mainly on two regimes:

When T is large enough when compared to α3, we recover
results from the literature, namely a minimax rate of order√
αT up to logarithmic terms. We do it by showing that the

problem complexity R∗ is equal to
√
αT when T is large

enough.

When T is small, we demonstrate the existence of graphs for
which rate

√
αT is far from optimal. An important conse-

quence of this statement is that all the algorithms proposed
in the previous papers prove only suboptimal regret upper
bounds for some graphs and budgets T . This also means
that Algorithm 1 is the first provably optimal algorithm for
the setting in all possible problems and regimes.

5.1. Regime when T is Large

Previous papers proved that the minimax regret scales with√
αT whenever T ≥ 374α3 while the minimax regret pre-

sented in this paper scales with the problem complexity R∗

instead. The following corollary shows that the two rates
are up to log factors the same when T is large enough.

Corollary 5.1. Let G be a graph with independence num-
ber α. Then for any T ≥ α3, the problem complexity R∗

simplifies to

R∗ =
√
αT .

The proof for this corollary can be found in Appendix F.1.
As our upper and lower bounds in Theorems 3.1 and 4.4
match R∗ up to logarithmic terms, we recover the results
from the literature.

5.2. Regime when T is Small

From the previous section, we know that the minimax rate
for large enough T is

√
αT . It is also true that most of the

prior algorithms can achieve a regret upper bound that scales
with

√
αT . However, at first glance, it is not obvious how

significant the improvement of the newly defined problem
complexity is.

We return back to the example from Lemma 2.5 and in-
troduce a couple of examples demonstrating that rate

√
αT

can be significantly sub-optimal.

Example 1. Lemma 2.5 provides an example where the
graph contains N − 1 independent vertices and one hub
connected to all other vertices. The following Corollary
states that the minimax rate for this graph indeed scales with
δ1/3T 2/3 instead of

√
αT .

Corollary 5.2. Let G = (V,E) be a graph on N vertices
with one hub, i.e. the set of edges is E = {(N, i) : i ∈
[N − 1]}. Then for any T < α3, the problem complexity
R∗ simplifies to

R∗ = T
2
3 .

The proof for this corollary can be found in Appendix F.2.
This result also shows that with the increasing number of
actions, the gap between

√
αT and the problem complexity

can be arbitrarily large.

Example 2. Generalizing the previous example, we can
create a graph consisting of two parts. A star graph with
1 + N1 vertices and N2 independent vertices without any
edges. Now the problem complexity is of order (T 2/3 +√
N2T ) ∧

√
(N1 +N2)T while α = N1 + N2 and δ =

1 + N2. If either N2 ≥ N1, or T ≥ N3
1 , the problem

complexities R∗ and Q∗ are of order
√
(N1 +N2)T =√

αT (up to logarithmic terms) as predicted by Alon et al.
(2015). However, if N2 < N1 and T < N3

1 (large star
graph), then the problem complexity is of order T 2/3. This
is an example where the minimax rate is much smaller than
δ1/3T 2/3 or

√
αT . This example also illustrates that the

minimax rates from the previous papers are not valid when
T is small enough. In contrast, the true minimax rate scales
with the problem complexity which demonstrates that it is
important to adapt locally to the graph and global quantities
like the dominating number, or the independence number,
are not complex enough to describe the problem complexity.

Example 3. Expanding the previous example, we con-
sider a graph where we have

∑
k≤K(k + 1)mk vertices.

This graph consists, for each k ∈ {1, . . . ,K}, of mk

star graphs with k + 1 vertices each with no connection
to each other. In this case α =

∑
k≤K kmk and δ =∑

k≤K mk. Now, write A for the set of indexes k such that
√
mkkT ≥ m

1/3
k T 2/3. The problem complexities Q∗, R∗

8
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are of order
√
T
∑

k ̸∈A mkk + (
∑

k∈A mk)
1/3T 2/3). For

a graph containing some large star graphs, e.g. whenever
supk mkk

3 ≥ T , the rate is of order, up to logarithmic
terms, of (

∑
k∈A mk)

1/3T 2/3. This can be significantly
smaller than δ1/3T 2/3 if A is very different from {1, . . . , n},
e.g. when the graph contains a small number of very large
star graphs and a moderate number of small star graphs - an
extreme case being in the previous example.

These examples highlight that in the case of large graphs that
are not homogeneous in the size of their hubs, the problem
complexity is not driven by quantities like the dominating
number or the independence number, but by some related
quantities that are local in the graph. Our algorithm is able
to adapt to such local structures.

5.3. Exploration Distribution

We believe that the exploration distribution in Definition 4.3
plays a crucial role in adapting EXP3 algorithm to the setting
for small T and that the algorithm is suboptimal without it.
In general, exponential weights encourage playing actions
with small cumulative loss but neglect actions that are highly
informative, i.e. connected to many other actions. To correct
this behavior, we look at every partition It,k,l and identify
the set J̄ ′

t,k,l from Corollary 4.2 and its dominating set D̄′
t,k,l.

We already know that the optimal way of exploring J̄ ′
t,k,l is

by playing more informative actions in D̄′
t,k,l. To enforce

this behavior in the EXP3 algorithm we simply add extra
uniform exploration to actions in D̄′

t,k,l.
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A. Suboptimality of
√
αT for some Graphs and Proof of Lemma 2.5

Consider a graph with N − 1 independent vertices and one hub vertex connected to all other vertices - see Figure 1. The
independence number α of this graph is N − 1. This also means that the regret bounds of existing algorithms scale with√
TN . This rate is also attained by classical minimax bandit algorithms that do not take the graph structure into account at

all. This also means that there is no theoretical advantage to using existing graph-based algorithms.

However, there are several indications that playing the hub vertex might be a good idea. Especially, when T is small and the
graph is large, i.e. N is large.

