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Abstract

Random forests and, more generally, (deci-
sion-)tree ensembles are widely used methods
for classification and regression. Recent algorith-
mic advances allow to compute decision trees
that are optimal for various measures such as
their size or depth. We are not aware of such
research for tree ensembles and aim to contribute
to this area. Mainly, we provide two novel algo-
rithms and corresponding lower bounds. First, we
are able to carry over and substantially improve
on tractability results for decision trees, obtain-
ing a (6δDS)S · poly-time algorithm, where S
is the number of cuts in the tree ensemble, D
the largest domain size, and δ is the largest num-
ber of features in which two examples differ. To
achieve this, we introduce the witness-tree tech-
nique which also seems promising for practice.
Second, we show that dynamic programming,
which has been successful for decision trees, may
also be viable for tree ensembles, providing an
ℓn · poly-time algorithm, where ℓ is the number
of trees and n the number of examples. Finally,
we compare the number of cuts necessary to clas-
sify training data sets for decision trees and tree
ensembles, showing that ensembles may need ex-
ponentially fewer cuts for increasing number of
trees.

1. Introduction
Random forests is a method for classification or regression
in which we construct an ensemble of decision trees for (ran-
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dom subsets of) the training data and, in the classification
phase, aggregate their outcomes by majority voting. The
random-forests method has received a tremendous amount
of attention for its simplicity and improved accuracy over
plain decision trees (Breiman, 2001; Verikas et al., 2011;
Kulkarni & Sinha, 2013; Rokach, 2016). Commonly, fast
heuristics without performance guarantees are used for com-
puting random forests (Kulkarni & Sinha, 2013; Rokach,
2016), in particular for computing the individual decision
trees in the forest. For plain decision trees, researchers lately
made several advances in computing optimal decision trees,
that is, decision trees that provably optimize criteria such
as minimizing the tree size (Bessiere et al., 2009; Narodyt-
ska et al., 2018; Carrizosa et al., 2021; Demirović et al.,
2022). With that increased amount of attention also came
theoretical advances, showing the limits and opportunities
for developing efficient exact algorithms for computing deci-
sion trees (Ordyniak & Szeider, 2021; Kobourov et al., 2022;
Eiben et al., 2023). One impetus to computing optimal de-
cision trees is that minimizing the size reduces tendencies
to overfitting (Bessiere et al., 2009; Demirović et al., 2022).
It is conceivable that such benefits transfer to globally op-
timizing the tree ensembles computed by random forests.
However, apart from sporadic hardness results (Tamon & Xi-
ang, 2000), we are not aware of exact algorithmic research
for tree ensembles. In this work, we aim to initiate this
direction; that is, we begin to build the theoretical footing
for exact algorithmics of computing optimal tree ensem-
bles and provide potential avenues for exact algorithms that
are guaranteed to provide optimal results with acceptable
worst-case running times.

We study the algorithmic properties of two canonical
formulations of the training problem for tree ensembles:
We are given a set of training examples labeled with two
classes and a number ℓ of trees and we want to compute a
tree ensemble containing ℓ trees that classifies the examples
consistently with the given class labels.1 We want to
minimize either the sum of the tree sizes, resulting in the
problem MINIMUM TREE ENSEMBLE SIZE (MTES), or
the largest size of a tree in the ensemble, resulting in the

1To keep the presentation focused, we consider mainly the
case without training error. See the conclusion for extensions to
minimizing training error.
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problem MINIMAX TREE ENSEMBLE SIZE (MMAXTES).2

Both contain as a special case the problem of computing
a minimum-size decision tree, which is known to be NP-
hard (Hyafil & Rivest, 1976; Ordyniak & Szeider, 2021).
However, the hardness constructions do not necessarily
reflect practical data. Thus, we are interested in precisely
which properties make the problems hard or tractable.

Mainly, we provide two novel algorithms for MTES and
MMAXTES3 and matching lower-bound results for their
running times. We call the first one witness-tree algorithm.
This algorithm demonstrates that prospects for tractable al-
gorithms for optimizing decision trees can be non-trivially
generalized to optimizing tree ensembles. Namely, it was
known that for small tree size s, moderate maximum domain
size D of any feature, and moderate number δ of features
in which two examples differ4, a minimum decision tree
can be computed efficiently, that is, in f(s,D, δ) · poly
time, where poly is a polynomial in the input size (Ordy-
niak & Szeider, 2021). However, the function f is at least
δs · (Ds2δ)s · 2s2 and the algorithm involves enumerative
steps in which the worst-case running time equals the aver-
age case. We show that, even for the more general MTES,
we can improve the running time to O((6δDS)S · Sℓn),
where S denotes the sum of the tree sizes, ℓ the number of
trees in the ensemble, and n the number of training examples
(Theorem 4.1). Moreover, we can avoid the enumerative
approach, obtaining a search-tree algorithm that is both con-
ceptually simpler and more easily amenable to heuristic
improvements such as early search-termination rules and
data reduction.5 We achieve this by growing the trees it-
eratively and labeling their leaves with witness examples
that need to be classified in these leaves. This allows us to
localize misclassifications and their rectification, shrinking
the search space. We believe that this technique may have
practical applications beyond improving the worst-case run-
ning times as we do here. The running time that we achieve
is tight in the sense that we cannot decrease the exponent
to o(S) without violating reasonable complexity-theoretic
assumptions (Theorem 4.4).

Recently, exponential-time dynamic programming has been
applied to compute optimal decision trees and the resulting

2It is also natural to consider the depths of the trees instead
of their sizes, but results are usually transferable between these
two optimization goals and the size makes the presentation more
accessible.

