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Abstract

In reinforcement learning (RL), state representa-
tions are key to dealing with large or continuous
state spaces. While one of the promises of deep
learning algorithms is to automatically construct
features well-tuned for the task they try to solve,
such a representation might not emerge from end-
to-end training of deep RL agents. To mitigate
this issue, auxiliary objectives are often incorpo-
rated into the learning process and help shape the
learnt state representation. Bootstrapping meth-
ods are today’s method of choice to make these
additional predictions. Yet, it is unclear which
features these algorithms capture and how they
relate to those from other auxiliary-task-based
approaches. In this paper, we address this gap
and provide a theoretical characterization of the
state representation learnt by temporal difference
learning (Sutton, 1988). Surprisingly, we find
that this representation differs from the features
learned by Monte Carlo and residual gradient
algorithms for most transition structures of the
environment in the policy evaluation setting. We
describe the efficacy of these representations
for policy evaluation, and use our theoretical
analysis to design new auxiliary learning rules.
We complement our theoretical results with an
empirical comparison of these learning rules for
different cumulant functions on classic domains
such as the four-room domain (Sutton et al.,
1999) and Mountain Car (Moore, 1990).

1. Introduction

The process of representation learning is crucial to the suc-
cess of reinforcement learning at scale. In deep reinforce-
ment learning, a neural network is used to parameterise a
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Figure 1: In deep RL, we see the penultimate layer of the net-
work as the representation ¢ which is linearly transformed
into a value prediction f/¢,w and auxiliary predictions ¥ (z)
by bootstrapping methods.

representation ¢ which is linearly mapped into a value func-
tion (Figure 1) (Yu and Bertsekas, 2009; Bellemare et al.,
2019; Levine et al., 2017); this approach often leads to state-
of-the-art performance in the field (Mnih et al., 2015). State
representations are key to the stability and quality of this
learning process.

However, a representation supporting the downstream task
of interest might not emerge from end-to-end training.
Hence, auxiliary objectives are often incorporated into the
training process to help the agent combine its inputs into
useful features (Sutton et al., 2011; Jaderberg et al., 2017,
Bellemare et al., 2017; Lyle et al., 2021) and the result-
ing network’s representation can help the agent estimate
the value function. To construct representations supporting
these characteristics, different kind of auxiliary tasks have
thus been incorporated into the learning process such as con-
trolling visual aspects of observed states (Jaderberg et al.,
2017), predicting the values of several policies (Bellemare
et al., 2019; Dabney et al., 2021), predicting values over
multiple discount factors (Fedus et al., 2019) or prediction
of next state observations (Jaderberg et al., 2017; Gelada
et al.,, 2019) and rewards (Dabney et al., 2021; Lyle et al.,
2021; Farebrother et al., 2023).

While these tasks have mainly been trained by bootstrap-
ping, a precise characterization of the representations they
learn is lacking. This paper aims to fill this gap. We study
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the representations learnt by TD learning when training aux-
iliary tasks consisting in predicting the expected return of
a fixed policy for several cumulant functions (Section 3).
More generally, this analysis informs bootstrapped represen-
tations arising from algorithms such as Q-learning (Watkins
and Dayan, 1992), n-step Q-learning (Hessel et al., 2018;
Kapturowski et al., 2019; Schwarzer et al., 2021) or Retrace
(Munos et al., 2016). Our key insight is that the way we train
these value functions, for instance by TD learning, Monte
Carlo or residual gradient, influences the resulting features.
In particular, we show that when trained by TD learning,
these features converge to the top-d real invariant subspace
of the transition matrix P™, when it exists (Theorem 1). We
present an empirical evaluation that supports our theoretical
characterizations and show the importance of the choice of
a learning rule to learn the value function in Section 5.

In Section 4, we characterise the goodness of these represen-
tations by quantifying the approximation error of a linear
prediction of the value function from these frozen represen-
tations in the TD learning and batch Monte Carlo settings
(Subsection 4.1). We find that to minimize this error, the
cumulants need to depend on the dynamics of the environ-
ment but in a different way whether we learn the main value
function by batch Monte Carlo or TD learning. Then, we
show random cumulants which have been used in the litera-
ture (Lyle et al., 2021; Farebrother et al., 2023) can be good
pseudo-reward functions for some particular structures of
the successor representation (Dayan, 1993) by providing an
error bound that arises from sampling a small number of
random pseudo-reward functions (Subsection 4.2).

Finally, we find that one way to improve this bound is to
sample pseudo-reward functions which depend on the dy-
namics of the environment and inspired by this observation,
we propose a novel auxiliary task method with adaptive
cumulants and show that the resulting pretrained features
outperform training from scratch on the Four Rooms and
Mountain Car domains Subsection 5.3.

2. Background

We consider a Markov decision process (MDP) M =
(S, A, R, P,v) (Puterman, 1994) with finite state space S,
finite set of actions A, transition kernel P : Sx A — Z2(S),
deterministic reward function R : & X A — [—Rmax, Rmax)>
and discount factor v € [0, 1). A stationary policy 7 : S —
Z(A) is a mapping from states to distributions over actions,
describing a particular way of interacting with the environ-
ment. We denote the set of all policies by II. We write
P, : 8§ — Z(8) the transition kernel induced by a policy
mell

Pr(s,s') = Z P(s,a)(s")m(als)

acA

and r : S = [— Rmax, Rmax] the expected reward function

77(8) = Ex[R(So, Ao) | So = s, Ag ~ 7(- | So)].

For any policy 7 € II, the value function V™ (s) measures
the expected discounted sum of rewards received when start-
ing from state s € S and acting according to 7:

Z’YtR(St,At) | So =5, Ay ~ (-] Sp)
=0

VT(s) = ﬂIEP

It satisfies the Bellman equation (Bellman, 1957)
Vﬂ—(S) = TT((S) + ,YIES’NP,,(v\S) [VW(S/)] 5

which can be expressed using vector notation (Puterman,
1994). Assuming that there are S = |S]| states and viewing
r. and V7 as vectors in R and P, as an RS* transition
matrix, we have

VT =1y + 4P V™ = (I —yP;) 'ry.

We are interested in approximating the value function V'™
using a linear combination of features (Yu and Bertsekas,
2009; Levine et al., 2017; Bellemare et al., 2019). We call
the mapping ¢ : S — R a state representation, where
d € NT. Usually, we are interested in reducing the number
of parameters needed to approximate the value function and
have d < S. Given a feature vector ¢(s) for astate s € S
and a weight vector w € R?, the value function approximant
at s can be expressed as

Vpw(s) = (b(s)Tw.

We write the feature matrix ® € R%*¢ whose rows corre-
spond to the per-state feature vectors (¢(s),s € S). This
leads to the more concise value function approximation

Vd),w = dw.

In the classic linear function approximation literature, the
feature map ¢ is held fixed, and the agent adapts only the
weights w to attempt to improve its predictions. By contrast,
in deep reinforcement learning, ¢ itself is parameterized by
a neural network and is typically updated alongside w to
improve predictions about the value function.

We measure the accuracy of the linear approximation Vi ,,
in terms of the squared &-weighted I norm, for £ € Z(S), !

Vow = VTIE =D &(s)(9(s)Tw = V7(s))%.
seS
The &-weighted norm describes the importance of each state.

"We assume that £(s) > O for all states s € S.
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2.1. Auxiliary Tasks

In deep reinforcement learning, the agent can use its rep-
resentation ¢ to make additional predictions on a set of T'
auxiliary task functions {1y € R%},c41, 7} where each
1)y maps states to real values (Jaderberg et al., 2017; Belle-
mare et al., 2019; Dabney et al., 2021). These predictions
are used to refine the representation itself. We collect these
targets into an auxiliary task matrix ¥ € RS> whose rows
are (s) = [¢1($), ..., Y1 (s)]. We are interested in the case
of linear task approximation

¥ = oW,

where W € R4*T js a weight matrix, and want to choose
® and W such that ¥ ~ U™, In this paper, we consider a
variety of auxiliary tasks that ultimately involve predicting
the value functions of auxiliary cumulants, also referred to
as general value functions (GVFs; Sutton et al., 2011). By
construction, these tasks can be decomposed into a non-zero
cumulant function ¢ : S — R”, mapping each state to
T real values, and an expected discounted next-state term
when acting according to 7

P (s) = g(s) + 1Esimp, (157 (5]
In matrix form, this recurrence can be expressed as follows
U™ =G +yP, V™ = (I —yP™)"'G,

where G € R%*T is a cumulant matrix whose columns
correspond to each pseudo-reward vector. An example of a
family of auxiliary tasks following this structure is the suc-
cessor representation (SR) (Dayan, 1993). The SR encodes
a state in terms of the expected discounted time spent in
other states and satisfies the following recursive form

’l/)Tr (8, 5”) =1 [S = S/I] + WES’NPW(WS) [ww (S/, SN)] 5

for all s” € S. The SR is a collection of value functions
associated with the cumulant matrix G = I. Here we focus
our analysis in its tabular form, noting that it can be extended
to larger state spaces in a number of ways (Barreto et al.,
2017; Janner et al., 2020; Blier et al., 2021; Thakoor et al.,
2022; Farebrother et al., 2023).