The first indication comes from the stochastic bandits where even simple Explore then Commit algorithm that samples the
hub vertex T 2/3 times and then commits to the empirically best action achieves regret of T 2/3 (Lattimore & Szepesvári,
2020, Theorem 6.1.).

Another indication comes from the EXP3.G algorithm by Alon et al. (2015). This algorithm work in a slightly more general
setting where the feedback graph can be weakly observable, i.e. the learner does not necessarily knows the loss of the
selected actions. We can transform our example from Figure 1 to the weakly observable case by not revealing the loss of
the selected action to the learner whenever the learner selects a non-hub action. This makes the problem more difficult.
Applying the EXP3.G algorithm would result in the regret bound of δ1/3T 2/3 where δ is the dominating number of the
graph, in our case δ = 1.

B. Proof of Lemma 2.8
We start with the lower bound on Q∗

I . The proof is conducted by connecting set Π to the underlying graph and selecting a
specific δ that gives us a desirable lower bound.

Every vector π can be associated with a non-adaptive algorithm that plays each arm i with probability πi, regardless of past
observations. Condition T

∑
i∈[N ] πiGi,j ≥ 1

∆2 means that, in expectation, every action in I needs to be observed at least
1/∆2 times. From now on, when we talk about the number of observations of the algorithm or the number of times the
algorithm plays an action, we mean the quantity in expectation. Now, we can split set I into subsets

JI,π ≜ {j ∈ I :
∑
i∈I

πiGi,j ≥
1

2

∑
i∈[N ]

πiGi,j} (4)

and

J ′
I,π ≜ {j ∈ I :

∑
i∈I

πiGi,j <
1

2

∑
i∈[N ]

πiGi,j} = I \ JI,π. (5)

Set JI,π contains all the actions of I with at least half of the observations coming from actions in I while J ′
I,π contains all

the actions of I with at least half of the observations coming from actions in V \ I

Before proceeding, we state a technical graph proposition (Alon et al., 2015, Lemma 8)

Proposition B.1. Let G = (V,E) be a graph over |V | = N vertices, and let I ⊆ V be a set of vertices whose smallest
dominating set is of size δ(I). Then, I contains an independent set U of size at least δ(I)/(50 logN), with the property that
any vertex of G dominates at most logN vertices of U

Applying Proposition B.1 to set JI,π and a subgraph of G, induced by I , implies existence of set UI,π ⊆ JI,π , such that

|UI,π| ≥
δI(JI,π)

50 log |I|
≥ δI(JI,π)

50 logN

with a property that every vertex of I dominates at most log |I| ≤ logN nodes from UI,π. Since UI,π ⊆ JI,π, using the
definition of JI,π together with the assumption that the number of observations of each arm in I is at least 1/∆2, we know
that

T
∑
i∈I

πiGi,j ≥
T

2

∑
i∈[N ]

πiGi,j ≥
1

2∆2

11
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for every j ∈ UI,π . Summing over j ∈ UI,π and using the fact that each arm from I can provide at most logN observations
of arms in UI,π , we need the algorithm associated with π to play actions from I at least

|UI,π|
2∆2 logN

≥ δI(JI,π)

100∆2 log2 N

times to ensure enough observations in UI,π . This gives us

T
∑
i∈I

πi ≥
δI(JI,π)

100∆2 log2 N
, (6)

Applying Proposition B.1 to J ′
I,π and graph G implies existence of set U ′

I,π ⊆ J ′
I,π such that

|U ′
I,π| ≥

δV (J ′
I,π)

50 log |V |
=

δV (J ′
I,π)

50 logN

with a property that every vertex of V dominates at most log |V | = logN nodes from U ′
I,π . Since U ′

I,π ⊆ J ′
I,π , using the

definition of J ′
I,π together with the assumption that the number of observations of each arm in I is at least 1/∆2, we know

that
T
∑
i ̸∈I

πiGi,j ≥
T

2

∑
i∈[N ]

πiGi,j ≥
1

2∆2

for every j ∈ U ′
I,π. Summing over j ∈ U ′

I,π and te fact that each arm from V can provide at most logN observations of
arms in U ′

I,π , we need the algorithm associated with π to play an action from V at least

|UI,π|
2∆2 logN

≥ δI(JI,π)

100∆2 log2 N

times to ensure enough observations in U ′
I,π . This gives us

T
∑
i̸∈I

πi ≥
δI(JI,π)

100∆2 log2 N
, (7)

Applying (6) and (7) to the definition of Q∗
I gives us

Q∗
I = max

∆
min
π∈Π

min

T∑
i∈I

πi∆+ T
∑
i ̸∈I

πi, T∆

 ≥ max
∆

min
π∈Π

min

[
δI(JI,π)

100∆ log2 N
+

δV (J ′
I,π)

100∆2 log2 N
,T∆

]

≥ max
∆

min
J⊆I

min

[
δI(J)

100∆ log2 N
+

δV (I \ J)
100∆2 log2 N

,T∆

]

Now, we are able to choose a specific value of ∆ to lower bound Q∗
I further. In particular, we choose the following two

values of ∆

∆ =
(

δI(J)
100T log2 N

)1/2
=⇒ Q∗

I ≥
(

TδI(J)
100 log2 N

)1/2
∆ =

(
δV (I\J)

100T log2 N

)1/3
=⇒ Q∗

I ≥
(

T 2δV (I\J)
100 log2 N

)1/3
Taking ∆ which results in a larger lower bound, we obtain

Q∗
I ≥ 1

10 logN
min
J⊆I

max
[
δI(J)

1
2T

1
2 , δV (I \ J) 1

3T
2
3

]
=

1

10 logN
R∗

I .
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This concludes the lower bound proof. The idea of the upper bound proof is to select a specific distribution π ∈ Π over the
set of actions and choose the optimal ∆. This would give us the desirable upper bound on Q∗

I .

