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Abstract

Adapting to regularities of the environment is crit-
ical for biological organisms to anticipate events
and plan. A prominent example is the circadian
rhythm corresponding to the internalization by
organisms of the 24-hour period of the Earth’s
rotation. In this work, we study the emergence
of circadian-like rhythms in deep reinforcement
learning agents. In particular, we deployed agents
in an environment with a reliable periodic varia-
tion while solving a foraging task. We systemat-
ically characterize the agent’s behavior during
learning and demonstrate the emergence of a
rhythm that is endogenous and entrainable. In-
terestingly, the internal rhythm adapts to shifts in
the phase of the environmental signal without any
re-training. Furthermore, we show via bifurcation
and phase response curve analyses how artificial
neurons develop dynamics to support the inter-
nalization of the environmental rhythm. From a
dynamical systems view, we demonstrate that the
adaptation proceeds by the emergence of a sta-
ble periodic orbit in the neuron dynamics with a
phase response that allows an optimal phase syn-
chronisation between the agent’s dynamics and
the environmental rhythm.

1. Introduction
Circadian rhythms represent a major and well-studied adap-
tation of almost all terrestrial organisms to the 24-hour ro-
tation of the Earth (Minors & Waterhouse, 2013; Panda
et al., 2002; Vitaterna et al., 2001; Kalsbeek et al., 2012).
This endogenous rhythm regulates in a periodic manner
the physiology of the organism, including obvious behav-
ioral patterns such as the sleep and wakefulness cycle (Dun-
lap et al., 2004). At the physiological level, the circa-
dian rhythm is best understood in Drosophila (Peschel &
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Helfrich-Förster, 2011). The biochemical mechanism in-
volves several transcription-translation feedback loops in
which the transcription of genes is regulated by its protein
products. These feedback loops induce the expression of
so-called “clock” genes and protein levels to oscillate with
a period of roughly 24 hours (Peschel & Helfrich-Förster,
2011). At the functional level, one of the key advantages
of exhibiting an endogenous and entrainable rhythm is the
possibility to anticipate regular events from the environment
(Wikelski & Hau, 1995). In addition, endogenous rhythms
can also synchronise interdependent physiological processes
and interactions with other organisms (Zamm et al., 2016).

As their biological counterparts, artificial learning agents
also need to adapt to the statistical regularities of their envi-
ronments. In particular, reinforcement learning agents can
develop long-term strategies to explore and exploit the struc-
ture and reward signals in complex environments (Sutton &
Barto, 2018). Intuitively, the agent’s success is explained
in terms of a certain adaptation or internalization by the
agent to regularities of the environment, including the en-
vironment’s response to the agent’s actions. Indeed, the
internalization of environmental dynamics into the agent’s
internal states has been related to the degree of autonomy of
an agent (Bertschinger et al., 2008). Thus, higher levels of
autonomy indicate that the agent acts prompted by its inter-
nal state rather than being purely reactive to environmental
transitions (Bertschinger et al., 2008; Ingel et al., 2022).

In this work, we study the specific mechanisms by which a
learning agent internalizes a periodic variation in the envi-
ronment. In particular, we explore how endogenous and en-
trainable rhythms emerge in reinforcement learning agents
controlled by an artificial neural network. To this end, we
deployed an agent in an environment with a reliable periodic
variation while the agent learns to solve a foraging task by
reinforcement learning. After characterizing the agent’s be-
havior, we tested whether the rhythm exhibited by the agent
after learning is endogenous and entrainable. Interestingly,
the agent’s rhythm quickly adapted to shifts in the phase of
the environmental rhythm without any re-training. Using
tools from dynamical systems theory, we describe how in-
dividual neurons in the network develop a stable (locally
attracting) periodic orbit through a bifurcation (Strogatz,
2019). Such neural dynamics are essential to sustain the
endogenous rhythm internalized by the agent. Furthermore,
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we compute phase response curves of these periodic orbits
and explain how they help to synchronize the internalized
rhythm to external inputs at an optimal phase difference.

We remark that the model studied is not intended as a model
of biological circadian rhythms. Rather the study takes
inspiration from biological rhythms to select the task and
assess whether and how artificial RL agents also internalize
environmental regularities. It is our understanding that the
internalization of environmental regularities is a general phe-
nomenon in reinforcement learning. We study the circadian
rhythm to understand in detail how a RL agent performs
such internalization for the case in which the agent internal-
izes a simple periodic signal. That allows us to study how
the internalization emerges in mechanistic terms and how
the stability properties of the learned attractor endows the
agent with generalization properties not foreseeable from
the environment or experiences alone.

2. Methods
2.1. Criteria for Circadian Rhythms

It is generally accepted that a biological rhythm with a pe-
riod of roughly 24 hours is called circadian if the following
criteria are fulfilled (Dunlap et al., 2004):

1. Endogeneity: A rhythm is called endogenous if it persists
without an external periodic input. That is, the rhythm
must be driven by an internal mechanism of the considered
organism. Specifically, circadian rhythms preserve their 24-
hour period in the absence of an external light or temperature
signal that would provide a cue of the daytime.

2. Entrainability: A rhythm is entrainable if it is able
to adapt its phase to an external signal. Although circa-
dian rhythms preserve a period of roughly 24 hours even in
an artificial constant environment, external cues (daylight,
temperature) are necessary for readjusting the rhythm to
the exact daytime. Even if a significant phase shift occurs,
e.g., a change of time zones, the entrainability of circadian
clocks ensures a readjustment to the environmental phase.
The process of readjustment by an external signal is called
entrainment. (Note that entrainment should not be confused
with training.)

3. Temperature compensation: The rhythm is sustained
across a wide range of temperature changes. While biologi-
cal processes are often accelerated by higher temperatures,
circadian rhythms maintain their approximate 24-hour pe-
riod independently of the temperature of the environment.

In this work, we study an agent acting in an environment in
which one variable (daylight) is periodically modulated. We
specifically test whether the agent’s rhythm has properties
that correspond to the above-mentioned criteria for circa-
dian rhythms. Our simulated environment does not contain

a temperature component. Instead, we restrict ourselves
to the question whether the agent’s rhythmic behavior is
endogenous and entrainable.