3The algorithms work on the decision version of these prob-
lems, but they easily apply to the optimization versions as well.

4See Ordyniak & Szeider (2021) for measurements showing
that this is a reasonably small parameter in several datasets.

5In the meantime since this paper has been accepted, Eiben
et al. (2023) showed that for minimum-size decision trees the
dependency on the domain size can be dropped, that is, there is
an f(s, δ) · poly-time algorithm. It still uses enumerative steps
which would be infeasible in practice.

trees have shown comparable performance to (heuristic)
random forests on some datasets (Demirović et al., 2022).
With the second algorithm that we provide, we investigate
the potential of dynamic programming for computing opti-
mal tree ensembles. We first show that minimizing decision
trees can be done in O(3n) time, where n is the number of
input examples, by a dynamic-programming approach that
works on all possible splits of the examples (Corollary 5.2).
(Indeed, the algorithm employed by Demirović et al.
(2022) similarly computes a table over all possible splits
in the worst case.) We then extend this algorithm to tree
ensembles with ℓ trees, achieving (ℓ+ 1)n · poly running
time (Theorem 5.3). Unfortunately, we also show that
the running time cannot be substantially improved: A
running time of f(ℓ) · 2o(log ℓ)·n would violate reasonable
complexity-theoretic assumptions (Theorem 5.4).

Finally, we compare the power of decision trees and tree
ensembles in terms of their sizes. Here, we show that a train-
ing data set D that can be classified by a tree ensemble with
ℓ trees of size at most s, can also be classified by a decision
tree of size (s+1)ℓ (Theorem 3.1). However, such an expo-
nential increase is necessary in the worst case: We show that
there are such training data sets D that cannot be classified
by any decision tree of size roughly (s/2)ℓ/2 (Theorem 3.2).

In summary, as the number of trees in a tree ensemble grow,
the classification power increases exponentially over deci-
sion trees. Nevertheless, we are able to carry over and sub-
stantially improve on tractability results for decision trees
if in particular the number of cuts in the optimal ensemble
is relatively small. The underlying witness-tree technique
seems promising to try in practice. Furthermore, we show
that dynamic programming, which has been successful for
decision trees, may also be viable for tree ensembles. We
also provide matching lower bounds for the running times.
Apart from tuning our algorithms, in the future, deconstruct-
ing these lower bounds may provide further guidelines to-
wards which properties of the input data we may exploit for
efficient algorithms and which we likely may not.

Proofs of statements marked with ⋆ are deferred to a full
version of the paper.

2. Preliminaries
For n ∈ N we use [n] := {1, 2, . . . , n}. For a vector x ∈ Rd

we denote by x[i] the ith entry of x.

Let Σ be a set of class symbols; unless stated otherwise, we
use Σ = {blue, red}. A decision tree in Rd with classes Σ
is the following. Let T be an ordered binary tree, that is,
each inner node has a well-defined left and right child. Let
dim : V (T )→ [d] and thr : V (T )→ R be labelings of each
internal node t ∈ V (T ) by a dimension dim(t) ∈ [d] and a
threshold thr(t) ∈ R. Furthermore, let cla(ℓ) : V (T )→ Σ
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be a labeling of the leaves of T by class symbols. Then
the tuple (T, dim, thr, cla) is a decision tree in Rd with
classes Σ. We often omit the labelings dim, thr, cla and just
refer to the tree T . The size of T is the number of its internal
nodes. We conveniently call the internal nodes of T and
their associated labels cuts.

A training data set is a tuple (E, λ) of a set of examples
E ⊆ Rd and their class labeling λ : E → Σ. Given a
training data set, we fix for each dimension i a minimum-
size set Thr(i) of thresholds that distinguishes between all
values of the examples in the ith dimension. In other words,
for each pair of elements e and e′ with e[i] < e′[i], there
is at least one value t ∈ Thr(i) such that e[i] < t < e′[i].
Let t ∈ R be some threshold. We use E[fi ≤ t] = {x ∈
E | x[i] ≤ t} and E[fi > t] = {x ∈ E | x[i] > t}
to denote the set of examples of E whose ith dimension
is less or equal and strictly greater than the threshold t,
respectively. Now let T be a decision tree. Each node t ∈
V (T ), including the leaves, defines a subset E[T, t] ⊆ E
as follows. For the root t of T , we define E[T, t] := E.
For each non-root node t, let p denote the parent of t. We
then define E[T, t] := E[T, p] ∩ E[fdim(p) ≤ thr(p)] if t
is the left child of p and E[T, t] := E[T, p] ∩ E[fdim(p) >
thr(p)] if t is the right child of p. If the tree T is clear
from the context, we simplify E[T, t] to E[t]. We say that
T classifies (E, λ) if for each leaf u ∈ V (T ) and each
example e ∈ E[u] we have λ(e) = cla(u) (recall that cla
is a labeling of the leaves of T by classes). Note that the
set family that contains E[u] for all leaves u of T forms
a partition of E. Thus for each example e ∈ E there is a
unique leaf u such that e ∈ E[u]. We also say that u is e’s
leaf. We say that cla(u) is the class assigned to e by T and
we write T [e] for cla(u).

A tree ensemble is a set of decision trees. A tree ensemble T
classifies (E, λ) if for each example e ∈ E the majority vote
of the trees in T agrees with the label λ(e). That is, for each
example e ∈ E we have λ(e) = argmaxσ∈Σ |{T ∈ T |
T [e] = σ}| =: T [e]. To avoid ambiguity in the maximum,
we fix an ordering of Σ and break ties according to this
ordering. If Σ = {blue, red} we break ties in favor of blue.
The overall size of a tree ensemble T is the sum of the sizes
of the decision trees in T .