Let J∗ ⊆ I be one of the minimizers in the definition of R∗
I ,

J∗ ∈ argmin
J⊆I

max
[
δI(J)

1
2T

1
2 , δV (I \ J) 1

3T
2
3

]
.

Let D be a dominating set of J∗ from I and D′ be a dominating set of I \ J∗ from V such that |D| = δI(J∗) and
D′ = δV (I \ J∗). For a given bandit problem, with optimal arm i∗, we define π as

πi =

 T−1∆−2 if i ∈ D ∪D′ \ {i∗}
1− |D ∪D′ \ {i∗}|T−1∆−2 if i = i∗

0 otherwise.

Distribution π is now a mixture of uniform distribution over D ∪D′ \ {i∗} with rest of the mass put on arm i∗. Note that
for every arm j ∈ I , we know that

T
∑
i∈[N ]

πiGi,j ≥ T
∑

i∈D∪D′

πiGi,j = T
∑

i∈D∪D′

1

T∆2
Gi,j ≥

T

T∆
=

1

∆2
,

from the definition of π and the fact that nodes from D and D′ dominate every node in I . Therefore, π is one of the
distributions in Π. Using this π, we can upper bound Q∗

I as

Q∗
I ≤ max

∆
min

[∑
i∈D

T∆

T∆2
+
∑
i∈D′

T

T∆2
, T∆

]
= max

∆
min

[
|D|
∆

+
|D′|
∆2

, T∆

]

= max
∆

min

[
δI(J∗)

∆
+

δV (I \ J∗)

∆2
, T∆

]
≤ 2max

∆
min

[
max

(
δI(J∗)

∆
,
δV (I \ J∗)

∆2

)
, T∆

]
.

The last expression is maximized for ∆ = max
[
δI(J∗)

1
2T

1
2 , δV (I \ J∗)

1
3T

2
3

]
which implies Q∗

I ≤ 2R∗
I .

C. Lower Bound Proofs
Before we proceed with the proof of Theorem 3.1, we need the following information-theoretic lemma that provides a
foundation for the lower-bound proof.

Lemma C.1. Let G = (V,E) be a graph and fix a set I ⊆ V with |I| ≥ 2. Let 1/2 ≥ ∆ > 0 be such that 1/∆2 ≤ T/26.
For any algorithm, there exists a problem, such that regret RT of the algorithm can be bounded as

RT ≥ 1

27
min
π∈Π

min

[
T
∑
i∈I

πi∆+ T
∑
i̸∈I

πi, T∆

]

where

Π =

{
π ∈ R+N :

∑
i∈[N ]

πi = 1, T
∑
i∈[N ]

πiGi,j ≥ 1/∆2,∀j ∈ I

}
.

Proof of Lemma C.1

Throughout the proof, we fix a set of nodes I ⊆ V , some node j0 ∈ I , and any bandit policy. We use them for the rest of the
proof unless said otherwise. The proof proceeds in several steps.

Step 1: Construction of a set of difficult problems. First, we define a set of difficult stochastic problems, indexed by
j ∈ I , for a given set I . Then, we analyze the performance of the fixed algorithm on this set of problems. For problem j, the
samples of each arm i are independent and distributed according to P

(j)
i ≜ N (µ

(j)
i , 1), parametrized by expectations µ(j)

i .

13
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For j0, we define the problem as

µ
(j0)
i ≜

 1/2 + ∆/2 for i = j0
1/2 for i ∈ I \ {j0}
0 for i ̸∈ I

For j ∈ I \ {j0}, we define the problem as

µ
(j)
i ≜


1/2 + ∆ for i = j
1/2 + ∆/2 for i = j0
1/2 for i ∈ I \ {j0, j}
0 for i ̸∈ I

there are several important observations to make:

• Arm j ∈ I is optimal for problem j.

• The arms for problems j ̸= j0 and j0 differ only for arm j and difference is ∆.

• For any problem j, arms that are not in I have a gap (distance from the optimal arm) at least 1/2.

In what follows and for the policy we fixed at the beginning of the proof, we denoted the expectation and the probability,
under the environment of bandit problem j, by E(j) and P(j).

Let TT,i denotes the number of rounds, up to round T , in which our fixed algorithm plays action i. We can associate the
algorithm with a probability vector π = (π1, . . . , πN ), under environment j0, defined as

πi ≜
E(j0)[TT,i]

T
for all i ∈ [N ].

Each Tπi represents the expected number of rounds our algorithm spends playing arm i, under environment j0.

We also write R
(j)
T for the expected regret of the fixed policy in problem j. Note that

R
(j0)
T ≥ T

2

[ ∑
i∈I\{j0}

πi∆+
∑
i ̸∈I

πi

]
. (8)

For the rest of the proof, we assume the existence of arm j̄ ∈ I \ {j0} such that

T
∑
i∈[N ]

πiGi,j̄ ≤
2

∆2
. (9)

Note that the left-hand side of the previous inequality represents the expected number of observations of arm j̄ using the
algorithm under environment j0. Markov inequality for any j gives us

P(j0)

[ ∑
i∈[N ]

Gi,jTT,i ≥ 24T
∑
i

Gi,jπi

]
≤ 2−4,

which for j̄, using assumption (9), translates to

P(j0)

[ ∑
i∈[N ]

Gi,j̄TT,i ≥
25

∆2

]
≤ 2−4. (10)

Now, let us define the event

F ≜

{
TT,j̄ ≤

25

∆2

}
.