2.2. Monte Carlo Representations

To understand how auxiliary tasks shape representations,
we start by presenting the simple case where the values of
auxiliary cumulants are predicted in a supervised way. Here,
the targets U™ = (I — yP™)~1(G are obtained by Monte
Carlo rollouts, that is using the fixed policy to perform
roll-outs and collecting the sum of rewards. The goal is to
minimize the loss below

LY (@, W) =

aux

i =V2(0W — U2,
n  [E5 )

This method results in the network’s representation @, as-
suming a linear, fully-connected last layer, corresponding to
the k principal components of the auxiliary task matrix U™ if
the network is other unconstrained (Bellemare et al., 2019).

Proposition 1 (Monte Carlo representations). If
rank(¥™) > d > 1, all representations spanning
the top-d left singular vectors of V™ with respect to the
inner product (x,y)= are global minimizers of LNC and
can be recovered by stochastic gradient descent.

In large environments, it is not practical to collect full tra-
jectories to estimate U™. Instead, practitioners learn them
by bootstrapping (Sutton and Barto, 1998).

2.3. Temporal Difference Learning with a Deep
Network

Temporal difference (TD; Sutton, 1988) is the method of
choice for these auxiliary predictions. The main idea of
this approach is bootstrapping (Sutton and Barto, 1998). It
consists in using the current estimate of the auxiliary task
function to generate some targets replacing their true value
U™ in order to learn a new approximant of the auxiliary task
function. In this paper, we consider one-step temporal dif-
ference learning where we replace the targets by a one-step
prediction from the currently approximated auxiliary task
function. The analysis can easily be extended to n-step tem-
poral difference learning; see Appendix G for further details.
In deep reinforcement learning, both the representation ¢
and the weights W are learnt simultaneously by minimizing
the following loss function

LW = B [ssW —s6(a(s) +10()W)]

aux s~§
s/~ Pr(-]s)

where SG denotes a stop gradient and means that ¢ and
W are treated as a constant when taking the gradient from
automatic differentiation tools (Bradbury et al., 2018; Abadi
et al., 2016; Paszke et al., 2019). Written in matrix form,
we have
Lan(®.W) = [[(B)F(2W — 5G(G +7PTeW)) [

Here, Z € R*¥ is a diagonal matrix with elements {£(s) :
s € S} on the diagonal. For clarity of exposition, we ex-
press this loss with universal value functions but the analysis
can be extented to state-action values at the cost of additional
complexity. The idea is to reduce the mean squared error
between the approximant 1[) and the target values by stochas-
tic gradient descent (SGD). Taking the gradient of £ with
respect to & and W, we obtain the semi-gradient update rule

D —aZ (I —~yP")OW -G )W’
W W —ad Z((I —~yP™)dW — G) (1)
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for a step size a. Because the values of the targets change
over time, the loss £ does not have a proper gradient field
(Dann et al., 2014) except in some particular cases (Barnard,
1993; Ollivier, 2018) and hence classic analysis of stochastic
gradient descent (Bottou et al., 2018) does not apply.

3. Bootstrapped Representations

We now study the d-dimensional features that arise when
performing value estimation of a fixed set of cumulants and
how the choice of a learning method such as TD learning
affects the learnt representations. Our first result character-
izes representations that bootstrap themselves. We assume
that the features ® are updated in a tabular manner under
the dynamics in Equation (1). To simplify the presentation,
we now make the following invertibility assumption.

Assumption 1. We assume that ®TZ(I — yP™)® is invert-
ible for any full rank representation ® € RS*4,

This standard assumption is for instance verified when £ is
the stationary distribution over states under 7 of an aperi-
odic, irreducible Markov chain (see e.g. Sutton et al., 2016).

An interesting characterization of the dynamical system in
Equation (1) is its set of critical points. For a given ®, we
write

Wa & € {W € RUT |V L10.(®, W) = 0}.
Using classic linear algebra, we find that the weights Wrp

obtained at convergence correspond to the LSTD solution
(Bradtke and Barto, 1996; Boyan, 2002; Zhang et al., 2021)

WER = (3TE(I — 4 P™)d) " 2TEG.

A key notion for our analysis is the concept of invariant
subspace of a linear mapping.

Definition 1 (Gohberg et al., 2006). A representation ® €
R3*? spans a real invariant subspace of a linear mapping
M : S — R if the column span of ® is preserved by M,
that is in matrix form

span(M®) C span(®).

For instance, any real eigenvector of M generates one of its
one-dimensional real invariant subspaces.

We are now equipped with the tools to enumerate the set of
critical representations {® € R¥*4 |V LID (0, WD) =
0} in the lemma below.

Lemma 1 (Critical representations for TD). All full rank
representations which are critical points to EEB( span

real invariant subspaces of (I — yP™)"'\GG'Z, that is
span((I —yP™)"1GGTZ®) C span(®).

Proof. The proof is given in Appendix C and relies on the
view of LSTD as an oblique projection (Scherrer, 2010).
O

In the particular case of an identity cumulant matrix and
a uniform distribution over states, this set can be more di-
rectly expressed as the representations invariant under the
transition dynamics.

Corollary 1. If G = I and = = I/S, all full rank represen-
tations which are critical points to LID span real invariant

subspaces of the invariant subspaces of P™.

Similarly to how the top principal components of a ma-
trix explain most of its variability (Hotelling, 1933), these
critical representations are not equally informative of the
dynamics of the environment. This motivates the need to
understand the behavior of the updates from Equation (1).
To ease the analysis, we assume that the weights W have
converged perfectly to Wgy% at each time step (Le Lan
et al., 2023) and consider the following continuous-time
dynamics.

d
2= Val(®We2) = —F(®), @

where:

F(®) =22 (I -7 PT)eWg 2 — G) (W)

We can characterize the behavior of the above critical repre-
sentations in terms of the notion of top-d invariant subspace
of PT.

Definition 2 (Top-d invariant subspace). Let A1,...,Ag
be the (possibly complex) eigenvalues of a linear map-
ping M : S — RS, ordered by decreasing real part
Re(A\;) = Re(Aiy1), @ € {1,...,S}. Assume that
Re(M\g) > Re(Agy1). A representation ® € RS*? spans
a top-d invariant subspace of M if (i) it is an M -invariant
subspace and (ii) span(®) N span(v;) = {0} for all
j e {d+1,...,S}, where v; is a corresponding eigen-
vector for eigenvalue ;.

Our key result is that certain non top-d invariant subspaces
of P™ correspond to unstable critical points of the ordinary
differential equation 2.

Theorem 1 (TD representations). Assume P™ real diago-
nalisable, G = I and a uniform distribution £ over states.
Let (v1,...,vs) denote the eigenvectors of P™ correspond-
ing to the eigenvalues (M1, ..., Ag). Under the dynamics in
Equation (2), all real invariant subspaces of dimension d are
critical points, and any real non top-d invariant subspace
O = (vy,,...,v,,) is unstable for gradient descent.

The result above takes a step toward establishing that the TD
algorithm converges towards a real top-d invariant subspace
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Figure 2: Left: A simple 3-state MDP. Right: Five sub-
spaces, each represented by a circle, spanned by ® during

s : TD —
the last training steps of gradient descent on £, for d = 2.

or diverges with probability 1. While real diagonalisable
transition matrices always induce real invariant subspaces,
complex eigenvalues do not guarantee their existence and in
such a case, where there is no top-d real invariant subspace,
the representation learning algorithm does not converge.
As an illustration, consider the three-state MDP depicted
in Figure 2, left, whose transition matrix is complex
diagonalisable and given by

0
PT™ =10
1

OO
o = O

Its eigenvalues are \; = 1 associated to the real eigen-
vector e; and the complex conjugate pair (A2, \2) =
(e27/3 ¢=271/3) associated to the pair of real eigenvec-
tors (ez, e3). Hence, the real invariant subspaces of P™ are
{0}, span(e;),span(es, e3),span(er, e, e3). Note that
there is no 2-dimensional real invariant subspace containing
the top eigenvector e;. Consequently, the 2-dimensional
representation learnt by gradient descent on the TD learning
rule with G = I does not converge and rotates in the higher
dimensional subspace span(ey, ea, e3) (see Figure 2, right).

