
GOAT: A Global Transformer on Large-scale Graphs

Kezhi Kong 1 Jiuhai Chen 1 John Kirchenbauer 1 Renkun Ni 1 C. Bayan Bruss 2 Tom Goldstein 1

Abstract
Graph transformers have been competitive on
graph classification tasks, but they fail to outper-
form Graph Neural Networks (GNNs) on node
classification, which is a common task performed
on large-scale graphs for industrial applications.
Meanwhile, existing GNN architectures are lim-
ited in their ability to perform equally well on
both homophilious and heterophilious graphs as
their inductive biases are generally tailored to only
one setting. To address these issues, we propose
GOAT, a scalable global graph transformer. In
GOAT, each node conceptually attends to all the
nodes in the graph and homophily/heterophily re-
lationships can be learnt adaptively from the data.
We provide theoretical justification for our approx-
imate global self-attention scheme, and show it to
be scalable to large-scale graphs. We demonstrate
the competitiveness of GOAT on both heterophil-
ious and homophilious graphs with millions of
nodes. We open source our implementation at
https://github.com/devnkong/GOAT.

1. Introduction
Transformers (Vaswani et al., 2017) have demonstrated ef-
ficacy in many domains including language understanding
and computer vision (Devlin et al., 2018; Dosovitskiy et al.,
2020), and this has spurred interest in applying transformers
to the graph domain. However, the success of transformers
for graphs has been more modest, and has mostly been in
the fairly narrow regime of graph classification tasks like
molecule classification (Ying et al., 2021; Mialon et al.,
2021; Hussain et al., 2021; Dwivedi & Bresson, 2020; Rong
et al., 2020; Kreuzer et al., 2021; Maziarka et al., 2021).
The success of transformers in this regime is largely a result
of the small size of each problem instance. For instance,

1University of Maryland, College Park 2Capital One. Corre-
spondence to: Kezhi Kong <kong@cs.umd.edu>, Tom Goldstein
<tomg@cs.umd.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the mean node count of graphs from the ogbg-molhiv
dataset of the Open Graph Benchmark (Hu et al., 2020a)
is only 25.5. This tiny size enables self-attention across a
larger percent of the graph, enabling long-range or even
global self-attention. Despite a recent surge in interest in
attention-based networks, standard Graph Neural Networks
(GNNs) (Kipf & Welling, 2016; Veličković et al., 2017) are
still the de-facto model of choice for broader applications
involving node classification or large industrial graphs.

Research in other domains suggests that a transformer’s
ability to utilize long-range signals that were previously
inaccessible in more constrained sequential models are its
key success factor. However, it is well-known that this
self-attention is expensive, with time and memory over-
head growing quadratically with the length of the input. To
address this issue for language transformers, a range of effi-
cient variants have been proposed (Wang et al., 2020; Kitaev
et al., 2020; Zaheer et al., 2020; Zhu et al., 2021; Choro-
manski et al., 2020) and have demonstrated competitive
performance.

When applying transformers to graphs, sequence length is
akin to the size l of the l-hop neighborhood, but the size
grows exponentially instead of linearly. For large enough l,
the model becomes global and attends to the entire graph.
Tasks such as node classification are usually done on large-
scale graphs such as ogbn-products (2.4M nodes). At-
tending to the entirety of this graph in a naive way would
require 24TB of GPU memory (Geisler et al., 2021). It
is an open and pressing challenge to design efficient graph
transformer models that scale to graphs of this size. Existing
works on graph transformers for node classification never
go beyond recursive 1-hop-neighbor message passing (Shi
et al., 2020; Zhao et al., 2021; Hu et al., 2020b) so they fail
to learn from larger context and perhaps fail to achieve the
full potential demonstrated in other domains.

At the same time, an established limitation of GNNs is their
over-reliance on the homophily principle (McPherson et al.,
2001) causing them to perform poorly on heterophilious
graphs. Homophily (or heterophily) means that a node’s
neighbors are likely (unlikely) to be of the same class. Stan-
dard GNNs are built on the message passing scheme (Gilmer
et al., 2017), where features are aggregated recursively be-
tween 1-hop neighbors. This scheme has strong inductive

1

https://github.com/devnkong/GOAT

GOAT: A Global Transformer on Large-scale Graphs

bias towards homophilious graphs and does not tolerate
heterophily well. To address this, researchers have pro-
posed various heterophily-centered GNN models (Lim et al.,
2021; Abu-El-Haija et al., 2019; Pei et al., 2020; Zhu et al.,
2020). These models usually involve specialized message
passing schemes that do not work for homophilious graphs.
GPR-GNN (Chien et al., 2020) can adapt to different ho-
mophily/heterophily profiles, but this model uses the entire
graph for each training update (“full-batch” training) and
thus cannot scale to huge problems. While it is reasonable to
have specialized model designs for different kinds of graphs,
this practice can be problematic when the homophily or het-
erophily characteristics of the target dataset are unknown,
or the graph has mixed behavior.

Present work. We study a global transformer in which
each node attends to all others, providing a universal ar-
chitecture that supports both homophilious and heterophil-
ious graphs. We propose GOAT, a global transformer for
large-scale node classification tasks. To implement the in-
tractable O(n2) global self-attention on large-scale graphs,
we leverage a dimensionality reduction algorithm and re-
duce memory complexity from quadratic to linear. Using
a K-Means based projection algorithm, we theoretically
show that our scalable global attention method has bounded
error relative to graph attention without dimensionality re-
duction. Besides the global design, we also strengthen the
model using a scalable local attention module. For each
node, we sample its l-hop neighbors and make it directly
attend to them, unlike the recursive smoothing pattern of
GNNs. Empirically, GOAT shows strong performance on
both homophilious and heterophilious datasets as large as
ogbn-products (2.4M nodes) (Hu et al., 2020a) and
snap-patents (2.9M nodes) (Lim et al., 2021). We
summarize our contributions as follows:

1. We propose GOAT, a scalable global transformer model
where each node is able to attend to all others.

2. We develop a novel local attention module that enables
GOAT to absorb rich local information.

3. We demonstrate the strong performance of GOAT on
both large-scale homophilous and heterophilious node
classification benchmarks.

4. We provide theoretical justification to show our scal-
able global attention scheme has bounded error relative
to unscalable standard attention.