Note that complementary event F̄ lower-bounds the number of rounds in which the algorithm played action j̄ which is a
sub-event of the event in (10) that lower-bounds the number of rounds in which the algorithm observed action j̄. Therefore,
we get

P(j0)[F̄ ] = P(j0)
[
TT,j̄ > 25/∆2

]
≤ 2−4. (11)

14
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Step 2: Bound on the regret using KL divergence. Note that action j0 is optimal for problem j0 and that action j̄ is
optimal for problem j̄. Since choosing an action that is suboptimal leads to an instantaneous regret at least ∆/2, we also
have

R
(j̄)
T ≥

(
T − 25

∆2

)
∆

2
P(j̄) [F ] ≥ T∆

4
P(j̄) [F ] . (12)

Then, Bretagnolle-Huber inequality (see, e.g., (Lattimore & Szepesvári, 2020, Theorem 14.2)) implies that

P(j0)
[
F̄
]
+ P(j̄) [F ] ≥ 1

2
exp

(
−KL

(
P(j0),P(j̄)

))
.

Applying Equation (11) implies

P(j̄) [F ] ≥ 1

2
exp

(
−KL

(
P(j0),P(j̄)

))
− 2−4.

This allows us to further bound R
(j̄)
T in (12) as

R
(j̄)
T ≥ T∆

4

[
1

2
exp

(
−KL

(
P(j0),P(j̄)

))
− 2−4

]
. (13)

Step 3: Information-theoretic bound on the number of pulls. Because of the graph structure, the number of observations
of arm i at time T is NT,i ≜

∑
k∈[N ] Gk,iTT,k. So that for any problem j, the Kullback-Leibler divergence between P(j)

and P(j0) can be rewritten as follows (Lattimore & Szepesvári, 2020, immediate corollary of Lemma 15.1)

KL
(
P(j0),P(j̄)

)
=
∑
i∈[N ]

E(j0) [NT,i] KL
(
P(j0)
i ,P(j̄)

i

)
.

Using definition of bandit problems j0 and j̄, we get

KL
(
P(j0),P(j̄)

)
= E(j0)

[ ∑
i∈[N ]

Gi,j̄TT,i

]
KL
(
P(j0)

j̄
,P(j̄)

j̄

)
=

[ ∑
i∈[N ]

Gi,j̄πiT

]
∆2

2

since, for any j ∈ I \ {j0}, problems j and j0 differ only on action j and since KL(P(j0)
j ,P(j̄)

j ) = ∆2/2. Re-ordering terms
and using the assumption in Equation (9), we get

KL
(
P(j0),P(j̄)

)
=

∆2

2
T
∑
i∈[N ]

Gi,j̄πi ≤ 1 (14)

Step 4: Lower bound on the regret depending on π. Combining Equations (14) and (13), we get

R
(j̄)
T ≥ T∆

4

[
1

2
exp (−1)− 2−4

]
≥ T∆

26
.

In case an arm j̄, satisfying condition (9), exists, regret R(j̄)
T is bounded by (T∆)/26. In case no such arm j̄ exists, i.e.

T
∑

i πiGi,j ≥ 2/∆2 for all j ∈ I \ {j0}, we can bound R
(j0)
T , using (8), as

R
(j0)
T ≥ T

2

[ ∑
i ̸∈I\{j0}

πi∆+
∑
i ̸∈I

πi

]
.

Therefore, we have that for any policy, it holds that

R∗ ≥ max
j∈I

R
(j)
T ≥ min

π∈R+N :
∑

i πi=1,T
∑

i πiGi,j≥2/∆2,∀j∈I\{j0}
min

[
T

2

[ ∑
i∈I\{j0}

πi∆+
∑
i̸∈I

πi

]
,
T∆

26

]
.
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We have proved this inequality for any j0 ∈ I so that if we take two j′0, j
′′
0 ∈ I : j′0 ̸= j′′0 , we would get:

R∗ ≥ max
j0∈{j′0,j′′0 }

min
π∈R+N :

∑
i πi=1,T

∑
i πiGi,j≥2/∆2,∀j∈I\{j0}

min

[
T

2

[ ∑
i∈I\{j0}

πi∆+
∑
i ̸∈I

πi

]
,
T∆

26

]
.

Since for any function A of π we have max(minπ:πi>ai A(π),minπ:πi>bi A(π)) ≥ minπ:πi>(ai+bi)/2 A(π)/2 this implies
the result of the lemma, namely

R∗ ≥ 1

27
min

π∈R+N :
∑

i πi=1,T
∑

i πiGi,j≥1/∆2,∀j∈I
min

[
T
∑
i∈I

πi∆+ T
∑
i ̸∈I

πi, T∆

]
.

C.1. Proof of Theorem 3.1

The starting point of the proof is the statement of Lemma C.1. From the definition of the problem complexity Q∗, we can
directly show that for any I ⊂ V

RT ≥ Q∗
I

27
.

Since this inequality holds for any I ⊂ V , it holds also for I that maximizes Q∗
I . This implies that

RT ≥ max
I⊂V

Q∗
I

27
=

Q∗

27
. (15)

Applying Lemma 2.8 to (15), we have

RT ≥ Q∗

27
≥ R∗

2710 logN
.

D. Efficient Construction of the Proxies J̄t,k,l, J̄ ′
t,k,l and Dominating Sets D̄t,k,l, D̄

′
t,k,l from

Corollary 4.2
In this section, we construct the partition of the set It,k,l through sets J̄t,k,l, J̄ ′

t,k,l and the associated dominating sets D̄t,k,l,
D̄′

t,k,l from Corollary 4.2.

In order to do this, we provide a construction for an arbitrary set I , and can then apply this procedure to the It,k,l. Consider
therefore any arbitrary set I ⊂ V .