The computational problems that we consider are as follows.

MINIMUM TREE ENSEMBLE SIZE (MTES)
Instance: A training data set (E, λ), a number ℓ

of trees, and a size bound S.
Question: Is there a tree ensemble of overall size

at most S that classifies (E, λ) and contains
exactly ℓ trees?

When restricting to ℓ = 1, MTES is known as MINIMUM
DECISION TREE SIZE (DTS) (Ordyniak & Szeider, 2021;

Kobourov et al., 2022). In the variant MINIMAX TREE
ENSEMBLE SIZE (MMAXTES), instead of S, we are given
an integer s and we ask whether there is a tree ensemble
that classifies (E, λ) and contains exactly ℓ trees, each of
which has size at most s.

Our analysis is within the framework of parameterized com-
plexity (Gottlob et al., 2002; Flum & Grohe, 2006; Nie-
dermeier, 2006; Cygan et al., 2015; Downey & Fellows,
2013). Let L ⊆ Σ∗ be a computational problem speci-
fied over some alphabet Σ and let p : Σ∗ → N be a pa-
rameter, that is, p assigns to each instance of L an integer
parameter value (which we simply denote by p if the in-
stance is clear from the context). We say that L is fixed-
parameter tractable (FPT) with respect to p if it can be
decided in f(p) · poly(n) time where n is the input encod-
ing length. The corresponding hardness concept related
to fixed-parameter tractability is W[t]-hardness, t ≥ 1; if
problem L is W[t]-hard with respect to p then L is thought
to not be fixed-parameter tractable; see (Flum & Grohe,
2006; Niedermeier, 2006; Cygan et al., 2015; Downey &
Fellows, 2013) for details. The Exponential Time Hypothe-
sis (ETH) (Impagliazzo & Paturi, 2001; Impagliazzo et al.,
2001) states that 3SAT on n-variable formulas cannot be
solved in 2o(n) time.

3. Decision Trees Versus Tree Ensembles
We will call a decision tree and a tree ensemble equivalent
if any training data set is classified by the one if and only
if it is classified by the other. We start by comparing the
minimum size of a decision tree to that of a minimum-size
decision tree ensemble, showing that there are examples
where the latter is significantly smaller. Vidal & Schiffer
(2020, Theorem 2) obtained similar results for the depth of
a decision tree and decision tree ensemble, showing that
any training data set that can be classified by a decision tree
ensemble with ℓ trees of depth t can also be classified by
a tree with depth ℓ · t and that this bound is tight. Here,
we analyze trees and tree ensembles in terms of their size,
showing that a minimum ensemble can be exponentially
smaller than any equivalent decision tree.

Theorem 3.1 (⋆). Any training data set that can be classi-
fied by a decision tree ensemble consisting of ℓ trees, each
of size at most s, can also be classified by a decision tree of
size (s+ 1)ℓ − 1.

Theorem 3.2 (⋆). For any odd ℓ, s ∈ N, there is a training
data set that can be classified by a decision tree ensemble
containing ℓ trees of size s each, but cannot be classified by
a single decision tree of size smaller than

(s+ 1)ℓ

ℓ( s+1
2 )

ℓ−1
2

− 1.

3



On Computing Optimal Tree Ensembles

Proof. For any x ∈ Nℓ, let even(x) := {i ∈ [ℓ] |
x[i] is even} and odd(x) := [ℓ] \ even(x). Furthermore,
let ev(x) and od(x) denote the sizes of even(x) and odd(x),
respectively. Let E := {x ∈ [s + 1]ℓ | |ev − od| = 1}
and λ : E → {blue, red} with λ(x) = blue if and only
if ev(x) > od(x). We show that (E, λ) fulfills the claim.

We defer the proof that there is a decision tree ensemble T
with ℓ trees of size at most s that classifies (E, λ) to the full
version.

We will show that any decision tree T that classifies E has at
least (s+1)ℓ

ℓ( s+1
2 )

ℓ−1
2

leaves. Observe that |E| ≥
(

ℓ
ℓ+1
2

)
( s+1

2 )ℓ ≥

2ℓ

ℓ (
s+1
2 )ℓ = (s+1)ℓ

ℓ , because even if we fix some subset
I of [ℓ] such that x[i] is to be even if and only if i ∈ I ,
then there are s+1

2 possible values for each component of x.
Therefore, it is sufficient to prove that |E[T, t]| ≤ ( s+1

2 )
ℓ−1
2

for every leaf t of T .

Let t be a leaf of T . Without loss of generality, assume that
cla(t) = blue, that is λ(x) = blue for all x ∈ E[T, t]. We
will show that x[i] = y[i] for all x, y ∈ E[T, t] and i ∈
even(x). Suppose that x[i] ̸= y[i], i ∈ even(x), and x, y ∈
E[T, t]. Without loss of generality, x[i] < y[i]. Define z ∈
[s+1]ℓ by z[i] := x[i]+ 1 and zj := xj for all j ∈ [ℓ] \ {i}.
Then, even(z) = even(x) \ {i}, implying that λ(z) = red.
Hence, z /∈ E[T, t]. This implies that in T there must be a
node v with dim(v) = i and thr(v) = x[i] on the path from
the root to t. However, this means that y /∈ E[T, t]. Hence,
the examples in E[T, t] can differ only in the components
in odd(x). Moreover, od(x) = ℓ−1

2 and [s + 1] contains
s+1
2 odd values.

Since the size of a binary tree is the number of leaves minus
one, the claim follows.