To understand the importance of the stop-gradient in TD
learning, it useful to study the representations arising from
the minimization of the following loss function
LIS, W) = |22 (BW — (G +7P"8W)) |3

which corresponds to residual gradient algorithms (Baird,
1995). While it has been remarked on before that the weights
minimizing L35 (®, W) for a fixed @ differ from W ¢
(see Lemma 8; Lagoudakis and Parr, 2003; Scherrer, 2010),
this objective function also has a different optimal represen-
tation

Proposition 2 (Residual representations). Let d €
{1,...,8} and F; be the top d left singular vectors of G
with respect to the inner product (x,y)= = y' Zx, for all
x,y € RS. All representations spanning (I — yP™) "' F

res

w and can be recovered by

are global minimizers of L
stochastic gradient descent.

While TD and Monte Carlo representations are in general
different, in the particular case of symmetric transition ma-
trices and orthogonal cumulant matrices, they are the same.

Corollary 2 (Symmetric transition matrices). If a cumulant
matrix G € RS*T (with T > S) has unit-norm, orthogonal
columns (e.g. G = I), the representations learnt from the
supervised objective LM and the TD update rule LIP

are the same for symmetric transition matrices P™ under a
uniform state distribution &.

This is because eigenvectors and singular vectors are iden-
tical in that setting and the eigenvalues of the successor
representation are all positive.

4. Representations for Policy Evaluation

With the results from the previous section, the question that
naturally arises is which approach results in better repre-
sentations. To provide an answer, we consider a two-stage
procedure. First, we learn a representation ® by predicting
the values of T" auxiliary cumulants simultaneously, using
one of the learning rules described in Section 3. Then, we re-
tain this representation and perform policy evaluation. If the
value function is estimated on-policy, it converges towards
the LSTD solution (Tsitsiklis and Van Roy, 1996)

STD _ g, TD
V2 = dwg

- -1 7 .
where wgP = (®TE(I — yP™)®) ~ ®'Er,. We are inter-
ested in whether this value function results in low approxi-
mation error on average over random reward functions.

Definition 3 (/;-ball optimal representation for TD). We
say that a representation ®5, is l1-ball optimal for TD
learning when it minimizes the error

E [[|®wg” — VI¢] 3)

where the expectation is over the reward functions r, sam-
pled uniformly over the ly-ball {r, € R |||r.|1 < 1}.

This set of rewards models an unknown reward function.
Here @7, depends on the transition dynamics of the envi-
ronment but not on the reward function.

Lemma 2. A representation ®1p is l1-ball optimal for TD
learning iff it is a solution of the following optimization
problem.

P4 € argming [|EV2(SWIR — (I — P72
When P7 is symmetric and = = [/|S|, the minimum is
achieved by both the top-d left singular vectors and top-d
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MAIN ALGORITHM

l1-BALL OPTIMAL REPRESENTATION

REPRESENTATION LOSS LEARNT REPRESENTATION

BATCHMC ~ SVD ((I —vP™)7?)
RESIDUAL  SVD ((I —~vP™) ") 4
TD &%y

MC SVD ((I —vP™)"'G)
RESIDUAL (I —~P™)"' SVD (G)
TD INv ((I —+P")"'GG'E)

Table 1: Different types of representation loss and their induced representations. The supervised targets U € R¥*7 are
(I —yP™)~1G. SVD(M) denotes the top-d left singular vectors of M, INV(M) the top-d invariant subspace of M and
¥4 € R¥4 the diagonal matrix with the top-d singular values of (I — vP™)~! on its diagonal.

invariant subspace of the SR. However, as the misalignment
between the top-d left and top-d right singular vectors of
(I — vP7) increases, the top-d invariant subspace results
in lower error compared to the top-d singular vectors (see
Figure 3); note that here, none of them achieves &7, and
hence G = I is not [;-ball optimal for TD learning. As

— TD
15 Supervised

MC approximation error
s
TD approximation error

N
o
S

010 0.15 0.20 0.25 0.30 0.35
Distance between top left and top right
singular vector of (/ —yP")

0.10 0.15 0.20 0.25 0.30 0.35
Distance between top left and top right
singular vector of (/ — yP")

Figure 3: MC (left) and TD (right) approximation errors
as a function of the misalignment of the top left and right
singular vector of the SR induced by greedifying the policy.
Trained with £MC £TD '@ = I, d = 1 on a 4-state room.

aux? aux?

a comparison, we study which representations are /;-ball
optimal for linear batch Monte Carlo policy evaluation. In
that setting, we are given a dataset consisting of states and
their associated value, which can be estimated by the reali-
sation of the random return (Bellemare et al., 2017; Sutton
and Barto, 2018), and the weights are learnt by least square
regression. As above, we want the features minimizing the
resuting approximation error averaged over a set of possible
reward functions.

Definition 4 (I;-ball optimal representation for MC). We
say that a representation O3 is l1-ball optimal for batch
Monte Carlo when it minimizes the error

Ejrp <1 [|Pwy'” = V7] S

where VMC = ®wlIC is the value function learnt at con-
vergence and wi¢ = (@T=P)" 1o TEV™.

Unlike TD, a representation ®3, is can be learnt by training
LMC with G = 1.

aux

Lemma 3. A representation ®y; is l1-ball optimal for
batch Monte Carlo policy evaluation if its column space
spans the top-d left singular vectors (with respect to the
inner product (x,y)=) of (I — yP™)~L.

We summarize in Table 1 our representation learning results
mentioned throughout Section 3 and Section 4. For com-
pleteness, we also include /;-ball optimal representations
for residual algorithms. Proofs can be found in Appendix D.

4.1. TD and Monte Carlo Need Different Cumulants

Having characterized which features common auxiliary
tasks capture and what representations are desirable to sup-
port training the main value function, we now show that
MC policy evaluation and TD learning need different cumu-
lants. In large environments, we are interested in cumulant
matrices encoding a small number of tasks T’ < S.

Lemma 4. Denote By the top-T right singular vectors of
the SR and O(T, S) the set of orthogonal matrices in RT*5.
Training auxiliary tasks in a MC way with any G from the
set {G € RS*T|3M € O(T, S),G = By M} results in an
l1-ball optimal representation for batch Monte Carlo.

We showed in Section 3 that training auxiliary tasks by TD
does not always converge when the transition matrix has
complex eigenvalues. Maybe surprisingly, we find that this
is not problematic when learning the main value function
by TD. Indeed, the rotation of its own weights balances the
rotation of the underlying representation.

Lemma 5. Let {®,,} be the set of rotating representations
Sfrom Figure 2 learnt by TD learning with G = I and d = 2.
All these representations are equally good for learning the
main value function by TD learning, that is Vw € [0, 1],

Ejrjz<t || @owE? =V}

is constant and independent of w.

Although G' = I does not always lead to ®1.; when training
LID by analogy with the MC setting, we assume that
G = I leads to overall desirable representations. Assuming
= = I/|S], this means we would like the subspace spanned
by top-d invariant subspaces of (I —~P™)~! to be the same
as the subspace spanned by the top d invariant subspaces of
(I—~yP™)7'GG".

Lemma 6. The set of cumulant matrices G € RS*T that
preserve the top-T invariant subspaces of the successor rep-
resentation by TD learning are the top-T orthogonal invari-
ant subspaces of (I —yP™)™L, that is satisfying GTG = I
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Figure 4: Subspace distance between ® and the top-d left singular vectors of the SR on the left (resp. and a top-d
PT-invariant subspace in the middle over the course of training £I'D | £MC and £ for 10° steps, averaged over 30 seeds

aux’ aux aux

(d = 3). MDPs with real diagonalisable (left, middle) and symmetric (right) transition matrices are randomly generated.

Shaded areas represent 95% confidence intervals.

by orthogonality and (I —yP™) "G C G by the invariance
property.

Unlike the MC case, a desirable cumulant matrix should en-
code the exact same information as the representation being
learnt and the choice of a parametrization here matters.

4.2. A Deeper Analysis of Random Cumulants

We now study random cumulants which have mainly been
used in the literature (Dabney et al., 2021; Lyle et al., 2021;
Farebrother et al., 2023) as a heuristic to learn representa-
tions. We aim to explain their recent achievements as a pre-
training technique (Farebrother et al., 2023) and their effec-
tiveness in sparse reward environments (Lyle et al., 2021).