For any 1 ≥ ∆ > 0, consider the optimisation problem Q∗
I,∆ from Definition 2.6, namely:

Q∗
I,∆ ≜ min

π∈Π
QI,∆(π) ≜ min

π∈Π
min

[
T
∑
i∈I

πi∆+ T
∑
i ̸∈I

πi, T∆

]
(16)

where

Π = Π∆ =

{
π ∈ RN

+ :
∑
i∈[N ]

πi ≤ 1, T
∑
i∈[N ]

πiGi,j ≥ 1/∆2,∀j ∈ I

}
.

This is a linear optimization problem under linear constraints. If the set of solutions is not empty, we know e.g. by using
Algorithm Main from (Cohen et al., 2019) with precision ∆2/(N4T 2) that there there is a solver for such problem doing
less than N3 log(T 2N5/∆2) basic operations and that would output a solution π∆ such that π∆ ∈ Π and

Q∗
I,∆ ≤ QI,∆(π

∆) ≤ Q∗
I,∆ + 1. (17)

See Theorem 1 from (Cohen et al., 2019) for more details. From there, we use π∆, which is the solution of algorithm
outputted by Algorithm Main from (Cohen et al., 2019) with precision ∆2/(N4T 2) on the optimization problem from above
(characterized by ∆).

Based on this, the procedure that we use is described in Algorithm 2. We consider a logarithmic grid of ∆ of size
⌊log(NT )⌋+ 2, and associated to the policies π̄∆ constructed on this grid, we construct sets J̄∆ = JI,π∆ as in (4), and the

16
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Algorithm 2 ALGORITHM OUTPUTTING PROXIES OF J, J ′ AND OF THEIR DOMINATING SETS

Input: G = (V,E), set I ⊂ V .
for ∆ ∈ {2−1, 2−2, ..., 2−(⌊log(NT )⌋+1)} do

Compute π̄∆ as the output of Algorithm Main from (Cohen et al., 2019) applied on Problem 16 with precision
∆2/(N4T 2)
Set J̄∆ = JI,π∆ (as defined in Equation (4))
Set J̄

′,∆ = I \ J∆

Set D̄∆ as the output of Algorithm 3 on J̄∆

Set D̄
′,∆ as the output of Algorithm 3 on J̄

′,∆

end for
Set ∆̄ = argmin∆{

√
D̄∆T ∧ [(D̄

′,∆)1/3T 2/3]}
Set π̄ = π∆̄, J̄ = J̄∆̄, J̄ ′ = J̄

′,∆̄, D̄ = D̄∆̄, D̄′ = D̄
′,∆̄

Output: J̄ , J̄ ′, D̄, D̄′

associated complement J̄
′,∆, and then compute a greedy approximation of their dominating sets as described in Algorithm 3.

The description and discussion of Algorithm 3 is postponed to Subsection D.2, as it is a very standard result. We finally take
the stationary policy π̄ corresponding to the best possible case π∆ for a criterion that resembles the one of Definition 2.7,
and output the associated sets J̄ , J̄ ′, D̄, D̄′.

The following lemma holds for Algorithm 2.

Lemma D.1. Let G = (V,E) be a graph and I ⊂ V be any subset of vertices. Then Algorithm 2 applied to I runs in less
than 30N3 log(TN)2 iterations, and produces sets J̄ ⊂ I , J̄ ′ ≜ I \ J̄ , D̄ ⊂ I , and D̄′ ⊂ V such that D̄ dominates set J̄ ,
D̄′ dominates J̄ ′,

max
{
δI(J̄)

1
2T

1
2 , δV (J̄ ′)

1
3T

2
3

}
≤ 24× 104 log(N)4R∗

I ,

and
|D̄| ≤ δI(J̄) log(|I|), |D̄′| ≤ δV (J̄ ′) log(|V |).

Corollary 4.2 is a direct application of this lemma.

D.1. Proof of Lemma D.1

Let ∆ ∈ {2−1, 2−2, ..., 2−(⌊log(NT )⌋+1)}. Note fist that for any 1/2 ≥ ∆′ > 0 such that ∆′/2 ≤ ∆ ≤ ∆′, we have for any
policy π that

QI,∆′(π)/2 ≤ QI,∆(π) ≤ QI,∆′(π),

by definition of QI,∆(.). Moreover for ∆′ ≤ 2−(⌊log(NT )⌋+1), we have that for any stationary policy π:

QI,∆′(π) ≤ T∆′ ≤ 1/N.

So that if, for any ∆′, we write G(∆′) for the projection of ∆′ on the closest larger element of ∆ ∈
{2−1, 2−2, ..., 2−(⌊log(NT )⌋+1)}, we have

QI,∆′(π)/2 ≤ QI,G(∆′)(π) + 1/N ≤ QI,∆′(π) + 2/N.

This first implies taking π = πG(∆′) and since ΠG(∆′) ∈ 2Π∆′
(where 2Π∆′

is the set {x : x/2 ∈ 2Π∆′})

Q⋆
I,∆′/2 ≤ Q⋆

I,G(∆′) + 1/N.

This also implies by taking the minimum over π ∈ Π∆′

Q⋆
I,∆′ ≤ min

π∈Π∆′
QI,G(∆′)(π) + 1/N ≤ 2Q⋆

I,∆′ + 2/N.

17
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And so since Π∆′ ⊂ ΠG(∆′) we have
Q⋆

I,G(∆′) + 1/N ≤ Q⋆
I,∆′ + 2/N.

So that in the end for any ∆′

Q⋆
I,∆′/2 ≤ Q⋆

I,G(∆′) ≤ 2Q⋆
I,∆′ + 1/N.

So that by Equation (17)
Q⋆

I,∆′/2 ≤ QI,G(∆′)(π̄
G(∆′)) ≤ 2Q⋆

I,∆′ + 1/N + 1.

Set ∆ = G(∆′). Following exactly the same steps as in the proof of Proposition 2.8 in Section B, we know that for JI,π̄∆

defined as in Equation (4) we have

QI,∆(π̄
∆) ≥ 1

100 log2 N
min

[
δI(JI,π̄∆)

∆
+

δV (I \ JI,π̄∆)

∆2
, T∆

]
.