This result still leaves a considerable gap between the upper
and lower bound. We conjecture that the lower bound can be
improved: for example, by showing that in the example pre-
sented in the proof of Theorem 3.2 the number of examples
in each leaf is, on average, smaller than we showed.

4. The Witness-Tree Algorithm
In this section, we prove the following theorem. Recall
that S is the desired overall size of the tree ensemble, s is
the maximum size of a tree in the ensemble, ℓ is the number
of trees in the ensemble, D is the largest domain of a feature,
δ is the largest number of features in which two examples
of different classes differ, and n is the number of training
examples.

Theorem 4.1. MINIMUM TREE ENSEMBLE SIZE can be
solved in O((6δDS)S · Sℓn) time and MINIMAX TREE
ENSEMBLE SIZE in O(2ℓ · (δDℓ(2s+ 1))sℓ · sℓ2n) time.

The basic idea is to start with a tree ensemble that contains
only trivial trees and to successively refine the trees in the
ensemble until all input examples are classified correctly.
To facilitate the refinement process, each leaf of each tree is
assigned a distinct example, called witness. In a recursive
process we then aim to find refinements of the trees such
that each witness is classified in the assigned leaf. This will
speed up the refinement process because it enables us to
detect examples that need to be cut away from witnesses in
some trees of the ensemble.

Formally, a witness tree is a tuple (T, dim, thr, cla,wit)
wherein (T, dim, thr, cla) is a decision tree
and wit : V (T ) → E is a mapping from the leaves
of T to the set of examples such that for each leaf t we
have wit[t] ∈ E[t]. The images of wit are called witnesses.
Note that a witness is not necessarily classified correctly,
that is, we permit T [wit(t)] ̸= λ(wit(t)). A witness
ensemble is a set of witness trees.

We aim to successively refine the trees in a witness ensem-
ble until all examples are classified correctly. For this, an
example e ∈ E is dirty for some tree T (or tree ensemble F )
if the label T (e) (or F(e)) assigned to e by T (or by F) is
not equal to λ(e).

Next, we define a refinement of a tree in an ensemble. All
our refinements will take a dirty example and change the
class label assigned to this example by one of the decision
trees. Consider a witness tree T and a dirty example e for T .
Intuitively, we take the leaf t of T in which e is classified and
consider its witness wit(t). Then we pick a way of introduc-
ing into T a new cut on the path from the root to t that cuts
apart wit(t) and e. This then results in a refinement of T .

Formally, let T be a witness tree. A one-step refinement R
of T is a witness tree constructed in one of the following
two ways (illustrated in Figure 1):

Possibility one: Add a new root r to T , labeled with a
dimension dim(r) and threshold thr(r), put the old root
of T to be the left or right child of r, and put the other child
of r to be a new leaf v, labeled with an arbitrary class label
and with a witness x ∈ E such that x ∈ E[R, v].

Possibility two: Pick any edge f in T . Subdivide f with a
new node u, labeled with a dimension dim(u) and thresh-
old thr(u), and add a new leaf v as a child to u, labeled with
an arbitrary class label and with a witness x ∈ E. The order
of the children of u is chosen such that x ∈ E[R, v].

This finishes the definition of a one-step refinement. We also
say that the one-step refinement introduces the new leaf v,
the witness x, and the node r or u (thought of as the nodes
including their associated labelings), respectively. Observe
that the refinement is a witness tree and thus the previous
witnesses need to be preserved. That is, the choices of
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r

t

T

x[dim
(r)]

≤ thr(r) x[dim(r)] > thr(r)
T1

u

T2

v

Figure 1. Two ways of refining a tree: On the left an new root r and a new leaf t are introduced. On the right, an existing edge between
the subtrees T1 and T2 is subdivided with a vertex u and a new leaf v is introduced.

the dimension dim(r),dim(u) and threshold thr(r), thr(u)
need to be such that each witness is still classified in its
leaf. In formulas, for each leaf t of T it must hold that
wit(t) ∈ E[R, t].

A refinement R of a witness tree T is obtained by a se-
ries T = T1, T2, . . . , Tk = R of witness trees such that Ti

is a one-step refinement of Ti−1. A decision tree R (with-
out witness labeling) is a refinement of a witness tree T if
there is a labeling of the leaves of R by witnesses such that
(a) the labeling results in a witness tree, that is, for each leaf
t of R the witness wit(t) of t is in E[R, t], and (b) after the
labeling the witness tree R is a refinement of T . If a tree
ensemble C′ consists of the trees of a witness ensemble C or
refinements thereof, then we say C′ is a refinement of C.

For the correctness proof for our algorithm we need a prop-
erty of refinements that shows that the order in which we
introduce nodes for certain refinements is immaterial.

Lemma 4.2. Let T1 be a witness tree, T2 a one-step re-
finement of T1, and T3 a one-step refinement of T2. Let T3

introduce an inner node u. Assume that T3 does not sub-
divide the edge incident with a new leaf introduced in T2.
Then there is a one-step refinement S2 of T1 and a one-step
refinement S3 of S2 such that S2 introduces u and S3 = T3.

Proof. Refinement T3 may introduce a new root or subdi-
vide an edge. Suppose that T3 introduces u as a new root
above the root r of T2. If r is also present in T1, then T2

subdivides an edge f of T1. Thus, in S2 we may instead
introduce the root u, maintaining that edge f is present, and
then in S3 we may subdivide the edge f as in T2. This
results in the same witness tree S3 as T3 and thus main-
tains the sequence of refinements. If r is not present in T1,
then T2 introduces the new root r above the old root r′ of T1.
Instead, we may proceed as follows. In S2 we first introduce
the new root u above the old root r′ of T1. Then, in S3 we
subdivide the edge between r and u to introduce the node r′

with the same labels as in T2. Again, this results in the same
witness tree S3 as T3.