2.2. Foraging Task and Environment

In our experimental setup, the environment comprises an
alternating daylight signal implementing a daytime-night-
cycle. The agent’s task is to collect food, which is randomly
placed within a specific area, the food area. The episode
reward increases with each consumed food item. Hence, ide-
ally the agent should try to collect as much food as possible.
The placement of the food does not depend on the time of
the day, i.e., the agent can find the same amount of food dur-
ing daytime and night. However, at nighttime, we impose a
negative reward if the agent leaves a specific safe location
outside the food area. We refer to this safe location as the
home location. By choosing appropriate reward values, we
ensure that the penalty for leaving the home location at night
outweighs the potential reward for food collected at night.
Therefore, the optimal strategy for the agent to maximize its
reward is to forage in the food area at daytime and to stay at
home at night. That is, the agent needs to learn to adapt its
behavior to the environmental daytime-night-cycle, which
is determined by a daylight binary signal.

We simulate the task and environment using the Artificial
Primate Environment Simulator (APES), a customizable 2D
grid world simulator (Labash et al., 2018). APES allows
to define environments with multiple elements that interact
with user-defined reward functions. For our experiments,
we use a 5× 5 grid world environment, illustrated in Fig. 1.
The food area consists of 3× 3 grid cells indicated with a
green background color. A food object is randomly placed
within the food area and remains until it is collected by the
agent. As soon as the food is collected, a new food item
will be placed randomly within the food zone. The home
location is the bottom right grid cell. The white grid cells
represent a transit zone separating the home location and
the food area. No food will be placed in the transit zone,
but the agent will still be punished for being in the transit
zone at night. Only the home location is safe for the agent
to shelter at night.

The time of the environment is discrete. One daytime-night-
cycle consists of 40 time steps. Accordingly, the daylight
signal is periodic with a period of 40 time steps. It has the
value 1 (daytime) for the first 20 time steps of a daytime-
night-cycle and the value 0 (night) for the following 20 time
steps. We specifically designed the foraging task such that
the agent needs to anticipate the progression of time, i.e.,
the phase of the daylight signal. The agent perceives the
current state of the daylight signal, i.e., it knows at every
time step whether it is currently daytime or night. However,
the current state of the daylight signal does not provide
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Daytime: collect food Night: stay at home

Daylight signal = 1 Daylight signal = 0

Figure 1. Environment for the foraging task. The green cells mark
the food area. At the bottom right corner is the safe home location
(marked by a rabbit hole), where the agent (depicted as a rabbit)
must shelter at night to avoid penalties.

information about its phase. That is, solely based on the
current state, it is impossible to determine how many time
steps are left until the next change from daytime to night, or
vice versa. However, the agent needs at least four time steps
to return from the food area to the home location. Therefore,
for earning a high reward, the agent must leave the food area
a few time steps before the night begins. Thus, the agent
needs to develop the ability to anticipate the onset of the
night to avoid penalty scores.

We call the information that the agent receives at the time
step t an observation and denote it by ot. Besides the day-
light signal, the observation ot comprises the current loca-
tion of the agent, the agent’s orientation, and the location
where the food is currently placed (Fig. A.1). Since the
daylight signal is periodic, the state st of the environment
is entirely described by the observation and the phase of
the daylight signal. In other words, the environment is a
partially observable process, where the phase of the day-
light signal is a hidden variable (Majeed & Hutter, 2018;
Hausknecht & Stone, 2015).

For each time step, the agent performs one of five possible
actions: moving up, down, right, left, or standing still. The
agent earns a reward of +1 for each consumed food object,
and is penalized with a value of −2.5 for each time step
spent outside the home location at night.

2.3. Architecture and Training

We train an agent to perform the foraging task by deep
reinforcement learning (DRL) (Sutton & Barto, 2018;
Thorndike, 1911; Schultz et al., 1997; Mnih et al., 2015)

using a dueling Q-network (Wang et al., 2016)1. The net-
work estimates so-called Q-values of state-actions pairs to
enable the agent to chose the best action for the current
state. As described above, we differentiate between state
s, which completely describes the environment, and ob-
servation o, which is the part of the state that is perceived
by the agent. The network input at each time step t is
the observation ot containing the spatial information from
the environment (location of the agent and food) and the
current state of the daylight signal. For optimal decisions,
however, we actually need to consider the complete state
s: the information about the progression of the day (re-
maining time steps until the end of the daytime) is relevant
for the agent to decide when to leave the food area to re-
turn home. Despite this information is not contained in
ot (only in st), it can be extracted from the history of ob-
servations ht = {ot, ot−1, ot−2, . . .}. Therefore, we equip
our network with an LSTM layer (Hochreiter & Schmid-
huber, 1997; Bakker, 2001; Hausknecht & Stone, 2015) to
represent information from past inputs in its internal state.

We use experience replay to achieve stable training and an
ε-greedy policy for exploration. We train the network for
37500 training episodes, each consisting of 160 time steps
(four full days).

Details of the network architecture are in Appendix A. For
an explanation of Q-learning with dueling Q-networks, we
refer to Appendix B. For a details about training process
and an overview of the used hyperparameters, we refer to
Appendix C. The evolution of the reward during training is
shown in Fig. D.2 in Appendix D.1.

3. Results
3.1. The Agent’s Behavior

As described in Sec. 2.2, the grid world environment com-
prises three distinct areas: first, the food area, where the
agent can gain reward by collecting food; second, the home
location, where the agent is protected from receiving penalty
scores at night; and third, the transit zone, which must be
crossed by the agent when moving from the home location
to the food area or vice versa. To move from the food area
to the home location, the agent needs at least four time steps.
That is, to avoid a penalty at night, the agent must plan at
daytime to reach home ideally exactly at the 21st time step
of the day (first time step of the night).

To evaluate the agent’s behavior, we characterize how it
navigates the environment by the timing of its most salient
actions: leaving the home location, entering the food area,
leaving the food area, and entering the home location. We
trained a randomly initialized model and performed 1000

1Code at https://github.com/aqeel13932/MN project
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Figure 2. Timing of the agent entering and leaving the home location and food area. The angular plots show histograms of the agent’s
timing for eight full-day cycles. The following events are shown: (a) the agent leaves the home location, (b) the agent enters the food area,
(c) the agent leaves the food area, (d) the agent returns to the home location. The grey grid lines mark event probabilities of 0.2, 0.4, 0.6,
etc. Daytime and night are indicated by white and grey areas. The histogram values were obtained from 1000 test runs.