Proposition 3 (MC Error bound). Let G € R%*T be a
sample from a standard gaussian distribution and assume
d < T. Let Fy be the top-d left singular vectors of the
successor representation (I — yP™)~! and F be the top
left singular vectors of (I — yP™)™1G. Denote 01 > o9 >
... = 0g the singular values of the SR and dist(Fy, F‘d) the
sin @ distance between the subspaces spanned by Fy and
Ey. Denoting p =T — d, we have

. ~ d Od+1 6\/T - (7]2‘
Eldist(Fa, Fa)] < 4/ + E 2
[ 1S ( ds d)] p 1 o4 P ' ) O_CQl

Jj=d+

N|=

Proof. A proof can be found in Appendix E and follows
arguments from random matrix theory. O

This bound fundamentally depends on the ratio of the singu-
lar values 041 /04 of the successor representation. As the
oversampling parameter (T — d) grows, the right hand side
tends towards 0. In particular, for the right hand side to be
less than €, we need the oversampling parameter to satisfy
(T — d) > 1/€%. We investigate to which extent this result
holds empirically for the TD objective in Subsection 4.1.

5. Empirical Analysis

In this section, we illustrate empirically the correctness of
our theoretical characterizations from Section 3 and com-
pare the goodness of different cumulants on the four room
(Sutton and Barto, 2018) and Mountain car (Moore, 1990)
domains. Let Py = ®(®'®)'®T. Here, any distance
between two subspaces ® and ®* is measured using the
normalized subspace distance, > (Tang, 2019) defined by

dist(®,®*) =1 — é - Tr (Pgp-Pg) € [0,1].

5.1. Synthetic Matrices

To begin, we train the TD, supervised and residual update
rules from Section 3 up to convergence knowing the
exact transition matrices P™. In Figure 4 left and middle,
we randomly sample 30 real diagonalisable matrices
P™ € R59%50 (o prevent any convergence issue from the
TD update rule. In Figure 4 right, we generate symmetric
transition matrices P™ € R59%50_ To illustrate the theory,
we run gradient descent on each learning rule by expressing
the weights implicitly as a function of the features (see
Equation (2) for TD for instance). Figure 4, left, middle
show that these auxiliary task algorithms learn different
representations and successfully recover our theoretical
characterizations (Proposition 1, Theorem 1) from Table 1,
right. Figure 4 right illustrates that the supervised and TD
rules converge to the same representation for symmetric
P7, as predicted by our theory (Corollary 2).

5.2. Efficacy of Random Cumulants

Following our theoretical analysis from Subsection 5.2, our
aim 1is to illustrate the goodness of random cumulants at
recovering the left singular vectors of the successor rep-
resentation on the four room domain (Sutton et al., 1999)

*It is equivalent to the sin 6 distance up to some constant
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and to investigate to which extent an analogous result holds
empirically for the TD rule. We investigate the importance
of three properties of a distribution: isotropy, norm and or-
thogonality of the columns. We consider random cumulants
from different distributions: a standard Gaussian N(0, ),
a Gaussian distribution which columns are normalized to
be unit-norm, the O(N') Haar distribution and random indi-
cators functions. Figure 5, left shows that the the indicator
distribution which is not isotropic performs worse overall
for the supervised objective and when the number of tasks
is large enough, orthogonality between the columns of the
cumulant matrix leads to better accuracy. In comparison,
Figure 5, right studies the goodness of random cumulants
at recovering the top-d invariant subspaces of the SR and
depicts a different picture. Here, the Gaussian distribution
achieves the highest error irrespective of the number of tasks
sampled while the normalized Gaussian achieves lower error
suggesting the norm of the columns matter for TD training.
The indicator distribution performs well for many number of
sampled tasks indicating that the isotropy of the distribution
is not as important for TD as it is for supervised training.
Finally, the orthogonal cumulants achieve the lowest error
when the number of tasks is large enough, showing this is
an important property for both kinds of training.

5.3. Offline Pre-training

In this section we follow a similar evaluation protocol as
that of Farebrother et al. (2023), but applied to the four room
and Mountain car domains to allow a clear investigation of
the various cumulant generation methods and the effects of
their corresponding GVFs as a representation pre-training
method for reinforcement learning. Details can be found
in Appendix A.

We consider four cumulant functions. The first two are sta-
tionary and are generated before offline pre-training begins.
For ExactSVD, we compute the top-k right singular vectors

of the successor representation matrix of the uniform ran-
dom policy. For Normal, we generate cumulant functions
sampled from a standard Normal distribution.

The second two cumulant functions are learned during of-
fline pre-training using a separate neural network. RNI
(Farebrother et al., 2023), learns a set of indicator functions
which are trained to be active in a particular percentage of
the states (15% in this experiment). Clustering Contrastive
Representations (CCR) learns cumulants by learning a rep-
resentation of the state using CPC (Oord et al., 2018), and
then performs online clustering of the learned representa-
tions with & clusters. The online clustering method we use
differs slightly from standard approaches in that we main-
tain an estimate of the frequency that each cluster center is
assigned to a state, p;, and the assigned cluster is identified
with arg min; p; ||¢(x) —b;]|, where ¢(x) is the learned CPC
representation and b; is cumulant ’s centroid. Examples of
the cumulants produced by these four methods, and their
corresponding value functions, are given in Appendix A.

Figure 6 compares the online performance after pre-training,
for various cumulant functions, with the online performance
of DQN without pre-training. Two take-aways are readily
apparent. First, that offline pre-training, speeds up online
learning, as expected. Second, that the two best perform-
ing methods are both sensitive to the structure of the envi-
ronment dynamics, directly in the case of ExactSVD and
indirectly through the CPC representation for CCR.

6. Related Work

Optimal representations. Bellemare et al. (2019) define
a notion of optimal representations for batch Monte Carlo
optimization based on the worst approximation error of the
value function across the set of all possible policies, later
relaxed by Dabney et al. (2021). Instead, we do not consider
the control setting but focus on policy evaluation. Ghosh
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different cumulant generation methods. Results are averages over 30 seeds.

and Bellemare (2020) and Le Lan et al. (2022) characterize
the stability, approximation and generalization errors of the
SR (Dayan, 1993) and Schur representations which are P™-
invariant, a key property to ensure stability. In contrast, we
formalize that predicting values functions by TD learning
from G = I leads to P™-invariant subspaces.

Auxiliary tasks. Lyle et al. (2021) analyse the represen-
tations learnt by several auxiliary tasks such as random
cumulants (Osband et al., 2018; Dabney et al., 2021) assum-
ing real diagonalizability of the transition matrix P™ and
constant weights W. They found that in the limit of an in-
finity of gaussian random cumulants, the subspace spanned
by TD representations converges in distribution towards the
left singular vectors of the successor representation. Instead,
our theoretical analysis holds for any transition matrix and
both the weights W and the features ® are updated at each
time step. Recently, Farebrother et al. (2023) rely on a ran-
dom binary cumulant matrix which sparsity is controlled by
means of a quantile regression loss. Finally, other auxiliary
tasks regroup self-supervised learning methods (Schwarzer
et al., 2021; Guo et al., 2020). Tang et al. (2023) demon-
strate that these algorithms perform an eigendecompositon
of real diagonalisable transition matrix P™, under some as-
sumptions, suggesting a close connection to TD auxiliary
tasks. Closely related, Touati and Ollivier (2021); Blier
et al. (2021) propose an unsupervised pretraining algorithm
to learn representations based on an eigendecomposition
of transition matrix P™. They demonstrate the usefulness
of their approach on discrete and continuous mazes, pixel-
based MsPacman and the FetchReach virtual robot arm.

7. Conclusion

In this paper, we have studied representations learnt by boot-
strapping methods and proved their benefit for value-based

deep RL agents. Based on an analysis of the TD continuous-
time dynamical system, we generalized existing work (Lyle
et al., 2021) and provided evidence that TD representations
are actually different from Monte Carlo representations.

Our investigation demonstrated that an identity cumulant
matrix provides as much information as the TD and super-
vised auxiliary algorithms can carry; this work also shows
that it is possible to design more compact pseudo-reward
functions, though this requires prior knowledge about the
transition dynamics. This led us to propose new families of
cumulants which also proved useful empirically.

We assumed in this paper that the TD updates are carried out
in tabular way, that is that there is not generalization between
states when we update the features. An exciting opportunity
for future work is to extend the theoretical results to the
case where the representation is parametrized by a neural
network. Other avenues for future work include scaling up
the representation learning methods here introduced.
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A. Additional Empirical Results
A.1. Additional details for Subsection 5.1

In this experiment, we selected a step size o = 0.08 for all the algorithms. We also choose a uniform data distribution
E = I/|S] and a cumulant matrix G = I for simplicity.