Now suppose that T3 subdivides the edge f to introduce

node u. If f is present in T1, then T2 introduces a new root
that is not incident with f or subdivides an edge different
from f . In both cases, we may reverse the two operations,
resulting in the same tree T3. If f is not present in T1, then f
is a new edge introduced in T2. By precondition, f is not
incident with a new leaf of T2. Hence, f is introduced by
adding a new root above an old root or by subdividing an
edge. If f was introduced by adding a new root r into T1, we
may instead proceed as follows. To obtain S2, we take T1

and introduce u as a new root. Afterwards, to obtain S3

we take S2 and introduce r as a new root above u. We
again have that T3 and S3 are the same and the sequence of
refinements is maintained. Suppose that f was introduced
in T2 by subdividing an edge f ′ of T1 to introduce some
node v. Then, in T3 node v is the parent of u or vice-versa.
Without loss of generality, assume that v is the parent of u.
Instead, we may first subdivide f ′ in T1 and introduce u to
obtain S2 and then subdivide the edge from u to its parent
in S2 to introduce v and obtain S3. This again results in the
same witness tree as T3. Concluding, we may replace T3

and T2 with S3 and S2, obtaining the required properties.

We can now describe the recursive algorithm for solving
MTES. The pseudo-code is given in Algorithm 1. As men-
tioned, it checks whether the current witness ensemble is
sufficiently small and classifies the input and, if so, reports it
as a solution. Otherwise, it finds a dirty example e and tries
all possibilities of reclassifying the example in a refinement
of one of the trees in the current ensemble. Note that since e
is dirty, a tree which can be refined always exists. Then it
continues recursively. In Line 6, a one-step refinement of T
is important if it is obtained by introducing a new node w
that is labeled by a dimension i ∈ [d] in which e and the
witness x of e’s leaf in T differ, i.e., e[i] ̸= x[i], and by a
threshold δ ∈ Thr(i) such that δ is between e[i] and x[i].

Note that, if ℓ > S, then necessarily in the solution ensemble
there are trivial trees without any cuts, that is, trees that
classify all examples as blue or all examples as red. Now
with a factor ℓ in the running time, we may determine how
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Algorithm 1: Computing tree ensembles.

1 Function RefineEnsemble (C, (E, λ), S)
Input: A witness ensemble C, a training data

set (E, λ), and a size threshold S ∈ N.
Output: A tree ensemble of overall size at most S

that is a refinement of C and
classifies (E, λ) or ⊥ if none exists.

2 if overall size of C is larger than S then return ⊥
3 if C classifies (E, λ) then return C
4 e← a dirty example for C
5 for each tree T in C in which e is not a witness do
6 for each important one-step refinement T ′ of T

introducing e as witness and s.t. T ′[e] = λ(e)
do

7 C′ ← C with T replaced by T ′

8 D ← RefineEnsemble (C′, (E, λ), S)
9 if D ≠ ⊥ then return D

10 return ⊥

many such trivial trees of either type there are (by trying all
possibilities). Thus, in the following, we will assume that
each tree has at least one inner node and thus that ℓ ≤ S.

The initial calls to RefineEnsemble are made with the
following 2ℓ witness ensembles C: For each tree T in C we
pick an arbitrary distinct example and try both possibilities
for whether e is classified as λ(e) or not (i.e. with the other
class) and make T to be a tree consisting of a single leaf
labeled by the corresponding class and with e as its witness.
This concludes the description of the algorithm. For the
algorithm for MMAXTES we replace S by s and we modify
the check in Line 2 to check that the size of the largest tree
is larger than s instead.

Proof of Theorem 4.1. We now show that the algorithm de-
scribed above achieves the required running time and that it
is correct.

For the running time, observe that, after one of the 2ℓ initial
calls, the algorithm describes a search tree in which each
node corresponds to a call to RefineEnsemble. The
depth of this tree is at most S for MTES and at most sℓ for
MMAXTES because in each call at least one refinement is
made and thus the overall size increases by at least one. We
claim that each search-tree node has at most δD(2S + ℓ) or
δD(2s+1)ℓ children, respectively. To see this, we show that
the total number of refinements of C considered in Line 6 is
bounded by that number: Each such refinement is specified
(1) by a new root or an edge on a root-leaf path of a tree
in C, (2) a dimension in the newly introduced node, and (3)
a threshold in the newly introduced node.

For (3) there are at most D possibilities.

For (2) there are at most δ possibilities: Observe that e has a
different class label than the witness w of its old leaf. Thus,
there are at most δ dimensions in which e and w differ.

For (1) there are at most ℓ ways to choose to introduce a
new root. Furthermore, since each edge in a tree is incident
with an inner node and each inner node u is incident with at
most two edges to children of u, there are at most 2S ways
(resp. 2sℓ ways) to choose an edge for subdivision.

Thus, the overall search tree has size at most (δD(2S +
ℓ))S ≤ (3δDS)S (resp. (δD(2s+ 1)ℓ)sℓ). Accounting for
the 2ℓ ≤ 2S initial calls and noticing that the operations in
one search-tree node take O(Sn) time yields the claimed
running time.