test runs for which we captured the time steps of these
events. The results are shown in Fig. 2: for each day of
the test phase, we indicate the frequency of each event type
by colored histograms. The green histograms in panel a)
show at which time steps the agent leaves the home location.
During the first four days of the test runs, the agent typically
leaves home at the first time step of the daytime, which is
ideal for maximizing the reward. For the remaining four
days, the agent leaves the home location a few time steps
later (.e.g. during day 8 the agent leaves the home area at
the fourth time step). This can be explained by the fact that
our training episodes include only four days, whereas the
test runs comprise eight days. The network must generalize
from the training data to make suitable decisions after the
fourth day. Indeed, as we note below, the average LSTM
activation decreases considerably during the night of the
fourth day. This is likely due to the lack of pressure from
the training (which consisted only of 4 days) to maintain any
particular activation range for the LSTM right before the
episode would end (during training the agent does not need
to anticipate any subsequent event after day 4). Nevertheless,
the agent actions and LSTM activations continue with a
daily regularity from day 5 onwards. The agent’s behavior
reveals that this generalization is not perfect but sufficient to
obtain near maximal reward. The time points at which the
agent enters the food location are shown by blue histograms
in panel b). As expected, this happens a few time steps after
leaving home. The red histograms in panel c) show the time
points at which the agent leaves the food area. The agent
has to make this decision in anticipation of the approaching
night to enter the home location on time and avoid a large
penalty. The purple histograms in panel d) show when the
agent reaches the home location after leaving the food area.
For all eight days, the agent arrives almost always on time
or with a delay of at most four time steps. This shows that
the generalization from the shorter training episodes (lasting

only four days) works well for learning to predict the onset
of the night.

3.2. Testing the Rhythm Endogeneity

One of the main characteristics of circadian rhythms is their
endogeneity, i.e., their property to maintain their period
even in the absence of an external periodic drive signal.
During training, we use a periodic daylight signal, which
has the value 1 at daytime, i.e., from time step 1 to 20 of
each day cycle, and the value 0 at night (time steps 21 to 40).
To demonstrate the endogeneity of the observed circadian
behavioral rhythm (as opposed to just being a sequence of
reactions to the external daylight cues), we need to consider
cases where the daylight signal is clamped to a constant
value, 1 or 0, to model permanent daytime or permanent
night, respectively. In the following, we describe the results
of such tests under constant conditions. Further, we perform
a bifurcation analysis of the activity of the LSTM units in
the network.

3.2.1. TESTS DURING CONSTANT CONDITIONS

To confirm the endogeneity of the agent’s rhythm, we use
test runs in which after certain time the daylight signal is
clamped to a constant value. Hence, we apply the usual pe-
riodic daylight signal for four day cycles (160 time steps) to
ensure that the agent’s rhythm is present and phase-adjusted
to the environmental time. For the remainder of the test
run (time steps 160 to 320) a constant daylight signal was
applied (either constant daytime or constant night). Figure 3
shows the mean activation of the LSTM neurons and the
timing of the agent’s behavior for 1000 test runs under these
conditions. The activation pattern shows that the rhythm
persists with a period of roughly one day (40 time steps).
We can conclude that the observed rhythm is endogenous:
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Figure 3. Agent behavior and LSTM activation for a clamped day-
light signal: (a) permanent daytime and (b) permanent night after
the fourth day. Shown are average values over 1000 test simula-
tions. Daytime and night are represented by white and grey areas.
The average activation of the LSTM neurons is plotted in blue. The
activation pattern is shaped differently after day 4, but it retains its
period. The red bars are histograms counting the agent’s exits of
the food area at the respective time step.

for days 5 to 8, the oscillation of the LSTM activations and
the behavior of the agent are not forced externally. During
this phase, the oscillation is purely the result of the dynami-
cal properties of the trained neural network. In other words,
the LSTM layer internalized the environmental periodic
rhythm.

3.2.2. BIFURCATION ANALYSIS

Without training, the LSTM activations do not oscillate if
we apply a constant daylight signal. The internal rhythm
arises during the initial training phase. That is, the step-wise
parameter change during training causes the system to un-
dergo a bifurcation (a sudden qualitative change in a system
behavior due to a small change in the system parameters).
This bifurcation is illustrated by Fig. 4a, which shows the
activation of one arbitrarily chosen LSTM neuron plotted
against the delayed activation (delayed by 10 time steps,
i.e., 1/4 period) of the same neuron during the training
episodes 33 to 132. Although the plot depicts the activation
state of a single neuron, other neurons in the LSTM layer
act in a qualitatively equivalent way. The plot shows that
the neuron’s activation state remains approximately zero
for the initial training episodes. However, after roughly 55
episodes, we observe a rhythmic behavior, which indicates
the onset of a stable periodic orbit in the system’s dynamics.
Figure 4b depicts the amplitude (here defined as the dif-
ference between maximum and minimum) of the neuron’s
activation. Between episode 55 and 100, we observe cycles
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Figure 4. Panel (a) shows the activation of an arbitrarily chosen
LSTM neuron for a constant daylight signal (permanent daytime)
plotted against itself delayed by 1/4 period. Shown are data ob-
tained by one test run after each training episode from 33 (blue)
to 132 (red). Panel (b) shows the amplitude of the neuron’s activa-
tion.

with increasing amplitude. After episode 100, the amplitude
remains nearly constant. The period of the neuron’s activa-
tion is always roughly one day (40 time steps). The fact that
the amplitude grows from zero after the system crosses the
bifurcation, whereas the frequency immediately jumps to
a positive value, suggests that the observed stable periodic
orbit emerges as a result of a supercritical Neimark-Sacker
bifurcation (Kuznetsov et al., 1998).

The above observations are further supported by the spec-
trograms shown in Fig. 5. The upper row of the figure
contains spectrograms of the activation of an arbitrarily cho-
sen LSTM neuron for constant daylight signal: panel (a)
illustrates the permanent daytime case, and panel (b) the
permanent night case. The color represents the power spec-
tral density of the neuron’s activation. The spectrograms
exhibit a frequency peak near 1/day beginning after 60 to
80 training episodes, which validates our above observation
of a frequency jump at the bifurcation point. Panels (c) and
(d) show the logarithm of the power spectral density of the
same neuron as in panels (a) and (b). Plotting the logarith-
mic values enables us to see subtle frequency peaks: higher
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Figure 5. Power spectra of the LSTM activation for the initial
training phase. The top row contains power spectra of one arbitrary
LSTM neuron for (a) permanent daytime and (b) permanent night.
Panels (c) and (d) show the logarithm of the same spectral data.
Applying the logarithm emphasizes subtle frequency pattern such
as the higher order resonances or the pattern at early episodes. The
bottom row shows the logarithm of the mean power spectra of all
128 LSTM neurons for (e) permanent daytime and (f) permanent
night. All spectral data were calculated based on a single test
simulation.

order resonances of the base frequency show up, and, in
particular for panel (c), it is revealed that the frequency peak
at 1/day emerges at an earlier period than visible in panel
(a). Finally, panels (e) and (f) in Fig. 5 show the logarithm
of the mean of the power spectra of all 128 LSTM neurons
for permanent daytime and permanent night, respectively.
The single neuron spectra shown in panels (a) to (d) are very
similar to the average spectra shown in panels (e) and (f).
In fact, all LSTM neurons reveal a similar spectral pattern,
and hence a similar frequency content.