We remind that J, J ′ = I \ J minimise the equation in Definition (2.7). Consider now ∆⋆ = G(400 log2 N
[√

δI(J)
T ∨(

δV (J′)
T

)1/3 ]
). For ∆⋆ in particular, we have from the previous equation and from Equation (17)

2Q⋆
I,∆⋆ + 1 + 1/N ≥ QI,∆⋆(π̄∆⋆

) ≥ 1

100 log2 N
min

[
δI(JI,π̄∆⋆ )

∆⋆
+

δV (I \ JI,π̄∆⋆ )

∆⋆2
, T∆⋆

]
.

So that from Proposition 2.8 and the last equation

4max

[√
δI(J)T , (δV (J))1/3T 2/3

]
≥ 4R∗

I ≥ 2Q∗
I ≥ 2Q⋆

I,∆⋆

≥ 1

100 log2 N
min

[
δI(JI,π̄∆⋆ )

∆⋆
+

δV (I \ JI,π̄∆⋆ )

∆⋆2
, T∆⋆

]
− 1− 1/N.

Since by definition of ∆⋆ we have that 1
100 log2 N

T∆⋆ − 1− 1/N > 4max
[√

J⋆T , (J
′⋆)1/3T 2/3

]
this implies

4max

[√
δI(J)T , (δV (J ′))1/3T 2/3

]
≥ 1

100 log2 N

[
δI(JI,π̄∆⋆ )

∆⋆
+

δV (I \ JI,π̄∆⋆ )

∆⋆2

]
− 1− 1/N.

By definition of ∆⋆, we have

4max

[√
δI(J)T , (δV (J ′))1/3T 2/3

]
≥ 1

8× 104 log4 N

[
δI(JI,π̄∆⋆ )√

δI(J)

√
T +

δV (I \ JI,π̄∆⋆ )

δV (J ′)2/3
T 2/3

]
− 1− 1/N,

i.e.

48× 104 log4 N max

[√
δI(J)T , (δV (J ′))1/3T 2/3

]
≥ max

[
δI(JI,π̄∆⋆ )√

δI(J)

√
T ,

δV (I \ JI,π̄∆⋆ )

δV (J ′)2/3
T 2/3

]
.

So that in the end

48× 104 log4 N max

[√
δI(J)T , (δV (J ′))1/3T 2/3

]
≥ max

[√
δI(JI,π̄∆⋆ )T , δV (I \ JI,π̄∆⋆ )1/3T 2/3

]
.

By Subsection D.2, we therefore have

48× 104 log5 N max

[√
δI(J)T , (δV (J ′))1/3T 2/3

]
≥ max

[√
D̄I,π̄∆⋆T , (D̄′

I,π̄∆⋆ )1/3T 2/3

]
.

Since by definition of the algorithm we have max
[√

D̄I,π̄∆⋆T , (D̄′
I,π̄∆⋆ )1/3T 2/3

]
≥ max

[√
D̄T , (D̄′)1/3T 2/3

]
, this

concludes the proof.
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Algorithm 3 GREEDY ALGORITHM FOR DOMINATING SET

Input:
G = (V,E), sets A,B ⊂ V such that A dominates B.
D = ∅
repeat
d = argmaxv∈A |Nout

v ∩B| (ties resolved arbitrarily)
D = D ∪ d
B = B \Nout

d

until —B— = 0
Output: D

D.2. Greedy Algorithm for Dominating Set

Finding the smallest dominating set is an NP-hard problem, however, a simple greedy algorithm can find an approximate
solution, only a logarithmic factor away from the optimal solution. The algorithm is described in Algorithm 3 and the
theoretical guarantees can be found in Theorem D.2.

Theorem D.2. Let G = (V,E) be a graph with two sets of vertices A,B ⊂ V such that A dominates B. Then Algorithm 3
produces set D ⊂ A that dominates B from A, such that

|D| ≤ log(N)δA(B).

Moreover, the computational complexity of Algorithm 3 is at most linear in the number of vertices.

This is a standard result that can be found for example in (Chvatal, 1979).

E. Proof of Theorem 4.4
We start the proof with a standard proposition that can be used as the first step in the analysis of most of the algorithms
based on EXP3

Proposition E.1. Let everything be defined as in Algorithm 1. Then we have

E

∑
t∈[T ]

∑
i∈[N ]

qt,iℓt,i − min
k∈[N ]

∑
t∈[T ]

ℓt,k

E
[
logN

ηT+1

]
+ E

∑
t∈[T ]

ηt
2

∑
i∈[N ]

qt,i
Pt,i

 .

Proof. The proof of this proposition is based on the proof by (Györfi & Ottucsák, 2007). First, lets define W ′
t+1, similarly

to Wt+1, using learning rate from round t instead of t+ 1.

W ′
t+1 =

1

N

∑
i∈[N ]

exp(−ηtL̂t+1,i).
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Following standard analysis of EXP3 algorithms with adaptive learning rate (e.g. (Kocák et al., 2014)), we can obtain

1

ηt
log

W ′
t+1

Wt
=

1

ηt
log

∑
i∈[N ]

(1/N) exp(−ηtL̂t,i)

Wt

=
1

ηt
log

∑
i∈[N ]

wt,i exp(−ηtℓ̂t,i)

Wt

=
1

ηt
log

∑
i∈[N ]

qt,i exp(−ηtℓ̂t,i)

≤ 1

ηt
log

∑
i∈[N ]

qt,i

(
1− ηtℓ̂t,i +

1

2
(ηtℓ̂t,i)

2

)