It remains to prove the correctness. Clearly, if the algorithm
returns something different from ⊥, then it is a tree ensem-
ble that classifies (E, λ) and is of the required size. Now
assume that there is a tree ensemble that classifies (E, λ)
and is of the required size. We show that the algorithm will
not return ⊥. We say that a witness-tree ensemble C is good
if there is a tree ensemble C⋆ that classifies (E, λ) of the re-
quired size, and such that C⋆ refines C. We claim that (1) one
of the ensembles C of an initial call to RefineEnsemble
is good and (2) that if C in a call to Algorithm 1 is good,
then either it classifies (E, λ) or in at least one recursive call
RefineEnsemble(C′, ·, ·) it is the case that C′ is good.
Observe that it is enough to prove both claims.

As to claim (1): Consider a solution C⋆ and the witnesses
that were chosen arbitrarily for C before the initial calls
to RefineEnsemble. Fix an arbitrary mapping of trees
between C and C⋆. Consider a tree T in C and its corre-
sponding tree T ⋆ in C⋆. Observe that T ⋆ has a leaf t such
that E[T ⋆, t] contains the (single) witness of T . Label t
with this witness. For each remaining leaf, pick an arbi-
trary example that is classified in this leaf and label it as
its witness. (Note that, without loss of generality, there is
at least one example in each leaf because if there is a leaf
without an example then we can find a smaller solution en-
semble.) Observe that the witness tree resulting from T ⋆ by
this labeling is a refinement of T if the leaves containing the
single witness of T have the same class label. Since we try
all possible class labels for the leaf in T before the initial
calls to RefineEnsemble, eventually we obtain that T ⋆

is a refinement of T and indeed this holds for all pairs of
mapped trees of C and C⋆. Thus, C is good.

As to claim (2): Assume that the witness-tree ensemble C is
good and let C⋆ be a corresponding witness-tree ensemble.
If C classifies (E, λ) then there is nothing to prove. Other-
wise, there is at least one dirty example for C. Let e be the
dirty example picked by the algorithm in Line 4. Consider
the classes assigned to e by the trees in C and those assigned
by the corresponding refinements in C⋆. Observe that there
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is at least one tree T ∈ C such that its refinement R ∈ C⋆ as-
signs a different class to e. In a refinement, the class of a wit-
ness is never changed and thus e is not a witness in T . Hence,
the for loop in Line 5 selects the tree T in one iteration.

We now claim that the loop in Line 6 will select a
refinement T ′ such that R (thought of as a non-witness
decision tree) is a refinement of T ′. Consider a sequence of
one-step refinements T = T1, T2, . . . , Tk = R. We call a
refinement Tj in this sequence e-rerouting if Tj introduces
a new leaf t such that e ∈ E[Tj , t]. We claim that we may
assume that T2 is e-rerouting. For a contradiction, assume
that in all sequences (Ti)i∈[k] the first e-rerouting one-step
refinement Tj satisfies j > 2. (Note that such a refinement
always exists because e is classified differently in R from
T .) Pick the sequence (Ti)i∈[k] such that j is minimal. Let
Tj introduce some node w. Observe that e’s leaf t of T is
present in Tj and that there is a path from w to t. Thus, w is
not introduced by subdividing the edge incident with a leaf
that has been introduced in Tj−1. Thus, by Lemma 4.2 we
may replace Tj and Tj−1 by one-step refinements that result
in the same witness tree Tj and such that Tj−1 introduces
w instead. This is a contradiction to the minimality of j and
thus we may assume that T2 is e-rerouting.

Next, we claim that we may assume that the witness
assigned to the new leaf introduced in T2 is e. Before we
can show this, we need to ensure that there are no further
e-rerouting refinements in the sequence. Consider an
e-rerouting refinement Tj after T2, introducing some node
u and a new leaf t such that e ∈ E[t]. Consider the other
child v of u. By Lemma 4.2 we may assume that all nodes
in the subtree of Tj rooted at v are introduced after u and
thus that u has the two leaves t and v as children. Thus,
instead of introducing t in Tj we may instead introduce v.
That is, we may replace Tj by a different refinement that
is not e-rerouting, maintaining the sequence of refinements.
After doing this for all e-rerouting refinements it is the
case that the leaf t containing e is introduced once in T2

and then maintained in every refinement until we reach R.
Thus, we may relabel the witness of t to be e in all the
refinements. Finally, observe that we may assume that T2

is important and thus T2 equals T ′, the refinement selected
by the algorithm in Line 6. Thus, the refined ensemble C′
constructed from T ′ is good, as claimed.

Recall that MINIMUM DECISION TREE SIZE (DTS) is the
special case of MTES in which ℓ = 1 (and thus without
loss of generality s = S). Thus we have the following.

Corollary 4.3. MINIMUM DECISION TREE SIZE can be
solved in O((6δDs)s · sn) time.

This improves on the running time for DTS given by Ordy-
niak & Szeider (2021) (see their main theorem, Theorem 8).

The following theorem shows that the exponent in our run-
ning time cannot be improved.

Theorem 4.4 (⋆). Solving MTES in (δDS)o(S) · poly
time would contradict the Exponential Time Hypothesis,
even if D = 2 and ℓ = 1.

5. Tight Exponential-Time Algorithm
We now give an algorithm that solves MTES in (ℓ+ 1)n ·
poly time, where n := |E| is the number of examples. This
running time is single-exponential in n for every fixed num-
ber of trees. More importantly, we show that this running
time is essentially optimal. To obtain the algorithm, we first
show how to compute in a suitable running time the sizes
of smallest trees for essentially all possible classification
outcomes of a decision tree.

Lemma 5.1. Given a training data set (E, λ) one can com-
pute in 3n · poly time for all E′ ⊆ E the size of a smallest
decision tree T such that T [e] = blue if and only if e ∈ E′.