2. Preliminaries
In this section we introduce the preliminaries of GNNs,
transformers, and homophily.

Graph Neural Networks (GNNs). We represent a graph

as G(V, E). GNNs are often built with recursive message-
passing schemes, where features are passed and shared di-
rectly between 1-hop neighbors. Formally the k-th iteration
of message passing, or the forward propogation of the k-th
layer of GNNs, is defined as follows:

m
(k)
v = AGGREGATE(k)

({(
h
(k−1)
v , h

(k−1)
u , euv

)
, ∀u ∈ N (v)

})
,

h
(k)
v = COMBINE(k)

(
h
(k−1)
v ,m

(k)
v

)
,

(1)

where h
(k)
v is the hidden feature of node v at the k-th layer,

m
(k)
v is the computed message for node v at the k-th layer,

euv is the edge feature between node u and v, N (v) is node
v’s 1-hop neighbor set. AGGREGATE(·) and COMBINE(·)
are functions parameterized by neural networks.

Transformers. The key component of a transformer model
is the self-attention scheme, which allows each element
of a set or token to attend to information of other tokens
at various locations. The forward pass of a self-attention
module is defined as:

Attn(H) = Softmax

(
HWQ (HWK)

⊤
√
d

)
HWV , (2)

where H ∈ Rn×f is the hidden feature matrix.
WQ,WK ,WV ∈ Rf×d are linear projection matrices with
trainable weights. Here the Equation 2 denotes the single-
head self-attention module, which can straightforwardly
generalize to multi-head attention. Note that in practice
multi-headed self-attention is widely used. It is easy to see
that attention is expensive. The time and memory com-
plexity is O(n2), which leads to low efficiency and is a
bottleneck for transformers. In this work, we call the output
of the Softmax function the “attention matrix”.

Homophily indicates connected nodes are likely to share
common labels. We follow Lim et al. (2021) to focus on
edge homophily in this work. The edge homophily is de-
fined as the proportion of edges that link two nodes with the
same label as below:

h =
|{(u, v) ∈ E : yu = yv}|

|E|
, (3)

where E is the edge set and y is the node label. Non-
homophily (or heterophily) graph indicates the dataset with
dissimilar labels/features sharing edges.

3. Method
Intuition. Existing GNNs usually have hardcoded message-
passing patterns and will only work on either homophilious
or heterophilious graphs. A global attention scheme makes
each node attend to all the nodes in the graph and does

2

GOAT: A Global Transformer on Large-scale Graphs

not explicitly have inductive bias towards either one. In-
stead of one specially tailored or fixed message passing and
aggregating pattern, the attention scheme freely learns to
adapt to different priors. Furthermore, the ability to attend
to a single far-away node may enable multi-hop features
to be used without the over-smoothing that happens when
information is passed over many rounds of averaging in a
standard GNN. However, for applications in industry where
large graphs with millions of nodes are ubiquitous, it is not
possible to train and deploy a fully global transformer due
to the quadratic cost.

Given that, we propose GOAT, the scalable global
transformer. GOAT uses an approximate global attention
which reduces complexity from quadratic to linear and sup-
ports mini-batch training. GOAT also has a local attention
module to process information from the local neighborhood
for better prediction. Figure 1 illustrates the local sampling
procedure and the whole attention module. In this section,
we describe our methodological designs in detail. Firstly let
us have a formal definition on the notations.

Definition 3.1. We define n as the total number of nodes
in the graph, k is the number of dimension in the low di-
mensional space, k ≪ n. P denotes the projection matrix,
P ∈ Rn×k. f denotes the raw feature dimension of the
node feature and d is the hidden feature dimension if with-
out further specification. b denotes batch size.

Global. To address the expensive quadratic complexity is-
sue, we leverage dimensionality reduction. Firstly we want
to find a projection matrix P that can reduce the feature ma-
trices into a low-dimensional space so the cost of computing
their product is reduced. At the same time we also hope
this reduction will not overly degrade the quality of repre-
sentations. Below, we provide theoretical analysis on the
existence of such matrix, P . Note that in the demonstration
process below, we assume positional information is already
fused into node features.

Theorem 3.2. For any linear weight matrices
WK ,WQ,WV ∈ Rf×d, node feature matrix X ∈ Rn×f ,
mini-batch of nodes XB ∈ Rb×f , row vector x ∈ R1×n

of X , and ε > 0, there exists projection matrices
PA, PV ∈ Rn×k, such that

Pr(
∥∥Softmax (SPA)P

⊤
V XWV − Softmax(S)XWV

∥∥
F

⩽ ε∥ Softmax(S)∥F ∥XWV ∥F) > 1−O(1/n), (4)

with S = XBWQ (XWK)
⊤
/
√
d and k = O

(
log(n)/ε2

)
.

We argue that the scheme provided by Theorem 3.2 makes
global attention possible on large graphs. The expression
SPA =

(
XBWQ (XWK)

⊤
/
√
d
)
PA inside the Softmax

function can be computed as a product between QB =
XBWQ and K̃ = P⊤

A XWK , which is only O(bdk) work.

Note that the new value feature matrix Ṽ = P⊤
V XWV

is also low dimensional. Then we see that the problem
comes to how we can materialize K̃, Ṽ without explicitly
computing the multiplication of (XWK)⊤PA or P⊤

V XWV

which is O(nfd+ nkd) and not scalable when the graph is
large.

Technically, we follow Van Den Oord et al. (2017) to ma-
terialize K̃ and Ṽ . Projection matrix P is computed by the
K-Means algorithm as the sparse indexing matrix. Each row
of P ∈ Rn×k is a one-hot vector representing the clustering
centroid the node is assigned to. We define

C = diag−1(1nP)P⊤X

as the codebook. Each row of the codebook C represents
the center (e.g., the average) of all the entries in a clus-
ter. In this way, K̃ = diag−1(1nP)P⊤XWK = CWK

and Ṽ = diag−1(1nP)P⊤XWV = CWV . We store and
update K̃, Ṽ in the exponential moving average (EMA)
manner. The algorithm is summmarized in Algorithm 2.
Note that we do not explicitly compute K̃, Ṽ each iteration
but instead cache and update the codebook on the fly in the
EMA manner using batch statistics. P is stored sparsely to
save memory.

Now we go back to show that the forward pass under such
a scheme yields a bounded-error approximation compared
with the authentic output. We start with two definitions for
clearer demonstration. We define

X̃ = Pdiag−1(1nP)P⊤X = PC, (5)

as the approximate X using the codebook. We define the
attention matrix for a batch XB computed by parameterized
function fW as

fW (Y) = Softmax

(
XBWQ (YWK)

⊤
√
d

)
. (6)

Theorem 3.3. If the function fW has Lipschitz constant
upper-bounded by lip (fW) and the quantization error is ε,
the estimation error is bounded as,∥∥∥X̃out

B −Xout
B

∥∥∥
F
≤ ε·[1 +O (lip (fW))] ∥AB∥F ·∥X∥F ·∥WV ∥F ,

(7)
with X̃out

B = ÃBX̃WV , Xout
B = ABXWV , AB =

fW (X) = Softmax
(
XBWQ (XWK)

⊤
/
√
d
)

, and ÃB =

fW (X̃) = Softmax
(
XBWQ(X̃WK)⊤/

√
d
)

. Quantiza-

tion error ε is defined as ∥X − X̃∥F ≤ ε∥X∥F .