A.2. Additional details for Subsection 5.2

In this experiment, we use a step size &« = 5e~ and train the different learning rules for 500k steps with 3 seeds. We
consider the transition matrices induced by an epsilon greedy policy on the four room domain (Sutton et al., 1999) with
e = 0.8 and train the supervised and TD update rules as described in Subsection 5.1. We provide additionnal empirical
results in Figure 7.
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Figure 7: Monte Carlo and TD approximation errors after 5.10° training steps on the learning rules £MS (on the left
column) and EaTLB( (on the right column) in the four-room domain for different distributions of cumulant, averaged over

30 seeds, for d = 5. Shaded areas represent estimates of 95% confidence intervals.

A.3. Additional details for Subsection 5.3

Four Rooms is a tabular gridworld environment where the agent begins in a room in the top left corner and must navigate to
the goal state in the lower right corner. The actions are up, down, left and right and have deterministic effects. The reward
function is one upon transitioning into the goal state and zero otherwise.

Mountain Car is a two-dimensional continuous state environment where the agent must move an under-powered car from
the bottom of a valley to a goal state at the top of the nearby hill. The agent observes the continuous-valued position and
velocity of the car, and controls it with three discrete actions which apply positive, negative, and zero thrust to the car. In
this sparse reward version of the domain the reward is one for reaching the goal and zero otherwise. In this domain, we
compute the ExactSVD by first discretizing the state space into approximately 2000 states, and compute an approximate P
by simulating transitions from uniformly random continuous states belonging to each discretized state.

In this evaluation we first pre-train a network representation offline with a large fixed dataset produced from following the
uniform random policy. During offline pre-training the agent does not observe the reward, and instead learns action-value
functions, GVFs, for each of several cuamulant functions. After pre-training, the GVF head is removed and replaced with a
single action-value function head. This network is then trained online with DQN on the true environmental reward. Note
that we allow gradients to propagate into the network representation during online training.
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In Four Rooms all methods use £ = 40 cumulants and in Mountain Car all methods use £ = 80 cumulants.

The inputs to the network were a one-hot encoding of the observation in the four-room domain and the usual position
and velocity feature vector in Mountain car. The offline pre-training dataset contains 100000 and 200000 transitions for
four-room and mountain car respectively. In both cases the dataset is generated and used to fill a (fixed) replay buffer,
and then the agent is trained for 400000 updates (each update using a minibatch of 32 transitions sampled uniformly from
the buffer/dataset). The learning rate for both offline and online training was the same as the standard DQN learning rate
(0.00025), and similarly for the optimizer epsilon. The network architecture is a simple fully connected MLP with ReL.U
activations (Nair and Hinton, 2010) and two hidden layers of size 512 (first) and 256 (second), followed by a linear layer to
give action-values.

We provide visualizations of the cumulants produced by each method and their corresponding value functions in Figure 8§,
Figure 9, Figure 11, Figure 12.

Figure 10 and Figure 13 also show the norm and srank of the representations being learned during offline pretraining.

RNI Exact SVD Normal

Figure 9: Examples of the learned (general) value functions produced during offline pre-training in FourRooms under the
uniform random policy. In each case, the GVFs shown correspond to the value functions learned for the cumulants in Figure 8.
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Figure 10: For the GVF-based representations during offline training in Four Rooms, their (left) L2 norm and (right) srank.
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Figure 11: Examples of the learned cumulants produced during offline pre-training in sparse Mountain Car under the
uniform random policy.
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Figure 12: Examples of the learned (general) value functions produced during offline pre-training in sparse Mountain Car
under the uniform random policy. In each case, the GVFs shown correspond to the value functions learned for the cumulants
in Figure 11.
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Figure 13: For the GVF-based representations during offline training in sparse Mountain Car, their (left) L2 norm and
(right) srank.
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Figure 14: As CCR is effectively a clustering of states, we might ask in which states each cluster is active. We show an
example of the maximally active cluster index for CCR (left) and Exact SVD (right) in the Four Rooms (top) and sparse
Mountain Car (bottom) domains. These examples are for 20 cumulants setting.
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B. Proofs for Section 2

Proposition 1 (Monte Carlo representations). Ifrank(¥™) > d > 1, all representations spanning the top-d left singular
vectors of U™ with respect to the inner product (x,y)= are global minimizers of LNC and can be recovered by stochastic
gradient descent.

Proof. Let F; denote the top d left singular vectors of W.
i in _||EY2(@W — 0)|]% = in || P2 002202
argmin | min IE7%( )l arg min 1Pzi/24 17
={® e R | 3M € GL4(R),® = F;M}

The problem on the left side is a bilinear optimization problem in the variables (®, V). Despite the non-convexity of this
problem, it is now well known that these types of optimization problems can be efficiently solved using (noisy) gradient
descent efficiently, i.e., with number of iterations scaling at most polynomially in all problem specific parameters (Ge et al.,
2017; Jin et al., 2017).

O

C. Proofs for Section 3

Throughout the appendix, we will use the notation L := I — vP7.

The beginning of this section is dedicated to proving the main result of Section 3, Theorem 1. Before that, we introduce the
following necessary lemma.

Lemma 7. Let ® € R*? and ¥ € R5*T. Let Py be a (possibly oblique) projection onto span(®). We have

Py¥ = U < span(¥) C span(P)

Proof. Pgp canbe written as Py = ®(X '®)~'X T where ®, X € R¥*? and X " ® € R4*? is invertible. Write Pp = ®Q
with@Q = (XT®)~1xT,

(=) Suppose ¥ € R°*T such that Pp¥ = W. Then, ¥ = ®(Q¥). Letw € RT. Yw = &(Q¥)w so Yw € span(P)
Hence span(¥) C span(®).

( <= ) Suppose span(¥) C span(®P). Denote (e;) the standard basis. We have P U = (3, Po(Ve;)e/ ). Note that
Ve, € span(¥) C span(®). Hence, there exists y; € R such that e, = ®y;. Now, Po¥ = (3, Po(Pyr)e) ) =
(5, O(XTD) X TDyse] ) = (5, Byre]) = (3, Veue] ) = . o

Lemma 1 (Critical representations for TD). All full rank representations which are critical points to LXD span real

invariant subspaces of (I — yP™)"'GGTZ, that is span((I — yP™) " 'GGTZ®) C span(®).

Proof. Start with these equations.

[

For a fixed @, Vi ||(2)2 (®W — G — yP"sG[dW])|% = 20TE(OW — G — yP"dW)
For a fixed W, Vo ||(2)2 (BW — G — yP*sG[®W))||2 = 2E(®W — G — vP*OW)W T

By Assumption 1, ®TZL® is invertible for all full rank representations ®. Hence, for a fixed full rank ®,
Vi |[(2)? (@W — G — yPTsG[@W))[|% = 0 <= W; = (2TELD) ' TG
Using the second fixed-point equation:
0= (LOW —GWT = LOWW'T =GWT.
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Now plugging in the expression for W,

_ _ T _ T
L& ("D, L) o7 DG ((@TDWLtb) ! @TDWG) e ((@TDWch) ' @TDWG)
& Lo (07D, LY) ' 0TD,GCTD,® (87D, L) | = GG D, (T D,LP)
& @ ("D, L®) " d'D,GCTD,® = L'GGTD, b
e prp L 'GG'D,® = L7'GG"D,®

where IIx = ®(XT®)~1XT is the oblique projection onto span(®) orthogonally to span(X). This is equivalent to
HJL-T D. (I)LflGGTDW(P = 0, which is equivalent to saying that span(®) must be an invariant subspace of L~'GG" D, by
Lemma 7.

In other words, we have shown that all non-degenerate full-rank ® which are critical points span invariant subspaces of
L~ 'GGTD,. O

TD
aux

Corollary 1. If G = I and = = 1/S, all full rank representations which are critical points to L
subspaces of the invariant subspaces of P™.

span real invariant

ETD

Proof. Let G = I and Z = I/|S|. By Lemma 1, all full rank representations which are critical points of £,

invariant subspaces of (I — yP™)~ 1.

span real

Let ® be a representation spanning an invariant subspace of (I —~P™)~1. By definition, span((I —yP™)~1®) C span(®).
Because (I —+P™) is invertible, we have dim((I —yP™)~1®) = dim(®). Hence, we actually have span((I —yP™)"1®) =
span(®). There exists wi,wy € R? such that dw; = (I — yP™) " dwsy so (I — yP™)dw; = Pw,. It follows that
@le;wz) = P™®w,. Hence, P"®w; € span(®) and span(P™®) C span(®). We conclude that ® spans an invariant
subspace of P™. O

Theorem 1 (TD representations). Assume P™ real diagonalisable, G = I and a uniform distribution £ over states.
Let (v1,...,vg) denote the eigenvectors of P™ corresponding to the eigenvalues (\1,...,\g). Under the dynamics in
Equation (2), all real invariant subspaces of dimension d are critical points, and any real non top-d invariant subspace
O = (vy,,...,v;,) is unstable for gradient descent.