Proof. We solve the problem using dynamic programming
over subsets of E. The dynamic-programming table has
entries of the type Q[Eb, Er] where Eb and Er are example
sets. Each table entry stores the size of a smallest decision
tree on Eb ∪ Er where exactly the examples of Eb receive
the label blue. We fill the table entries for increasing values
of |Eb ∪ Er|.

We initialize the table by setting

Q[Eb, ∅] := 0 and Q[∅, Er] := 0

for all Eb ⊆ E and all Er ⊆ E. This is correct since in
these cases, a decision tree without cuts and only one leaf
with the appropriate class label suffices.

The recurrence to fill the table when Eb and Er are
nonempty is

Q[Eb, Er] := min
i∈[d],t∈Thr(i)

Q[Eb[fi ≤ t], Er[fi ≤ t]]+

Q[Eb[fi > t], Er[fi > t]] + 1.

Recall that Thr(i) denotes some minimum-size set of thresh-
olds that distinguishes between all values of the examples
in the ith dimension. In other words, for each pair of el-
ements e and e′ with e[i] < e′[i], there is at least one
value t ∈ Thr(i) such that e[i] < t < e′[i]. Moreover,
we only consider those cases where Eb[fi ≤ t] ∪ Er[fi ≤
t] ̸= ∅ and Eb[fi > t] ∪ Er[fi > t] ̸= ∅. That is, we con-
sider only the case that the cut gives two nonempty subtrees.
This ensures that the recurrence only considers table entries
with smaller set sizes.

The idea behind the recurrence is that we consider all pos-
sibilities for the cut at the root and then use the smallest
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decision trees to achieve the desired labeling for the two
resulting subtrees. The size of the resulting tree is the size
of the two subtrees plus one, for the additional root vertex.
The formal correctness proof is standard and omitted.

The running time bound can be seen as follows. The number
of table entries is O(3n) since each entry corresponds to
a 3-partition of E into Eb, Er, and E \ (Eb ∪ Er). Each
entry can be evaluated in polynomial time since the number
of dimensions and the size of Thr(i) is polynomial in the
input size.

The above lemma directly gives an algorithm for DTS with
the same running time.

Corollary 5.2. MINIMUM DECISION TREE SIZE can be
solved in 3n · poly time.

Before proving the running time bound for constructing tree
ensembles, let us remark that the above algorithm can be
used not only to produce perfect decision trees but also to
give a set of Pareto-optimal trees for the trade-off between
size and essentially any type of efficiently computable clas-
sification error, for example precision, recall, or F1-score.

We now use this algorithm as a subroutine in an algorithm
for MINIMUM TREE ENSEMBLE SIZE.

Theorem 5.3. For ℓ > 1, one can solve MINIMUM TREE
ENSEMBLE SIZE in (ℓ+ 1)n · poly time.

Proof. We use again dynamic programming. It is not suffi-
cient to use subsets of elements that are classified correctly.
Instead, we build the solution by iteratively adding trees
and storing for each example e how often e is classified
correctly.

To store subsolutions, we use a table R with entries of
the type R[c, j] where c is a length-n integer vector where
each ci is an integer in [0, ⌈ℓ/2⌉] for each i ∈ [n] and j ∈ [ℓ].
An entry R[c, j] stores the smallest total size of any set
of j decision trees such that each element ei is classified
correctly exactly ci times if ci < ⌈ℓ/2⌉ and at least ci times
if ci = ⌈ℓ/2⌉. The distinction between ci < ⌈ℓ/2⌉ and ci =
⌈ℓ/2⌉ allows us to assign only one value of ci to the situation
that ei is already correctly classified irrespective of the other
trees of the ensemble.

The first step of the algorithm is to compute for all E′ ⊆ E
the smallest size of any decision tree T assigning the blue
label exactly to all e ∈ E′. From this information, we can
directly compute for all E′ ⊆ E, the size of a smallest
decision tree that classifies all examples in E′ correctly and
all examples in E \E′ incorrectly. We will store these sizes
in table entries Q[E′].

Now, we initialize R for j = 1, by setting

R[c, 1] :=

®
Q[E′] ∃E′ ⊆ E : c = 1E′ ,

+∞ otherwise.

Here, we let 1E′ denote the indicator vector for E′. Now,
for j > 1, we use the recurrence

R[c, j] := min
E′⊆E,c′:c′⊕1E′=c

R[c′, j − 1] +Q[E′]. (1)

Here,⊕ is a truncated addition, that is, for the ith component
of c′, we add 1 if it is strictly smaller than ⌈ℓ/2⌉. If for
some R[c, j] the minimum ranges over an empty set, then
we set R[c, j] := +∞.

The idea of the recurrence is simply that the jth tree classi-
fies some element set E′ correctly and that this increases the
number of correct classifications for all elements of E′. The
smallest size of a tree ensemble with ℓ trees to correctly clas-
sify E can then be found in R[c∗, ℓ] where we let c∗ denote
the length-n vector where each component has value ⌈ℓ/2⌉.
The formal proof is again standard and omitted.

The table has size (⌈ℓ/2⌉ + 1)n · ℓ. The bottleneck in the
running time to fill the table is the time needed for evaluating
the min in Equation 1. A straightforward estimation gives
a time of 2n · ⌈ℓ/2⌉n for each entry since we consider all
possible subsets E′ of E and possibly all vectors c’. Instead,
we may fill the table entries also in a forward direction, that
is, for each c′ and each E′ ⊆ E, we compute c′ ⊕ 1E′ and
update the table entry for R[c, j] if R[c′, j − 1] +Q[E′] is
smaller than the current entry of R[c, j]. This way, the total
time for updating table entries is 2n·⌈ℓ/2⌉n ≤ (ℓ+1)n since
we consider 2n possible choices for E′ at each vector c′

and directly derive the corresponding c for each choice.
The overall time bound follows from the observation that
the 3n · poly time needed for the preprocessing is upper-
bounded by (ℓ+ 1)n since ℓ > 1.