Additionally, in Appendix D.2, we plot spectrograms
(Fig. D.3) for the whole training procedure of 37500
episodes. It is revealed that in the course of the training, the
system may undergo further bifurcations. Once learned, the
internalized rhythm is in fact persistent for the whole train-
ing phase and can always be observed if the daylight signal
is clamped to 1 (permanent daytime) during the test runs.
However, the rhythm can switch between being active and
inactive if the daylight signal is clamped to 0 (permanent
night) as shown in Fig. D.3b.
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Figure 6. Effect of a daylight signal phase shift on the agent’s
behavior and the LSTM activation. Shown are (a) a base case
without phase shift, and two dephased cases, where (b) the second
daytime period, or (c) the second night is extended by 10 time
steps. All values are averages of 1000 test simulations. Daytime
and night are represented by areas with white or grey background.
The average activation of the LSTM neurons is plotted in blue.
The red bars are histograms counting the agent’s exits of the food
area at the respective time step. Both the LSTM activation and the
behavioral pattern adapt to the phase shift within three days.

3.3. Tests for Rhythm Entrainability

Entrainability is the ability of an oscillating system to syn-
chronize to an oscillating input signal or environment. It
is one of the defining properties of circadian rhythms and
ensures that the internal circadian clock is continuously ad-
justed to the environmental clock time. Moreover, it enables
the circadian rhythm to readjust to sudden phase shifts of the
environmental rhythm. A prominent example is the ability
of humans and other biological organisms to adapt to time
differences when travelling across time zones.

3.3.1. JET LAG EXPERIMENTS

As with all the experiments in this paper we did not re-train
the model. To confirm and study the entrainability of the
network’s rhythm, we simulated time zone shifts by altering
the length of a single daytime period or night during test
runs with the trained model. Figure 6 shows how the time
shifts affect the average activation pattern of the LSTM
layer and the timing of the agent’s behavior. We altered the
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length of the second day by extending the daytime (Fig. 6b)
or the night (Fig. 6c) by 50 percent. For comparison, we
show the results for the unaltered case (Fig. 6a). For the
cases with extended daytime or night, we observe a “jet
lag” effect on day 3: the agent exits the food area earlier
than necessary. This jet lag effect is slightly stronger for the
extended night case. In both cases, the agent progressively
adapts its food area exit time to the new environmental time
on day 4 and day 5, which indicates that the controlling
neural network is re-synchronising its internal clock to the
changed environmental time. On day 6 and later, the agent’s
internal rhythm is again synchronised with the environment.
Further experiments with phase perturbations, including
complete reversal of daytime and night, are described in
section D.3 in the Appendix. This shows that the neural
network dynamics is able to compensate within three days
for strong shifts of the environmental clock.

3.3.2. PHASE RESPONSE CURVE ANALYSIS

The effect of environmental light on the circadian rhythms of
humans has been studied by measuring the change (phase re-
sponse) of the human rhythm as a reaction to light exposure
at different times of the day (Minors et al., 1991). To obtain
these measurements, test persons stayed within an environ-
ment with controlled light conditions for a couple of days
and were exposed to bright light during certain time periods.
The light exposure resulted into a phase shift of the circa-
dian clock of the test persons, which could be determined by
measuring their body-temperature curve throughout the day.
These observations can be visualized with phase response
curve (PRC), which plots the phase shift in reaction to a
light exposure (the phase response) against the phase when
the light exposure occurred. The PRC studies in humans
provide several insights. Light at the evening or early night
leads to a negative phase response, i.e., a delay of the cir-
cadian clock. On the contrary, light at the late night and
morning causes a positive phase response, i.e., the circadian
clock is advanced. Consequently, the PRC in an average hu-
man crosses the x-axis at two points: at night with a positive
slope, and at daytime with a negative slope. The phase of
the circadian rhythm is in a stable equilibrium if the time
of the light exposure is correctly adjusted with the negative
slope zero-crossing of the PRC. This observation describes
the regulation of the human circadian clock by light from a
dynamical systems viewpoint.

Motivated by these studies of the human PRC, we plotted
PRCs for the LSTM layer of our trained neural network. We
ran a series of test simulations with the usual alternating
daylight signal on the first four days, and a constant daylight
signal for the subsequent days, i.e., either permanent day-
time or permanent night. On day 5, we inverted the daylight
signal for one time step, i.e., we applied a daylight pulse
if the signal was permanent night and vice versa. Then we
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Figure 7. Average phase response to light exposure (red) and dark-
ness (blue). Panels (a) and (b) show the PRCs for two indepen-
dently initialized and trained models. The light red and light blue
curves are the PRCs for the 128 individual neurons of the LSTM
layer obtained by averaging over 200 test runs. The dark red and
dark blue curves show the mean phase response of all LSTM neu-
rons.

measured the resulting phase shifts on day 6. The initial
period of four days with periodic daylight signal sets the
neural network’s inner clock. Therefore, we can interpret
the measured phase shifts at given times of day 5 as the net-
work’s reaction to light (or darkness) at the corresponding
phase of its internal clock.

Figure 7 shows the PRCs of the LSTM neurons reacting to a
light impulse (red curves) and to darkness (blue curves) for
two randomly initialized and independently trained models
(panels (a) and (b)). In case (a), the agent reacts with a
positive phase shift to light and a negative phase shift to
darkness during the early morning time around time step 1.
This corresponds to a phase advance for more light in the
early morning and a phase delay for darkness at this time.
At evening time (near time step 20) this pattern is inverted
and can be interpreted equivalently. In panel (a), the model
response to light (red curve) is similar to the human PRC for
light exposure. In case (b), the most significant phase shift
occurs if light is absent in the morning (late nighttime and
early daytime). This suggests that the corresponding trained
model resets its inner clock mainly during morning time.
The PRCs shown in panels (a) and (b) differ significantly,
which indicates different learned phase adjustment mecha-
nisms. This difference between the trained models indicates
that entrainment can be realized by different strategies and
that the neural network is able to learn more than one of
these strategies.