Proof. Consider this objective:

£(@) =4

(E2)(@Wg e — G —yPTsG[0Wg &),
and W2 = (PTELD) ' ®T=G and define L := I — vP™. Observe that:
For a fixed W, V|| ®W — G — yP"sG[@W]||% = 22(LOW — G)(W)T

So now we consider the continuous time dynamics:

S = Val(D) = F(®) 5)

where:
F(®) :=E(LoWg — G)(Wg )T =EL(Il 7z — )L 'GGTEQ(PTELD) T
Consider the case G = I and = = I /|S].

The proof strategy consists in constructing an eigenvector A € R%*9 of 9y F(®) as a function of ®, L, G such that
0 F(®)[A] = —AA for some Re(A) > 0. For every non top-d invariant subspace, we prove that the Jacobian of the
dynamics —F" has a positive real part eigenvalue.
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Do F(®)[A] = (LAW; + LO®(dW))(Wi)T + (LOW; — I)(dWg)T
DeWi[A] = —(®TLO) H(ATLD® + ®TLA)(®TLO) 10" + (&TLD) AT,

We also have the identity
W= (®"Lo)"'aT.
Now, if it is the case that AT® = 0, then by the L-invariance of ®, we also have that ATL® = 0, and hence:
WA=0, WLTA=0.
Next, we start with the simplification:

DeWi[A] = —(®TLO)'@TLA(GTLD) 1T + (TLO) AT
= -WLAW + (@TL®) AT,

Using the shorthand W = W}, and the optimality condition (L®W — )W = 0,

(LAW + LO(@W)WT = LAWWT — LOWLAWW '
(LOW — I)(0W)" = (LOW — NA(®TLD) " = —A(®TLD)~".

Therefore:
Do F(®)[A] = LAWWT — LOWLAWWT — A(®@TLD)~ T,

Furthermore, let us write L& = ®N for N € R4*? with N invertible; this holds for some such N since ® is L-invariant
and rank d. With this notation, we see immediately that L&W = Pg, since:

PTLO=TON —= W = (d"LD) 1T = N1 (0TD) " '1dT,
and therefore:
LOW = ONW = ®(dTd) 10T = Py.
Hence:
OpF(D)[A] = Po LAWWT — A(®TL®)~T.

This is the starting point of our analysis. Let (v1, . ..,vg) denote the eigenvectors of P corresponding to (Ag, ..., Ag). Let
us choose A = Pguv;u'. The identity P LA = (1 — v\;)A yields that:

dpF(®)[A] = A[(1 —y\)I — NN (@T®)" !N~ T.

Let (v1,...,vs) denote the eigenvectors of P corresponding to (Ay, ..., Ag). Let the columns of ® be (v;,, ..., v;,) with
corresponding eigenvalues ()\;,, ..., A;,). Then, we have the identity:
L(I):(I)(I—’}/A), A:dlag(/\“,,)\,d)
Note that:
W=(I-yA)"H(2Te) el
WIWT = (I—7A) " (@T®) (I —7A) ",
LOW = Py,
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so we have:
dpF(®)[A] = PELAWWT — A(@T®) 1T —~yA)L.
Next, we will choose A = Pgov;u", with the index i and vector u to be specified. Note that if we want A # 0 we are

constrained to choosing ¢ & {iy,...,%4}.

With this choice:
PiFLA = Py[(1 — y\)viu' — LPyvau'] = (1 —y\)A,
where the last equality holds since by the L-invariance of ®, we have that Py LPs = 0. Hence:

Do F(®)[A] = (1 - YA)A —3A) " (@TE) (I —7A) " — A@TE) (1 —yA) .
— /AT = A)(I = 7A) " (@T®) (L — yA) .

So, we just need to choose u to be a left eigenvector of the matrix (\;I — A)(I —yA)~*(®T®)~ (I — vA)~!, associated
with the largest eigenvalue. Thus, it remains to show that this matrix has at least one positive eigenvalue. By using the fact
that the eigenvalues of size conforming matrices AB equals the eigenvalues of B A, the eigenvalues of this matrix are:

eig(M — A)(I —yA)~H(@T@) " (I —yA) )
= eig((I —yA) T (NI = A)(I —yA)"H(@T2) ™)
= eig((®7®)2(I —A) TN = A)(I —~A) " (@T@)71/2),

Now, we need an auxiliary lemma.

Proposition 4. Let A, B be symmetric matrices, with B invertible. We have that:

Amax (A4)

A BAB) > ——————~—.
max( ) = Amax(B72)

Proof. Let g be the unit eigenvector associated with the largest eigenvalue of A. Since BAB is symmetric, we can use the

variational characterization of the largest eigenvalue to show:

Amax(BAB) = sup v" BABv
llvll=1

> % choosing v = B%iq
1B~ 1B~ 4|
)\max(A)

1B 1|2
Amax (4)

Z N (B2 since | B~ 'q|| < [|B™"|op-

O

With this proposition, we can conclude the proof. In particular, since we assume that ® contains at least one eigenvector
associated with Ag11,. .., As, then as long as we choose the index i of v in the following set [d] N {i1,...,iq4}° (Where
the set complementation is done w.r.t. [S]), then we will satisfy both (a) A # 0 and (b) there is at least one diagonal
entry in A\;I — A which is positive (this is where the strict gap assumption Ay > A;41 enters). Hence, we have that
Amax (I —yA) (NI — A)(I —yA)~1) > 0, which concludes the proof.

O

Proposition 2 (Residual representations). Let d € {1, ..., S} and F; be the top d left singular vectors of G with respect to
the inner product (x,y)= = y' =z, for all x,y € RS, All representations spanning (I — yP™)~'Fy are global minimizers
of LIS and can be recovered by stochastic gradient descent.
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Proof. We can write the loss function to be minimized as

J(®)= min [|EY3(@W — (G +~P"dW))|%

WERIXT
= EV2(QW — yPTOW - G)|
o gl )N
= EVA((I - yP™)OW — G
pin IEVE( =y PT) )7

Now,

1/2 7 ~1 2
argmin min ||= I —~P™MOW - G = arg min || P4 ) 2q
@égRSxd eRixT H (( 0 ) )HF @eg]st || E1/2(]—yPT) HF

={® R | ® = (I —yP")'F;M,M € GL4(R)}

This set of representations can be recovered by stochastic gradient descent efficiently, i.e., with number of SGD iterations
scaling at most polynomially in all problem specific parameters (Ge et al., 2017; Jin et al., 2017) in the context of SGD. [

Corollary 2 (Symmetric transition matrices). If a cumulant matrix G € RS*T (with T > S) has unit-norm, orthogonal

TD
columns (e.g. G = I), the representations learnt from the supervised objective LN and the TD update rule LIP. are the
same for symmetric transition matrices P™ under a uniform state distribution &.

Proof. Assume that P™ is symmetric so that L and L' are also symmetric.

By Proposition 1, running SGD on the supervised objective L’aux using ¥ = L~1G as targets results in a representation
spanning the top-d left singular vectors of L~'G which are the same as the top-d left singular vectors of L~!.

By assumption G is orthogonal, hence GGT = I. Because L~ 'GG" is symmetric, all its eigenvalues are real. By
Theorem 1, running gradient descent on £IP using G as the cumulant matrix converges to the top-d eigenvectors of

L7 'GGT = L. Indeed, the subspaces given by the span of the right eigenvectors of L~! are the only L~ '-invariant
subspaces. These eigenvectors are also the singular vectors of L~ as this matrix is symmetric.

Because P is a row stochastic matrix, we have that the spectral radius of P satisfies p(P) = 1, and therefore A(P) C [—1, 1].
Hence:

1
1=y

3 € 1/ +7), 1/ =)

Hence, the eigenvalues of L~! are positive. Because L~! is symmetric, the singular values of L ! are exactly its eigenvalues.
Hence, the top-d eigenvectors are the top-d singular vectors and the conclusion follows. O

D. Proofs for Section 4
Lemma 2. A representation @1y is 11-ball optimal for TD learning iff it is a solution of the following optimization problem.