=
1

ηt
log

1− ηt
∑
i∈[N ]

qt,iℓ̂t,i +
η2t
2

∑
i∈[N ]

qt,i(ℓ̂t,i)
2


≤ −

∑
i∈[N ]

qt,iℓ̂t,i +
ηt
2

∑
i∈[N ]

qt,i(ℓ̂t,i)
2,

where we used inequality exp(−x) ≤ 1− x+ x2/2 for x ≥ 0 as well as inequality log(1− x) ≤ −x that holds for any x.
Rearranging the terms in the previous inequality, we obtain∑

i∈[N ]

qt,iℓ̂t,i ≤
[(

logWt

ηt
− logWt+1

ηt+1

)
+

(
logWt+1

ηt+1
−

logW ′
t+1

ηt

)]
+

ηt
2

∑
i∈[N ]

qt,i(ℓ̂t,i)
2 (18)

The second term in the brackets can be further bounded using

Wt+1 =
∑
i∈[N ]

exp(−ηt+1L̂t,i) =
∑
i∈[N ]

exp(−ηtL̂t,i)
ηt+1
ηt ≤

∑
i∈[N ]

exp(−ηtL̂t,i)


ηt+1
ηt

= (W ′
t+1)

ηt+1
ηt ,

where we applied Jensen’s inequality to the concave function x
ηt+1
ηt thanks to the assumption that ηt+1 ≤ ηt. Therefore, we

obtain (
logWt+1

ηt+1
−

logW ′
t+1

ηt

)
≤ 0,

which further simplifies (18) to obtain∑
i∈[N ]

qt,iℓ̂t,i ≤
(
logWt

ηt
− logWt+1

ηt+1

)
+

ηt
2

∑
i∈[N ]

qt,i(ℓ̂t,i)
2

The next step is summing over time and taking expectation

E

∑
t∈[T ]

∑
i∈[N ]

qt,iℓt,i

 ≤ E
[
logWT+1

ηT+1

]
+ E

∑
t∈[T ]

ηt
2

∑
i∈[N ]

qt,i
Pt,i

ℓ2t,i

 .

Lower-bounding WT+1 by maxk∈[N ] wT+1,k and using the definition of exponential weights, we obtain

E

∑
t∈[T ]

∑
i∈[N ]

qt,iℓt,i − min
k∈[N ]

∑
t∈[T ]

ℓt,k

 ≤ E
[
logN

ηT+1

]
+ E

∑
t∈[T ]

ηt
2

∑
i∈[N ]

qt,i
Pt,i

 .
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Using the definition of pt,i from Equation (2), we can lower bound the left-hand side of the inequality in Proposition E.1 as

E

∑
t∈[T ]

∑
i∈[N ]

qt,iℓt,i − min
k∈[N ]

∑
t∈[T ]

ℓt,k

 ≥ RT − 2E

∑
t∈[T ]

γt

 .

This changes the inequality from Proposition E.1 to

RT ≤ E

2 ∑
t∈[T ]

γt +
logN

ηT+1
+
∑
t∈[T ]

ηt
2

∑
i∈[N ]

qt,i
Pt,i

 . (19)

The next step is to upper bound the last term inside of the expectation, starting with the inner most sum. We can split this
sum into several parts, depending on the partition in which the arm is situated and upper bound each par separately.∑

i∈[N ]

qt,i
Pt,i

=
∑

k∈[K]

∑
l∈[L]

∑
i∈J̄t,k,l

qt,i
Pt,i

(20)

+
∑

k∈[K]

∑
l∈[L]

∑
i∈J̄′

t,k,l

qt,i
Pt,i

(21)

+
∑

i∈It,K+1

qt,i
Pt,i

(22)

Bounding expression (20). Partition J̄t,k,l contains only arms i with qt,i ∈ (2−k, 2−k+1] and degt,k(i) ∈ (N2−l, N2−l+1].
Therefore, qt,i can be simply upper bounded by the largest possible value of qt,i, which is 2−k+1. We also know that
i ∈ J̄t,k,l has at least N2−l neighbors in It,k each of which has the probability of being played pt,j which is at least qt,j/2
from the definition of pt,j and the fact that γt ≤ 1/2. Now, we lower bound Pt,i by the smallest possible number of
neighbors in It,k and the smallest possible value of qt,j for neighbors j of i to obtain Pt,i ≥ N2−l2−k2−1. This gives us
the following upper bound on (20)

(20) ≤
∑

k∈[K]

∑
l∈[L]

|J̄t,k,l|2−k+1

N2−l2−k2−1
≤
∑

k∈[K]

∑
l∈[L]

|J̄t,k,l|23

N2−l+1
≤
∑

k∈[K]

∑
l∈[L]

23|D̄t,k,l|.

The last inequality holds thanks to the fact that |D̄t,k,l| is the size of the dominating set of J̄t,k,l with every vertex dominating
at most N2−l+1 other nodes. This means that the number of possible edges |D̄t,k,l|N2−l+1 from D̄t,k,l to J̄t,k,l needs to
be larger than the number of vertices in J̄t,k,l.

Bounding expression (21). Since D̄′
t,k,l is a dominating set of J̄ ′

t,k,l, we know that every vertex of J̄ ′
t,k,l is dominated by at

least one vertex from the dominating set D̄′
t,k,l. For each vertex of this dominating set, we used a mixing in Definition 4.3,

and therefore we observe every vertex of D̄′
t,k,l with probability at least γt/((KL + 1)|D̄′

t,k,l|). As a consequence, we
have that for every i ∈ J ′

t,k,l, probability of observing i is at least γt/((KL+ 1)|D′
t,k,l|). Thisgives us the following upper

bound on (21)

(21) ≤
∑

k∈[K]

∑
l∈[L]

(KL+ 1)|D̄′
t,k,l|

γt

Bounding expression (22). We know that every arm i from It,K+1 is such that qt,i, by definition, is smaller than 1/N5.
From the definition of exploration distribution in Definition 4.3, we know that the corresponding Pt,i is lower bounded by
γt/((KL+ 1)N). This gives us the following upper bound on (22)

(22) ≤
∑

i∈It,K+1

(KL+ 1)N

γtN5
≤ 1

γt
.