Note that the computation of X̃out
B denoted in Theorem 3.3,

which is the approximated global attention, is expensive
because it requires the computation of matrix multiplication

3

GOAT: A Global Transformer on Large-scale Graphs

𝑏!
𝑏"
𝑏"

𝑏#

𝑏#
𝑏#

Codebook

Update

Sample

Local Attention

Global Attention

1. Neighborhood Sampling 2. GOAT forward propogation

Figure 1: The local sampling procedure and forward propogation of the GOAT model. bl denotes the trainable positional
bias for neighbors at a distance of l.

Algorithm 1 Global Transformer mini-batch forward pro-
pogation algorithm

Require: Graph G = (V, E); MLPa and MLPb are two in-
dependent MLPs; PE is the precomputed positional encoding
based on the structure of graph G; µx, µpe are the centroids com-
puted by the K-Means algorithm; P is the centroid assignment
index for each node; WQ,WK ,WV are trainable parameters.
for v ∈ V do

x← MLPa(Xv)
pe← PEv

q ← Concat(x, pe)WQ

K ← Concat(µx, µpe)WK

V ← µxWV

xout ← Softmax
(

qK⊤
√
d

+ log (1nP)
)
V

xout ← MLPb(xout)
Update µx, µpe by x, pe using the EMA K-Means
algorithm as in Algorithm 2.

end for

of XBWQX̃WK and also ÃBX̃WV , which is unscalable.
We articulate it in this way for the simplicity of theoreti-
cal proof. Below we show that X̃out

B can be equivalently
computed using K̃ and Ṽ , which are low-dimensional.

Corollary 3.4. The computation of X̃out
B =

Softmax
(
XBWQ(X̃WK)⊤/

√
d
)
X̃WV is equivalent

with

X̃out
B = Softmax

(
XBWQK̃

⊤/
√
d+ log (1nP)

)
Ṽ . (8)

All the proofs are deferred to the Appendix.

Through Corollary 3.4, where XB gets to directly attends
to K̃ = CWK instead of X̃ . As we have discussed, both
K̃ and Ṽ will be materialized in memory and updated in
the EMA way. The computation for the feature of a node
X̃out

B is O(bdk) and thus scalable and efficient. Algorithm 1
illustrates our global transformer forward pass.

Algorithm 2 EMA K-Means update algorithm
Require: Inputs are the hidden features X and positional en-

codings PE for a batch. bn(·) is the batch norm module.
FindNearest(·) finds the nearest centroid for each feature.
function Update(X,PE)

F ← Concat(X,PE)
F ← bn(F) {data whitening using batch norm}
µ← Concat(µx, µpe)
P ← FindNearest(F, µ) {compute cluster assignment}
c← c · γ + P⊤1 · (1− γ) {EMA accumulation}
v ← v · γ + P⊤F · (1− γ) {EMA accumulation}
v ← v/c
µ← v · bn. running std+bn. running mean
µx, µpe ← µ

end function

It is well established in the literature that good positional en-
codings are required to make transformers work effectively.
In our global attention scheme, only absolute positional
encodings are feasible because the hidden features and posi-
tional encodings must be concatenated. We argue that the
design of positional encoding on graphs is still an open ques-
tion for the community (Dwivedi et al., 2021; Kreuzer et al.,
2021) and detailed discussion for such design is beyond the
scope of this work. To simplify the setup of the experiments,
we use pretrained node2vec (Grover & Leskovec, 2016)
node embeddings as our positional embeddings.

Local. Along with the design of our global transformer,
we propose a novel local attention module, which allows
each node to directly attend to its l-hop neighbors to attain
rich local information. Empirically, we find that the local
attention module effectively helps the model learn better
representations. Although this module is responsible for
aggregating information from the local neighborhood as
in normal message passing feature aggregation, unlike the
standard GNNs’ recursive 1-hop neighbor smoothing pat-
tern, our local module provides flexible attention weights for

4

GOAT: A Global Transformer on Large-scale Graphs

neighbors at different hop distances. We believe the module
provides increased capacity to learn the inductive biases
required for accurate predictions beyond the hard-coded
structures of existing GNNs. To support mini-batch training,
we adopt the widely-used neighbor sampling (NS) method
(Hamilton et al., 2017) to sample all l-hop neighbors. We
make each node directly attend to the sampled neighbors.
Inspired by Ying et al. (2021), for the local module we se-
lect the relative positional encoding scheme to distinguish
neighbors at diverse distances from the source node. Our
attention score calculation inside the Softmax function is:

Sij =
XiWQ (XjWK)

⊤
√
d

+ bD(i,j), (9)

where bD(i,j) is a trainable bias parameter indexed by
D(i, j), the shortest distance between node i and j. Note
that although the local module intuitively helps learn better
representations, the neighbor sampling (NS) algorithm does
introduce a small scalability concern. It is well-known that
the neighborhood explosion problem for NS has complexity
O(dl) for l-hop neighborhoods, where d is the average de-
gree of the graph. Surprisingly, it is the NS step, and not the
approximate global attention, that is the primary efficiency
bottleneck for our model. We investigate the efficiency
perspective in Section 5.

Since we leverage different positional encodings for the
global and local modules, we have separate attention func-
tions, after which the respective sets of node features and po-
sitional encodings are concatenated and fed into subsequent
layers. Figure 1 illustrates the local sampling procedure
and the whole attention module. In the sections to follow,
we show that GOAT displays strong performance on the
large-scale node classification task.

4. Experiments
In this section, we detail the empirical evaluation of our
GOAT model.

Datasets. We select four datasets to evaluate. To
represent homophilious graph problems we choose two
datasets, ogbn-arxiv and ogbn-products, from
the well-known Open Graph Benchmark (OGB) (Hu
et al., 2020a). For heterophilious examples we utilize
the arxiv-year and snap-patents datasets curated
by Lim et al. (2021). These are all large-scale (multi-
million) node classification datasets. For the train and
validation splits, we use the official splits from OGB
for both ogbn-arxiv and ogbn-products and for
arxiv-year and snap-patents we follow the prac-
tice of Lim et al. (2021) and randomly sample the train and
validation sets. As there are no official splits or train set ra-
tios for these two datasets, we experiment with training sets

that comprise 10%, 20%, and 50% of the data while fixing
validation set ratio at 25%, and report separate results for
each split. We refer readers to Table 1 for detailed statistics
of the datasets.