NI
P4, € argming ||EV2(@WEYD — (I —vP™) 1)HF.
Proof. By definition, a representation is enough for TD learning when it is a minimizer of Equation (3), that is,

4y € argminE,_[|[Pwg” — V72, (6)
@ERSXd

where the expectation is over the reward functions 7, sampled uniformly over the /1 ball ||r.||? < 1 and

wil = (@TE(I — vP™)®) " B Er .
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Write Pii_, = I — Prr=g and Py = ®(XT®) "' X T the oblique projection onto span(®) orthogonally to span(X). We
have
Ejrpz<il|®wa® — V7IE = EHTH§<1||EI/2P[J:TE<I>(I —yP™) " r||3
= Euer@HEl/QPLLTs@(I —yP™)"'r|l3
= EHT'HKl tr(TTL_T(PLLTE@TEPLLTE@LAT)
=tr(L™ " (Pfrzg) ' EPfr=o L 'E(rrT"))
o ||EY2 P2y L% because 7 is sampled from an isotropic distribution

2
x =2 @wi? — (=P

O

Lemma 3. A representation ®}; is l1-ball optimal for batch Monte Carlo policy evaluation if its column space spans the
top-d left singular vectors (with respect to the inner product (z,y)=) of (I —~vP™)~L.

Proof. We have

Ejr2<ilVMC = V712 = By | P26 EV2 (I = vP™) 7 Hrll3
=Ej e tr(r T L7 TEY? P o V2L M)
= tr(L” TEV2PL L BV AL IE(rr )

= P2 /20 =P L7 1T

Write (I —yP™)~! = FXBT the weighted SVD of (I — vP™)~! where F' € R®*S such that FT=ZF = I and B € R%*¥
such that BT B = I. Write F; the top-d left singular vectors corresponding to the top-d singular values on the diagonal of ¥..
By definition, an [;-ball optimal representation is solution to the following optimization problem

argmin Bz, [V — V7 = argmin | Pijap =212 L7 7
€ S
= argmin || P2, EY/?FEB" ||%
@eRSXd

By the Eckart-Young theorem, || P ZY/2FEBT||2. < || P4EY2FSBT||%. Hence, the set of optimal representations is
{FuM, M € GLq(R)}. O

Lemma 8. Write FdEdB;— the truncated weighted SVD of the successor representation (I — vP™)~1. A representation is
l1-ball optimal for residual policy evaluation if its column space spans Fy>.4.

Proof. Write (I —yP™)~! = FXBT the weighted SVD of (I — yP™)~! where F' € R5*9 such that FTZF = [ and
B € R5*S such that BT B = I. Write F; the top-d left singular vectors corresponding to the top-d singular values on the
diagonal of 3. For a fixed ® € R¥*4, the solution of min,,cga ||Z1/2(®w — (r, + yP"®w))||% is the Bellman residual
minimizing approximation (Lagoudakis and Parr, 2003) and is given by
res T fram) ™ -1 ™ fram)
ws = (& —yP™®)'E(® — yP"®)) (& —yP"®) =r,.

Hence, the value approximant can be expressed by means of an orthogonal projection matrix as follows

Qwy® = (I —yP") 'E V2 Parjagry prya B rn
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where Py = X(XTX)~'XT denotes an orthogonal projection. By definition, a representation /;-ball optimal for residual
policy evaluation is solution to the following optimization problem

ngRT?iSEHrHKlHVres . V”||§ = ngRrsnirdl 1=Y/2(1 - 'y1737r)_1E_1/2P51/2(I_,Yp,r),i,El/Qr7r — Y21 — AP 2
ERSx® ERSx
= argmin |[ZY/2(I — vP™) 272 Paia gy prye B 7 — EYA(I — 4P 3

= argmin |21 = yP7) " Pai s pry 7
‘PERSXd

Using an oblique projection,

Qwis = (I —yP™) 'E Y2 Paija(s_yprya B 2rn

argminEHrHKle/r“ - V”||§ = argmin || ZY/2(I - ’yP”)_lE_lﬂPEl/z(I_,Yp,r),i,El/Qr7r — Y21 — AP |
@eRSXd (I)e]RSXd

= argmin |[ZY/2(I — vP™) 272 Paya gy prye B 7 — EYA(I — 4P M3
¢€Rsxd

= argmin |21 — yP7) " Paija_pry 17
‘PERSXd

L t=uxv?T

L~1x the top d right singular vectors of (I — yP™)~! is a solution. Let Uy, ¥4, V; correspond to the top d svals. Lets say

that Uy is S x d, ¥4 is square, and Vj; is also S x d. Whatis VTV, = [Ig] .

We want L& = Vyso ® = L™V = USV TV = UgSq. If L& = Vg, then Piy, = Pz, so L™ Py = U3 S (ViH)T, so
the objective is now sum of the last (S — d) singular values squared.

O

E. Proofs for Subsection 4.1

Lemma 4. Denote Br the top-T right singular vectors of the SR and O(T, S) the set of orthogonal matrices in RT*3,
Training auxiliary tasks in a MC way with any G from the set {G € RS*T|3M € O(T,S),G = BrM} results in an
l1-ball optimal representation for batch Monte Carlo.

Proof. By Lemma 3, a representation is /;-ball optimal for batch Monte Carlo policy evaluation if it spans the top-d left
singular vectors of the successor representation.

Let G € RS*T pe a cumulant matrix.

L35@) = min [[(@W — (I —P") ')}
By Proposition 1, we know that training on such a loss with G = I results in a representation spanning the same subspace as
the left singular vectors of the SR, that is {® € RS*? | IM € GL4(R),® = F;M} where F} are the left singular vectors
of the SR. We note that there is not a unique matrix G resulting into a representation spanning that subspace. In particular,
training with any of the matrices from the set of cumulant matrices G(G) = {G' € R*T|3M € O(T, S),G’ = GM}
results in the same representation, where O(T', S) denotes the set of orthogonal matrices in R”** (rows have 12 norm 1).

We are interested in finding a cumulant matrix G € R5*T with T' < S such that training the Monte Carlo loss £ results

in a representation spanning the top-d left singular vectors of the successor representation.
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Denote By the top T right singular vectors of the SR. Then the set G(Br) satisfies the requirement.

In particular, this finding is consistent in the case where S = T because G(Bs) = {G' € R¥*T|3M € O(T),G’ =
BsM} =G(Ig).

Indeed, let G’ € G(Bg). There exists M € O(S) such that G’ = BsM = Ig(BsM). Because BgM € O(S), we have
G’ € G(Is). Hence G(Bs) C G(Is).

Let G’ € G(Is). There exists M € O(S) such that G’ = IgM = (BsBI)M = Bs(B5M). Because BIM € O(S), we
have G’ € G(Bg). Hence G(Is) C G(Bs).

As a conclusion, we have G(Ig) = G(Bg). O

Lemma 5. Ler {®,} be the set of rotating representations from Figure 2 learnt by TD learning with G = I and d = 2. All
these representations are equally good for learning the main value function by TD learning, that is Vw € [0, 1],

TD (|2
Ejrjz<t [|®wwa, = V7
is constant and independent of w.

Proof. Let’s start by considering the case of the three-state circular example. We consider an orthogonal basis for the
invariant subspaces of ®. By definition, P"e; = ey, P™[eg,e3] = [ea,e3]A so Le; = (1 — v)e; and Lleg, e3] =
(I —P)lez, e3] = [e2, €3] — Y[ea, es]A = [ea, es](1 — YA).

Assume that there exists w € [0, 1] such that the representation is ® = [e1,wes + (1 — w)es] = [eq, ea, €3] with
1 0

Q=10 w . L® =[(1 —7)ey, [e2,e3](I —vA)]Q. Hence, we have LD = [eq, eg, €3] 1= 0 Q

0 I—~A

0 (1-w)

and ®TLE® = QTer, e, e3][er, eo, €3] 1=y 0 1g = o177 0 10, Hence (®TLP)"t =

1,€2,€3 1,€2,€3 0 I—’YA 0 I_fyA : ’
(=7 0 with u = (w, (1 —w))T. Note that u (I — yA)u = w?X1 1 + (1 —w)?A1 1

0 (u™(I —yA)u)~t ’ ’ ' '

The TD value function is given by VTP = &(dT L&)~ 1®T

V= leneneds [0 e Wleened”
= le1, €2, €3] {(1 707)71 u(uT(ISA)u)luT} [e1, €2, €3]

1/(1 —7y)ere] +w?esed +w(l —w)ezed +w(l — w)ezed + (1 — w)?ezel
w2)\1,1 + (1 — W)Q)\l)l

Now ||®(®TL®)~1®T — V7|2 is independent of w. O
Lemma 6. The set of cumulant matrices G € R3*T that preserve the top-T invariant subspaces of the successor
representation by TD learning are the top-T orthogonal invariant subspaces of (I — yP™) ™1, that is satisfying GT G = I
by orthogonality and (I — vP™)~1G C G by the invariance property.