3.4. Robustness of the emergence of circadian-like
rhythms

So far the emergence of a stable periodic orbit representing
the internalisation of an environmental rhythm has been
studied for a particular architecture and type of recurrent
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layer (LSTM). Hence, a natural question concerns the gen-
erality of the phenomenon. To explore this question we ran
a series of variations on the network architecture, type of
recurrent layer, and learning algorithm. In particular, we
considered variations in the optimization algorithm (SGD
and RMSprop), weight regularization (L1 + L2 norms),
weight initialization (He normal), type of recurrent layer
(vanilla RNN and GRU), as well as the width of the recur-
rent layer (32 and 96 neurons) and fully connected layer (8
units).

For each case, we tested whether the variations also resulted
in the endogeneity and entrainability of a rhythm emerging
in the recurrent layer of the network. Appendix D.4 shows
the results for the constant conditions and jet-lag experi-
ments for all the variations. Overall, the emergence and
entrainability of the internal rhythm were robust to most of
the variations explored.

We also noted that different seeds might lead to different
strategies, an effect well known in reinforcement learning.
While it is not possible to fully explore and characterize
the conditions under which one type of solution or another
emerges, the results indicate that the circadian-like proper-
ties of the emergent rhythm are not particular to a specific
set of parameters or network architecture but rather they
occur in a wide range of conditions.

4. Related Work
Studying circadian rhythms was a natural choice and in-
spiration since they constitute a clear and almost universal
internalization of a simple environmental rhythm, and for
which different techniques for assessing the internalization
of the rhythm were available (tests for endogeneity and
entrainment could be borrowed from the biological litera-
ture). In particular, we studied how the system dynamics
supports the internalization and its adaptation properties.
More generally, the environmental periodic signal that we
considered represents a specific case of non-stationarity in
the environmental properties (cyclo-stationarity). How an
optimal agent adapts to this and other non-stationarities (in-
cluding those due to the adaptation of other agents (Tampuu
et al., 2017)) is a question of theoretical and practical in-
terest for continual learning in RL (Khetarpal et al., 2012).
Interestingly, the internalization and stability properties of
the periodic orbit by the agent’s neurons endowed the agent
with robustness to perturbations (jet-lag experiments) not
foreseeable from the training experiences.

The internalization of environmental correlations has been
related to the degree of autonomy of an agent (Bertschinger
et al., 2008). In (Ingel et al., 2022) a partial information
decomposition was used to quantify the degree of internal-
ization in tasks with a Markovian dynamics. The estimated

index was a global measure of internalization that cannot
distinguish what dynamics is being internalized nor its mech-
anisms. In the present work, we explicitly demonstrated the
internalization of an environmental rhythm by a reinforce-
ment learning agent, and how this happened via a bifurcation
in the LSTM units. This bifurcation endowed the network
with a stable periodic orbit with phase entrainable dynamics.

Bifurcations of random RNNs and their node synchronisa-
tion have been studied in (Marquez et al., 2018) with an
emphasis on how they impact their computational properties.
For an attractor view on RNNs training, see also (Ribeiro
et al., 2020).

The dynamical systems view of neural networks has been
influential in the development of neural ordinary differential
equations (ODE’s) and its variants. In particular, dynamical
stability of vanilla RNNs and its relation to vanishing and
exploding gradients was addressed in (Chang et al., 2019),
where a neutral stability condition was imposed by restrict-
ing weight matrices to be anti-symmetric. Numerical results
demonstrated that this condition improved the training and
generalization of the network in several tasks. Early work
on considering RNNs as dynamical systems and how their
stability can impact the training can be found in (Pascanu
et al., 2013). In our work, we did not impose any stability
condition, rather we characterized how the phase stability
of an emergent attractor explained the adaptability of the
agent to the perturbations of the external rhythm that were
never experienced during the training episodes.

To our knowledge, studies of how artificial neural networks
develop attractors and how the attractor characteristics re-
late to the training and generalisation properties have been
conducted in the supervised setting. For example, in (An-
suini et al., 2019) the authors observed that smaller intrinsic
dimensions of representations in the final layers of vision
networks correlated with higher accuracy in a classifica-
tion task. Line attractor dynamics (continuous attractors
with one direction of neutral stability) have been reported
in sentiment analysis networks (Maheswaranathan et al.,
2019).

The ability of LSTM units to distinguish precise timing in
temporal patterns is well known and it was demonstrated in
early work (Gers et al., 2002). Here we were interested in
the type of solution adopted by the agent. We note that the
agent trained in our study could potentially have developed
a simple event-driven mechanism that counted time steps
triggered by the external daylight transitions to solve the
task without internalising any rhythm. This was not the case
in our study where a rhythm of appropriate periodicity was
clearly internalized. While a simple counter triggered by
the environment transitions is one of the optimal solutions
for the training of the foraging task, the presence of a sus-
tained rhythm in the agent under constant environmental
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conditions revealed that the internalization of the rhythm
was the actual solution adopted during learning. For other
network internalizations (or tasks), it is possible that simple
counting mechanisms emerge as possible solutions. What
are the exact factors that determine the emergence of one or
another type of solution is a matter of further investigation.

Models of circadian rhythms abound in the mathematical
biology literature. These models often consist of coupled
differential equations describing concentration of molecules,
gene expression levels, or multi-cellular changes (Asgari-
Targhi & Klerman, 2019). No learning or reinforcement
mechanisms are included in these studies where the model
parameters are fixed or scanned. For a recent application of
artificial circadian rhythms in robotics, see (O’Brien, 2021).

5. Discussion
We have investigated the emergence of circadian-like
rhythms in deep learning agents trained by reinforcement
in a foraging task. The results show that a reinforcement
learning agent equipped with LSTM units can internalize
an external rhythm and use it to anticipate and exploit an
environmental regularity. In particular, the timing of the
agent’s actions was critically controlled by the internalized
rhythm. We conducted extensive experiments to determine
the properties of the agent’s rhythm. Tests under constant
conditions and jet lag experiments confirmed that the rhythm
was endogenous and entrainable in a similar way as circa-
dian rhythms exhibited by biological organisms. Further-
more, bifurcation and phase response curve analyses were
conducted to characterize the emergence of the rhythm and
its synchronization properties. We observed the emergence
of a stable periodic orbit in the LSTM dynamics via a bi-
furcation as the training progressed. Since the periodic
orbit emerges with a smoothly increasing amplitude and an
instantaneous jump of the frequency, we conjecture a su-
percritical Neimark-Sacker bifurcation. The phase response
curves illustrate how the phase of the agent’s internal clock
is dynamically attracted by the phase of the environmen-
tal rhythm via phase-dependent reactions to the daylight
signal. This stability property ensures that the agent can
adapt to phase shifts in the environment. Interestingly, the
phase stability emerged, although the agent has not expe-
rienced phase perturbations during training (which always
consisted of four regular daytime-night-cycles). Moreover,
the phase response curves reveal that the agent is not limited
to learning one specific strategy. A comparison of two inde-
pendently trained models shows significant differences in
the phase response of the periodic orbits. This observation
raises the question whether the observed periodic orbit may
stem from different types of bifurcations.