Setup. We focus on the transductive node classification task,
where we see all the nodes at training time, but only the
train set has labels. Our baseline models include GCNJK
(Xu et al., 2018), GAT (Veličković et al., 2017), LINKX
(Lim et al., 2021), MixHop (Abu-El-Haija et al., 2019), and
GPS (Rampášek et al., 2022). All of our training procedures
use pure empirical risk minimization (ERM) and we do not
leverage techniques like data augmentation (Kong et al.,
2020), label propogation (Huang et al., 2020), powerful
embeddings (Chien et al., 2021), or other tricks, as these
additional regularizers have not been uniformly studied for
all model types, and this simple setting enables fair compar-
isons across model architectures. For the baseline models,
we perform a hyperparameter sweep and select the best per-
forming settings and report the corresponding results for
each model and dataset pairing (full details in the Appendix).
For GOAT, the attention function is multi-headed but we
only implement a single layer of attention module. We leave
the discussion of a multi-layer variant to future work. For
the local attention, we sample neighbors that live within
3-hops. For each node we sample [20, 10, 5] neighbors
recursively. The size of the codebook is fixed at 4, 096 and
the dimensionality is 64. We always use a dropout rate of
0.5 and also use batch norm. Each experiment is carried out
on either a single GeForce RTX 2080 Ti (11GB memory)
or a RTX A4000 (16GB memory).

Results. Table 2 reveals the competitive performance of
our GOAT model compared with baselines. For ∗ we show
performance of MixHop with GraphSAINT sampling (Zeng
et al., 2019) on snap-patents despite Lim et al. (2021)
reporting 46.82± 0.11 for MixHop with ClusterGCN sam-
pling (Chiang et al., 2019) as their runner-up to LINKX
on this dataset. This setting was OOM/T on our hardware,
but as it is weaker than LINKX and GOAT in either case,
reporting the stronger numbers would not have changed
the results or analysis of average model performance. GC-
NJK and GAT intuitively register strong performances on
ogbn-arxiv and ogbn-products as they resonate
with the inductive bias of the two homophilious datasets.
In contrast, on the arxiv-year and snap-patents
datasets, their scores are poor. LINKX and MixHop are
architectures designed for heterophilious graphs, a special-
ization validated by their strong performances in Table 2
on those datasets. However, GOAT constantly achieves
competitive results on all four datasets, which reveals the
adaptive ability of the attention functions. We highlight that
our goal is not to beat GNNs universally; specific priors
can still be useful factors when designing architectures. Fur-
ther, in accordance with the no-free-lunch theorem, winning

5

GOAT: A Global Transformer on Large-scale Graphs

Table 1: Dataset statistics.

Dataset # Nodes # Edges # Feat. # Class Class type Split Edge hom.

ogbn-arxiv 169,343 1,166,243 128 40 product category official .66

ogbn-products 2,449,029 61,859,140 100 47 subject area official .81

arxiv-year 169,343 1,166,243 128 5 pub year random .222

snap-patents 2,923,922 13,975,788 269 5 time granted random .073

all comparisons on datasets with diverse properties is ex-
pected to be difficult. Rather, our intention is to develop a
model that can learn different inductive biases as required,
adapting seamlessly to different use cases. This flexibil-
ity is an important quality in practice as practitioners may
encounter datasets for which knowledge about appropriate
priors is scarce. Note that we further try to compare with
GPS (Rampášek et al., 2022), which is a powerful scal-
able graph transformer on graph-level tasks. However on
large-scale node tasks GPS always yields OOM even on the
smallest arxiv datasets.

5. Ablation Studies & Analysis
GOAT vs. GOAT-Local-only. In Figure 2a & 2b we ablate
to only use the local module to analyze our architecture
design. On the ogbn-arxiv dataset where homophily is
prevalent, the local-only model is as strong as the complete
GOAT. While on the arxiv-year dataset there shows
clear discrepancy between the two, where the global module
brings a salient 3% boost. The results provide a strong vali-
datioin towards our main intuition, that the global module
increases expressive power by modeling long-range inter-
actions. And such ability is especially effective towards
heterophilious graphs, which is intuitive as many other suc-
cessful heterophilious GNN architectures aimed at broaden-
ing the range of message passing as well as learning from
long-range interactions.

Codebook size. We run ablation studies on the codebook
size for a better understanding and interpretation of the
GOAT model. The codebook size refers to the k value in
the K-Means algorithm. We summarize the results in Table
3. Note the heterophilious dataset arxiv-year is more
sensitive to the adjustment of the codebook size, showing the
efficacy of global attention module at learning long-range
interactions.

Batch norm vs. Layer norm. Normalization is important
to transformers. We ablate on the normalization technique
selection in Figure 3a & 3b. We see that layer norm can be as
good as batch norm in our model but converges much slower,
and evidently “no normalization” is not a good choice for
our architecture.

0 25 50 75 100 125 150
epoch

67

68

69

70

71

72

73

74

va
lid

at
io

n
ac

c

GOAT
GOAT-Local-only

(a) ogbn-arxiv

0 50 100 150 200 250 300
epoch

46

48

50

52

54

va
lid

at
io

n
ac

c

GOAT
GOAT-Local-only

(b) arxiv-year

Figure 2: Ablation study on the local module.

0 25 50 75 100 125
epoch

60

62

64

66

68

70

72

74

va
lid

at
io

n
ac

c

GOAT-bn
GOAT-ln
GOAT-w/o-norm

(a) ogbn-arxiv

0 50 100 150 200 250 300
epoch

30

35

40

45

50

55

va
lid

at
io

n
ac

c

GOAT-bn
GOAT-ln
GOAT-w/o-norm

(b) arxiv-year

Figure 3: Ablation study on the normalization technique.