The last inequality holds thanks to the fact that (KL+ 1) ≤ N2, for any positive integer N , from the definition of K and L.
Note that in particular

(22) ≤
∑

k∈[K]

∑
l∈[L]

(KL+ 1) log(N)|D̄′
t,k,l|

γt
,
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i.e. we can upper bound the last term using the same expression as in the upper bound of (21).

Using all three bounds together, we obtain the following upper bound for ηt

2

∑
i∈[N ]

qt,i
Pt,i

ηt
2

∑
i∈[N ]

qt,i
Pt,i

≤ ηt
2

∑
k∈[K]
l∈[L]

(
8|D̄t,k,l|+

2(KL+ 1) log(N)|D̄′
t,k,l|

γt

)
. (23)

Now we can define an auxiliary learning rate ηt,k,l for each individual summand as

ηt,k,l ≜ min
(
|D̄t,k,l|−

1
2T− 1

2 , (|D̄′
t,k,l|)−

1
3T− 2

3

)
Note that ηt is defined as mins∈[t],k∈[K],l∈[L] ηs,k,l and therefore we can upper bound it by ηt,k,l in (23) to obtain

ηt
2

∑
i∈[N ]

qt,i
Pt,i

≤
∑

k∈[K]
l∈[L]

(
4ηt|D̄t,k,l|+ η2t T (C − 4)|D̄′

t,k,l|
)

≤
∑

k∈[K]
l∈[L]

(
4ηt,k,l|D̄t,k,l|+ η2t,k,lT (C − 4)|D̄′

t,k,l|
)

= C
∑

k∈[K]
l∈[L]

max
(
|D̄t,k,l|

1
2T− 1

2 , |D̄′
t,k,l|

1
3T− 1

3

)

≤ C
∑

k∈[K]
l∈[L]

24× 104 log(N)4 logN
R∗

T

for C = 4 + (KL+ 1) log(N). Summing over time, we obtain the following upper bound∑
t∈[T ]

ηt
2

∑
i∈[N ]

qt,i
Pt,i

≤ C
∑

k∈[K]
l∈[L]

max
(
δ

1
2
∗ T

1
2 , δ′

1
3
∗ T

2
3

)
(24)

Now we are able to bound the last term in (19). The next step is bounding the first two terms to obtain the regret upper bound.
In order to do so, we can use the definitions of γt and ηt and the fact that {ηt}t∈[T ] is a non-increasing sequence to obtain

2
∑
t∈[T ]

γt +
logN

ηT+1
= 2

∑
t∈[T ]

min

{
1

Tηt
,
1

2

}
+

logN

ηT+1

≤ 2
∑
t∈[T ]

1

Tηt
+

logN

ηT+1

≤ 2
∑
t∈[T ]

1

TηT+1
+

logN

ηT+1
=

2 + logN

ηT+1

≤ 24× 104 log(N)4 logN(2 + logN)R∗ (25)

The proof is concluded by applying bounds (24) and (25) to expression (19)

F. Discussion
This section covers the proofs of corollaries in Section 5.

F.1. Proof of Corollary 5.1

The starting point of this proof is the Definition 2.7. The idea is to show that for T ≥ α3, it is optimal to take J = I , in the
minimization part of the problem complexity definition, regardless of set I .
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Let us fix I and assume that the optimization problem is maximized for some J ̸= I . This also means that I \ J is a
non-empty set and therefore, needs to be dominated by at least one node, i.e. δV (I \ J) ≥ 1. Note that the independence
number of a graph is always an upper bound on the dominating number since the largest independent set is connected to all
the vertices in the graph. This means that the independence number α of G can be lower bounded by the independence
number δI(I) of the graph induced by I which in turn can be lower bounded by δI(J), for any J ⊆ I . Using these
observations, together with assumption T ≥ α3, we get

δV (I \ J) 1
3T

2
3 ≥ T

2
3 ≥ α

1
2T

1
2 ≥ δV (V )

1
2T

1
2 ≥ δI(I)

1
2T

1
2 ≥ δI(J)

1
2T

1
2 .

However, setting J = I would decrease δV (I \ J) 1
3T

2
3 to 0 and therefore, improve the minimization problem from the

problem complexity definition. Now that we know that the optimal J is equal to I , we are ready to find I that maximizes the
problem complexity. Let I be the largest independent set. The size of I is now α and the only way to dominate J = I using
only nodes from I is by using all the nodes, therefore, δI(J) = |I| = α and the problem complexity R∗ = max(0,

√
αT ).

F.2. Proof of Corollary 5.2

The starting point of this proof is the Definition 2.7. We know that the graph contains one vertex connected to all other
nodes. Therefore, δV (I \ J) is either 0, if I \ J is an empty set, or 1, if I \ J is non-empty.

In case δV (I \ J) = 1, the minimization part of the problem complexity suggests that J can be empty set since it does not
change the value of δV (I \ J) while reducing δI(J) to 0, regardless of the choice of I .

In case δV (I \ J) = 0, we know that I = J and therefore, the value δI(J) can be upperbounded by α - case when I
contains all N − 1 = α independent vertices.

Since only these two cases are possible, we have a freedom to choose J for which the value is smaller. Therefore, the
problem complexity R∗ can be computed as

R∗ = min
{
α

1
2T

1
2 , 1

1
3T

2
3

}
.

Using assumption T < α3 gives us α
1
2T

1
2 > 1

1
3T

2
3 and therefore R∗ = T

2
3 , which concludes the proof.
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