Our results are in line with the view that learning agents can
develop long-term strategies by internalizing correlations

in the environment dynamics and the agent-environment
interactions. Planning ahead often requires a simulation or
unfolding in time of the dynamics to be predicted. In the
case that we studied, such an internalization led to the emer-
gence of a periodic trajectory of LSTM units that enabled
the agent to anticipate the environmental dynamics.

As mentioned above, we can understand the adaption and
internalization of the circadian-like rhythm by the agent
as the effect of a bifurcation, i.e., a parameter change in a
dynamical system (LSTM units) which causes topologically
different trajectories and attractors as the training progresses.
The neural network controller of the agent developed a peri-
odic orbit with stability properties that endowed the agent
with an endogenous and entrainable rhythm. More generally,
this observation raises the question whether agents trained
in different tasks and environments also benefit from devel-
oping attractors whose topology and stability support ap-
propriate computations and policies. From this perspective,
successful learning is directly related to changing parame-
ters of the model to induce the appropriate bifurcations and
attractors to support the representation and computations of
appropriate variables. This is already a successful research
direction in neuroscience (Khona & Fiete, 2022; Chaudhuri
et al., 2019) that could be transferred to the study of how
artificial learning agents represent and process information
by exploiting attractor dynamics.
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Orientation 0 0 1 0
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Figure A.1. Network architecture. The network input consist of a binary tensor that represents the location of the agent and the food, the
scalar-valued daylight signal, and a one-hot vector encoding the orientation of the agent. The spatial information fed to a convolutional
layer whose output is flattened and concatenated with the agent’s orientation vector and the daylight signal. This is followed by two fully
connected layers and an LSTM layer, after which the network is split into two branches: branch V estimates the state value, branch
A estimates the advantage values for all possible actions. Both estimates are combined to obtain the network’s output estimating the
Q-values.

A. Architecture
We train an agent to perform the foraging task, described in Sec. 2.2, using deep reinforcement learning (DRL) (Sutton &
Barto, 2018; Thorndike, 1911; Schultz et al., 1997). That is, the agent is controlled by a deep neural network that decides
which action should be performed at which state to obtain the largest possible reward. A standard approach for DRL is
Q-learning (Mnih et al., 2015), where a deep neural network learns to estimate so called Q-values, i.e., a weighted sum of
future rewards (called the discounted return) that we can expect for certain actions at a given state. We refer to this type of
neural network as deep Q-network (DQN). Based on the estimates provided by the DQN, the agent can decide which action
it takes.

For our numerical experiments, we use a dueling Q-network (Wang et al., 2016) , which is an enhanced version of the
original DQN. Instead of estimating the Q-values directly, a dueling Q-network provides two distinct estimates. Firstly, it
approximates the state value, which is the expected discounted return for a given state. Secondly, it approximates advantage
values, which indicate how much better the expected return is for a specific action at the given state relative to the other
possible actions.

The Q-value of an action depends on the state st of the environment. In particular during daytime, to determine which
action is the most promising, we need to know the remaining time until the night begins. This information is part of the
state st but not provided by the observation ot at time t. However, it can be extracted from the history of observations
ht = {ot, ot−1, ot−2, . . .}. Therefore, we chose a network architecture with an internal state that allows us to represent
information from past inputs: we equip our network with an LSTM layer (Hochreiter & Schmidhuber, 1997; Bakker, 2001;
Hausknecht & Stone, 2015).

The network architecture of our dueling Q-network is illustrated in Fig. A.1. The network comprises two input layers and
multiple hidden layers. The input of the network at time step t is the observation ot. The first input layer is a 5 × 5 × 2
binary tensor, encoding the location of the agent and food objects in our 5× 5 grid world. The tensor has the value one at
the current location of the agent (or the food, respectively) and zero values elsewhere. The second input layer has five nodes
representing the daylight signal and the agent’s orientation. The daylight signal has the value one at daytime and zero at
night. The agent’s orientation is encoded in a one-hot vector. The first hidden layer is a ReLU-activated convolutional layer
that receives its input from the first input layer. That is, the convolutional layer processes the binary tensor providing the
spatial information of the environment (the agent and the food location). It has six output channels of size 5× 5, which are
generated using kernels of size 3× 3. The output of the convolutional layer is flattened and merged with the daylight signal
and the orientation vector. The convolutional layer is followed by two fully connected layers with 32 nodes each, and one
LSTM layer with 128 cells. For these fully connected layers and the LSTM layer we use the hyperbolic tangent as activation
function. The LSTM layer is followed by two branches containing small fully connected layers that estimate the state value
and the advantage values. Naturally, the state value layer contains only one neuron (because it estimates a one-dimensional
quantity). The advantage value layer contains five neurons, one for each possible action. For both layers, we use ReLU
activation. As final step, both estimates are combined to obtain the Q-value estimates, which can be used to govern the
agent’s behavior.
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B. Dueling Q-networks
In Appendix A, we describe the architecture of the duelling Q-network with an LSTM layer that controls the agent. Based
on the history of observations ht = {ot, ot−1, ot−2, . . .}, the network estimates the Q-values, i.e., the expected discounted
return for state-action-pairs (s, a). Thereby, the Q-value estimates are obtained from separate estimates of the state value
and the advantage values for each action.

The discounted return at time step t is formally defined as Rt =
∑∞

τ=t γ
τ−trτ , where rτ is the reward obtained at time step

τ and γ ∈ [0, 1] is a discount factor. The return that we can expect from a given state and action strongly depends on the
behavior of the agent. Therefore, Q-value, state value, and advantage value are defined based on a policy π = P(a | h),
which describes the probability that the agent takes action a for a history of observations h. The policy π can be stochastic
or deterministic (where all probability values are either one or zero). The Q-value for state s and action a under policy π is
defined by

Qπ(s, a) = Eπ[Rt | st = s, at = a], (1)

where st and at are the state and action at time step t. Note that in our case the Q-value must be defined as the expected
value of the return even if the policy is deterministic because our environment is stochastic. The state value is defined as the
expected Q-value for the considered state:

V π(s) = Ea∼π[Q
π(s, a)]. (2)

The advantage value of taking a particular action a at a state s is then defined as the difference between Q-value and state
value:

Aπ(s, a) = Qπ(s, a)− V π(s). (3)

For distinction, we denote the functions Qπ , V π , and Aπ defined in Eqs. (1)–(3) with superscript π, whereas we denote the
corresponding Q-network and its state value and advantage value branches (which approximate these functions) by Q, V ,
and A.