Depth. We constantly have 1 layer of attention modules
in our model, for both the global and local part. In fact it
is challenging to extend our GOAT model to multi-layer
attention computation like common transformers. Note that
our attention modules are not strict self-attention modules,
whose input and output are of the same length. As denoted
in Fig 1, our input includes the predictive node, sampled
neighbors, and the codebook, but only the the predictive
node attends to others and gets aggregated features. So af-
ter the attention function the state of feature for sampled
neighbors and the codebook is behind that of the predictive
node, where future rounds of attention computation is less
intuitive. A straightforward strategy to address this conun-
drum is to recursively sample neighbors of neighbors and
add more codebooks by each layer, but apparently this will
greatly adds to the overhead and renders the model less
efficient. Due to computational limitation we do not carry
out the experiments, but how to make the model deeper is

6

GOAT: A Global Transformer on Large-scale Graphs

Table 2: Experimental results. Note that the “Overall performance average” is the mean value of the two “Performance
avgerage” values in the upper and lower tables. The darker blue marks the best result in each row, while the lighter shade
marks the runner-up. Evaluation metric is prediction accuracy on the test set. Test accuracies are reported based on the
hyperparameter setting yielding the highest validation accuracies. Where possible, we validate our baselines against the
results in Lim et al. (2021). OOM means out of memory error through our experiments.

General GNN Heterophilious GNN Transformer Ours

Dataset Train ratio GCNJK GAT LINKX MixHop GPS GOAT

ogbn-arxiv official 54% 69.57 ± 0.20 71.95 ± 0.36 66.18 ± 0.33 71.29 ± 0.29 OOM 72.41 ± 0.40

ogbn-products official 8% 72.84 ± 0.36 79.45 ± 0.59 71.59 ± 0.71 73.48 ± 0.29 OOM 82.00 ± 0.43

Performance average 71 76 69 72 OOM 77

arxiv-year random 10% 43.34 ± 0.08 38.34 ± 0.10 46.22 ± 0.24 45.13 ± 0.25 OOM 49.44 ± 0.11

arxiv-year random 20% 44.77 ± 0.10 39.19 ± 0.12 49.16 ± 0.42 47.18 ± 0.24 OOM 51.21 ± 0.44

arxiv-year random 50% 47.74 ± 0.23 40.27 ± 0.20 53.53 ± 0.36 50.37 ± 0.25 OOM 53.57 ± 0.18

snap-patents random 10% 32.50 ± 0.10 32.72 ± 0.10 49.74 ± 0.46 33.57 ± 0.06 OOM 44.31 ± 0.43

snap-patents random 20% 32.97 ± 0.06 32.96 ± 0.09 54.32 ± 0.50 33.96 ± 0.06 OOM 49.55 ± 0.31

snap-patents random 50% 33.52 ± 0.05 33.10 ± 0.09 60.12 ± 0.23 34.28 ± 0.07* OOM 54.97 ± 0.23

Performance average 39 36 52 41 OOM 51

Overall performance average 55 56 61 57 OOM 64

Table 3: Codebook size abalation study.

codebook size ogbn-arxiv arxiv-year

512 71.92 50.90
1k 71.99 51.21
2k 72.14 52.51
4k 72.41 53.57

an interesting research opportunity.

Efficiency. The neighbor sampling bottleneck is the ma-
jor limitation of our method. Note that although the local
module intuitively helps learn better representations, the
neighbor sampling (NS) algorithm does introduce a small
scalability concern. It is well-known that the neighborhood
explosion problem for NS has complexity O(dl) for l-hop
neighborhoods, where d is the average degree. Our sam-
pling method in the local module is a plain adaptation of
NS so that GOAT will share efficiency issues of NS. How-
ever when we only use the global module of GOAT, its
convergence rate outperforms that of GAT-NS by a large
margin according to Figure 4a and Figure 4b due to the
linear complexity benefit. In Table 4 we report the absolute
elapsed running time per training epoch for GAT-NS and

0 20 40 60 80 100
time (s)

10

20

30

40

50

60

70

va
lid

at
io

n
ac

c

GOAT
GAT

(a) ogbn-arxiv

0 20 40 60 80 100 120
time (s)

30

32

34

36

38

40

42
va

lid
at

io
n

ac
c

GOAT
GAT

(b) arxiv-year

Figure 4: Convergence speed comparison.

GOAT on datasets with 1k and 4k as batch size. We see
that GOAT has competitive running speed compared with
GAT that is powered by NS for scalable training, while our
GOAT-Global-only variant overwhelmingly outperforms the
other two thanks to the linear training complexity. Detailed
hyperparameter setup can be found in the Appendix.

6. Related Work
Scalability. The poor scalability of GNNs to large graphs
remains a major obstacle to deploying GNNs for enterprise-
scale applications. Scalable GNN algorithms mainly involve
node-, layer-, and graph-wise sampling methods.

7

GOAT: A Global Transformer on Large-scale Graphs

Table 4: Running time in second (s) per epoch of differ-
ent models. GOAT-G refers to GOAT-Global-only model
variant.

batch size model ogbn-arxiv ogbn-products

1k GAT 9.76 127.42
1k GOAT-G 2.88 5.58
1k GOAT 8.00 109.51

4k GAT 8.31 113.47
4k GOAT-G 2.33 4.36
4k GOAT 7.62 101.73

Hamilton et al. (2017) proposed neighbor sampling (NS) to
repeatedly sample neighbors for message passing, but this
approach leads to the exponential neighborhood explosion
problem mentioned at the end of Section 3. One technique
to address this issue is the layer-wise sampling proposed in
Huang et al. (2018). ClusterGCN (Chiang et al., 2019) and
GraphSAINT (Zeng et al., 2019) both perform subgraph
sampling so that GNNs can be run in a “full-batch” man-
ner but on tractable subgraphs that hopefully approximate
the global graph semantics - we employ the latter of the
two for training our baseline GCNJK, GAT, and MixHop
models. A recent method, GAS (Fey et al., 2021), stores
historical node features to help both training and inference
process. Finally, it is also established that transformers suf-
fer from inherent scalability issues. In response, a plethora
of efficient transformers have been proposed that employ
different techniques to improve their complexity including
sparse attention maps (Zaheer et al., 2020; Beltagy et al.,
2020), clustering-based schemes (Kitaev et al., 2020; Tay
et al., 2020), and low-rank projections of the attention matrix
(Wang et al., 2020; Tay et al., 2021).

Graph transformers. Most successful applications of trans-
formers to graphs problems have only considered graph clas-
sification. Graphormer (Ying et al., 2021) is the represen-
tative global transformer on small graphs with customized
centrality, edge, and spatial encodings. Other strong ar-
chitectures include Kreuzer et al. (2021); Maziarka et al.
(2021); Dwivedi & Bresson (2020); Rong et al. (2020).
Existing graph transformers (Shi et al., 2020; Hu et al.,
2020b; Dwivedi & Bresson, 2020; Rampášek et al., 2022)
for node classification use the same recursive message pass-
ing scheme as traditional GNNs. The attention module
computes attention scores as the weights for 1-hop neigh-
borhood smoothing, similar to the attention mechanism
in GATs (Veličković et al., 2017). These models fail to
demonstrate the ability to learn from larger contexts and
generally do not outperform traditional GNNs. An example
architecture that does implement a form of global attention,
GraphBERT (Zhang et al., 2020), fails to solve scalabilty
issues due to requiring full-batch training.