Proof. Let ® € R*? spanning an invariant subspace of L~'. By definition, there exists a block diagonal matrix Jp € R%*?
such that L71® = ®Jg. Let G € O(S,T) spanning the top T invariant subspaces of L~!. By definition, there exists a
block diagonal matrix Jg € R?*¢ such that L='G = G.Jg. Hencer, we have

(L7'GGN® = (L7'G)GT®
=GJrGTo
= (®Jp) by orthonormality

Then, ® is an invariant subspace of L~ 'GGT. O
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Lemma 6. The set of cumulant matrices G € R5*T that preserve the top-T invariant subspaces of the successor
representation by TD learning are the top-T orthogonal invariant subspaces of (I — yP™)™', that is satisfying GT G = I
by orthogonality and (I —yP™) "G C G by the invariance property.

Proof. Let ® € R%*? spanning an invariant subspace of L~'. By definition, there exists a block diagonal matrix Jp € R%*¢
such that L™1® = ®.Jg. Let G € O(S,T) spanning the top 7 invariant subspaces of L~!. By definition, there exists a
block diagonal matrix .J € R?*? such that L='G = G.J. Hencer, we have

(L7'GGN® = (L7'G)GT®
=GJrGTo
= (®Jy) by orthonormality

Then, ® is an invariant subspace of L~ 'GGT. O

F. Proofs for Subsection 4.2

We now proceed to the proof of Proposition 3. Before that, we introduce some necessary notations and lemmas.

F.1. Notations
Let O(S,d) :={A € RS%d . AT A = I}

Definition 5. Let A, B € O(S,d). The principle angles © between A and B are given by writing the SVD of ATB =
UcosOVT.

Definition 6. Ler A, B € O(S, d) with principle angles ©. We define the distance d(A, B) as d(A, B) := ||sin O|op.
Proposition 5. Let A, B € O(S, d). We have the following identities:

d(A, B) = || AAT = BB||op = [|sin©||op = [| A" B]lop,
where B € O(S, S — d) satisfies BBT + BB = I.

F.2. Approximate matrix decompositions

Lemma 9 (Deterministic error bound). Let A be an S x S matrix. Fix d < S, and partition the SVD of A as:

by o] [v,"
et wafi 2]

where Y1 is d X d (the dimensions of all the other factors are determined by this selection). Put Ay :== U1, VlT as the
rank-d approximation of A. Let Q be an S x { test matrix ({ > d). PutY = AQ, Q1 =V, Q and Qy = V,' Q. We have
that:

(T = Py)AkllZ, < 3292012,

Proof. This proof is adapted from Theorem 9.1 of Halko et al. (2011).

Write Ay = USVT the full SVD of Ag4. By invariance of the spectral norm to unitary transformations,

I = Py)Adlla, = 10T (1 = Pr)U(U T Ag)llz, = 11 = Py )(U T A2,

Assume the diagonal entries of X5 are not all strictly positive. Then X5 is zero as a consequence of the ordering of the
singular values.

A T A
range(U 'Y) = range [21091} = range {21(‘)/1 ] = range(U " Ay)

So we can conclude that ||(I — Py)Ag||2, = 0 assuming that V;" and Q1 have full row rank.
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Now assume that the diagonal entries of 3 are strictly positive. Let Z = UY - QIE;l = [;‘f] with ' = EQQQQIEfl €

R(Sfd)xd‘
By construction, range(Z) C range(U TY), hence we have,
1T = Pory O T A3, < I = P2)UT Aall2, < [ AJU(I = P2)U T Adllop < IIE(I — P2)Eop

Following the proof from Theorem 9.1 of Halko et al. (2011), we have

F'F B
=ra)< { BT IS—d]
where B = — (I — FTF)—1FT c RAX(S—d)
Consequently, we have
- . T

f]([ — Pz)i is PSD by the conjugation rule, hence the matrix on the right hand side is PSD too. It follows that

IZ(I = P2)Zllop < [B1F T FEillop = [FE13, = 200413,

O

Lemma 10 (Average spectral error). Let A be an S x S matrix with singular values 01 > o9 > .... Fix a target rank
2 < d < S and an oversampling parameter p > 2 where p + d > S. Draw and S x (d + p) standard gaussian matrix Q
and construct the sample matrix Y = AQ). Then, we have

1/2
s
d ev/d+
EH(I - PY)Ad”op < Od+1 + 71) Z 032
p—1 p =
J=d+1
Proof. By Lemma 9 and linearity of the expectation, we have
E[[(I = Py)Adllop < E[[Z29220[|op
s 1/2
d evd+p
S \/flad“""i Z UJQ‘ ’
p p a1
where the last inequality comes from Theorem 10.6 of Halko et al. (2011). O

Lemma 11. Let A € R™*", andfixad < n. Let 01 > 09 > ... > oy, denote the singular values of M listed in decreasing
order, and suppose that ), > 0. Let Aq denote the rank-d approximation of A. Fix any matrix Y € R™*T. We have:

(I = Py)Axllop = [I(I = Py) Payllopo-

Proof. Decompose P+ Ay, as:
P Ay, = PPy, Ay,

HP}%AkHop = HP)J;PAkAk?”OP > ||P1%PA1C ||0p||A/€||0p = ||P}£PA1C ||0pU/c
where the inequality comes from the sub-multiplicativity of the the operator norm O
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Proposition 6. Let A be an S x S matrix with singular values o1 > o9 > .... Fix a target rank 2 < d < n and an
oversampling parameter p > 2 where p + d > S. Draw and n x (d + p) standard gaussian matrix ) and construct the
sample matrix Y = AQ). Then, we have

S 2

d \d o5

E||(I = Py)Pa, llop < Zart  VETP [ 5~ 0
p—1 o4 p ST o3

Proof. By Lemma 11 and linearity of the expectation, we have

1/2

1
;dEH(I = Py)Adllop = E[(I = Py)Pa,llop

Now applying Lemma 10, we have

1/2

S
d o ev/d+ o5
e 'Y > E|[(I = Pr)Pa,llop
D ad D Pyl

[

ISRV

O

Observe that, as the oversampling factor p grows, the RHS tends to zero. However, the dependence will be something like
p 2 1/2,if you want the RHS to be < ¢. This actually makes sense I think— you are using concentration of measure to
increase the accuracy, so you should pay 1/¢? sample complexity.

F.3. Analysis

Proposition 3 (MC Error bound). Let G € R%*T be a sample from a standard gaussian distribution and assume d < T.
Let F; be the top-d left singular vectors of the successor representation (I —yP™)~! and F, be the top left singular vectors
of (I —yP™)~1G. Denote 01 > o3 > ... > 0 the singular values of the SR and dist(Fy, Fd) the sin 0 distance between
the subspaces spanned by Fy and Ey. Denoting p =T — d, we have

. - d og+1  eVT " UJQ»
Eldist(Fy, Fy)] < N
[dist(Fa, Fy)] “p—l o + » E o2

j=d+1

N

Proof. Let | €{d,...S}. F; € O(S,1) be the top I left singular vectors of (I —yP™)~* and F; € O(S, d) be the top left
singular vectors of (I —yP™)~1G.

d(Fa, Fa) = | B Fifllop
= prdPillop
< ||Pp-1¢P#, |lop as span(Fy) C span(L~'G)
= HF;Fleop
= HFJF:%HOD
— |Pr,PE Jlop
= HPPfT Pr,|lop by symmetry of the projection matrices
= (I = Pg) Prylop
= 11 = Prra) Pr-1),llop

1
< —||(I = Pp-1g) (L) allop by Lemma 11
o4
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Now taking the expectation with respect to G and applying Proposition 6,

1/2

. d Od+1 evT " o?
E[d(Fy, F)] < 1/ -
dFa Fl S\ 775, Y 7=d 2 o2

j=d+1

G. n-step TD case

We now provide intuition about how our theory extends from 1-step to n-step temporal difference learning. The n-step TD
loss corresponds to the following loss

2

LI (p W) =

aux

(2)2 <<I>W ~SG (TLZ AF(PTYRG + wwwww))

k=0 F

Our analysis mostly stays the same, with the exception that the successor representation (I — v P™) becomes (I —~"™(P™)™)
and the cumulant matrix G becomes G,, = Zg_l vk (P”)k G. Following the same proof strategy as that of Lemma 1, we
find that the critical representation are given by the real invariant subspaces of (I —~" (P”)n)_1 GG Z. Now following

the proof strategy from Theorem 1 shows that all non-top real invariant subspaces of (I — " (P’r)nf1 GG} = are
unstable. This implies that the n-step TD algorithm also converges towards a real top-d invariant subspace of or diverges
with probability 1.
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