We now show that, under a standard conjecture in complex-
ity theory, this running time cannot be improved substan-
tially.

We show this by a reduction from MULTICOLORING. Here,
one is given a graph G and two integers a and x, and wants
to assign each vertex in V (G) a set of b out of a colors such
that each two adjacent vertices receive different color sets.
MULTICOLORING cannot be solved in f(x) · xo(n) time,
where n is the number of vertices even if a = Θ(x2 log x)
unless the ETH fails (Bonamy et al., 2019). Observe that in
a solution for MULTICOLORING, the vertices having some
color c form an independent set in G. In our reduction, we
have a choice dimension for each maximal independent set
of G. Furthermore, we have a vertex example for each vertex
of G. Also, we set ℓ := 2a+ 1 and S := 2a+ 1. The main
idea of our reduction is that there are exactly a many trees
cutting a choice dimension such that each vertex example is
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correctly classified in at least x of these trees. We achieve
this by adding some dummy dimensions and further vertex
examples such that each correct tree ensemble consists of
exactly ℓ trees having exactly one inner node, as we show.

Theorem 5.4 (⋆). Solving MINIMUM TREE ENSEMBLE
SIZE in f(ℓ) · 2o(log ℓ)·n time would contradict the Exponen-
tial Time Hypothesis.

Now, Theorem 5.4 implies that the running time (ℓ+ 1)n ·
poly of the algorithm in Theorem 5.3 cannot be significantly
improved, unless the ETH is wrong.

Our proof of Theorem 5.4 also implies hardness for the
larger parameter S and that this hardness holds even if D =
2, that is, each feature is binary.

Corollary 5.5. Solving MINIMUM TREE ENSEMBLE SIZE
on instances with binary features in f(S) · 2o(logS)·n time
would contradict the Exponential Time Hypothesis.

Our proof of Theorem 5.4 also implies hardness for
MMAXTES. For this result the proof is simpler, since no ar-
gument is needed that each tree in the ensemble has exactly
one inner node.

Corollary 5.6. Solving MINIMAX TREE ENSEMBLE SIZE
on instances with binary features and s = 1 in f(ℓ) ·
2o(log ℓ)·n time would contradict the ETH.

6. Outlook
We conclude by mentioning a few avenues for possible
future research.

• In Theorem 4.1, we showed that MINIMUM TREE EN-
SEMBLE SIZE and MINIMAX TREE ENSEMBLE SIZE
are both fixed-parameter tractable when parameterized
by δ (the maximum number of dimensions in which a
pair of examples differ), D (the domain size), S and s
(the total tree ensemble size and the maximum size of
a tree in the ensemble, respectively), and ℓ (the number
of trees in the ensemble), respectively. It would be in-
teresting to investigate the problem for strictly smaller
parameterizations. Of course, lower bounds for MIN-
IMUM DECISION TREE SIZE also apply to MTES
and MMAXTES. Hence, these two problems are W [2]-
hard with respect to (D, s, ℓ) and (D,S, ℓ), respec-
tively, and NP-hard for constant values of (δ,D, ℓ).
This leaves the parameterized complexity of MTES for
(δ, S, ℓ) and (δ,D, S) and of MMAXTES for (δ, s, ℓ)
for (δ,D, s) as open problems.

• Theorem 4.1 naturally raises the question of whether
those problems admit polynomial-size kernels for that
parameterization. Intuitively, a polynomial-size kernel
is a polynomial-time algorithm that takes an instance

for the problem at hand as input and shrinks this in-
stance to a size that is bounded by a polynomial in
the parameter. For details on kernelization, we refer
to (Fomin et al., 2019; Cygan et al., 2015). Essentially,
a kernelization is simply a polynomial-time preprocess-
ing procedure which comes with a provable guarantee
that the preprocessed instance is small relative to the
parameter. Even preprocessing algorithms without a
guarantee could be of practical interest.

• The decision tree and tree ensemble models could be
extended in several ways: For instance, one could dis-
pense with the restriction that cuts must be axis-aligned
and allow cuts along any hyperplane. Lower bounds for
constructing optimum trees in this model were proven
by Goodrich et al. (1995) and Grigni et al. (2000),
but the parameterized complexity of this problem has
not been studied yet. One could also dispense with the
requirement that the decision tree or tree ensemble clas-
sify the training data set perfectly and instead allow a
bounded number of examples to be misclassified. This
is a better reflection of practical uses of decision trees
and tree ensembles. As we observed, Theorem 5.3 can
easily be adapted to this setting. If one additionally
includes the bound on the number of misclassifed ex-
amples as a parameter, the algorithm in Theorem 4.1
can also be adapted by adding a branch in which the
dirty example is misclassifed for any dirty example
that is considered in the algorithm. Whether or not
one can do without this superpolynomial dependence
on that bound, may be an interesting question. Also,
one could dispense with the restriction that there are
only two classes of examples. Theorems 4.1 and 5.3
could likely be adapted, but with a super-polynomial
dependence on the number of classes in the running
time. An algorithm without this dependence could be a
challenge. Finally, a common approach to building tree
ensembles is to build them incrementally, with each
added tree greedily reducing the number of misclassi-
fied examples as much as possible. The parameterized
complexity of this problem would be worth investigat-
ing as well.
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