Heterophily. Recently a body of work has focused on
adapting GNNs to heterophilious graphs. LINKX (Lim
et al., 2021) is a simple model that coerces 2-hop (but not
1-hop) neighbors to have the similar labels. H2GCN (Zhu
et al., 2020) aggregates features from 1-hop and 2-hop neigh-
bors separately. MixHop (Abu-El-Haija et al., 2019) aggre-
gates information from diverse degrees of smoothed features.
GPR-GNN (Chien et al., 2020) is similar to MixHop, but
uses a more complex adaptive aggregation operation. GPR-
GNN works well on some kinds of data but does not scale
to large graphs. One closely related work is Non-local GNN
(Liu et al., 2021), which does an approximate global atten-
tion leveraging attention-based sorting. The model success-
fully reduces time complexity from O(n2) to O(nlog(n)),
but cannot support mini-batch training, so its scalability is
limited.

While progress has certainly been made towards more ef-
fective graph transformers and models specifically suited
to heterophilious graphs, to date, no graph transformer has
emerged that simultaneously relaxes the restriction of a ho-
mophilious inductive bias (whilst remaining performant in
that setting) and easily handles large-scale node classifica-
tion tasks.

7. Conclusion
We propose GOAT, a global transformer that works on both
homophilious and heterophilious node classification tasks.
Our model makes global attention possible by dimensional-
ity reduction and we prove our approximate approach has
bounded error compared with the true global mechanism.
Experiments reveal GOAT’s strong performances on large-
scale graphs. We hope our work can spur more research
into universal graph neural architecture who can adapt to
different inductive biases.

Acknowledgements
This work was made possible by support from Cap-
ital One Bank and the National Science Founda-
tion (IIS-2212182), the ONR MURI program, DARPA
GARD (HR00112020007), the Office of Naval Research
(N000142112557), and the AFOSR MURI program. Com-
mercial support was provided by Capital One Bank, the
Amazon Research Award program, and Open Philanthropy.
Further support was provided by the National Science Foun-
dation (IIS-2212182), and by the NSF TRAILS Institute
(2229885).

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-

8

GOAT: A Global Transformer on Large-scale Graphs

styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In in-
ternational conference on machine learning, pp. 21–29.
PMLR, 2019.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Chien, E., Chang, W.-C., Hsieh, C.-J., Yu, H.-F., Zhang, J.,
Milenkovic, O., and Dhillon, I. S. Node feature extraction
by self-supervised multi-scale neighborhood prediction.
arXiv preprint arXiv:2111.00064, 2021.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. Gn-
nautoscale: Scalable and expressive graph neural net-
works via historical embeddings. In International Con-
ference on Machine Learning, pp. 3294–3304. PMLR,
2021.

Geisler, S., Schmidt, T., Şirin, H., Zügner, D., Bojchevski,
A., and Günnemann, S. Robustness of graph neural net-
works at scale. Advances in Neural Information Process-
ing Systems, 34, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020a.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. Heterogeneous
graph transformer. In Proceedings of The Web Conference
2020, pp. 2704–2710, 2020b.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson,
A. R. Combining label propagation and simple mod-
els out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adap-
tive sampling towards fast graph representation learning.
Advances in neural information processing systems, 31,
2018.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Edge-
augmented graph transformers: Global self-attention is
enough for graphs. arXiv preprint arXiv:2108.03348,
2021.

Johnson, W. B. and Lindenstrauss, J. Extensions of lips-
chitz mappings into a hilbert space 26. Contemporary
mathematics, 26:28, 1984.

Kane, D. M. and Nelson, J. Sparser johnson-lindenstrauss
transforms. Journal of the ACM (JACM), 61(1):1–23,
2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

9

GOAT: A Global Transformer on Large-scale Graphs

Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem,
B., Taylor, G., and Goldstein, T. Flag: Adversarial data
augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34, 2021.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O., and Lim, S. N. Large scale learning on
non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Liu, M., Wang, Z., and Ji, S. Non-local graph neural net-
works. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021.

Maziarka, L., Majchrowski, D., Danel, T., Gaiński, P., Ta-
bor, J., Podolak, I., Morkisz, P., and Jastrzebski, S. Rela-
tive molecule self-attention transformer. arXiv preprint
arXiv:2110.05841, 2021.

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of
a feather: Homophily in social networks. Annual review
of sociology, 27(1):415–444, 2001.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers. arXiv preprint
arXiv:2106.05667, 2021.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. arXiv preprint arXiv:2205.12454,
2022.

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., and
Huang, J. Self-supervised graph transformer on large-
scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C.
Sparse sinkhorn attention. In International Conference
on Machine Learning, pp. 9438–9447. PMLR, 2020.

Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., and
Zheng, C. Synthesizer: Rethinking self-attention for

transformer models. In International Conference on Ma-
chine Learning, pp. 10183–10192. PMLR, 2021.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-
i., and Jegelka, S. Representation learning on graphs
with jumping knowledge networks. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5453–5462. PMLR,
10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/xu18c.html.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in Neural Information Processing
Systems, 33:17283–17297, 2020.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

Zhang, J., Zhang, H., Xia, C., and Sun, L. Graph-bert: Only
attention is needed for learning graph representations.
arXiv preprint arXiv:2001.05140, 2020.

Zhao, J., Li, C., Wen, Q., Wang, Y., Liu, Y., Sun, H., Xie, X.,
and Ye, Y. Gophormer: Ego-graph transformer for node
classification. arXiv preprint arXiv:2110.13094, 2021.

Zhu, C., Ping, W., Xiao, C., Shoeybi, M., Goldstein, T.,
Anandkumar, A., and Catanzaro, B. Long-short trans-
former: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34,
2021.

10

https://proceedings.mlr.press/v80/xu18c.html
https://proceedings.mlr.press/v80/xu18c.html

GOAT: A Global Transformer on Large-scale Graphs

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804,
2020.

11

GOAT: A Global Transformer on Large-scale Graphs

A. More Theoretical Analysis
Note that in the demonstration process below, we assume positional information is already fused into node features.