When we train the network Q, we fit the network to the actual Q-function Qπ . The state value branch V and the advantage
value branch A are not directly fitted to V π and Aπ but trained via backpropagation. In order to achieve that these branches
are indirectly fitted to V π and Aπ , the network output Q must be implemented in a suitable way. We cannot simply use the
sum of V and A for the network output, even though this would comply with Eq. (3). If we did, the output would remain
unchanged if we increase V by an arbitrary constant and decrease A by the same constant. Hence, the training process
would not force V and A to V π and Aπ . Therefore, we implement the network output via

Q(h, a) = V (h) +
[
A(h, a)−max

a′
A(h, a′)

]
. (4)

As a result, V approximates V π, where π is the policy to chose the best action, and the term A(h, a) − maxa′ A(h, a′)
approximates the advantage of action a in comparison to the best action.

The original publication (Wang et al., 2016) that introduced dueling Q-networks proposed Eq. (4) and an alternative equation
using the mean instead of the max operator. We tested both versions and found that implementing the network output with
Eq. (4) works better in our case.

C. Training Details
We followed the training procedure of (Mnih et al., 2015). We train our Q-network by recursively exploiting the relation
between the Q-value of a state-action-pair (s, a) and the Q-values for the consequence state s′ which we obtain by taking
action a at state s. For this recursive training approach, Q-value estimates for the consequence state are employed to define a
target for the Q-network Q(h, a; θ), where θ is the parameter set and h is the history of observations. The Q-value estimates
for the consequence state are obtained using a separate target network with parameter set θ−. The target for Q(h, a; θ) is
defined as

y = r + γmax
a′

Q(h′, a′, θ−), (5)
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where r is the reward for the action a taken at the current time step, h′ is the new history of observations at the next time
step (after taking action a), and γ is a discount factor for future rewards. The target value y is only an approximation of the
actual Q-value, but it is indeed good enough for training the network Q(h, a; θ) if we use an adequate behavioral policy and
update rule for θ−. For fitting Q(h, a; θ) to y, we use the loss function

L(θ) = E
[
(y −Q(h, a; θ))2

]
, (6)

which we optimize by gradient descent. The strategy of using a separate target network Q(h′, a′; θ−) to compute the
targets y was developed to stabilize the training procedure (Mnih et al., 2015). In the original publications that introduced
the target network approach (Mnih et al., 2015) and dueling Q-networks (Wang et al., 2016), the parameters θ− of the target
network were updated periodically. The parameter set θ− was fixed for a certain number of training steps while the online
network’s parameters θ were progressively updated. After each period, the target network’s parameters were set to θ− = θ.
For our network training, we use a modified approach. We define the target network’s parameters as an exponential moving
average of the online weights and update them at every time step via

θ− = βθ + (1− β)θ−, (7)

where β = 0.001.

For further improvement of the training stability, we use experience replay (Mnih et al., 2015). An experience consists of
the history of observations h, the chosen action a, the reward r obtained at the considered time step, and the new history
of observations h′ after taking the action a. We store the observations o, the chosen actions a, and the rewards r for the
1000 most recent training episodes in a replay memory. Thus, we can retrieve all experiences (h, a, r, h′) of these 1000
episodes from the replay memory. For updating the network parameters θ, we compute the gradient of the loss function (6)
by averaging over 16 experiences that were randomly drawn from the replay memory (for each update step). Hence, the
formula for the loss function can be written as

L(θ) = E(h,a,r,h′)∼D
[
(y −Q(h, a; θ))2

]
, (8)

where D is the replay memory.

In order to find a good strategy for solving the foraging task, we need a policy to produce exploratory actions. Therefore, we
apply an ε-greedy policy. That is, with probability ε, the agent takes a randomly chosen action, and otherwise, the agent
takes the action a∗ = argmaxaQ(h, a; θ) which maximizes the current Q-value estimate.

We train our model for 37500 training episodes, each of which consists of 160 time steps. That is, we train for a total
number of 6 million time steps. The daylight signal has a period of 40 time steps. For the first 20 steps within this period,
the daylight signal has the value 1 (daytime), for the remaining 20 steps it has the value 0 (night). That is, each training
episode corresponds to four simulated day cycles. For each time step, we perform four training steps, i.e., four updates of
the parameter set θ of the online network. For this, we draw four samples consisting of 16 training episodes, and perform
one θ-update step for each sample. The first 32 training episodes are only used to fill the experience replay memory. No
parameter updates are performed during these 32 initial episodes. The network is trained using the learning rate η = 0.001.
The exploration parameter ε is linearly annealed from 1 to 0.1 for the first 75% of the training and constantly 0.1 for the
remaining training steps.

The hyperparameters that we used for our network and training are the same as in (Labash et al., 2020). The hyperparameters
are summarized in Table A1. The network was implemented using the Keras 2.1.5 library (Chollet et al., 2015).

D. Additional Results
D.1. Learning the Foraging Task

We evaluated the agent’s ability to maximize the reward as the training progresses. The agent obtains a reward of +1 for
each consumed food item and a penalty of −2.5 for each time step spent outside the home location at night. That is, to
maximize the reward, the agent needs to collect as many food items as possible at daytime and it needs to stay at the home
location at night.

We trained seven randomly initialized models for 37500 training episodes. After every tenth training episode, we performed
a test run and recorded the obtained reward. The results are shown in Fig. D.2: after roughly 5000 training episodes, the
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Table A1. Hyperparameters of the neural network architecture and training.