Proposition A.1. There exists a distribution of random projection matrices P ∈ Rn×k such that for any linear weight
matrices WK ,WQ,WV ∈ Rf×d, node feature matrix X ∈ Rn×f , mini-batch of nodes XB ∈ Rb×f , column vector v ∈ Rn

of XWV , and any choice of ε > 0,

Pr
(
∥ABPP⊤v −ABv∥F < ε∥ABv∥F

)
> 1−O(1/n), (10)

with AB = Softmax
(
XBWQ (XWK)

⊤
/
√
d
)

and k = O
(
log(n)/ε2

)
.

Our goal here is to find a projection matrix P to project both the attention matrix AB and features v into some low dimension
space, enabling us to replace the attention matrix AB ∈ Rb×n with ÃB = ABP ∈ Rb×k and v ∈ Rn with ṽ = PT v ∈ Rk.
Despite the existence of such P matrix, we argue that it is impractical to apply Proposition A.1 in practice. The reason is
that it is hard to materialize ÃB in memory so the explicit computation of AB is inevitable, which does not help improve
scalability as calculating all attention matrices batch-by-batch is still O(n2). Below, we describe a route to escape this
problem.

B. More Ablation Studies
Local range. To show the efficacy of our local module, we further run the ablation study to have nodes attend to 1-, 2-,
3-hop neighborhoods within the local transformer of GOAT. Results are included in Table 5. We can see that the local
module plays an important role in extracting features from local fields and contributes to the final predictions of the GOAT
model. Note that arxiv-year and snap-patents have 50% training samples.

Table 5: Ablation study on the hop range of GOAT local module.

ogbn-arxiv arxiv-year (50%) ogbn-products snap-patents (50%)

GOAT-local-1-hop 71.23 50.18 78.18 47.47
GOAT-local-2-hop 72.26 52.06 78.74 49.44
GOAT-local-3-hop 72.41 53.57 82.00 54.97

C. Proofs
This section lists theoretical proofs of our propositions and theorems.

C.1. Proof of Proposition A.1

Proof. To help build the proof, we utilize the Johnson–Lindenstrauss (JL) Lemma from Johnson & Lindenstrauss (1984);
Kane & Nelson (2014).

Lemma C.1. For any integer d > 0, and any 0 < ε, δ < 1/2, there exists a probability distribution on k × d real matrices
for k = Θ(ε−2 log(1/δ)) such that for any x ∈ Rd,

P
P
((1− ε)∥x∥2 ≤ ∥Px∥2 ≤ (1 + ε)∥x∥2) > 1− δ. (11)

Using Lemma C.1 and Boole’s inequality, for any x, y ∈ R1×n, we have

Pr(∥xPP⊤y⊤ − xy⊤∥F ≤ ε∥xy⊤∥F) > 1− 2δ.

Now we choose to swap x with any row vector a out of AB and y with v so we have

Pr(∥aPP⊤v⊤ − av⊤∥F ≤ ε∥av⊤∥F) > 1− 2δ.

12

GOAT: A Global Transformer on Large-scale Graphs

Leveraging Boole’s inequality, we get

Pr(∥ABPP⊤v⊤ −ABv
⊤∥F ≤ ε∥ABv

⊤∥F) > 1− 2bδ > 1− 2nδ.

By choosing δ to be O(1/n2) we finally get

Pr(∥ABPP⊤v⊤ −ABv
⊤∥F ≤ ε∥ABv

⊤∥F) > 1−O(1/n),

with k = O
(
log(n)/ε2

)
.

C.2. Proof of Theorem 3.2

Proof. We follow the techniques in Wang et al. (2020) to provide the proof. We define PA = δP and PV = e−δP , δ is a
constant. We aim to prove

Pr
(∥∥exp (SP)P⊤XV − exp(S)XV

∥∥
F
≤ ε∥ exp(S)∥F ∥XV ∥F

)
> 1−O(1/n), (12)

where XV = XWV for simplicity. Using triangle inequality, we have

∥∥exp (SP)P⊤XV − exp(S)XV

∥∥
F
≤
∥∥exp(S)PP⊤XV − exp(S)XV

∥∥
F︸ ︷︷ ︸

a

+
∥∥exp (SP)P⊤XV − exp(S)PP⊤XV

∥∥
F︸ ︷︷ ︸

b

.

For part a, based on Proposition 1, we have

a ≤ ε∥ exp(S)∥F ∥XV ∥F .

For part b, we have

b ≤ ∥exp (SP)− exp(S)P∥F ∥P⊤XV ∥F .

Given that the exponential function is Lipschitz continuous in a compact region, and also based on the Equation C.1, we
have

b ≤ o(∥ exp(S)∥F ∥XV ∥F).

Based on part a and part b, we finally attain

Pr
(∥∥exp (SP)P⊤XV − exp(S)XV

∥∥
F
≤ ε∥ exp(S)∥F ∥XV ∥F

)
> 1−O(1/n).

C.3. Proof of Theorem 3.3

Proof. This proof is built upon the usage of Lipschitz constant and quantization error.

13

GOAT: A Global Transformer on Large-scale Graphs

∥∥∥X̃out
B −Xout

B

∥∥∥
F
= ∥ÃBX̃WV −ABXWV ∥F

= ∥fW (X̃)X̃WV − fW (X)XWV ∥F
≤ ∥fW (X̃)X̃ − fW (X)X∥F︸ ︷︷ ︸

a

∥WV ∥F ,

where for the part a, we have

a = ∥fW (X̃)X̃ − fW (X)X̃ + fW (X)X̃ − fW (X)X∥F
≤ ∥fW (X̃)− fW (X)∥F ∥X̃∥F + ∥fW (X)∥F ∥X̃ −X∥F .

Note that

∥X̃∥F ≤ ∥Pdiag−1(1nP)P⊤∥F ∥X∥F ≤
√
k∥X∥F ,

∥X − X̃∥F ≤ ε∥X∥F ,

∥fW (X̃)− fW (X)∥F ≤ lip (fW) ∥X − X̃∥F .

When we assume ∥X∥F = O(∥AB∥F), we have

∥∥∥X̃out
B −Xout

B

∥∥∥
F
≤ ε · [1 +O (lip (fW))] ∥AB∥F · ∥X∥F · ∥WV ∥F .

C.4. Proof of Corollary 3.4

Proof.

X̃out
B = Softmax

(
XBWQ(X̃WK)⊤/

√
d
)
X̃WV ,

X̃out
B = Softmax

(
XBWQ

(
P diag−1 (1nP)P⊤XWK

)⊤
/
√
d
)
P diag−1 (1nP)P⊤XWV ,

X̃out
B = Softmax

(
XBWQ

(
PK̃

)⊤
/
√
d

)
PṼ ,

X̃out
B = Softmax

(
XBWQK̃

⊤P⊤/
√
d
)
PṼ ,

note that the row vector of P ∈ Rn×k is one-hot, so XBWQK̃ times P⊤ works as copying the attention scores according
to the assignment of centroid of each node. In the same way, Softmax(·)P aggregates the Softmax logits based on the
assignment through summation.