HYPERPARAMETER VALUE

KERNEL SIZE OF THE CONVOLUTIONAL LAYER 3× 3
NUMBER OF OUTPUT CHANNELS OF THE CONVOLUTIONAL LAYER 6
SIZE OF THE FULLY CONNECTED LAYERS 32
NUMBER OF LSTM CELLS 128
REWARD FOR COLLECTING FOOD 1
PENALTY FOR EACH TIME STEP SPENT OUTSIDE THE HOME LOCATION AT NIGHT −2.5
DISCOUNT FACTOR FOR THE DISCOUNTED RETURN γ = 0.99
NUMBER OF TRAINING EPISODES 37500
NUMBER OF TIME STEPS PER EPISODE 160
NUMBER OF TRAINING STEPS (GRADIENT DESCENT STEPS) PER TIME STEP 4
REPLAY MEMORY SIZE (NUMBER OF TRAINING EPISODES IN MEMORY) 1000
TRAINING SAMPLE SIZE (NUMBER OF EPISODES SAMPLED FROM REPLAY MEMORY) 16
LEARNING RATE η = 0.001
EXPLORATION PARAMETER ε = 1.0 TO 0.1
UPDATE RATE FOR THE TARGET NETWORK β = 0.001
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Figure D.2. Reward improvement during the training progress. The solid blue line shows the average reward gained in test runs of the
agent during the training process. The data is obtained by averaging over seven randomly initialized models and over a window of 11 test
episodes using the central moving average. The standard deviation of the reward is indicated by the light blue area.
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Figure D.3. Power spectra of the LSTM activation for the whole training procedure. Shown is the logarithm of the power spectrum of one
arbitrary (but typical) LSTM neuron for (a) permanent daytime and (b) permanent night. The spectrograms show that the network training
establishes a steady cyclic behavior for permanent daytime (daylight signal clamped to one). For permanent night, it is not guaranteed that
the cyclic behavior is preserved by the network training. In both cases the spectral data were calculated based on a single test simulation.

agent is still unable to gain a positive reward. Moreover, we can observe a strong fluctuation of the obtained reward during
this initial training phase, which is reflected in a large standard deviation. After this initial phase, the agent’s performance
improves significantly. The largest average reward is achieved after approximately 8000 training episodes. With further
training, the average reward decreases slightly, but stabilizes at a level near the optimum.

D.2. Bistable Endogeneity Pattern During Training

In Sec. 3.2, we demonstrate the endogeneity of the learned rhythm by applying constant daylight signals. For both permanent
daytime and permanent night, we observe a rhythmic behavior with a period of approximately one day. Spectrograms
of the LSTM activation during the initial training phase suggest that the endogeneity emerges through a supercritical
Neimark-Sacker bifurcation.

Inspecting the frequency content beyond the initial training phase reveals that the internalized rhythm persists for the whole
training phase, but is not necessarily active at nighttime. Figure D.3 depicts the log power spectrum of an arbitrary neuron
over the full training period consisting of 37500 training episodes with a resolution of 100 episodes; i.e., test runs were
performed after every 100th training episodes to record the data that are shown in this figure. Two test cases are presented:
(a) permanent daytime and (b) permanent night. It is revealed that the LSTM passes further bifurcation points during the
training. While the cyclic behavior remains present for permanent daytime, it disappears and reappears multiple times
for permanent night. A possible explanation for this observation is that anticipating the onset of the night is essential for
obtaining a high reward. If the agent is not able to return to the home location before nighttime, it will receive high penalty
scores. Therefore, it is necessary to keep track of the current time step at daytime, which the network does using its internal
rhythm. In contrast, at nighttime the LSTM activity is not absolutely necessary because the agent must stay inactive until the
last time step of the night, i.e., the agent can simply react to the start of the daylight signal to go to the food area.

D.3. Simulations With Extreme Changes in Phase

In Sec 3.3.1 we explored 2 experiments where the daytime or night of a single day period were extended. In Fig. D.4 we
show more extreme simulations were the model showed similar adaptation. In Fig. D.4 (a), we switched the daytime and
night which is the opposite signal received during training. The results shows that the agent adapted to the changes after 4
daytime-night-cycle. In Fig. D.4 (b), we extended the daytime and night with 3 time steps each, which changes the total
period of the daytime-night-cycle to 46 time steps. The change in frequency of the external cue is matched by the frequency
of the LSTM activation. That is, the LSTM is able to lock to the new frequency of forcing. However, the locking to the
modified external frequency results in a additional phase difference that makes the agent to leave the food area too early for
obtaining an optimal reward. The effect of of permanently changing ratio between daytime and night while keeping the
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Figure D.4. Effect of a daylight signal phase shift on the agent’s behavior and the LSTM activation. Panel (a) shows the case where the
daytime and night were reversed. In (b) we introduce a longer daytime-night cycle consisting of 23 time steps of daytime and 23 time
steps of night (23,23). In (c) and (d) we permanently change the ratio between daytime and night respectively to become (17,23) in (c)
and (23,17) in (d).

same overall period of 40 time steps is shown in panels c) and d). The LSTMs guiding the behavior of the agent are able to
adapt to such changes and control the agent to exit the food area in a near optimal time.

D.4. Robustness against variations of network architecture, type of recurrent layer, and optimization algorithm

To determine the generality of the emergence of the circadian-like rhythms, we considered variations in the optimization
algorithm (SGD and RMSprop), weights regularization (L1 + L2 norms), weights initialization (He normal), type of recurrent
layer (vanilla RNN and GRU), as well as the width of the recurrent layer (32 and 96 neurons) and fully connected layer (8
units).

The rows of Figure D.5 (rows a-d) show the effect of the optimizer, weight regularization and initialization on the LSTM
type of recurrent layer. For each case the endogeneity test are shown in the first two columns (constant day-light signals),
while the entrainability (jet-lag tests) are shown in the third and fourth columns. Rows (e-i) show the effect of the type of
recurrent layer and width of the recurrent and fully connected layer.

In almost all cases a sustained rhythm of the same period as the external rhythm is present even under constant daylight
conditions. An exception is the case of vanilla RNN which develops a sustained rhythm of higher frequency. With respect to
the jet-lag experiments, we note that in almost all cases the phase of the internal rhythm adapts to the jet lag in a two to three
days inducing the agent to exit the food area at nearly the end of the day. The only exception to such adaptability occurred
when a combined L1 and L2 weight regularization was applied.
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Figure D.5. Effect of network and algorithmic variations on the endogeneity and entrainability of the rhythm at the recurrent layer. First
and second columns display the endogeneity tests by setting a constant daylight signal from day four. Third and fourth columns display
the jet-lag experiments obtained by extending the second day daytime or night by 50 %. Daytime and night are represented by white
and grey areas. The average activation of the neurons in the recurrent layer is plotted in blue. The red bars are histograms counting the
agent’s exits of the food area at the respective time step. Distribution for the food area exit timing were obtained over 1000 test run. In
training those models we used: a) RMSprop optimizer, b) SGD optimizer, c) combined L1+L2 regularization on LSTM weights, d) He
normal initialization for LSTM weights, e) LSTM layer with 32 cells, f) LSTM layer with 96 cells, g) fully connected layer with 8 units,
h) vanilla RNN as recurrent layer, and i) GRU units as recurrent layer. Each case was trained over 3 or 6 million steps. For the GRU
variation the exploration rate was annealed until 0.01. Other parameters and training not mentioned in the variation remained as in the
standard case (see section C for further training details).
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