Say a random row vector x from XB , xWQK̃
⊤/

√
d is denoted as a row vector [s1, s2, . . . , sk] ∈ R1×k, (1nP) is denoted

as [n1, n2, . . . , nk], then we can see that

(
Softmax

(
xWQK̃

⊤P⊤/
√
d
)
P
)
[i] =

ni exp(si)∑k
j=1 nj exp(sj)

,

14

GOAT: A Global Transformer on Large-scale Graphs

so we can cancel the P both inside and outside Softmax by adding a weighting term to make the exponential computation
weighted with the centroid size, where we attain

X̃out
B = Softmax

(
XBWQK̃

⊤/
√
d+ log (1nP)

)
Ṽ .

D. Experimental Details
This section describes in more detail the experimental setup for the empirical results presented in Section 4.

D.1. Dataset Downloading

We refer readers to Hu et al. (2020a) and Lim et al. (2021) and their official repos for dataset downloading.

D.2. GOAT

For the hyperparameter selections of our GOAT model, besides what we have covered in the setup part of the experiment
section that datasets share in common, we list other settings in Table 6. Each experiment is repeated four times to get the
mean value and error bar. We use Adam optimizer with lr 1e-3.

Table 6: Proposed Model Dataset-Specific Hyperparameter Settings

Model Dataset # Heads # Hidden Channels

GOAT

ogbn-arxiv 4 128

ogbn-products 2 256

arxiv-year 4 128

snap-patents 2 128

D.3. Baseline Models

Since the heterophilius datasets on which we benchmark the GOAT model are derived from Lim et al. (2021), in order
to facilitate as fair a comparison as possible, especially against the LINKX model proposed in the same work, we utilize
their implementation provided at the official repo1. This library also provides reference implementations of other GNN
architectures, and we utilize those as well. Following the procedure described both in the paper and implicitly by their
codebase, we run a hyperaparameter sweep for each model on each dataset. For each combination of parameters, 5 models
are trained using different initialization seeds to determine a mean value and error bars, and then the final hyperparameters
are selected based on accuracy on the validation set. These final parameters correspond to the settings used to realize the
“official train split” numbers in Table 2 in the main work for ogbn-arxiv and ogbn-products and the 50% train split
numbers for arxiv-year and snap-patents. These same parameters are also used when performing the sample
complexity experiments with train splits of 10% and 20% for the latter two datasets.

For the baseline GNNs we chose a Graph Convolutional Network with Jumping Knowledge (GCNJK) and a Graph Attention
Network (GAT), and for a second heterophily-specific model to complement LINKX, we consider MixHop. As described in
Section 4 of the main work, we use ERM to train all models including the baselines. We also focus on the minibatch setting
rather than “full-batch” training as a primary feature of the GOAT model is its native scalability through minibatch training.
The batching algorithm we use for the GCNJK, GAT, and MixHop models is the GraphSAINT Random Walk based sampler
(LINKX uses its own adjacency row-wise sampling scheme, see Lim et al. (2021) for details). In the spirit of fair evaluation,
we make the model and sampler choices based on the fact that according to Lim et al. (2021), each of these are the most
performant two models in the homophily and heterophily-specific design categories on the datasets under evaluation.

Hyperparameter Settings: For all four baseline models we tune two main parameters: the number of layers, and the

1https://github.com/CUAI/Non-Homophily-Large-Scale

15

GOAT: A Global Transformer on Large-scale Graphs

Table 7: Baseline Model Dataset-Specific Hyperparameter Settings

Model Dataset # Layers # Hidden Channels SAINT Batch Size

GAT

ogbn-arxiv 2 32 10,000

ogbn-products ∗ – – –

arxiv-year 2 32 10,000

snap-patents 2 32 10,000

GCNJK

ogbn-arxiv 2 128 10,000

ogbn-products 4 256 5,000

arxiv-year 4 256 10,000

snap-patents 2 256 10,000

MixHop

ogbn-arxiv 2 128 10,000

ogbn-products 3 128 5,000

arxiv-year 4 128 10,000

snap-patents 2 128 10,000

LINKX

ogbn-arxiv 1 64

N/A
ogbn-products 1 128

arxiv-year 1 256

snap-patents 1 16

number of hidden channels (dimension) of each layer. We also evaluate two subgraph sizes, or batch sizes, for the SAINT
sampler (number of roots used for the random walk). For the GAT model only, we also tune the number of attention heads.
We evaluate the same parameter ranges described in Lim et al. (2021) and defined by their codebase, and simply report
the final parameters selected in Table 7. Selected parameters that are shared amongst all model and dataset pairs include
training for 500 epochs, using the AdamW optimizer with a learning rate of 0.01, and creating 5 SAINT subgraphs per
epoch. Model specific selected parameters include using 8 heads for the GAT, concatenative jumping knowledge for the
GCNJK model, and the 2 hop setting for MixHop. For all settings that we choose as final, if possible, we verify that the
accuracy is within ±1% of the value reported in Lim et al. (2021) as “best” for each model on each dataset.

There are two details of particular note concerning Table 7 (and corresponding results in Table 2 in the main work). First,
for the snap-patents dataset we do not use the ClusterGCN sampler for the MixHop architecture as it proved too time
and memory intensive for our hardware. We ground this choice in the fact that according to the performance reported in Lim
et al. (2021), the performance of MixHop with cluster sampling would still have been below the performance of GOAT
by approximately 8 accuracy points. As an additional comment, the computational costliness of this method was also a
challenge in their work, precluding it from parts of their evaluation. In the spirit of scalability, overall, we see GraphSAINT
as being a more relevant choice for our comparison due to its more favorable scaling characteristics.

Second, also in service of a competitive evaluation, we chose to report performance of the GAT model on
ogbn-products ∗ pulled from the Open Graph Benchmark’s official leaderboard2 for this dataset since the mini-
batch performance we achieved with the SAINT sampler was significantly lower than the reference result (as well as that of
our GOAT model). The result from the leaderboard was trained using the neighbor sampling algorithm.

For Fig 4a and Fig 4b, we set batch size as 10K. We use 4K as codebook size. GAT leverages NS [20,10,5] to do minibatching.
The total running time involve evaluation time.

2https://ogb.stanford.edu/docs/leader nodeprop/

16

